]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Jonathan Westhues, Mar 2006 | |
3 | // Edits by Gerhard de Koning Gans, Sep 2007 (##) | |
4 | // | |
5 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
6 | // at your option, any later version. See the LICENSE.txt file for the text of | |
7 | // the license. | |
8 | //----------------------------------------------------------------------------- | |
9 | // The main application code. This is the first thing called after start.c | |
10 | // executes. | |
11 | //----------------------------------------------------------------------------- | |
12 | #include "usb_cdc.h" | |
13 | #include "proxmark3.h" | |
14 | #include "apps.h" | |
15 | #include "util.h" | |
16 | #include "printf.h" | |
17 | #include "string.h" | |
18 | #include "legicrf.h" | |
19 | #include "lfsampling.h" | |
20 | #include "BigBuf.h" | |
21 | #include "mifareutil.h" | |
22 | ||
23 | #ifdef WITH_LCD | |
24 | #include "LCD.h" | |
25 | #endif | |
26 | ||
27 | // Craig Young - 14a stand-alone code | |
28 | #ifdef WITH_ISO14443a_StandAlone | |
29 | #include "iso14443a.h" | |
30 | #include "protocols.h" | |
31 | #endif | |
32 | ||
33 | //============================================================================= | |
34 | // A buffer where we can queue things up to be sent through the FPGA, for | |
35 | // any purpose (fake tag, as reader, whatever). We go MSB first, since that | |
36 | // is the order in which they go out on the wire. | |
37 | //============================================================================= | |
38 | ||
39 | #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits | |
40 | uint8_t ToSend[TOSEND_BUFFER_SIZE]; | |
41 | int ToSendMax = 0; | |
42 | static int ToSendBit; | |
43 | struct common_area common_area __attribute__((section(".commonarea"))); | |
44 | ||
45 | void ToSendReset(void) | |
46 | { | |
47 | ToSendMax = -1; | |
48 | ToSendBit = 8; | |
49 | } | |
50 | ||
51 | void ToSendStuffBit(int b) { | |
52 | if(ToSendBit >= 8) { | |
53 | ++ToSendMax; | |
54 | ToSend[ToSendMax] = 0; | |
55 | ToSendBit = 0; | |
56 | } | |
57 | ||
58 | if(b) | |
59 | ToSend[ToSendMax] |= (1 << (7 - ToSendBit)); | |
60 | ||
61 | ++ToSendBit; | |
62 | ||
63 | if(ToSendMax >= sizeof(ToSend)) { | |
64 | ToSendBit = 0; | |
65 | DbpString("ToSendStuffBit overflowed!"); | |
66 | } | |
67 | } | |
68 | ||
69 | void PrintToSendBuffer(void){ | |
70 | DbpString("Printing ToSendBuffer:"); | |
71 | Dbhexdump(ToSendMax, ToSend, 0); | |
72 | } | |
73 | ||
74 | void print_result(char *name, uint8_t *buf, size_t len) { | |
75 | uint8_t *p = buf; | |
76 | ||
77 | if ( len % 16 == 0 ) { | |
78 | for(; p-buf < len; p += 16) | |
79 | Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", | |
80 | name, | |
81 | p-buf, | |
82 | len, | |
83 | p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15] | |
84 | ); | |
85 | } | |
86 | else { | |
87 | for(; p-buf < len; p += 8) | |
88 | Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x", | |
89 | name, | |
90 | p-buf, | |
91 | len, | |
92 | p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]); | |
93 | } | |
94 | } | |
95 | ||
96 | //============================================================================= | |
97 | // Debug print functions, to go out over USB, to the usual PC-side client. | |
98 | //============================================================================= | |
99 | ||
100 | void DbpStringEx(char *str, uint32_t cmd){ | |
101 | byte_t len = strlen(str); | |
102 | cmd_send(CMD_DEBUG_PRINT_STRING,len, cmd,0,(byte_t*)str,len); | |
103 | } | |
104 | ||
105 | void DbpString(char *str) { | |
106 | DbpStringEx(str, 0); | |
107 | } | |
108 | ||
109 | #if 0 | |
110 | void DbpIntegers(int x1, int x2, int x3) { | |
111 | cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0); | |
112 | } | |
113 | #endif | |
114 | void DbprintfEx(uint32_t cmd, const char *fmt, ...) { | |
115 | // should probably limit size here; oh well, let's just use a big buffer | |
116 | char output_string[128] = {0x00}; | |
117 | va_list ap; | |
118 | ||
119 | va_start(ap, fmt); | |
120 | kvsprintf(fmt, output_string, 10, ap); | |
121 | va_end(ap); | |
122 | ||
123 | DbpStringEx(output_string, cmd); | |
124 | } | |
125 | ||
126 | void Dbprintf(const char *fmt, ...) { | |
127 | // should probably limit size here; oh well, let's just use a big buffer | |
128 | char output_string[128] = {0x00}; | |
129 | va_list ap; | |
130 | ||
131 | va_start(ap, fmt); | |
132 | kvsprintf(fmt, output_string, 10, ap); | |
133 | va_end(ap); | |
134 | ||
135 | DbpString(output_string); | |
136 | } | |
137 | ||
138 | // prints HEX & ASCII | |
139 | void Dbhexdump(int len, uint8_t *d, bool bAsci) { | |
140 | int l=0, i; | |
141 | char ascii[9]; | |
142 | ||
143 | while (len>0) { | |
144 | ||
145 | l = (len>8) ? 8 : len; | |
146 | ||
147 | memcpy(ascii,d,l); | |
148 | ascii[l]=0; | |
149 | ||
150 | // filter safe ascii | |
151 | for (i=0; i<l; ++i) | |
152 | if (ascii[i]<32 || ascii[i]>126) ascii[i]='.'; | |
153 | ||
154 | if (bAsci) | |
155 | Dbprintf("%-8s %*D",ascii,l,d," "); | |
156 | else | |
157 | Dbprintf("%*D",l,d," "); | |
158 | ||
159 | len -= 8; | |
160 | d += 8; | |
161 | } | |
162 | } | |
163 | ||
164 | //----------------------------------------------------------------------------- | |
165 | // Read an ADC channel and block till it completes, then return the result | |
166 | // in ADC units (0 to 1023). Also a routine to average 32 samples and | |
167 | // return that. | |
168 | //----------------------------------------------------------------------------- | |
169 | static int ReadAdc(int ch) | |
170 | { | |
171 | uint32_t d; | |
172 | ||
173 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; | |
174 | AT91C_BASE_ADC->ADC_MR = | |
175 | ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz | |
176 | ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us | |
177 | ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us | |
178 | ||
179 | // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value. | |
180 | // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant | |
181 | // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged. | |
182 | // | |
183 | // The maths are: | |
184 | // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be | |
185 | // | |
186 | // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%) | |
187 | // | |
188 | // Note: with the "historic" values in the comments above, the error was 34% !!! | |
189 | ||
190 | AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch); | |
191 | ||
192 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
193 | ||
194 | while (!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) ; | |
195 | ||
196 | d = AT91C_BASE_ADC->ADC_CDR[ch]; | |
197 | return d; | |
198 | } | |
199 | ||
200 | int AvgAdc(int ch) // was static - merlok | |
201 | { | |
202 | int i, a = 0; | |
203 | for(i = 0; i < 32; ++i) | |
204 | a += ReadAdc(ch); | |
205 | ||
206 | return (a + 15) >> 5; | |
207 | } | |
208 | ||
209 | ||
210 | void MeasureAntennaTuning(void) { | |
211 | ||
212 | uint8_t LF_Results[256]; | |
213 | int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; | |
214 | int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV | |
215 | ||
216 | memset(LF_Results, 0, sizeof(LF_Results)); | |
217 | LED_B_ON(); | |
218 | ||
219 | /* | |
220 | * Sweeps the useful LF range of the proxmark from | |
221 | * 46.8kHz (divisor=255) to 600kHz (divisor=19) and | |
222 | * read the voltage in the antenna, the result left | |
223 | * in the buffer is a graph which should clearly show | |
224 | * the resonating frequency of your LF antenna | |
225 | * ( hopefully around 95 if it is tuned to 125kHz!) | |
226 | */ | |
227 | ||
228 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
229 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
230 | ||
231 | for (i = 255; i >= 19; i--) { | |
232 | WDT_HIT(); | |
233 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); | |
234 | SpinDelay(20); | |
235 | adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10); | |
236 | if (i==95) vLf125 = adcval; // voltage at 125Khz | |
237 | if (i==89) vLf134 = adcval; // voltage at 134Khz | |
238 | ||
239 | LF_Results[i] = adcval >> 8; // scale int to fit in byte for graphing purposes | |
240 | if(LF_Results[i] > peak) { | |
241 | peakv = adcval; | |
242 | peak = LF_Results[i]; | |
243 | peakf = i; | |
244 | } | |
245 | } | |
246 | ||
247 | LED_A_ON(); | |
248 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. | |
249 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
250 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); | |
251 | SpinDelay(20); | |
252 | vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; | |
253 | ||
254 | cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134 << 16), vHf, peakf | (peakv << 16), LF_Results, 256); | |
255 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
256 | LEDsoff(); | |
257 | } | |
258 | ||
259 | void MeasureAntennaTuningHf(void) { | |
260 | int vHf = 0; // in mV | |
261 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. | |
262 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
263 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); | |
264 | ||
265 | while ( !BUTTON_PRESS() ){ | |
266 | SpinDelay(20); | |
267 | vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; | |
268 | //Dbprintf("%d mV",vHf); | |
269 | DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF, "%d mV",vHf); | |
270 | } | |
271 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
272 | DbpString("cancelled"); | |
273 | } | |
274 | ||
275 | ||
276 | void ReadMem(int addr) { | |
277 | const uint8_t *data = ((uint8_t *)addr); | |
278 | ||
279 | Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x", | |
280 | addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); | |
281 | } | |
282 | ||
283 | /* osimage version information is linked in */ | |
284 | extern struct version_information version_information; | |
285 | /* bootrom version information is pointed to from _bootphase1_version_pointer */ | |
286 | extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__; | |
287 | void SendVersion(void) | |
288 | { | |
289 | char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */ | |
290 | char VersionString[USB_CMD_DATA_SIZE] = { '\0' }; | |
291 | ||
292 | /* Try to find the bootrom version information. Expect to find a pointer at | |
293 | * symbol _bootphase1_version_pointer, perform slight sanity checks on the | |
294 | * pointer, then use it. | |
295 | */ | |
296 | char *bootrom_version = *(char**)&_bootphase1_version_pointer; | |
297 | ||
298 | if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) { | |
299 | strcat(VersionString, "bootrom version information appears invalid\n"); | |
300 | } else { | |
301 | FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version); | |
302 | strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); | |
303 | } | |
304 | ||
305 | FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information); | |
306 | strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); | |
307 | ||
308 | FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp)); | |
309 | strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); | |
310 | ||
311 | FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp)); | |
312 | strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); | |
313 | ||
314 | // Send Chip ID and used flash memory | |
315 | uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start; | |
316 | uint32_t compressed_data_section_size = common_area.arg1; | |
317 | cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString)); | |
318 | } | |
319 | ||
320 | // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time. | |
321 | // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included. | |
322 | void printUSBSpeed(void) | |
323 | { | |
324 | Dbprintf("USB Speed:"); | |
325 | Dbprintf(" Sending USB packets to client..."); | |
326 | ||
327 | #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds | |
328 | uint8_t *test_data = BigBuf_get_addr(); | |
329 | uint32_t end_time; | |
330 | ||
331 | uint32_t start_time = end_time = GetTickCount(); | |
332 | uint32_t bytes_transferred = 0; | |
333 | ||
334 | LED_B_ON(); | |
335 | while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) { | |
336 | cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE); | |
337 | end_time = GetTickCount(); | |
338 | bytes_transferred += USB_CMD_DATA_SIZE; | |
339 | } | |
340 | LED_B_OFF(); | |
341 | ||
342 | Dbprintf(" Time elapsed: %dms", end_time - start_time); | |
343 | Dbprintf(" Bytes transferred: %d", bytes_transferred); | |
344 | Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s", | |
345 | 1000 * bytes_transferred / (end_time - start_time)); | |
346 | ||
347 | } | |
348 | ||
349 | /** | |
350 | * Prints runtime information about the PM3. | |
351 | **/ | |
352 | void SendStatus(void) { | |
353 | BigBuf_print_status(); | |
354 | Fpga_print_status(); | |
355 | printConfig(); //LF Sampling config | |
356 | printUSBSpeed(); | |
357 | Dbprintf("Various"); | |
358 | Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL); | |
359 | Dbprintf(" ToSendMax..........%d", ToSendMax); | |
360 | Dbprintf(" ToSendBit..........%d", ToSendBit); | |
361 | Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE); | |
362 | ||
363 | cmd_send(CMD_ACK,1,0,0,0,0); | |
364 | } | |
365 | ||
366 | #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF) | |
367 | ||
368 | #define OPTS 2 | |
369 | void StandAloneMode() | |
370 | { | |
371 | DbpString("Stand-alone mode! No PC necessary."); | |
372 | // Oooh pretty -- notify user we're in elite samy mode now | |
373 | LED(LED_RED, 200); | |
374 | LED(LED_ORANGE, 200); | |
375 | LED(LED_GREEN, 200); | |
376 | LED(LED_ORANGE, 200); | |
377 | LED(LED_RED, 200); | |
378 | LED(LED_ORANGE, 200); | |
379 | LED(LED_GREEN, 200); | |
380 | LED(LED_ORANGE, 200); | |
381 | LED(LED_RED, 200); | |
382 | } | |
383 | #endif | |
384 | ||
385 | #ifdef WITH_ISO14443a_StandAlone | |
386 | ||
387 | typedef struct { | |
388 | uint8_t uid[10]; | |
389 | uint8_t uidlen; | |
390 | uint8_t atqa[2]; | |
391 | uint8_t sak; | |
392 | } __attribute__((__packed__)) card_clone_t; | |
393 | ||
394 | void StandAloneMode14a() | |
395 | { | |
396 | StandAloneMode(); | |
397 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
398 | ||
399 | int selected = 0, playing = 0, iGotoRecord = 0, iGotoClone = 0; | |
400 | int cardRead[OPTS] = {0}; | |
401 | ||
402 | card_clone_t uids[OPTS]; | |
403 | iso14a_card_select_t card_info[OPTS]; | |
404 | uint8_t params = (MAGIC_SINGLE | MAGIC_DATAIN); | |
405 | ||
406 | LED(selected + 1, 0); | |
407 | ||
408 | for (;;) | |
409 | { | |
410 | usb_poll(); | |
411 | WDT_HIT(); | |
412 | SpinDelay(300); | |
413 | ||
414 | if (iGotoRecord == 1 || cardRead[selected] == 0) | |
415 | { | |
416 | iGotoRecord = 0; | |
417 | LEDsoff(); | |
418 | LED(selected + 1, 0); | |
419 | LED(LED_RED2, 0); | |
420 | ||
421 | // record | |
422 | Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected); | |
423 | /* need this delay to prevent catching some weird data */ | |
424 | SpinDelay(500); | |
425 | iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); | |
426 | ||
427 | for ( ; ; ) | |
428 | { | |
429 | WDT_HIT(); | |
430 | if (BUTTON_PRESS()) { | |
431 | if (cardRead[selected]) { | |
432 | Dbprintf("Button press detected -- replaying card in bank[%d]", selected); | |
433 | break; | |
434 | } | |
435 | else if (cardRead[(selected+1) % OPTS]) { | |
436 | Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS); | |
437 | selected = (selected+1) % OPTS; | |
438 | break; // playing = 1; | |
439 | } | |
440 | else { | |
441 | Dbprintf("Button press detected but no stored tag to play. (Ignoring button)"); | |
442 | SpinDelay(300); | |
443 | } | |
444 | } | |
445 | if (!iso14443a_select_card(NULL, &card_info[selected], NULL, true, 0)) | |
446 | continue; | |
447 | else | |
448 | { | |
449 | Dbprintf("Read UID:"); | |
450 | Dbhexdump(card_info[selected].uidlen, card_info[selected].uid, 0); | |
451 | ||
452 | if (memcmp(uids[(selected+1)%OPTS].uid, card_info[selected].uid, card_info[selected].uidlen ) == 0 ) { | |
453 | Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping."); | |
454 | } | |
455 | else { | |
456 | ||
457 | uids[selected].sak = card_info[selected].sak; | |
458 | uids[selected].uidlen = card_info[selected].uidlen; | |
459 | memcpy(uids[selected].uid , card_info[selected].uid, uids[selected].uidlen); | |
460 | memcpy(uids[selected].atqa, card_info[selected].atqa, 2); | |
461 | ||
462 | if (uids[selected].uidlen > 4) | |
463 | Dbprintf("Bank[%d] received a 7-byte UID", selected); | |
464 | else | |
465 | Dbprintf("Bank[%d] received a 4-byte UID", selected); | |
466 | break; | |
467 | } | |
468 | } | |
469 | } | |
470 | Dbprintf("ATQA = %02X%02X", uids[selected].atqa[0], uids[selected].atqa[1]); | |
471 | Dbprintf("SAK = %02X", uids[selected].sak); | |
472 | LEDsoff(); | |
473 | LED(LED_GREEN, 200); | |
474 | LED(LED_ORANGE, 200); | |
475 | LED(LED_GREEN, 200); | |
476 | LED(LED_ORANGE, 200); | |
477 | ||
478 | LEDsoff(); | |
479 | LED(selected + 1, 0); | |
480 | ||
481 | // Next state is replay: | |
482 | playing = 1; | |
483 | ||
484 | cardRead[selected] = 1; | |
485 | } | |
486 | /* MF Classic UID clone */ | |
487 | else if (iGotoClone==1) | |
488 | { | |
489 | iGotoClone=0; | |
490 | LEDsoff(); | |
491 | LED(selected + 1, 0); | |
492 | LED(LED_ORANGE, 250); | |
493 | ||
494 | // magiccards holds 4bytes uid. | |
495 | uint64_t tmpuid = bytes_to_num(uids[selected].uid, 4); | |
496 | ||
497 | // record | |
498 | Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, tmpuid & 0xFFFFFFFF); | |
499 | ||
500 | // wait for button to be released | |
501 | // Delay cloning until card is in place | |
502 | while(BUTTON_PRESS()) | |
503 | WDT_HIT(); | |
504 | ||
505 | Dbprintf("Starting clone. [Bank: %u]", selected); | |
506 | // need this delay to prevent catching some weird data | |
507 | SpinDelay(500); | |
508 | // Begin clone function here: | |
509 | /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards: | |
510 | UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}}; | |
511 | memcpy(c.d.asBytes, data, 16); | |
512 | SendCommand(&c); | |
513 | ||
514 | Block read is similar: | |
515 | UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}}; | |
516 | We need to imitate that call with blockNo 0 to set a uid. | |
517 | ||
518 | The get and set commands are handled in this file: | |
519 | // Work with "magic Chinese" card | |
520 | case CMD_MIFARE_CSETBLOCK: | |
521 | MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes); | |
522 | break; | |
523 | case CMD_MIFARE_CGETBLOCK: | |
524 | MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes); | |
525 | break; | |
526 | ||
527 | mfCSetUID provides example logic for UID set workflow: | |
528 | -Read block0 from card in field with MifareCGetBlock() | |
529 | -Configure new values without replacing reserved bytes | |
530 | memcpy(block0, uid, 4); // Copy UID bytes from byte array | |
531 | // Mifare UID BCC | |
532 | block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5 | |
533 | Bytes 5-7 are reserved SAK and ATQA for mifare classic | |
534 | -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it | |
535 | */ | |
536 | uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0}; | |
537 | // arg0 = Flags, arg1=blockNo | |
538 | MifareCGetBlock(params, 0, oldBlock0); | |
539 | if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) { | |
540 | Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected); | |
541 | playing = 1; | |
542 | } | |
543 | else { | |
544 | Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0], oldBlock0[1], oldBlock0[2], oldBlock0[3]); | |
545 | memcpy(newBlock0, oldBlock0, 16); | |
546 | ||
547 | // Copy uid for bank (2nd is for longer UIDs not supported if classic) | |
548 | memcpy(newBlock0, uids[selected].uid, 4); | |
549 | newBlock0[4] = newBlock0[0] ^ newBlock0[1] ^ newBlock0[2] ^ newBlock0[3]; | |
550 | ||
551 | // arg0 = workFlags, arg1 = blockNo, datain | |
552 | MifareCSetBlock(params, 0, newBlock0); | |
553 | MifareCGetBlock(params, 0, testBlock0); | |
554 | ||
555 | if (memcmp(testBlock0, newBlock0, 16)==0) { | |
556 | DbpString("Cloned successfull!"); | |
557 | cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it | |
558 | playing = 0; | |
559 | iGotoRecord = 1; | |
560 | selected = (selected + 1) % OPTS; | |
561 | } else { | |
562 | Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected); | |
563 | playing = 1; | |
564 | } | |
565 | } | |
566 | LEDsoff(); | |
567 | LED(selected + 1, 0); | |
568 | } | |
569 | // Change where to record (or begin playing) | |
570 | else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected]) | |
571 | { | |
572 | LEDsoff(); | |
573 | LED(selected + 1, 0); | |
574 | ||
575 | // Begin transmitting | |
576 | if (playing) | |
577 | { | |
578 | LED(LED_GREEN, 0); | |
579 | DbpString("Playing"); | |
580 | for ( ; ; ) { | |
581 | WDT_HIT(); | |
582 | int button_action = BUTTON_HELD(1000); | |
583 | if (button_action == 0) { // No button action, proceed with sim | |
584 | ||
585 | uint8_t flags = FLAG_4B_UID_IN_DATA; | |
586 | uint8_t data[USB_CMD_DATA_SIZE] = {0}; // in case there is a read command received we shouldn't break | |
587 | ||
588 | memcpy(data, uids[selected].uid, uids[selected].uidlen); | |
589 | ||
590 | uint64_t tmpuid = bytes_to_num(uids[selected].uid, uids[selected].uidlen); | |
591 | ||
592 | if ( uids[selected].uidlen == 7 ) { | |
593 | flags = FLAG_7B_UID_IN_DATA; | |
594 | Dbprintf("Simulating ISO14443a tag with uid: %02x%08x [Bank: %u]", tmpuid >> 32, tmpuid & 0xFFFFFFFF , selected); | |
595 | } else { | |
596 | Dbprintf("Simulating ISO14443a tag with uid: %08x [Bank: %u]", tmpuid & 0xFFFFFFFF , selected); | |
597 | } | |
598 | ||
599 | if (uids[selected].sak == 0x08 && uids[selected].atqa[0] == 0x04 && uids[selected].atqa[1] == 0) { | |
600 | DbpString("Mifare Classic 1k"); | |
601 | SimulateIso14443aTag(1, flags, data); | |
602 | } else if (uids[selected].sak == 0x18 && uids[selected].atqa[0] == 0x02 && uids[selected].atqa[1] == 0) { | |
603 | DbpString("Mifare Classic 4k (4b uid)"); | |
604 | SimulateIso14443aTag(8, flags, data); | |
605 | } else if (uids[selected].sak == 0x08 && uids[selected].atqa[0] == 0x44 && uids[selected].atqa[1] == 0) { | |
606 | DbpString("Mifare Classic 4k (7b uid)"); | |
607 | SimulateIso14443aTag(8, flags, data); | |
608 | } else if (uids[selected].sak == 0x00 && uids[selected].atqa[0] == 0x44 && uids[selected].atqa[1] == 0) { | |
609 | DbpString("Mifare Ultralight"); | |
610 | SimulateIso14443aTag(2, flags, data); | |
611 | } else if (uids[selected].sak == 0x20 && uids[selected].atqa[0] == 0x04 && uids[selected].atqa[1] == 0x03) { | |
612 | DbpString("Mifare DESFire"); | |
613 | SimulateIso14443aTag(3, flags, data); | |
614 | } | |
615 | else { | |
616 | Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation"); | |
617 | SimulateIso14443aTag(1, flags, data); | |
618 | } | |
619 | } | |
620 | else if (button_action == BUTTON_SINGLE_CLICK) { | |
621 | selected = (selected + 1) % OPTS; | |
622 | Dbprintf("Done playing. Switching to record mode on bank %d",selected); | |
623 | iGotoRecord = 1; | |
624 | break; | |
625 | } | |
626 | else if (button_action == BUTTON_HOLD) { | |
627 | Dbprintf("Playtime over. Begin cloning..."); | |
628 | iGotoClone = 1; | |
629 | break; | |
630 | } | |
631 | WDT_HIT(); | |
632 | } | |
633 | ||
634 | /* We pressed a button so ignore it here with a delay */ | |
635 | SpinDelay(300); | |
636 | LEDsoff(); | |
637 | LED(selected + 1, 0); | |
638 | } | |
639 | else | |
640 | while(BUTTON_PRESS()) | |
641 | WDT_HIT(); | |
642 | } | |
643 | } | |
644 | } | |
645 | #elif WITH_LF | |
646 | // samy's sniff and repeat routine | |
647 | void SamyRun() | |
648 | { | |
649 | StandAloneMode(); | |
650 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
651 | ||
652 | int high[OPTS], low[OPTS]; | |
653 | int selected = 0; | |
654 | int playing = 0; | |
655 | int cardRead = 0; | |
656 | ||
657 | // Turn on selected LED | |
658 | LED(selected + 1, 0); | |
659 | ||
660 | for (;;) { | |
661 | usb_poll(); | |
662 | WDT_HIT(); | |
663 | ||
664 | // Was our button held down or pressed? | |
665 | int button_pressed = BUTTON_HELD(1000); | |
666 | SpinDelay(300); | |
667 | ||
668 | // Button was held for a second, begin recording | |
669 | if (button_pressed > 0 && cardRead == 0) | |
670 | { | |
671 | LEDsoff(); | |
672 | LED(selected + 1, 0); | |
673 | LED(LED_RED2, 0); | |
674 | ||
675 | // record | |
676 | DbpString("Starting recording"); | |
677 | ||
678 | // wait for button to be released | |
679 | while(BUTTON_PRESS()) | |
680 | WDT_HIT(); | |
681 | ||
682 | /* need this delay to prevent catching some weird data */ | |
683 | SpinDelay(500); | |
684 | ||
685 | CmdHIDdemodFSK(1, &high[selected], &low[selected], 0); | |
686 | Dbprintf("Recorded %x %x %08x", selected, high[selected], low[selected]); | |
687 | ||
688 | LEDsoff(); | |
689 | LED(selected + 1, 0); | |
690 | // Finished recording | |
691 | // If we were previously playing, set playing off | |
692 | // so next button push begins playing what we recorded | |
693 | playing = 0; | |
694 | cardRead = 1; | |
695 | } | |
696 | else if (button_pressed > 0 && cardRead == 1) { | |
697 | LEDsoff(); | |
698 | LED(selected + 1, 0); | |
699 | LED(LED_ORANGE, 0); | |
700 | ||
701 | // record | |
702 | Dbprintf("Cloning %x %x %08x", selected, high[selected], low[selected]); | |
703 | ||
704 | // wait for button to be released | |
705 | while(BUTTON_PRESS()) | |
706 | WDT_HIT(); | |
707 | ||
708 | /* need this delay to prevent catching some weird data */ | |
709 | SpinDelay(500); | |
710 | ||
711 | CopyHIDtoT55x7(0, high[selected], low[selected], 0); | |
712 | Dbprintf("Cloned %x %x %08x", selected, high[selected], low[selected]); | |
713 | ||
714 | LEDsoff(); | |
715 | LED(selected + 1, 0); | |
716 | // Finished recording | |
717 | ||
718 | // If we were previously playing, set playing off | |
719 | // so next button push begins playing what we recorded | |
720 | playing = 0; | |
721 | cardRead = 0; | |
722 | } | |
723 | ||
724 | // Change where to record (or begin playing) | |
725 | else if (button_pressed) { | |
726 | // Next option if we were previously playing | |
727 | if (playing) | |
728 | selected = (selected + 1) % OPTS; | |
729 | playing = !playing; | |
730 | ||
731 | LEDsoff(); | |
732 | LED(selected + 1, 0); | |
733 | ||
734 | // Begin transmitting | |
735 | if (playing) | |
736 | { | |
737 | LED(LED_GREEN, 0); | |
738 | DbpString("Playing"); | |
739 | // wait for button to be released | |
740 | while(BUTTON_PRESS()) | |
741 | WDT_HIT(); | |
742 | ||
743 | Dbprintf("%x %x %08x", selected, high[selected], low[selected]); | |
744 | CmdHIDsimTAG(high[selected], low[selected], 0); | |
745 | DbpString("Done playing"); | |
746 | ||
747 | if (BUTTON_HELD(1000) > 0) { | |
748 | DbpString("Exiting"); | |
749 | LEDsoff(); | |
750 | return; | |
751 | } | |
752 | ||
753 | /* We pressed a button so ignore it here with a delay */ | |
754 | SpinDelay(300); | |
755 | ||
756 | // when done, we're done playing, move to next option | |
757 | selected = (selected + 1) % OPTS; | |
758 | playing = !playing; | |
759 | LEDsoff(); | |
760 | LED(selected + 1, 0); | |
761 | } | |
762 | else | |
763 | while(BUTTON_PRESS()) | |
764 | WDT_HIT(); | |
765 | } | |
766 | } | |
767 | } | |
768 | ||
769 | #endif | |
770 | /* | |
771 | OBJECTIVE | |
772 | Listen and detect an external reader. Determine the best location | |
773 | for the antenna. | |
774 | ||
775 | INSTRUCTIONS: | |
776 | Inside the ListenReaderField() function, there is two mode. | |
777 | By default, when you call the function, you will enter mode 1. | |
778 | If you press the PM3 button one time, you will enter mode 2. | |
779 | If you press the PM3 button a second time, you will exit the function. | |
780 | ||
781 | DESCRIPTION OF MODE 1: | |
782 | This mode just listens for an external reader field and lights up green | |
783 | for HF and/or red for LF. This is the original mode of the detectreader | |
784 | function. | |
785 | ||
786 | DESCRIPTION OF MODE 2: | |
787 | This mode will visually represent, using the LEDs, the actual strength of the | |
788 | current compared to the maximum current detected. Basically, once you know | |
789 | what kind of external reader is present, it will help you spot the best location to place | |
790 | your antenna. You will probably not get some good results if there is a LF and a HF reader | |
791 | at the same place! :-) | |
792 | ||
793 | LIGHT SCHEME USED: | |
794 | */ | |
795 | static const char LIGHT_SCHEME[] = { | |
796 | 0x0, /* ---- | No field detected */ | |
797 | 0x1, /* X--- | 14% of maximum current detected */ | |
798 | 0x2, /* -X-- | 29% of maximum current detected */ | |
799 | 0x4, /* --X- | 43% of maximum current detected */ | |
800 | 0x8, /* ---X | 57% of maximum current detected */ | |
801 | 0xC, /* --XX | 71% of maximum current detected */ | |
802 | 0xE, /* -XXX | 86% of maximum current detected */ | |
803 | 0xF, /* XXXX | 100% of maximum current detected */ | |
804 | }; | |
805 | static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]); | |
806 | ||
807 | void ListenReaderField(int limit) { | |
808 | #define LF_ONLY 1 | |
809 | #define HF_ONLY 2 | |
810 | #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE | |
811 | ||
812 | int lf_av, lf_av_new, lf_baseline= 0, lf_max; | |
813 | int hf_av, hf_av_new, hf_baseline= 0, hf_max; | |
814 | int mode=1, display_val, display_max, i; | |
815 | ||
816 | // switch off FPGA - we don't want to measure our own signal | |
817 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
818 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
819 | ||
820 | LEDsoff(); | |
821 | ||
822 | lf_av = lf_max = AvgAdc(ADC_CHAN_LF); | |
823 | ||
824 | if(limit != HF_ONLY) { | |
825 | Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10); | |
826 | lf_baseline = lf_av; | |
827 | } | |
828 | ||
829 | hf_av = hf_max = AvgAdc(ADC_CHAN_HF); | |
830 | ||
831 | if (limit != LF_ONLY) { | |
832 | Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10); | |
833 | hf_baseline = hf_av; | |
834 | } | |
835 | ||
836 | for(;;) { | |
837 | if (BUTTON_PRESS()) { | |
838 | SpinDelay(500); | |
839 | switch (mode) { | |
840 | case 1: | |
841 | mode=2; | |
842 | DbpString("Signal Strength Mode"); | |
843 | break; | |
844 | case 2: | |
845 | default: | |
846 | DbpString("Stopped"); | |
847 | LEDsoff(); | |
848 | return; | |
849 | break; | |
850 | } | |
851 | } | |
852 | WDT_HIT(); | |
853 | ||
854 | if (limit != HF_ONLY) { | |
855 | if(mode == 1) { | |
856 | if (ABS(lf_av - lf_baseline) > REPORT_CHANGE) | |
857 | LED_D_ON(); | |
858 | else | |
859 | LED_D_OFF(); | |
860 | } | |
861 | ||
862 | lf_av_new = AvgAdc(ADC_CHAN_LF); | |
863 | // see if there's a significant change | |
864 | if(ABS(lf_av - lf_av_new) > REPORT_CHANGE) { | |
865 | Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10); | |
866 | lf_av = lf_av_new; | |
867 | if (lf_av > lf_max) | |
868 | lf_max = lf_av; | |
869 | } | |
870 | } | |
871 | ||
872 | if (limit != LF_ONLY) { | |
873 | if (mode == 1){ | |
874 | if (ABS(hf_av - hf_baseline) > REPORT_CHANGE) | |
875 | LED_B_ON(); | |
876 | else | |
877 | LED_B_OFF(); | |
878 | } | |
879 | ||
880 | hf_av_new = AvgAdc(ADC_CHAN_HF); | |
881 | // see if there's a significant change | |
882 | if(ABS(hf_av - hf_av_new) > REPORT_CHANGE) { | |
883 | Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10); | |
884 | hf_av = hf_av_new; | |
885 | if (hf_av > hf_max) | |
886 | hf_max = hf_av; | |
887 | } | |
888 | } | |
889 | ||
890 | if(mode == 2) { | |
891 | if (limit == LF_ONLY) { | |
892 | display_val = lf_av; | |
893 | display_max = lf_max; | |
894 | } else if (limit == HF_ONLY) { | |
895 | display_val = hf_av; | |
896 | display_max = hf_max; | |
897 | } else { /* Pick one at random */ | |
898 | if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) { | |
899 | display_val = hf_av; | |
900 | display_max = hf_max; | |
901 | } else { | |
902 | display_val = lf_av; | |
903 | display_max = lf_max; | |
904 | } | |
905 | } | |
906 | for (i=0; i<LIGHT_LEN; i++) { | |
907 | if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) { | |
908 | if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF(); | |
909 | if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF(); | |
910 | if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF(); | |
911 | if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF(); | |
912 | break; | |
913 | } | |
914 | } | |
915 | } | |
916 | } | |
917 | } | |
918 | ||
919 | void UsbPacketReceived(uint8_t *packet, int len) | |
920 | { | |
921 | UsbCommand *c = (UsbCommand *)packet; | |
922 | ||
923 | //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]); | |
924 | ||
925 | switch(c->cmd) { | |
926 | #ifdef WITH_LF | |
927 | case CMD_SET_LF_SAMPLING_CONFIG: | |
928 | setSamplingConfig((sample_config *) c->d.asBytes); | |
929 | break; | |
930 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
931 | cmd_send(CMD_ACK, SampleLF(c->arg[0]),0,0,0,0); | |
932 | break; | |
933 | case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
934 | ModThenAcquireRawAdcSamples125k(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
935 | break; | |
936 | case CMD_LF_SNOOP_RAW_ADC_SAMPLES: | |
937 | cmd_send(CMD_ACK,SnoopLF(),0,0,0,0); | |
938 | break; | |
939 | case CMD_HID_DEMOD_FSK: | |
940 | CmdHIDdemodFSK(c->arg[0], 0, 0, 1); | |
941 | break; | |
942 | case CMD_HID_SIM_TAG: | |
943 | CmdHIDsimTAG(c->arg[0], c->arg[1], 1); | |
944 | break; | |
945 | case CMD_FSK_SIM_TAG: | |
946 | CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
947 | break; | |
948 | case CMD_ASK_SIM_TAG: | |
949 | CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
950 | break; | |
951 | case CMD_PSK_SIM_TAG: | |
952 | CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
953 | break; | |
954 | case CMD_HID_CLONE_TAG: | |
955 | CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); | |
956 | break; | |
957 | case CMD_IO_DEMOD_FSK: | |
958 | CmdIOdemodFSK(c->arg[0], 0, 0, 1); | |
959 | break; | |
960 | case CMD_IO_CLONE_TAG: | |
961 | CopyIOtoT55x7(c->arg[0], c->arg[1]); | |
962 | break; | |
963 | case CMD_EM410X_DEMOD: | |
964 | CmdEM410xdemod(c->arg[0], 0, 0, 1); | |
965 | break; | |
966 | case CMD_EM410X_WRITE_TAG: | |
967 | WriteEM410x(c->arg[0], c->arg[1], c->arg[2]); | |
968 | break; | |
969 | case CMD_READ_TI_TYPE: | |
970 | ReadTItag(); | |
971 | break; | |
972 | case CMD_WRITE_TI_TYPE: | |
973 | WriteTItag(c->arg[0],c->arg[1],c->arg[2]); | |
974 | break; | |
975 | case CMD_SIMULATE_TAG_125K: | |
976 | LED_A_ON(); | |
977 | SimulateTagLowFrequency(c->arg[0], c->arg[1], 1); | |
978 | LED_A_OFF(); | |
979 | break; | |
980 | case CMD_LF_SIMULATE_BIDIR: | |
981 | SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]); | |
982 | break; | |
983 | case CMD_INDALA_CLONE_TAG: | |
984 | CopyIndala64toT55x7(c->arg[0], c->arg[1]); | |
985 | break; | |
986 | case CMD_INDALA_CLONE_TAG_L: | |
987 | CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]); | |
988 | break; | |
989 | case CMD_T55XX_READ_BLOCK: | |
990 | T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]); | |
991 | break; | |
992 | case CMD_T55XX_WRITE_BLOCK: | |
993 | T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); | |
994 | break; | |
995 | case CMD_T55XX_WAKEUP: | |
996 | T55xxWakeUp(c->arg[0]); | |
997 | break; | |
998 | case CMD_T55XX_RESET_READ: | |
999 | T55xxResetRead(); | |
1000 | break; | |
1001 | case CMD_PCF7931_READ: | |
1002 | ReadPCF7931(); | |
1003 | break; | |
1004 | case CMD_PCF7931_WRITE: | |
1005 | WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]); | |
1006 | break; | |
1007 | case CMD_EM4X_READ_WORD: | |
1008 | EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]); | |
1009 | break; | |
1010 | case CMD_EM4X_WRITE_WORD: | |
1011 | EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); | |
1012 | break; | |
1013 | case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation | |
1014 | CmdAWIDdemodFSK(c->arg[0], 0, 0, 1); | |
1015 | break; | |
1016 | case CMD_VIKING_CLONE_TAG: | |
1017 | CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]); | |
1018 | break; | |
1019 | case CMD_COTAG: | |
1020 | Cotag(c->arg[0]); | |
1021 | break; | |
1022 | #endif | |
1023 | ||
1024 | #ifdef WITH_HITAG | |
1025 | case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type | |
1026 | SnoopHitag(c->arg[0]); | |
1027 | break; | |
1028 | case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content | |
1029 | SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes); | |
1030 | break; | |
1031 | case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function | |
1032 | ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes); | |
1033 | break; | |
1034 | case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content | |
1035 | SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes); | |
1036 | break; | |
1037 | case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file | |
1038 | check_challenges((bool)c->arg[0],(byte_t*)c->d.asBytes); | |
1039 | break; | |
1040 | case CMD_READ_HITAG_S: //Reader for only Hitag S tags, args = key or challenge | |
1041 | ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes); | |
1042 | break; | |
1043 | case CMD_WR_HITAG_S: //writer for Hitag tags args=data to write,page and key or challenge | |
1044 | WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]); | |
1045 | break; | |
1046 | #endif | |
1047 | ||
1048 | #ifdef WITH_ISO15693 | |
1049 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: | |
1050 | AcquireRawAdcSamplesIso15693(); | |
1051 | break; | |
1052 | case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693: | |
1053 | RecordRawAdcSamplesIso15693(); | |
1054 | break; | |
1055 | case CMD_ISO_15693_COMMAND: | |
1056 | DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); | |
1057 | break; | |
1058 | case CMD_ISO_15693_FIND_AFI: | |
1059 | BruteforceIso15693Afi(c->arg[0]); | |
1060 | break; | |
1061 | case CMD_ISO_15693_DEBUG: | |
1062 | SetDebugIso15693(c->arg[0]); | |
1063 | break; | |
1064 | case CMD_READER_ISO_15693: | |
1065 | ReaderIso15693(c->arg[0]); | |
1066 | break; | |
1067 | case CMD_SIMTAG_ISO_15693: | |
1068 | SimTagIso15693(c->arg[0], c->d.asBytes); | |
1069 | break; | |
1070 | #endif | |
1071 | ||
1072 | #ifdef WITH_LEGICRF | |
1073 | case CMD_SIMULATE_TAG_LEGIC_RF: | |
1074 | LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]); | |
1075 | break; | |
1076 | case CMD_WRITER_LEGIC_RF: | |
1077 | LegicRfWriter( c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1078 | break; | |
1079 | case CMD_READER_LEGIC_RF: | |
1080 | LegicRfReader(c->arg[0], c->arg[1], c->arg[2]); | |
1081 | break; | |
1082 | case CMD_LEGIC_INFO: | |
1083 | LegicRfInfo(); | |
1084 | break; | |
1085 | case CMD_LEGIC_ESET: | |
1086 | LegicEMemSet(c->arg[0], c->arg[1], c->d.asBytes); | |
1087 | break; | |
1088 | #endif | |
1089 | ||
1090 | #ifdef WITH_ISO14443b | |
1091 | case CMD_READ_SRI_TAG: | |
1092 | ReadSTMemoryIso14443b(c->arg[0]); | |
1093 | break; | |
1094 | case CMD_SNOOP_ISO_14443B: | |
1095 | SnoopIso14443b(); | |
1096 | break; | |
1097 | case CMD_SIMULATE_TAG_ISO_14443B: | |
1098 | SimulateIso14443bTag(c->arg[0]); | |
1099 | break; | |
1100 | case CMD_ISO_14443B_COMMAND: | |
1101 | //SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); | |
1102 | SendRawCommand14443B_Ex(c); | |
1103 | break; | |
1104 | #endif | |
1105 | ||
1106 | #ifdef WITH_ISO14443a | |
1107 | case CMD_SNOOP_ISO_14443a: | |
1108 | SniffIso14443a(c->arg[0]); | |
1109 | break; | |
1110 | case CMD_READER_ISO_14443a: | |
1111 | ReaderIso14443a(c); | |
1112 | break; | |
1113 | case CMD_SIMULATE_TAG_ISO_14443a: | |
1114 | SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID | |
1115 | break; | |
1116 | case CMD_EPA_PACE_COLLECT_NONCE: | |
1117 | EPA_PACE_Collect_Nonce(c); | |
1118 | break; | |
1119 | case CMD_EPA_PACE_REPLAY: | |
1120 | EPA_PACE_Replay(c); | |
1121 | break; | |
1122 | case CMD_READER_MIFARE: | |
1123 | ReaderMifare(c->arg[0], c->arg[1], c->arg[2]); | |
1124 | break; | |
1125 | case CMD_MIFARE_READBL: | |
1126 | MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1127 | break; | |
1128 | case CMD_MIFAREU_READBL: | |
1129 | MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes); | |
1130 | break; | |
1131 | case CMD_MIFAREUC_AUTH: | |
1132 | MifareUC_Auth(c->arg[0],c->d.asBytes); | |
1133 | break; | |
1134 | case CMD_MIFAREU_READCARD: | |
1135 | MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1136 | break; | |
1137 | case CMD_MIFAREUC_SETPWD: | |
1138 | MifareUSetPwd(c->arg[0], c->d.asBytes); | |
1139 | break; | |
1140 | case CMD_MIFARE_READSC: | |
1141 | MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1142 | break; | |
1143 | case CMD_MIFARE_WRITEBL: | |
1144 | MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1145 | break; | |
1146 | //case CMD_MIFAREU_WRITEBL_COMPAT: | |
1147 | //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes); | |
1148 | //break; | |
1149 | case CMD_MIFAREU_WRITEBL: | |
1150 | MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes); | |
1151 | break; | |
1152 | case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES: | |
1153 | MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1154 | break; | |
1155 | case CMD_MIFARE_NESTED: | |
1156 | MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1157 | break; | |
1158 | case CMD_MIFARE_CHKKEYS: | |
1159 | MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1160 | break; | |
1161 | case CMD_SIMULATE_MIFARE_CARD: | |
1162 | Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1163 | break; | |
1164 | ||
1165 | // emulator | |
1166 | case CMD_MIFARE_SET_DBGMODE: | |
1167 | MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1168 | break; | |
1169 | case CMD_MIFARE_EML_MEMCLR: | |
1170 | MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1171 | break; | |
1172 | case CMD_MIFARE_EML_MEMSET: | |
1173 | MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1174 | break; | |
1175 | case CMD_MIFARE_EML_MEMGET: | |
1176 | MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1177 | break; | |
1178 | case CMD_MIFARE_EML_CARDLOAD: | |
1179 | MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1180 | break; | |
1181 | ||
1182 | // Work with "magic Chinese" card | |
1183 | case CMD_MIFARE_CSETBLOCK: | |
1184 | MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes); | |
1185 | break; | |
1186 | case CMD_MIFARE_CGETBLOCK: | |
1187 | MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes); | |
1188 | break; | |
1189 | case CMD_MIFARE_CIDENT: | |
1190 | MifareCIdent(); | |
1191 | break; | |
1192 | ||
1193 | // mifare sniffer | |
1194 | case CMD_MIFARE_SNIFFER: | |
1195 | SniffMifare(c->arg[0]); | |
1196 | break; | |
1197 | ||
1198 | //mifare desfire | |
1199 | case CMD_MIFARE_DESFIRE_READBL: break; | |
1200 | case CMD_MIFARE_DESFIRE_WRITEBL: break; | |
1201 | case CMD_MIFARE_DESFIRE_AUTH1: | |
1202 | MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1203 | break; | |
1204 | case CMD_MIFARE_DESFIRE_AUTH2: | |
1205 | //MifareDES_Auth2(c->arg[0],c->d.asBytes); | |
1206 | break; | |
1207 | case CMD_MIFARE_DES_READER: | |
1208 | //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes); | |
1209 | break; | |
1210 | case CMD_MIFARE_DESFIRE_INFO: | |
1211 | MifareDesfireGetInformation(); | |
1212 | break; | |
1213 | case CMD_MIFARE_DESFIRE: | |
1214 | MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes); | |
1215 | break; | |
1216 | case CMD_MIFARE_COLLECT_NONCES: | |
1217 | break; | |
1218 | #endif | |
1219 | #ifdef WITH_EMV | |
1220 | case CMD_EMV_TRANSACTION: | |
1221 | EMVTransaction(); | |
1222 | break; | |
1223 | case CMD_EMV_GET_RANDOM_NUM: | |
1224 | //EMVgetUDOL(); | |
1225 | break; | |
1226 | case CMD_EMV_LOAD_VALUE: | |
1227 | EMVloadvalue(c->arg[0], c->d.asBytes); | |
1228 | break; | |
1229 | case CMD_EMV_DUMP_CARD: | |
1230 | EMVdumpcard(); | |
1231 | #endif | |
1232 | #ifdef WITH_ICLASS | |
1233 | // Makes use of ISO14443a FPGA Firmware | |
1234 | case CMD_SNOOP_ICLASS: | |
1235 | SnoopIClass(); | |
1236 | break; | |
1237 | case CMD_SIMULATE_TAG_ICLASS: | |
1238 | SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1239 | break; | |
1240 | case CMD_READER_ICLASS: | |
1241 | ReaderIClass(c->arg[0]); | |
1242 | break; | |
1243 | case CMD_READER_ICLASS_REPLAY: | |
1244 | ReaderIClass_Replay(c->arg[0], c->d.asBytes); | |
1245 | break; | |
1246 | case CMD_ICLASS_EML_MEMSET: | |
1247 | emlSet(c->d.asBytes,c->arg[0], c->arg[1]); | |
1248 | break; | |
1249 | case CMD_ICLASS_WRITEBLOCK: | |
1250 | iClass_WriteBlock(c->arg[0], c->d.asBytes); | |
1251 | break; | |
1252 | case CMD_ICLASS_READCHECK: // auth step 1 | |
1253 | iClass_ReadCheck(c->arg[0], c->arg[1]); | |
1254 | break; | |
1255 | case CMD_ICLASS_READBLOCK: | |
1256 | iClass_ReadBlk(c->arg[0]); | |
1257 | break; | |
1258 | case CMD_ICLASS_AUTHENTICATION: //check | |
1259 | iClass_Authentication(c->d.asBytes); | |
1260 | break; | |
1261 | case CMD_ICLASS_DUMP: | |
1262 | iClass_Dump(c->arg[0], c->arg[1]); | |
1263 | break; | |
1264 | case CMD_ICLASS_CLONE: | |
1265 | iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes); | |
1266 | break; | |
1267 | #endif | |
1268 | #ifdef WITH_HFSNOOP | |
1269 | case CMD_HF_SNIFFER: | |
1270 | HfSnoop(c->arg[0], c->arg[1]); | |
1271 | break; | |
1272 | #endif | |
1273 | ||
1274 | case CMD_BUFF_CLEAR: | |
1275 | BigBuf_Clear(); | |
1276 | break; | |
1277 | ||
1278 | case CMD_MEASURE_ANTENNA_TUNING: | |
1279 | MeasureAntennaTuning(); | |
1280 | break; | |
1281 | ||
1282 | case CMD_MEASURE_ANTENNA_TUNING_HF: | |
1283 | MeasureAntennaTuningHf(); | |
1284 | break; | |
1285 | ||
1286 | case CMD_LISTEN_READER_FIELD: | |
1287 | ListenReaderField(c->arg[0]); | |
1288 | break; | |
1289 | ||
1290 | case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control | |
1291 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1292 | SpinDelay(200); | |
1293 | LED_D_OFF(); // LED D indicates field ON or OFF | |
1294 | break; | |
1295 | ||
1296 | case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: { | |
1297 | LED_B_ON(); | |
1298 | uint8_t *BigBuf = BigBuf_get_addr(); | |
1299 | size_t len = 0; | |
1300 | size_t startidx = c->arg[0]; | |
1301 | uint8_t isok = FALSE; | |
1302 | // arg0 = startindex | |
1303 | // arg1 = length bytes to transfer | |
1304 | // arg2 = RFU | |
1305 | //Dbprintf("transfer to client parameters: %llu | %llu | %llu", c->arg[0], c->arg[1], c->arg[2]); | |
1306 | ||
1307 | for(size_t i = 0; i < c->arg[1]; i += USB_CMD_DATA_SIZE) { | |
1308 | len = MIN( (c->arg[1] - i), USB_CMD_DATA_SIZE); | |
1309 | isok = cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, i, len, BigBuf_get_traceLen(), BigBuf + startidx + i, len); | |
1310 | if (!isok) | |
1311 | Dbprintf("transfer to client failed :: | bytes %d", len); | |
1312 | } | |
1313 | // Trigger a finish downloading signal with an ACK frame | |
1314 | cmd_send(CMD_ACK, 1, 0, BigBuf_get_traceLen(), getSamplingConfig(), sizeof(sample_config)); | |
1315 | LED_B_OFF(); | |
1316 | break; | |
1317 | } | |
1318 | case CMD_DOWNLOADED_SIM_SAMPLES_125K: { | |
1319 | // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before. | |
1320 | // to be able to use this one for uploading data to device | |
1321 | // arg1 = 0 upload for LF usage | |
1322 | // 1 upload for HF usage | |
1323 | if ( c->arg[1] == 0 ) | |
1324 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1325 | else | |
1326 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1327 | uint8_t *b = BigBuf_get_addr(); | |
1328 | memcpy( b + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE); | |
1329 | cmd_send(CMD_ACK,1,0,0,0,0); | |
1330 | break; | |
1331 | } | |
1332 | case CMD_DOWNLOAD_EML_BIGBUF: { | |
1333 | LED_B_ON(); | |
1334 | uint8_t *cardmem = BigBuf_get_EM_addr(); | |
1335 | size_t len = 0; | |
1336 | for(size_t i=0; i < c->arg[1]; i += USB_CMD_DATA_SIZE) { | |
1337 | len = MIN((c->arg[1] - i), USB_CMD_DATA_SIZE); | |
1338 | cmd_send(CMD_DOWNLOADED_EML_BIGBUF, i, len, CARD_MEMORY_SIZE, cardmem + c->arg[0] + i, len); | |
1339 | } | |
1340 | // Trigger a finish downloading signal with an ACK frame | |
1341 | cmd_send(CMD_ACK, 1, 0, CARD_MEMORY_SIZE, 0, 0); | |
1342 | LED_B_OFF(); | |
1343 | break; | |
1344 | } | |
1345 | case CMD_READ_MEM: | |
1346 | ReadMem(c->arg[0]); | |
1347 | break; | |
1348 | ||
1349 | case CMD_SET_LF_DIVISOR: | |
1350 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1351 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]); | |
1352 | break; | |
1353 | ||
1354 | case CMD_SET_ADC_MUX: | |
1355 | switch(c->arg[0]) { | |
1356 | case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break; | |
1357 | case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break; | |
1358 | case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break; | |
1359 | case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break; | |
1360 | } | |
1361 | break; | |
1362 | ||
1363 | case CMD_VERSION: | |
1364 | SendVersion(); | |
1365 | break; | |
1366 | case CMD_STATUS: | |
1367 | SendStatus(); | |
1368 | break; | |
1369 | case CMD_PING: | |
1370 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1371 | break; | |
1372 | #ifdef WITH_LCD | |
1373 | case CMD_LCD_RESET: | |
1374 | LCDReset(); | |
1375 | break; | |
1376 | case CMD_LCD: | |
1377 | LCDSend(c->arg[0]); | |
1378 | break; | |
1379 | #endif | |
1380 | case CMD_SETUP_WRITE: | |
1381 | case CMD_FINISH_WRITE: | |
1382 | case CMD_HARDWARE_RESET: | |
1383 | usb_disable(); | |
1384 | SpinDelay(2000); | |
1385 | AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; | |
1386 | for(;;) { | |
1387 | // We're going to reset, and the bootrom will take control. | |
1388 | } | |
1389 | break; | |
1390 | ||
1391 | case CMD_START_FLASH: | |
1392 | if(common_area.flags.bootrom_present) { | |
1393 | common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE; | |
1394 | } | |
1395 | usb_disable(); | |
1396 | AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; | |
1397 | for(;;); | |
1398 | break; | |
1399 | ||
1400 | case CMD_DEVICE_INFO: { | |
1401 | uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS; | |
1402 | if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT; | |
1403 | cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0); | |
1404 | break; | |
1405 | } | |
1406 | default: | |
1407 | Dbprintf("%s: 0x%04x","unknown command:",c->cmd); | |
1408 | break; | |
1409 | } | |
1410 | } | |
1411 | ||
1412 | void __attribute__((noreturn)) AppMain(void) | |
1413 | { | |
1414 | SpinDelay(100); | |
1415 | clear_trace(); | |
1416 | if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) { | |
1417 | /* Initialize common area */ | |
1418 | memset(&common_area, 0, sizeof(common_area)); | |
1419 | common_area.magic = COMMON_AREA_MAGIC; | |
1420 | common_area.version = 1; | |
1421 | } | |
1422 | common_area.flags.osimage_present = 1; | |
1423 | ||
1424 | LEDsoff(); | |
1425 | ||
1426 | // Init USB device | |
1427 | usb_enable(); | |
1428 | ||
1429 | // The FPGA gets its clock from us from PCK0 output, so set that up. | |
1430 | AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0; | |
1431 | AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0; | |
1432 | AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0; | |
1433 | // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz | |
1434 | AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0 | |
1435 | AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0; | |
1436 | ||
1437 | // Reset SPI | |
1438 | AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST; | |
1439 | // Reset SSC | |
1440 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
1441 | ||
1442 | // Load the FPGA image, which we have stored in our flash. | |
1443 | // (the HF version by default) | |
1444 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1445 | ||
1446 | StartTickCount(); | |
1447 | ||
1448 | #ifdef WITH_LCD | |
1449 | LCDInit(); | |
1450 | #endif | |
1451 | ||
1452 | byte_t rx[sizeof(UsbCommand)]; | |
1453 | size_t rx_len; | |
1454 | ||
1455 | for(;;) { | |
1456 | if ( usb_poll_validate_length() ) { | |
1457 | rx_len = usb_read(rx, sizeof(UsbCommand)); | |
1458 | ||
1459 | if (rx_len) | |
1460 | UsbPacketReceived(rx, rx_len); | |
1461 | } | |
1462 | WDT_HIT(); | |
1463 | ||
1464 | #ifdef WITH_LF | |
1465 | #ifndef WITH_ISO14443a_StandAlone | |
1466 | if (BUTTON_HELD(1000) > 0) | |
1467 | SamyRun(); | |
1468 | #endif | |
1469 | #endif | |
1470 | #ifdef WITH_ISO14443a | |
1471 | #ifdef WITH_ISO14443a_StandAlone | |
1472 | if (BUTTON_HELD(1000) > 0) | |
1473 | StandAloneMode14a(); | |
1474 | #endif | |
1475 | #endif | |
1476 | } | |
1477 | } |