]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
3 | // at your option, any later version. See the LICENSE.txt file for the text of | |
4 | // the license. | |
5 | //----------------------------------------------------------------------------- | |
6 | // Miscellaneous routines for low frequency tag operations. | |
7 | // Tags supported here so far are Texas Instruments (TI), HID | |
8 | // Also routines for raw mode reading/simulating of LF waveform | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include "proxmark3.h" | |
12 | #include "apps.h" | |
13 | #include "util.h" | |
14 | #include "hitag2.h" | |
15 | #include "crc16.h" | |
16 | #include "string.h" | |
17 | #include "lfdemod.h" | |
18 | ||
19 | ||
20 | /** | |
21 | * Does the sample acquisition. If threshold is specified, the actual sampling | |
22 | * is not commenced until the threshold has been reached. | |
23 | * @param trigger_threshold - the threshold | |
24 | * @param silent - is true, now outputs are made. If false, dbprints the status | |
25 | */ | |
26 | void DoAcquisition125k_internal(int trigger_threshold,bool silent) | |
27 | { | |
28 | uint8_t *dest = (uint8_t *)BigBuf; | |
29 | int n = sizeof(BigBuf); | |
30 | int i; | |
31 | ||
32 | memset(dest, 0, n); | |
33 | i = 0; | |
34 | for(;;) { | |
35 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
36 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
37 | LED_D_ON(); | |
38 | } | |
39 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
40 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
41 | LED_D_OFF(); | |
42 | if (trigger_threshold != -1 && dest[i] < trigger_threshold) | |
43 | continue; | |
44 | else | |
45 | trigger_threshold = -1; | |
46 | if (++i >= n) break; | |
47 | } | |
48 | } | |
49 | if(!silent) | |
50 | { | |
51 | Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", | |
52 | dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]); | |
53 | ||
54 | } | |
55 | } | |
56 | /** | |
57 | * Perform sample aquisition. | |
58 | */ | |
59 | void DoAcquisition125k(int trigger_threshold) | |
60 | { | |
61 | DoAcquisition125k_internal(trigger_threshold, false); | |
62 | } | |
63 | ||
64 | /** | |
65 | * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream | |
66 | * if not already loaded, sets divisor and starts up the antenna. | |
67 | * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz | |
68 | * 0 or 95 ==> 125 KHz | |
69 | * | |
70 | **/ | |
71 | void LFSetupFPGAForADC(int divisor, bool lf_field) | |
72 | { | |
73 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
74 | if ( (divisor == 1) || (divisor < 0) || (divisor > 255) ) | |
75 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
76 | else if (divisor == 0) | |
77 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
78 | else | |
79 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); | |
80 | ||
81 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0)); | |
82 | ||
83 | // Connect the A/D to the peak-detected low-frequency path. | |
84 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
85 | // Give it a bit of time for the resonant antenna to settle. | |
86 | SpinDelay(50); | |
87 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
88 | FpgaSetupSsc(); | |
89 | } | |
90 | /** | |
91 | * Initializes the FPGA, and acquires the samples. | |
92 | **/ | |
93 | void AcquireRawAdcSamples125k(int divisor) | |
94 | { | |
95 | LFSetupFPGAForADC(divisor, true); | |
96 | // Now call the acquisition routine | |
97 | DoAcquisition125k_internal(-1,false); | |
98 | } | |
99 | /** | |
100 | * Initializes the FPGA for snoop-mode, and acquires the samples. | |
101 | **/ | |
102 | ||
103 | void SnoopLFRawAdcSamples(int divisor, int trigger_threshold) | |
104 | { | |
105 | LFSetupFPGAForADC(divisor, false); | |
106 | DoAcquisition125k(trigger_threshold); | |
107 | } | |
108 | ||
109 | void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command) | |
110 | { | |
111 | ||
112 | /* Make sure the tag is reset */ | |
113 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
114 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
115 | SpinDelay(2500); | |
116 | ||
117 | ||
118 | int divisor_used = 95; // 125 KHz | |
119 | // see if 'h' was specified | |
120 | ||
121 | if (command[strlen((char *) command) - 1] == 'h') | |
122 | divisor_used = 88; // 134.8 KHz | |
123 | ||
124 | ||
125 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); | |
126 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
127 | // Give it a bit of time for the resonant antenna to settle. | |
128 | SpinDelay(50); | |
129 | ||
130 | // And a little more time for the tag to fully power up | |
131 | SpinDelay(2000); | |
132 | ||
133 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
134 | FpgaSetupSsc(); | |
135 | ||
136 | // now modulate the reader field | |
137 | while(*command != '\0' && *command != ' ') { | |
138 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
139 | LED_D_OFF(); | |
140 | SpinDelayUs(delay_off); | |
141 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); | |
142 | ||
143 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
144 | LED_D_ON(); | |
145 | if(*(command++) == '0') | |
146 | SpinDelayUs(period_0); | |
147 | else | |
148 | SpinDelayUs(period_1); | |
149 | } | |
150 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
151 | LED_D_OFF(); | |
152 | SpinDelayUs(delay_off); | |
153 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); | |
154 | ||
155 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
156 | ||
157 | // now do the read | |
158 | DoAcquisition125k(-1); | |
159 | } | |
160 | ||
161 | /* blank r/w tag data stream | |
162 | ...0000000000000000 01111111 | |
163 | 1010101010101010101010101010101010101010101010101010101010101010 | |
164 | 0011010010100001 | |
165 | 01111111 | |
166 | 101010101010101[0]000... | |
167 | ||
168 | [5555fe852c5555555555555555fe0000] | |
169 | */ | |
170 | void ReadTItag(void) | |
171 | { | |
172 | // some hardcoded initial params | |
173 | // when we read a TI tag we sample the zerocross line at 2Mhz | |
174 | // TI tags modulate a 1 as 16 cycles of 123.2Khz | |
175 | // TI tags modulate a 0 as 16 cycles of 134.2Khz | |
176 | #define FSAMPLE 2000000 | |
177 | #define FREQLO 123200 | |
178 | #define FREQHI 134200 | |
179 | ||
180 | signed char *dest = (signed char *)BigBuf; | |
181 | int n = sizeof(BigBuf); | |
182 | // int *dest = GraphBuffer; | |
183 | // int n = GraphTraceLen; | |
184 | ||
185 | // 128 bit shift register [shift3:shift2:shift1:shift0] | |
186 | uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; | |
187 | ||
188 | int i, cycles=0, samples=0; | |
189 | // how many sample points fit in 16 cycles of each frequency | |
190 | uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; | |
191 | // when to tell if we're close enough to one freq or another | |
192 | uint32_t threshold = (sampleslo - sampleshi + 1)>>1; | |
193 | ||
194 | // TI tags charge at 134.2Khz | |
195 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
196 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
197 | ||
198 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
199 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
200 | // whether we're modulating the antenna (high) | |
201 | // or listening to the antenna (low) | |
202 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
203 | ||
204 | // get TI tag data into the buffer | |
205 | AcquireTiType(); | |
206 | ||
207 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
208 | ||
209 | for (i=0; i<n-1; i++) { | |
210 | // count cycles by looking for lo to hi zero crossings | |
211 | if ( (dest[i]<0) && (dest[i+1]>0) ) { | |
212 | cycles++; | |
213 | // after 16 cycles, measure the frequency | |
214 | if (cycles>15) { | |
215 | cycles=0; | |
216 | samples=i-samples; // number of samples in these 16 cycles | |
217 | ||
218 | // TI bits are coming to us lsb first so shift them | |
219 | // right through our 128 bit right shift register | |
220 | shift0 = (shift0>>1) | (shift1 << 31); | |
221 | shift1 = (shift1>>1) | (shift2 << 31); | |
222 | shift2 = (shift2>>1) | (shift3 << 31); | |
223 | shift3 >>= 1; | |
224 | ||
225 | // check if the cycles fall close to the number | |
226 | // expected for either the low or high frequency | |
227 | if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { | |
228 | // low frequency represents a 1 | |
229 | shift3 |= (1<<31); | |
230 | } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { | |
231 | // high frequency represents a 0 | |
232 | } else { | |
233 | // probably detected a gay waveform or noise | |
234 | // use this as gaydar or discard shift register and start again | |
235 | shift3 = shift2 = shift1 = shift0 = 0; | |
236 | } | |
237 | samples = i; | |
238 | ||
239 | // for each bit we receive, test if we've detected a valid tag | |
240 | ||
241 | // if we see 17 zeroes followed by 6 ones, we might have a tag | |
242 | // remember the bits are backwards | |
243 | if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { | |
244 | // if start and end bytes match, we have a tag so break out of the loop | |
245 | if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { | |
246 | cycles = 0xF0B; //use this as a flag (ugly but whatever) | |
247 | break; | |
248 | } | |
249 | } | |
250 | } | |
251 | } | |
252 | } | |
253 | ||
254 | // if flag is set we have a tag | |
255 | if (cycles!=0xF0B) { | |
256 | DbpString("Info: No valid tag detected."); | |
257 | } else { | |
258 | // put 64 bit data into shift1 and shift0 | |
259 | shift0 = (shift0>>24) | (shift1 << 8); | |
260 | shift1 = (shift1>>24) | (shift2 << 8); | |
261 | ||
262 | // align 16 bit crc into lower half of shift2 | |
263 | shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; | |
264 | ||
265 | // if r/w tag, check ident match | |
266 | if ( shift3&(1<<15) ) { | |
267 | DbpString("Info: TI tag is rewriteable"); | |
268 | // only 15 bits compare, last bit of ident is not valid | |
269 | if ( ((shift3>>16)^shift0)&0x7fff ) { | |
270 | DbpString("Error: Ident mismatch!"); | |
271 | } else { | |
272 | DbpString("Info: TI tag ident is valid"); | |
273 | } | |
274 | } else { | |
275 | DbpString("Info: TI tag is readonly"); | |
276 | } | |
277 | ||
278 | // WARNING the order of the bytes in which we calc crc below needs checking | |
279 | // i'm 99% sure the crc algorithm is correct, but it may need to eat the | |
280 | // bytes in reverse or something | |
281 | // calculate CRC | |
282 | uint32_t crc=0; | |
283 | ||
284 | crc = update_crc16(crc, (shift0)&0xff); | |
285 | crc = update_crc16(crc, (shift0>>8)&0xff); | |
286 | crc = update_crc16(crc, (shift0>>16)&0xff); | |
287 | crc = update_crc16(crc, (shift0>>24)&0xff); | |
288 | crc = update_crc16(crc, (shift1)&0xff); | |
289 | crc = update_crc16(crc, (shift1>>8)&0xff); | |
290 | crc = update_crc16(crc, (shift1>>16)&0xff); | |
291 | crc = update_crc16(crc, (shift1>>24)&0xff); | |
292 | ||
293 | Dbprintf("Info: Tag data: %x%08x, crc=%x", | |
294 | (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); | |
295 | if (crc != (shift2&0xffff)) { | |
296 | Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); | |
297 | } else { | |
298 | DbpString("Info: CRC is good"); | |
299 | } | |
300 | } | |
301 | } | |
302 | ||
303 | void WriteTIbyte(uint8_t b) | |
304 | { | |
305 | int i = 0; | |
306 | ||
307 | // modulate 8 bits out to the antenna | |
308 | for (i=0; i<8; i++) | |
309 | { | |
310 | if (b&(1<<i)) { | |
311 | // stop modulating antenna | |
312 | LOW(GPIO_SSC_DOUT); | |
313 | SpinDelayUs(1000); | |
314 | // modulate antenna | |
315 | HIGH(GPIO_SSC_DOUT); | |
316 | SpinDelayUs(1000); | |
317 | } else { | |
318 | // stop modulating antenna | |
319 | LOW(GPIO_SSC_DOUT); | |
320 | SpinDelayUs(300); | |
321 | // modulate antenna | |
322 | HIGH(GPIO_SSC_DOUT); | |
323 | SpinDelayUs(1700); | |
324 | } | |
325 | } | |
326 | } | |
327 | ||
328 | void AcquireTiType(void) | |
329 | { | |
330 | int i, j, n; | |
331 | // tag transmission is <20ms, sampling at 2M gives us 40K samples max | |
332 | // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t | |
333 | #define TIBUFLEN 1250 | |
334 | ||
335 | // clear buffer | |
336 | memset(BigBuf,0,sizeof(BigBuf)); | |
337 | ||
338 | // Set up the synchronous serial port | |
339 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; | |
340 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; | |
341 | ||
342 | // steal this pin from the SSP and use it to control the modulation | |
343 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
344 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
345 | ||
346 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
347 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; | |
348 | ||
349 | // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long | |
350 | // 48/2 = 24 MHz clock must be divided by 12 | |
351 | AT91C_BASE_SSC->SSC_CMR = 12; | |
352 | ||
353 | AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); | |
354 | AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; | |
355 | AT91C_BASE_SSC->SSC_TCMR = 0; | |
356 | AT91C_BASE_SSC->SSC_TFMR = 0; | |
357 | ||
358 | LED_D_ON(); | |
359 | ||
360 | // modulate antenna | |
361 | HIGH(GPIO_SSC_DOUT); | |
362 | ||
363 | // Charge TI tag for 50ms. | |
364 | SpinDelay(50); | |
365 | ||
366 | // stop modulating antenna and listen | |
367 | LOW(GPIO_SSC_DOUT); | |
368 | ||
369 | LED_D_OFF(); | |
370 | ||
371 | i = 0; | |
372 | for(;;) { | |
373 | if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
374 | BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer | |
375 | i++; if(i >= TIBUFLEN) break; | |
376 | } | |
377 | WDT_HIT(); | |
378 | } | |
379 | ||
380 | // return stolen pin to SSP | |
381 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; | |
382 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; | |
383 | ||
384 | char *dest = (char *)BigBuf; | |
385 | n = TIBUFLEN*32; | |
386 | // unpack buffer | |
387 | for (i=TIBUFLEN-1; i>=0; i--) { | |
388 | for (j=0; j<32; j++) { | |
389 | if(BigBuf[i] & (1 << j)) { | |
390 | dest[--n] = 1; | |
391 | } else { | |
392 | dest[--n] = -1; | |
393 | } | |
394 | } | |
395 | } | |
396 | } | |
397 | ||
398 | // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc | |
399 | // if crc provided, it will be written with the data verbatim (even if bogus) | |
400 | // if not provided a valid crc will be computed from the data and written. | |
401 | void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) | |
402 | { | |
403 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
404 | if(crc == 0) { | |
405 | crc = update_crc16(crc, (idlo)&0xff); | |
406 | crc = update_crc16(crc, (idlo>>8)&0xff); | |
407 | crc = update_crc16(crc, (idlo>>16)&0xff); | |
408 | crc = update_crc16(crc, (idlo>>24)&0xff); | |
409 | crc = update_crc16(crc, (idhi)&0xff); | |
410 | crc = update_crc16(crc, (idhi>>8)&0xff); | |
411 | crc = update_crc16(crc, (idhi>>16)&0xff); | |
412 | crc = update_crc16(crc, (idhi>>24)&0xff); | |
413 | } | |
414 | Dbprintf("Writing to tag: %x%08x, crc=%x", | |
415 | (unsigned int) idhi, (unsigned int) idlo, crc); | |
416 | ||
417 | // TI tags charge at 134.2Khz | |
418 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
419 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
420 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
421 | // whether we're modulating the antenna (high) | |
422 | // or listening to the antenna (low) | |
423 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
424 | LED_A_ON(); | |
425 | ||
426 | // steal this pin from the SSP and use it to control the modulation | |
427 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
428 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
429 | ||
430 | // writing algorithm: | |
431 | // a high bit consists of a field off for 1ms and field on for 1ms | |
432 | // a low bit consists of a field off for 0.3ms and field on for 1.7ms | |
433 | // initiate a charge time of 50ms (field on) then immediately start writing bits | |
434 | // start by writing 0xBB (keyword) and 0xEB (password) | |
435 | // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) | |
436 | // finally end with 0x0300 (write frame) | |
437 | // all data is sent lsb firts | |
438 | // finish with 15ms programming time | |
439 | ||
440 | // modulate antenna | |
441 | HIGH(GPIO_SSC_DOUT); | |
442 | SpinDelay(50); // charge time | |
443 | ||
444 | WriteTIbyte(0xbb); // keyword | |
445 | WriteTIbyte(0xeb); // password | |
446 | WriteTIbyte( (idlo )&0xff ); | |
447 | WriteTIbyte( (idlo>>8 )&0xff ); | |
448 | WriteTIbyte( (idlo>>16)&0xff ); | |
449 | WriteTIbyte( (idlo>>24)&0xff ); | |
450 | WriteTIbyte( (idhi )&0xff ); | |
451 | WriteTIbyte( (idhi>>8 )&0xff ); | |
452 | WriteTIbyte( (idhi>>16)&0xff ); | |
453 | WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo | |
454 | WriteTIbyte( (crc )&0xff ); // crc lo | |
455 | WriteTIbyte( (crc>>8 )&0xff ); // crc hi | |
456 | WriteTIbyte(0x00); // write frame lo | |
457 | WriteTIbyte(0x03); // write frame hi | |
458 | HIGH(GPIO_SSC_DOUT); | |
459 | SpinDelay(50); // programming time | |
460 | ||
461 | LED_A_OFF(); | |
462 | ||
463 | // get TI tag data into the buffer | |
464 | AcquireTiType(); | |
465 | ||
466 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
467 | DbpString("Now use tiread to check"); | |
468 | } | |
469 | ||
470 | void SimulateTagLowFrequency(int period, int gap, int ledcontrol) | |
471 | { | |
472 | int i; | |
473 | uint8_t *tab = (uint8_t *)BigBuf; | |
474 | ||
475 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
476 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); | |
477 | ||
478 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; | |
479 | ||
480 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
481 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; | |
482 | ||
483 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) | |
484 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) | |
485 | ||
486 | i = 0; | |
487 | for(;;) { | |
488 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { | |
489 | if(BUTTON_PRESS()) { | |
490 | DbpString("Stopped"); | |
491 | return; | |
492 | } | |
493 | WDT_HIT(); | |
494 | } | |
495 | ||
496 | if (ledcontrol) | |
497 | LED_D_ON(); | |
498 | ||
499 | if(tab[i]) | |
500 | OPEN_COIL(); | |
501 | else | |
502 | SHORT_COIL(); | |
503 | ||
504 | if (ledcontrol) | |
505 | LED_D_OFF(); | |
506 | ||
507 | while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { | |
508 | if(BUTTON_PRESS()) { | |
509 | DbpString("Stopped"); | |
510 | return; | |
511 | } | |
512 | WDT_HIT(); | |
513 | } | |
514 | ||
515 | i++; | |
516 | if(i == period) { | |
517 | i = 0; | |
518 | if (gap) { | |
519 | SHORT_COIL(); | |
520 | SpinDelayUs(gap); | |
521 | } | |
522 | } | |
523 | } | |
524 | } | |
525 | ||
526 | #define DEBUG_FRAME_CONTENTS 1 | |
527 | void SimulateTagLowFrequencyBidir(int divisor, int t0) | |
528 | { | |
529 | } | |
530 | ||
531 | // compose fc/8 fc/10 waveform | |
532 | static void fc(int c, int *n) { | |
533 | uint8_t *dest = (uint8_t *)BigBuf; | |
534 | int idx; | |
535 | ||
536 | // for when we want an fc8 pattern every 4 logical bits | |
537 | if(c==0) { | |
538 | dest[((*n)++)]=1; | |
539 | dest[((*n)++)]=1; | |
540 | dest[((*n)++)]=0; | |
541 | dest[((*n)++)]=0; | |
542 | dest[((*n)++)]=0; | |
543 | dest[((*n)++)]=0; | |
544 | dest[((*n)++)]=0; | |
545 | dest[((*n)++)]=0; | |
546 | } | |
547 | // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples | |
548 | if(c==8) { | |
549 | for (idx=0; idx<6; idx++) { | |
550 | dest[((*n)++)]=1; | |
551 | dest[((*n)++)]=1; | |
552 | dest[((*n)++)]=0; | |
553 | dest[((*n)++)]=0; | |
554 | dest[((*n)++)]=0; | |
555 | dest[((*n)++)]=0; | |
556 | dest[((*n)++)]=0; | |
557 | dest[((*n)++)]=0; | |
558 | } | |
559 | } | |
560 | ||
561 | // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples | |
562 | if(c==10) { | |
563 | for (idx=0; idx<5; idx++) { | |
564 | dest[((*n)++)]=1; | |
565 | dest[((*n)++)]=1; | |
566 | dest[((*n)++)]=1; | |
567 | dest[((*n)++)]=0; | |
568 | dest[((*n)++)]=0; | |
569 | dest[((*n)++)]=0; | |
570 | dest[((*n)++)]=0; | |
571 | dest[((*n)++)]=0; | |
572 | dest[((*n)++)]=0; | |
573 | dest[((*n)++)]=0; | |
574 | } | |
575 | } | |
576 | } | |
577 | ||
578 | // prepare a waveform pattern in the buffer based on the ID given then | |
579 | // simulate a HID tag until the button is pressed | |
580 | void CmdHIDsimTAG(int hi, int lo, int ledcontrol) | |
581 | { | |
582 | int n=0, i=0; | |
583 | /* | |
584 | HID tag bitstream format | |
585 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits | |
586 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns | |
587 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns | |
588 | A fc8 is inserted before every 4 bits | |
589 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 | |
590 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) | |
591 | */ | |
592 | ||
593 | if (hi>0xFFF) { | |
594 | DbpString("Tags can only have 44 bits."); | |
595 | return; | |
596 | } | |
597 | fc(0,&n); | |
598 | // special start of frame marker containing invalid bit sequences | |
599 | fc(8, &n); fc(8, &n); // invalid | |
600 | fc(8, &n); fc(10, &n); // logical 0 | |
601 | fc(10, &n); fc(10, &n); // invalid | |
602 | fc(8, &n); fc(10, &n); // logical 0 | |
603 | ||
604 | WDT_HIT(); | |
605 | // manchester encode bits 43 to 32 | |
606 | for (i=11; i>=0; i--) { | |
607 | if ((i%4)==3) fc(0,&n); | |
608 | if ((hi>>i)&1) { | |
609 | fc(10, &n); fc(8, &n); // low-high transition | |
610 | } else { | |
611 | fc(8, &n); fc(10, &n); // high-low transition | |
612 | } | |
613 | } | |
614 | ||
615 | WDT_HIT(); | |
616 | // manchester encode bits 31 to 0 | |
617 | for (i=31; i>=0; i--) { | |
618 | if ((i%4)==3) fc(0,&n); | |
619 | if ((lo>>i)&1) { | |
620 | fc(10, &n); fc(8, &n); // low-high transition | |
621 | } else { | |
622 | fc(8, &n); fc(10, &n); // high-low transition | |
623 | } | |
624 | } | |
625 | ||
626 | if (ledcontrol) | |
627 | LED_A_ON(); | |
628 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
629 | ||
630 | if (ledcontrol) | |
631 | LED_A_OFF(); | |
632 | } | |
633 | ||
634 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
635 | void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
636 | { | |
637 | uint8_t *dest = (uint8_t *)BigBuf; | |
638 | ||
639 | size_t size=0; //, found=0; | |
640 | uint32_t hi2=0, hi=0, lo=0; | |
641 | ||
642 | // Configure to go in 125Khz listen mode | |
643 | LFSetupFPGAForADC(95, true); | |
644 | ||
645 | while(!BUTTON_PRESS()) { | |
646 | ||
647 | WDT_HIT(); | |
648 | if (ledcontrol) LED_A_ON(); | |
649 | ||
650 | DoAcquisition125k_internal(-1,true); | |
651 | size = sizeof(BigBuf); | |
652 | if (size < 2000) continue; | |
653 | // FSK demodulator | |
654 | ||
655 | int bitLen = HIDdemodFSK(dest,size,&hi2,&hi,&lo); | |
656 | ||
657 | WDT_HIT(); | |
658 | ||
659 | if (bitLen>0 && lo>0){ | |
660 | // final loop, go over previously decoded manchester data and decode into usable tag ID | |
661 | // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 | |
662 | if (hi2 != 0){ //extra large HID tags | |
663 | Dbprintf("TAG ID: %x%08x%08x (%d)", | |
664 | (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
665 | }else { //standard HID tags <38 bits | |
666 | //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd | |
667 | uint8_t bitlen = 0; | |
668 | uint32_t fc = 0; | |
669 | uint32_t cardnum = 0; | |
670 | if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used | |
671 | uint32_t lo2=0; | |
672 | lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit | |
673 | uint8_t idx3 = 1; | |
674 | while(lo2>1){ //find last bit set to 1 (format len bit) | |
675 | lo2=lo2>>1; | |
676 | idx3++; | |
677 | } | |
678 | bitlen =idx3+19; | |
679 | fc =0; | |
680 | cardnum=0; | |
681 | if(bitlen==26){ | |
682 | cardnum = (lo>>1)&0xFFFF; | |
683 | fc = (lo>>17)&0xFF; | |
684 | } | |
685 | if(bitlen==37){ | |
686 | cardnum = (lo>>1)&0x7FFFF; | |
687 | fc = ((hi&0xF)<<12)|(lo>>20); | |
688 | } | |
689 | if(bitlen==34){ | |
690 | cardnum = (lo>>1)&0xFFFF; | |
691 | fc= ((hi&1)<<15)|(lo>>17); | |
692 | } | |
693 | if(bitlen==35){ | |
694 | cardnum = (lo>>1)&0xFFFFF; | |
695 | fc = ((hi&1)<<11)|(lo>>21); | |
696 | } | |
697 | } | |
698 | else { //if bit 38 is not set then 37 bit format is used | |
699 | bitlen= 37; | |
700 | fc =0; | |
701 | cardnum=0; | |
702 | if(bitlen==37){ | |
703 | cardnum = (lo>>1)&0x7FFFF; | |
704 | fc = ((hi&0xF)<<12)|(lo>>20); | |
705 | } | |
706 | } | |
707 | //Dbprintf("TAG ID: %x%08x (%d)", | |
708 | // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
709 | Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", | |
710 | (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF, | |
711 | (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum); | |
712 | } | |
713 | if (findone){ | |
714 | if (ledcontrol) LED_A_OFF(); | |
715 | return; | |
716 | } | |
717 | // reset | |
718 | hi2 = hi = lo = 0; | |
719 | } | |
720 | WDT_HIT(); | |
721 | //SpinDelay(50); | |
722 | } | |
723 | DbpString("Stopped"); | |
724 | if (ledcontrol) LED_A_OFF(); | |
725 | } | |
726 | ||
727 | void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol) | |
728 | { | |
729 | uint8_t *dest = (uint8_t *)BigBuf; | |
730 | ||
731 | size_t size=0; //, found=0; | |
732 | uint32_t bitLen=0; | |
733 | int clk=0, invert=0, errCnt=0; | |
734 | uint64_t lo=0; | |
735 | // Configure to go in 125Khz listen mode | |
736 | LFSetupFPGAForADC(95, true); | |
737 | ||
738 | while(!BUTTON_PRESS()) { | |
739 | ||
740 | WDT_HIT(); | |
741 | if (ledcontrol) LED_A_ON(); | |
742 | ||
743 | DoAcquisition125k_internal(-1,true); | |
744 | size = sizeof(BigBuf); | |
745 | if (size < 2000) continue; | |
746 | // FSK demodulator | |
747 | //int askmandemod(uint8_t *BinStream,uint32_t *BitLen,int *clk, int *invert); | |
748 | bitLen=size; | |
749 | //Dbprintf("DEBUG: Buffer got"); | |
750 | errCnt = askmandemod(dest,&bitLen,&clk,&invert); //HIDdemodFSK(dest,size,&hi2,&hi,&lo); | |
751 | //Dbprintf("DEBUG: ASK Got"); | |
752 | WDT_HIT(); | |
753 | ||
754 | if (errCnt>=0){ | |
755 | lo = Em410xDecode(dest,bitLen); | |
756 | //Dbprintf("DEBUG: EM GOT"); | |
757 | //printEM410x(lo); | |
758 | if (lo>0){ | |
759 | Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",(uint32_t)(lo>>32),(uint32_t)lo,(uint32_t)(lo&0xFFFF),(uint32_t)((lo>>16LL) & 0xFF),(uint32_t)(lo & 0xFFFFFF)); | |
760 | } | |
761 | if (findone){ | |
762 | if (ledcontrol) LED_A_OFF(); | |
763 | return; | |
764 | } | |
765 | } else{ | |
766 | //Dbprintf("DEBUG: No Tag"); | |
767 | } | |
768 | WDT_HIT(); | |
769 | lo = 0; | |
770 | clk=0; | |
771 | invert=0; | |
772 | errCnt=0; | |
773 | size=0; | |
774 | //SpinDelay(50); | |
775 | } | |
776 | DbpString("Stopped"); | |
777 | if (ledcontrol) LED_A_OFF(); | |
778 | } | |
779 | ||
780 | void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
781 | { | |
782 | uint8_t *dest = (uint8_t *)BigBuf; | |
783 | int idx=0; | |
784 | uint32_t code=0, code2=0; | |
785 | uint8_t version=0; | |
786 | uint8_t facilitycode=0; | |
787 | uint16_t number=0; | |
788 | // Configure to go in 125Khz listen mode | |
789 | LFSetupFPGAForADC(95, true); | |
790 | ||
791 | while(!BUTTON_PRESS()) { | |
792 | WDT_HIT(); | |
793 | if (ledcontrol) LED_A_ON(); | |
794 | DoAcquisition125k_internal(-1,true); | |
795 | //fskdemod and get start index | |
796 | WDT_HIT(); | |
797 | idx = IOdemodFSK(dest,sizeof(BigBuf)); | |
798 | if (idx>0){ | |
799 | //valid tag found | |
800 | ||
801 | //Index map | |
802 | //0 10 20 30 40 50 60 | |
803 | //| | | | | | | | |
804 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
805 | //----------------------------------------------------------------------------- | |
806 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 | |
807 | // | |
808 | //XSF(version)facility:codeone+codetwo | |
809 | //Handle the data | |
810 | if(findone){ //only print binary if we are doing one | |
811 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); | |
812 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); | |
813 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); | |
814 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); | |
815 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); | |
816 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); | |
817 | Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); | |
818 | } | |
819 | code = bytebits_to_byte(dest+idx,32); | |
820 | code2 = bytebits_to_byte(dest+idx+32,32); | |
821 | version = bytebits_to_byte(dest+idx+27,8); //14,4 | |
822 | facilitycode = bytebits_to_byte(dest+idx+18,8) ; | |
823 | number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 | |
824 | ||
825 | Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2); | |
826 | // if we're only looking for one tag | |
827 | if (findone){ | |
828 | if (ledcontrol) LED_A_OFF(); | |
829 | //LED_A_OFF(); | |
830 | return; | |
831 | } | |
832 | code=code2=0; | |
833 | version=facilitycode=0; | |
834 | number=0; | |
835 | idx=0; | |
836 | } | |
837 | WDT_HIT(); | |
838 | } | |
839 | DbpString("Stopped"); | |
840 | if (ledcontrol) LED_A_OFF(); | |
841 | } | |
842 | ||
843 | /*------------------------------ | |
844 | * T5555/T5557/T5567 routines | |
845 | *------------------------------ | |
846 | */ | |
847 | ||
848 | /* T55x7 configuration register definitions */ | |
849 | #define T55x7_POR_DELAY 0x00000001 | |
850 | #define T55x7_ST_TERMINATOR 0x00000008 | |
851 | #define T55x7_PWD 0x00000010 | |
852 | #define T55x7_MAXBLOCK_SHIFT 5 | |
853 | #define T55x7_AOR 0x00000200 | |
854 | #define T55x7_PSKCF_RF_2 0 | |
855 | #define T55x7_PSKCF_RF_4 0x00000400 | |
856 | #define T55x7_PSKCF_RF_8 0x00000800 | |
857 | #define T55x7_MODULATION_DIRECT 0 | |
858 | #define T55x7_MODULATION_PSK1 0x00001000 | |
859 | #define T55x7_MODULATION_PSK2 0x00002000 | |
860 | #define T55x7_MODULATION_PSK3 0x00003000 | |
861 | #define T55x7_MODULATION_FSK1 0x00004000 | |
862 | #define T55x7_MODULATION_FSK2 0x00005000 | |
863 | #define T55x7_MODULATION_FSK1a 0x00006000 | |
864 | #define T55x7_MODULATION_FSK2a 0x00007000 | |
865 | #define T55x7_MODULATION_MANCHESTER 0x00008000 | |
866 | #define T55x7_MODULATION_BIPHASE 0x00010000 | |
867 | #define T55x7_BITRATE_RF_8 0 | |
868 | #define T55x7_BITRATE_RF_16 0x00040000 | |
869 | #define T55x7_BITRATE_RF_32 0x00080000 | |
870 | #define T55x7_BITRATE_RF_40 0x000C0000 | |
871 | #define T55x7_BITRATE_RF_50 0x00100000 | |
872 | #define T55x7_BITRATE_RF_64 0x00140000 | |
873 | #define T55x7_BITRATE_RF_100 0x00180000 | |
874 | #define T55x7_BITRATE_RF_128 0x001C0000 | |
875 | ||
876 | /* T5555 (Q5) configuration register definitions */ | |
877 | #define T5555_ST_TERMINATOR 0x00000001 | |
878 | #define T5555_MAXBLOCK_SHIFT 0x00000001 | |
879 | #define T5555_MODULATION_MANCHESTER 0 | |
880 | #define T5555_MODULATION_PSK1 0x00000010 | |
881 | #define T5555_MODULATION_PSK2 0x00000020 | |
882 | #define T5555_MODULATION_PSK3 0x00000030 | |
883 | #define T5555_MODULATION_FSK1 0x00000040 | |
884 | #define T5555_MODULATION_FSK2 0x00000050 | |
885 | #define T5555_MODULATION_BIPHASE 0x00000060 | |
886 | #define T5555_MODULATION_DIRECT 0x00000070 | |
887 | #define T5555_INVERT_OUTPUT 0x00000080 | |
888 | #define T5555_PSK_RF_2 0 | |
889 | #define T5555_PSK_RF_4 0x00000100 | |
890 | #define T5555_PSK_RF_8 0x00000200 | |
891 | #define T5555_USE_PWD 0x00000400 | |
892 | #define T5555_USE_AOR 0x00000800 | |
893 | #define T5555_BITRATE_SHIFT 12 | |
894 | #define T5555_FAST_WRITE 0x00004000 | |
895 | #define T5555_PAGE_SELECT 0x00008000 | |
896 | ||
897 | /* | |
898 | * Relevant times in microsecond | |
899 | * To compensate antenna falling times shorten the write times | |
900 | * and enlarge the gap ones. | |
901 | */ | |
902 | #define START_GAP 250 | |
903 | #define WRITE_GAP 160 | |
904 | #define WRITE_0 144 // 192 | |
905 | #define WRITE_1 400 // 432 for T55x7; 448 for E5550 | |
906 | ||
907 | // Write one bit to card | |
908 | void T55xxWriteBit(int bit) | |
909 | { | |
910 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
911 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
912 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
913 | if (bit == 0) | |
914 | SpinDelayUs(WRITE_0); | |
915 | else | |
916 | SpinDelayUs(WRITE_1); | |
917 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
918 | SpinDelayUs(WRITE_GAP); | |
919 | } | |
920 | ||
921 | // Write one card block in page 0, no lock | |
922 | void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode) | |
923 | { | |
924 | //unsigned int i; //enio adjustment 12/10/14 | |
925 | uint32_t i; | |
926 | ||
927 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
928 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
929 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
930 | ||
931 | // Give it a bit of time for the resonant antenna to settle. | |
932 | // And for the tag to fully power up | |
933 | SpinDelay(150); | |
934 | ||
935 | // Now start writting | |
936 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
937 | SpinDelayUs(START_GAP); | |
938 | ||
939 | // Opcode | |
940 | T55xxWriteBit(1); | |
941 | T55xxWriteBit(0); //Page 0 | |
942 | if (PwdMode == 1){ | |
943 | // Pwd | |
944 | for (i = 0x80000000; i != 0; i >>= 1) | |
945 | T55xxWriteBit(Pwd & i); | |
946 | } | |
947 | // Lock bit | |
948 | T55xxWriteBit(0); | |
949 | ||
950 | // Data | |
951 | for (i = 0x80000000; i != 0; i >>= 1) | |
952 | T55xxWriteBit(Data & i); | |
953 | ||
954 | // Block | |
955 | for (i = 0x04; i != 0; i >>= 1) | |
956 | T55xxWriteBit(Block & i); | |
957 | ||
958 | // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, | |
959 | // so wait a little more) | |
960 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
961 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
962 | SpinDelay(20); | |
963 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
964 | } | |
965 | ||
966 | // Read one card block in page 0 | |
967 | void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode) | |
968 | { | |
969 | uint8_t *dest = (uint8_t *)BigBuf; | |
970 | //int m=0, i=0; //enio adjustment 12/10/14 | |
971 | uint32_t m=0, i=0; | |
972 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
973 | m = sizeof(BigBuf); | |
974 | // Clear destination buffer before sending the command | |
975 | memset(dest, 128, m); | |
976 | // Connect the A/D to the peak-detected low-frequency path. | |
977 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
978 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
979 | FpgaSetupSsc(); | |
980 | ||
981 | LED_D_ON(); | |
982 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
983 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
984 | ||
985 | // Give it a bit of time for the resonant antenna to settle. | |
986 | // And for the tag to fully power up | |
987 | SpinDelay(150); | |
988 | ||
989 | // Now start writting | |
990 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
991 | SpinDelayUs(START_GAP); | |
992 | ||
993 | // Opcode | |
994 | T55xxWriteBit(1); | |
995 | T55xxWriteBit(0); //Page 0 | |
996 | if (PwdMode == 1){ | |
997 | // Pwd | |
998 | for (i = 0x80000000; i != 0; i >>= 1) | |
999 | T55xxWriteBit(Pwd & i); | |
1000 | } | |
1001 | // Lock bit | |
1002 | T55xxWriteBit(0); | |
1003 | // Block | |
1004 | for (i = 0x04; i != 0; i >>= 1) | |
1005 | T55xxWriteBit(Block & i); | |
1006 | ||
1007 | // Turn field on to read the response | |
1008 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1009 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1010 | ||
1011 | // Now do the acquisition | |
1012 | i = 0; | |
1013 | for(;;) { | |
1014 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1015 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1016 | } | |
1017 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1018 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1019 | // we don't care about actual value, only if it's more or less than a | |
1020 | // threshold essentially we capture zero crossings for later analysis | |
1021 | // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; | |
1022 | i++; | |
1023 | if (i >= m) break; | |
1024 | } | |
1025 | } | |
1026 | ||
1027 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1028 | LED_D_OFF(); | |
1029 | DbpString("DONE!"); | |
1030 | } | |
1031 | ||
1032 | // Read card traceability data (page 1) | |
1033 | void T55xxReadTrace(void){ | |
1034 | uint8_t *dest = (uint8_t *)BigBuf; | |
1035 | int m=0, i=0; | |
1036 | ||
1037 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1038 | m = sizeof(BigBuf); | |
1039 | // Clear destination buffer before sending the command | |
1040 | memset(dest, 128, m); | |
1041 | // Connect the A/D to the peak-detected low-frequency path. | |
1042 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1043 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
1044 | FpgaSetupSsc(); | |
1045 | ||
1046 | LED_D_ON(); | |
1047 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1048 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1049 | ||
1050 | // Give it a bit of time for the resonant antenna to settle. | |
1051 | // And for the tag to fully power up | |
1052 | SpinDelay(150); | |
1053 | ||
1054 | // Now start writting | |
1055 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1056 | SpinDelayUs(START_GAP); | |
1057 | ||
1058 | // Opcode | |
1059 | T55xxWriteBit(1); | |
1060 | T55xxWriteBit(1); //Page 1 | |
1061 | ||
1062 | // Turn field on to read the response | |
1063 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1064 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1065 | ||
1066 | // Now do the acquisition | |
1067 | i = 0; | |
1068 | for(;;) { | |
1069 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1070 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1071 | } | |
1072 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1073 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1074 | i++; | |
1075 | if (i >= m) break; | |
1076 | } | |
1077 | } | |
1078 | ||
1079 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1080 | LED_D_OFF(); | |
1081 | DbpString("DONE!"); | |
1082 | } | |
1083 | ||
1084 | /*-------------- Cloning routines -----------*/ | |
1085 | // Copy HID id to card and setup block 0 config | |
1086 | void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) | |
1087 | { | |
1088 | int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format | |
1089 | int last_block = 0; | |
1090 | ||
1091 | if (longFMT){ | |
1092 | // Ensure no more than 84 bits supplied | |
1093 | if (hi2>0xFFFFF) { | |
1094 | DbpString("Tags can only have 84 bits."); | |
1095 | return; | |
1096 | } | |
1097 | // Build the 6 data blocks for supplied 84bit ID | |
1098 | last_block = 6; | |
1099 | data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) | |
1100 | for (int i=0;i<4;i++) { | |
1101 | if (hi2 & (1<<(19-i))) | |
1102 | data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10 | |
1103 | else | |
1104 | data1 |= (1<<((3-i)*2)); // 0 -> 01 | |
1105 | } | |
1106 | ||
1107 | data2 = 0; | |
1108 | for (int i=0;i<16;i++) { | |
1109 | if (hi2 & (1<<(15-i))) | |
1110 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1111 | else | |
1112 | data2 |= (1<<((15-i)*2)); // 0 -> 01 | |
1113 | } | |
1114 | ||
1115 | data3 = 0; | |
1116 | for (int i=0;i<16;i++) { | |
1117 | if (hi & (1<<(31-i))) | |
1118 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1119 | else | |
1120 | data3 |= (1<<((15-i)*2)); // 0 -> 01 | |
1121 | } | |
1122 | ||
1123 | data4 = 0; | |
1124 | for (int i=0;i<16;i++) { | |
1125 | if (hi & (1<<(15-i))) | |
1126 | data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1127 | else | |
1128 | data4 |= (1<<((15-i)*2)); // 0 -> 01 | |
1129 | } | |
1130 | ||
1131 | data5 = 0; | |
1132 | for (int i=0;i<16;i++) { | |
1133 | if (lo & (1<<(31-i))) | |
1134 | data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1135 | else | |
1136 | data5 |= (1<<((15-i)*2)); // 0 -> 01 | |
1137 | } | |
1138 | ||
1139 | data6 = 0; | |
1140 | for (int i=0;i<16;i++) { | |
1141 | if (lo & (1<<(15-i))) | |
1142 | data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1143 | else | |
1144 | data6 |= (1<<((15-i)*2)); // 0 -> 01 | |
1145 | } | |
1146 | } | |
1147 | else { | |
1148 | // Ensure no more than 44 bits supplied | |
1149 | if (hi>0xFFF) { | |
1150 | DbpString("Tags can only have 44 bits."); | |
1151 | return; | |
1152 | } | |
1153 | ||
1154 | // Build the 3 data blocks for supplied 44bit ID | |
1155 | last_block = 3; | |
1156 | ||
1157 | data1 = 0x1D000000; // load preamble | |
1158 | ||
1159 | for (int i=0;i<12;i++) { | |
1160 | if (hi & (1<<(11-i))) | |
1161 | data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 | |
1162 | else | |
1163 | data1 |= (1<<((11-i)*2)); // 0 -> 01 | |
1164 | } | |
1165 | ||
1166 | data2 = 0; | |
1167 | for (int i=0;i<16;i++) { | |
1168 | if (lo & (1<<(31-i))) | |
1169 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1170 | else | |
1171 | data2 |= (1<<((15-i)*2)); // 0 -> 01 | |
1172 | } | |
1173 | ||
1174 | data3 = 0; | |
1175 | for (int i=0;i<16;i++) { | |
1176 | if (lo & (1<<(15-i))) | |
1177 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1178 | else | |
1179 | data3 |= (1<<((15-i)*2)); // 0 -> 01 | |
1180 | } | |
1181 | } | |
1182 | ||
1183 | LED_D_ON(); | |
1184 | // Program the data blocks for supplied ID | |
1185 | // and the block 0 for HID format | |
1186 | T55xxWriteBlock(data1,1,0,0); | |
1187 | T55xxWriteBlock(data2,2,0,0); | |
1188 | T55xxWriteBlock(data3,3,0,0); | |
1189 | ||
1190 | if (longFMT) { // if long format there are 6 blocks | |
1191 | T55xxWriteBlock(data4,4,0,0); | |
1192 | T55xxWriteBlock(data5,5,0,0); | |
1193 | T55xxWriteBlock(data6,6,0,0); | |
1194 | } | |
1195 | ||
1196 | // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) | |
1197 | T55xxWriteBlock(T55x7_BITRATE_RF_50 | | |
1198 | T55x7_MODULATION_FSK2a | | |
1199 | last_block << T55x7_MAXBLOCK_SHIFT, | |
1200 | 0,0,0); | |
1201 | ||
1202 | LED_D_OFF(); | |
1203 | ||
1204 | DbpString("DONE!"); | |
1205 | } | |
1206 | ||
1207 | void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT) | |
1208 | { | |
1209 | int data1=0, data2=0; //up to six blocks for long format | |
1210 | ||
1211 | data1 = hi; // load preamble | |
1212 | data2 = lo; | |
1213 | ||
1214 | LED_D_ON(); | |
1215 | // Program the data blocks for supplied ID | |
1216 | // and the block 0 for HID format | |
1217 | T55xxWriteBlock(data1,1,0,0); | |
1218 | T55xxWriteBlock(data2,2,0,0); | |
1219 | ||
1220 | //Config Block | |
1221 | T55xxWriteBlock(0x00147040,0,0,0); | |
1222 | LED_D_OFF(); | |
1223 | ||
1224 | DbpString("DONE!"); | |
1225 | } | |
1226 | ||
1227 | // Define 9bit header for EM410x tags | |
1228 | #define EM410X_HEADER 0x1FF | |
1229 | #define EM410X_ID_LENGTH 40 | |
1230 | ||
1231 | void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) | |
1232 | { | |
1233 | int i, id_bit; | |
1234 | uint64_t id = EM410X_HEADER; | |
1235 | uint64_t rev_id = 0; // reversed ID | |
1236 | int c_parity[4]; // column parity | |
1237 | int r_parity = 0; // row parity | |
1238 | uint32_t clock = 0; | |
1239 | ||
1240 | // Reverse ID bits given as parameter (for simpler operations) | |
1241 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1242 | if (i < 32) { | |
1243 | rev_id = (rev_id << 1) | (id_lo & 1); | |
1244 | id_lo >>= 1; | |
1245 | } else { | |
1246 | rev_id = (rev_id << 1) | (id_hi & 1); | |
1247 | id_hi >>= 1; | |
1248 | } | |
1249 | } | |
1250 | ||
1251 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1252 | id_bit = rev_id & 1; | |
1253 | ||
1254 | if (i % 4 == 0) { | |
1255 | // Don't write row parity bit at start of parsing | |
1256 | if (i) | |
1257 | id = (id << 1) | r_parity; | |
1258 | // Start counting parity for new row | |
1259 | r_parity = id_bit; | |
1260 | } else { | |
1261 | // Count row parity | |
1262 | r_parity ^= id_bit; | |
1263 | } | |
1264 | ||
1265 | // First elements in column? | |
1266 | if (i < 4) | |
1267 | // Fill out first elements | |
1268 | c_parity[i] = id_bit; | |
1269 | else | |
1270 | // Count column parity | |
1271 | c_parity[i % 4] ^= id_bit; | |
1272 | ||
1273 | // Insert ID bit | |
1274 | id = (id << 1) | id_bit; | |
1275 | rev_id >>= 1; | |
1276 | } | |
1277 | ||
1278 | // Insert parity bit of last row | |
1279 | id = (id << 1) | r_parity; | |
1280 | ||
1281 | // Fill out column parity at the end of tag | |
1282 | for (i = 0; i < 4; ++i) | |
1283 | id = (id << 1) | c_parity[i]; | |
1284 | ||
1285 | // Add stop bit | |
1286 | id <<= 1; | |
1287 | ||
1288 | Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); | |
1289 | LED_D_ON(); | |
1290 | ||
1291 | // Write EM410x ID | |
1292 | T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0); | |
1293 | T55xxWriteBlock((uint32_t)id, 2, 0, 0); | |
1294 | ||
1295 | // Config for EM410x (RF/64, Manchester, Maxblock=2) | |
1296 | if (card) { | |
1297 | // Clock rate is stored in bits 8-15 of the card value | |
1298 | clock = (card & 0xFF00) >> 8; | |
1299 | Dbprintf("Clock rate: %d", clock); | |
1300 | switch (clock) | |
1301 | { | |
1302 | case 32: | |
1303 | clock = T55x7_BITRATE_RF_32; | |
1304 | break; | |
1305 | case 16: | |
1306 | clock = T55x7_BITRATE_RF_16; | |
1307 | break; | |
1308 | case 0: | |
1309 | // A value of 0 is assumed to be 64 for backwards-compatibility | |
1310 | // Fall through... | |
1311 | case 64: | |
1312 | clock = T55x7_BITRATE_RF_64; | |
1313 | break; | |
1314 | default: | |
1315 | Dbprintf("Invalid clock rate: %d", clock); | |
1316 | return; | |
1317 | } | |
1318 | ||
1319 | // Writing configuration for T55x7 tag | |
1320 | T55xxWriteBlock(clock | | |
1321 | T55x7_MODULATION_MANCHESTER | | |
1322 | 2 << T55x7_MAXBLOCK_SHIFT, | |
1323 | 0, 0, 0); | |
1324 | } | |
1325 | else | |
1326 | // Writing configuration for T5555(Q5) tag | |
1327 | T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | | |
1328 | T5555_MODULATION_MANCHESTER | | |
1329 | 2 << T5555_MAXBLOCK_SHIFT, | |
1330 | 0, 0, 0); | |
1331 | ||
1332 | LED_D_OFF(); | |
1333 | Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", | |
1334 | (uint32_t)(id >> 32), (uint32_t)id); | |
1335 | } | |
1336 | ||
1337 | // Clone Indala 64-bit tag by UID to T55x7 | |
1338 | void CopyIndala64toT55x7(int hi, int lo) | |
1339 | { | |
1340 | ||
1341 | //Program the 2 data blocks for supplied 64bit UID | |
1342 | // and the block 0 for Indala64 format | |
1343 | T55xxWriteBlock(hi,1,0,0); | |
1344 | T55xxWriteBlock(lo,2,0,0); | |
1345 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) | |
1346 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | | |
1347 | T55x7_MODULATION_PSK1 | | |
1348 | 2 << T55x7_MAXBLOCK_SHIFT, | |
1349 | 0, 0, 0); | |
1350 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) | |
1351 | // T5567WriteBlock(0x603E1042,0); | |
1352 | ||
1353 | DbpString("DONE!"); | |
1354 | ||
1355 | } | |
1356 | ||
1357 | void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7) | |
1358 | { | |
1359 | ||
1360 | //Program the 7 data blocks for supplied 224bit UID | |
1361 | // and the block 0 for Indala224 format | |
1362 | T55xxWriteBlock(uid1,1,0,0); | |
1363 | T55xxWriteBlock(uid2,2,0,0); | |
1364 | T55xxWriteBlock(uid3,3,0,0); | |
1365 | T55xxWriteBlock(uid4,4,0,0); | |
1366 | T55xxWriteBlock(uid5,5,0,0); | |
1367 | T55xxWriteBlock(uid6,6,0,0); | |
1368 | T55xxWriteBlock(uid7,7,0,0); | |
1369 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) | |
1370 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | | |
1371 | T55x7_MODULATION_PSK1 | | |
1372 | 7 << T55x7_MAXBLOCK_SHIFT, | |
1373 | 0,0,0); | |
1374 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) | |
1375 | // T5567WriteBlock(0x603E10E2,0); | |
1376 | ||
1377 | DbpString("DONE!"); | |
1378 | ||
1379 | } | |
1380 | ||
1381 | ||
1382 | #define abs(x) ( ((x)<0) ? -(x) : (x) ) | |
1383 | #define max(x,y) ( x<y ? y:x) | |
1384 | ||
1385 | int DemodPCF7931(uint8_t **outBlocks) { | |
1386 | uint8_t BitStream[256]; | |
1387 | uint8_t Blocks[8][16]; | |
1388 | uint8_t *GraphBuffer = (uint8_t *)BigBuf; | |
1389 | int GraphTraceLen = sizeof(BigBuf); | |
1390 | int i, j, lastval, bitidx, half_switch; | |
1391 | int clock = 64; | |
1392 | int tolerance = clock / 8; | |
1393 | int pmc, block_done; | |
1394 | int lc, warnings = 0; | |
1395 | int num_blocks = 0; | |
1396 | int lmin=128, lmax=128; | |
1397 | uint8_t dir; | |
1398 | ||
1399 | AcquireRawAdcSamples125k(0); | |
1400 | ||
1401 | lmin = 64; | |
1402 | lmax = 192; | |
1403 | ||
1404 | i = 2; | |
1405 | ||
1406 | /* Find first local max/min */ | |
1407 | if(GraphBuffer[1] > GraphBuffer[0]) { | |
1408 | while(i < GraphTraceLen) { | |
1409 | if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax) | |
1410 | break; | |
1411 | i++; | |
1412 | } | |
1413 | dir = 0; | |
1414 | } | |
1415 | else { | |
1416 | while(i < GraphTraceLen) { | |
1417 | if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin) | |
1418 | break; | |
1419 | i++; | |
1420 | } | |
1421 | dir = 1; | |
1422 | } | |
1423 | ||
1424 | lastval = i++; | |
1425 | half_switch = 0; | |
1426 | pmc = 0; | |
1427 | block_done = 0; | |
1428 | ||
1429 | for (bitidx = 0; i < GraphTraceLen; i++) | |
1430 | { | |
1431 | if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin)) | |
1432 | { | |
1433 | lc = i - lastval; | |
1434 | lastval = i; | |
1435 | ||
1436 | // Switch depending on lc length: | |
1437 | // Tolerance is 1/8 of clock rate (arbitrary) | |
1438 | if (abs(lc-clock/4) < tolerance) { | |
1439 | // 16T0 | |
1440 | if((i - pmc) == lc) { /* 16T0 was previous one */ | |
1441 | /* It's a PMC ! */ | |
1442 | i += (128+127+16+32+33+16)-1; | |
1443 | lastval = i; | |
1444 | pmc = 0; | |
1445 | block_done = 1; | |
1446 | } | |
1447 | else { | |
1448 | pmc = i; | |
1449 | } | |
1450 | } else if (abs(lc-clock/2) < tolerance) { | |
1451 | // 32TO | |
1452 | if((i - pmc) == lc) { /* 16T0 was previous one */ | |
1453 | /* It's a PMC ! */ | |
1454 | i += (128+127+16+32+33)-1; | |
1455 | lastval = i; | |
1456 | pmc = 0; | |
1457 | block_done = 1; | |
1458 | } | |
1459 | else if(half_switch == 1) { | |
1460 | BitStream[bitidx++] = 0; | |
1461 | half_switch = 0; | |
1462 | } | |
1463 | else | |
1464 | half_switch++; | |
1465 | } else if (abs(lc-clock) < tolerance) { | |
1466 | // 64TO | |
1467 | BitStream[bitidx++] = 1; | |
1468 | } else { | |
1469 | // Error | |
1470 | warnings++; | |
1471 | if (warnings > 10) | |
1472 | { | |
1473 | Dbprintf("Error: too many detection errors, aborting."); | |
1474 | return 0; | |
1475 | } | |
1476 | } | |
1477 | ||
1478 | if(block_done == 1) { | |
1479 | if(bitidx == 128) { | |
1480 | for(j=0; j<16; j++) { | |
1481 | Blocks[num_blocks][j] = 128*BitStream[j*8+7]+ | |
1482 | 64*BitStream[j*8+6]+ | |
1483 | 32*BitStream[j*8+5]+ | |
1484 | 16*BitStream[j*8+4]+ | |
1485 | 8*BitStream[j*8+3]+ | |
1486 | 4*BitStream[j*8+2]+ | |
1487 | 2*BitStream[j*8+1]+ | |
1488 | BitStream[j*8]; | |
1489 | } | |
1490 | num_blocks++; | |
1491 | } | |
1492 | bitidx = 0; | |
1493 | block_done = 0; | |
1494 | half_switch = 0; | |
1495 | } | |
1496 | if(i < GraphTraceLen) | |
1497 | { | |
1498 | if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0; | |
1499 | else dir = 1; | |
1500 | } | |
1501 | } | |
1502 | if(bitidx==255) | |
1503 | bitidx=0; | |
1504 | warnings = 0; | |
1505 | if(num_blocks == 4) break; | |
1506 | } | |
1507 | memcpy(outBlocks, Blocks, 16*num_blocks); | |
1508 | return num_blocks; | |
1509 | } | |
1510 | ||
1511 | int IsBlock0PCF7931(uint8_t *Block) { | |
1512 | // Assume RFU means 0 :) | |
1513 | if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled | |
1514 | return 1; | |
1515 | if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ? | |
1516 | return 1; | |
1517 | return 0; | |
1518 | } | |
1519 | ||
1520 | int IsBlock1PCF7931(uint8_t *Block) { | |
1521 | // Assume RFU means 0 :) | |
1522 | if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0) | |
1523 | if((Block[14] & 0x7f) <= 9 && Block[15] <= 9) | |
1524 | return 1; | |
1525 | ||
1526 | return 0; | |
1527 | } | |
1528 | ||
1529 | #define ALLOC 16 | |
1530 | ||
1531 | void ReadPCF7931() { | |
1532 | uint8_t Blocks[8][17]; | |
1533 | uint8_t tmpBlocks[4][16]; | |
1534 | int i, j, ind, ind2, n; | |
1535 | int num_blocks = 0; | |
1536 | int max_blocks = 8; | |
1537 | int ident = 0; | |
1538 | int error = 0; | |
1539 | int tries = 0; | |
1540 | ||
1541 | memset(Blocks, 0, 8*17*sizeof(uint8_t)); | |
1542 | ||
1543 | do { | |
1544 | memset(tmpBlocks, 0, 4*16*sizeof(uint8_t)); | |
1545 | n = DemodPCF7931((uint8_t**)tmpBlocks); | |
1546 | if(!n) | |
1547 | error++; | |
1548 | if(error==10 && num_blocks == 0) { | |
1549 | Dbprintf("Error, no tag or bad tag"); | |
1550 | return; | |
1551 | } | |
1552 | else if (tries==20 || error==10) { | |
1553 | Dbprintf("Error reading the tag"); | |
1554 | Dbprintf("Here is the partial content"); | |
1555 | goto end; | |
1556 | } | |
1557 | ||
1558 | for(i=0; i<n; i++) | |
1559 | Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", | |
1560 | tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7], | |
1561 | tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]); | |
1562 | if(!ident) { | |
1563 | for(i=0; i<n; i++) { | |
1564 | if(IsBlock0PCF7931(tmpBlocks[i])) { | |
1565 | // Found block 0 ? | |
1566 | if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) { | |
1567 | // Found block 1! | |
1568 | // \o/ | |
1569 | ident = 1; | |
1570 | memcpy(Blocks[0], tmpBlocks[i], 16); | |
1571 | Blocks[0][ALLOC] = 1; | |
1572 | memcpy(Blocks[1], tmpBlocks[i+1], 16); | |
1573 | Blocks[1][ALLOC] = 1; | |
1574 | max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1; | |
1575 | // Debug print | |
1576 | Dbprintf("(dbg) Max blocks: %d", max_blocks); | |
1577 | num_blocks = 2; | |
1578 | // Handle following blocks | |
1579 | for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) { | |
1580 | if(j==n) j=0; | |
1581 | if(j==i) break; | |
1582 | memcpy(Blocks[ind2], tmpBlocks[j], 16); | |
1583 | Blocks[ind2][ALLOC] = 1; | |
1584 | } | |
1585 | break; | |
1586 | } | |
1587 | } | |
1588 | } | |
1589 | } | |
1590 | else { | |
1591 | for(i=0; i<n; i++) { // Look for identical block in known blocks | |
1592 | if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00 | |
1593 | for(j=0; j<max_blocks; j++) { | |
1594 | if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) { | |
1595 | // Found an identical block | |
1596 | for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) { | |
1597 | if(ind2 < 0) | |
1598 | ind2 = max_blocks; | |
1599 | if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found | |
1600 | // Dbprintf("Tmp %d -> Block %d", ind, ind2); | |
1601 | memcpy(Blocks[ind2], tmpBlocks[ind], 16); | |
1602 | Blocks[ind2][ALLOC] = 1; | |
1603 | num_blocks++; | |
1604 | if(num_blocks == max_blocks) goto end; | |
1605 | } | |
1606 | } | |
1607 | for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) { | |
1608 | if(ind2 > max_blocks) | |
1609 | ind2 = 0; | |
1610 | if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found | |
1611 | // Dbprintf("Tmp %d -> Block %d", ind, ind2); | |
1612 | memcpy(Blocks[ind2], tmpBlocks[ind], 16); | |
1613 | Blocks[ind2][ALLOC] = 1; | |
1614 | num_blocks++; | |
1615 | if(num_blocks == max_blocks) goto end; | |
1616 | } | |
1617 | } | |
1618 | } | |
1619 | } | |
1620 | } | |
1621 | } | |
1622 | } | |
1623 | tries++; | |
1624 | if (BUTTON_PRESS()) return; | |
1625 | } while (num_blocks != max_blocks); | |
1626 | end: | |
1627 | Dbprintf("-----------------------------------------"); | |
1628 | Dbprintf("Memory content:"); | |
1629 | Dbprintf("-----------------------------------------"); | |
1630 | for(i=0; i<max_blocks; i++) { | |
1631 | if(Blocks[i][ALLOC]==1) | |
1632 | Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", | |
1633 | Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7], | |
1634 | Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]); | |
1635 | else | |
1636 | Dbprintf("<missing block %d>", i); | |
1637 | } | |
1638 | Dbprintf("-----------------------------------------"); | |
1639 | ||
1640 | return ; | |
1641 | } | |
1642 | ||
1643 | ||
1644 | //----------------------------------- | |
1645 | // EM4469 / EM4305 routines | |
1646 | //----------------------------------- | |
1647 | #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored | |
1648 | #define FWD_CMD_WRITE 0xA | |
1649 | #define FWD_CMD_READ 0x9 | |
1650 | #define FWD_CMD_DISABLE 0x5 | |
1651 | ||
1652 | ||
1653 | uint8_t forwardLink_data[64]; //array of forwarded bits | |
1654 | uint8_t * forward_ptr; //ptr for forward message preparation | |
1655 | uint8_t fwd_bit_sz; //forwardlink bit counter | |
1656 | uint8_t * fwd_write_ptr; //forwardlink bit pointer | |
1657 | ||
1658 | //==================================================================== | |
1659 | // prepares command bits | |
1660 | // see EM4469 spec | |
1661 | //==================================================================== | |
1662 | //-------------------------------------------------------------------- | |
1663 | uint8_t Prepare_Cmd( uint8_t cmd ) { | |
1664 | //-------------------------------------------------------------------- | |
1665 | ||
1666 | *forward_ptr++ = 0; //start bit | |
1667 | *forward_ptr++ = 0; //second pause for 4050 code | |
1668 | ||
1669 | *forward_ptr++ = cmd; | |
1670 | cmd >>= 1; | |
1671 | *forward_ptr++ = cmd; | |
1672 | cmd >>= 1; | |
1673 | *forward_ptr++ = cmd; | |
1674 | cmd >>= 1; | |
1675 | *forward_ptr++ = cmd; | |
1676 | ||
1677 | return 6; //return number of emited bits | |
1678 | } | |
1679 | ||
1680 | //==================================================================== | |
1681 | // prepares address bits | |
1682 | // see EM4469 spec | |
1683 | //==================================================================== | |
1684 | ||
1685 | //-------------------------------------------------------------------- | |
1686 | uint8_t Prepare_Addr( uint8_t addr ) { | |
1687 | //-------------------------------------------------------------------- | |
1688 | ||
1689 | register uint8_t line_parity; | |
1690 | ||
1691 | uint8_t i; | |
1692 | line_parity = 0; | |
1693 | for(i=0;i<6;i++) { | |
1694 | *forward_ptr++ = addr; | |
1695 | line_parity ^= addr; | |
1696 | addr >>= 1; | |
1697 | } | |
1698 | ||
1699 | *forward_ptr++ = (line_parity & 1); | |
1700 | ||
1701 | return 7; //return number of emited bits | |
1702 | } | |
1703 | ||
1704 | //==================================================================== | |
1705 | // prepares data bits intreleaved with parity bits | |
1706 | // see EM4469 spec | |
1707 | //==================================================================== | |
1708 | ||
1709 | //-------------------------------------------------------------------- | |
1710 | uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { | |
1711 | //-------------------------------------------------------------------- | |
1712 | ||
1713 | register uint8_t line_parity; | |
1714 | register uint8_t column_parity; | |
1715 | register uint8_t i, j; | |
1716 | register uint16_t data; | |
1717 | ||
1718 | data = data_low; | |
1719 | column_parity = 0; | |
1720 | ||
1721 | for(i=0; i<4; i++) { | |
1722 | line_parity = 0; | |
1723 | for(j=0; j<8; j++) { | |
1724 | line_parity ^= data; | |
1725 | column_parity ^= (data & 1) << j; | |
1726 | *forward_ptr++ = data; | |
1727 | data >>= 1; | |
1728 | } | |
1729 | *forward_ptr++ = line_parity; | |
1730 | if(i == 1) | |
1731 | data = data_hi; | |
1732 | } | |
1733 | ||
1734 | for(j=0; j<8; j++) { | |
1735 | *forward_ptr++ = column_parity; | |
1736 | column_parity >>= 1; | |
1737 | } | |
1738 | *forward_ptr = 0; | |
1739 | ||
1740 | return 45; //return number of emited bits | |
1741 | } | |
1742 | ||
1743 | //==================================================================== | |
1744 | // Forward Link send function | |
1745 | // Requires: forwarLink_data filled with valid bits (1 bit per byte) | |
1746 | // fwd_bit_count set with number of bits to be sent | |
1747 | //==================================================================== | |
1748 | void SendForward(uint8_t fwd_bit_count) { | |
1749 | ||
1750 | fwd_write_ptr = forwardLink_data; | |
1751 | fwd_bit_sz = fwd_bit_count; | |
1752 | ||
1753 | LED_D_ON(); | |
1754 | ||
1755 | //Field on | |
1756 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1757 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1758 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1759 | ||
1760 | // Give it a bit of time for the resonant antenna to settle. | |
1761 | // And for the tag to fully power up | |
1762 | SpinDelay(150); | |
1763 | ||
1764 | // force 1st mod pulse (start gap must be longer for 4305) | |
1765 | fwd_bit_sz--; //prepare next bit modulation | |
1766 | fwd_write_ptr++; | |
1767 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1768 | SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 | |
1769 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1770 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on | |
1771 | SpinDelayUs(16*8); //16 cycles on (8us each) | |
1772 | ||
1773 | // now start writting | |
1774 | while(fwd_bit_sz-- > 0) { //prepare next bit modulation | |
1775 | if(((*fwd_write_ptr++) & 1) == 1) | |
1776 | SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) | |
1777 | else { | |
1778 | //These timings work for 4469/4269/4305 (with the 55*8 above) | |
1779 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1780 | SpinDelayUs(23*8); //16-4 cycles off (8us each) | |
1781 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1782 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on | |
1783 | SpinDelayUs(9*8); //16 cycles on (8us each) | |
1784 | } | |
1785 | } | |
1786 | } | |
1787 | ||
1788 | void EM4xLogin(uint32_t Password) { | |
1789 | ||
1790 | uint8_t fwd_bit_count; | |
1791 | ||
1792 | forward_ptr = forwardLink_data; | |
1793 | fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); | |
1794 | fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); | |
1795 | ||
1796 | SendForward(fwd_bit_count); | |
1797 | ||
1798 | //Wait for command to complete | |
1799 | SpinDelay(20); | |
1800 | ||
1801 | } | |
1802 | ||
1803 | void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
1804 | ||
1805 | uint8_t fwd_bit_count; | |
1806 | uint8_t *dest = (uint8_t *)BigBuf; | |
1807 | int m=0, i=0; | |
1808 | ||
1809 | //If password mode do login | |
1810 | if (PwdMode == 1) EM4xLogin(Pwd); | |
1811 | ||
1812 | forward_ptr = forwardLink_data; | |
1813 | fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); | |
1814 | fwd_bit_count += Prepare_Addr( Address ); | |
1815 | ||
1816 | m = sizeof(BigBuf); | |
1817 | // Clear destination buffer before sending the command | |
1818 | memset(dest, 128, m); | |
1819 | // Connect the A/D to the peak-detected low-frequency path. | |
1820 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1821 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
1822 | FpgaSetupSsc(); | |
1823 | ||
1824 | SendForward(fwd_bit_count); | |
1825 | ||
1826 | // Now do the acquisition | |
1827 | i = 0; | |
1828 | for(;;) { | |
1829 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1830 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1831 | } | |
1832 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1833 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1834 | i++; | |
1835 | if (i >= m) break; | |
1836 | } | |
1837 | } | |
1838 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1839 | LED_D_OFF(); | |
1840 | } | |
1841 | ||
1842 | void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
1843 | ||
1844 | uint8_t fwd_bit_count; | |
1845 | ||
1846 | //If password mode do login | |
1847 | if (PwdMode == 1) EM4xLogin(Pwd); | |
1848 | ||
1849 | forward_ptr = forwardLink_data; | |
1850 | fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); | |
1851 | fwd_bit_count += Prepare_Addr( Address ); | |
1852 | fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); | |
1853 | ||
1854 | SendForward(fwd_bit_count); | |
1855 | ||
1856 | //Wait for write to complete | |
1857 | SpinDelay(20); | |
1858 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1859 | LED_D_OFF(); | |
1860 | } |