]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
3 | // at your option, any later version. See the LICENSE.txt file for the text of | |
4 | // the license. | |
5 | //----------------------------------------------------------------------------- | |
6 | // Hitag2 emulation (preliminary test version) | |
7 | // | |
8 | // (c) 2009 Henryk Plötz <henryk@ploetzli.ch> | |
9 | //----------------------------------------------------------------------------- | |
10 | // Hitag2 complete rewrite of the code | |
11 | // - Fixed modulation/encoding issues | |
12 | // - Rewrote code for transponder emulation | |
13 | // - Added snooping of transponder communication | |
14 | // - Added reader functionality | |
15 | // | |
16 | // (c) 2012 Roel Verdult | |
17 | //----------------------------------------------------------------------------- | |
18 | ||
19 | #include "proxmark3.h" | |
20 | #include "apps.h" | |
21 | #include "util.h" | |
22 | #include "hitag2.h" | |
23 | #include "string.h" | |
24 | #include "BigBuf.h" | |
25 | ||
26 | static bool bQuiet; | |
27 | ||
28 | static bool bCrypto; | |
29 | static bool bAuthenticating; | |
30 | static bool bPwd; | |
31 | static bool bSuccessful; | |
32 | ||
33 | ||
34 | ||
35 | struct hitag2_tag { | |
36 | uint32_t uid; | |
37 | enum { | |
38 | TAG_STATE_RESET = 0x01, // Just powered up, awaiting GetSnr | |
39 | TAG_STATE_ACTIVATING = 0x02 , // In activation phase (password mode), sent UID, awaiting reader password | |
40 | TAG_STATE_ACTIVATED = 0x03, // Activation complete, awaiting read/write commands | |
41 | TAG_STATE_WRITING = 0x04, // In write command, awaiting sector contents to be written | |
42 | } state; | |
43 | unsigned int active_sector; | |
44 | byte_t crypto_active; | |
45 | uint64_t cs; | |
46 | byte_t sectors[12][4]; | |
47 | }; | |
48 | ||
49 | static struct hitag2_tag tag = { | |
50 | .state = TAG_STATE_RESET, | |
51 | .sectors = { // Password mode: | Crypto mode: | |
52 | [0] = { 0x02, 0x4e, 0x02, 0x20}, // UID | UID | |
53 | [1] = { 0x4d, 0x49, 0x4b, 0x52}, // Password RWD | 32 bit LSB key | |
54 | [2] = { 0x20, 0xf0, 0x4f, 0x4e}, // Reserved | 16 bit MSB key, 16 bit reserved | |
55 | [3] = { 0x0e, 0xaa, 0x48, 0x54}, // Configuration, password TAG | Configuration, password TAG | |
56 | [4] = { 0x46, 0x5f, 0x4f, 0x4b}, // Data: F_OK | |
57 | [5] = { 0x55, 0x55, 0x55, 0x55}, // Data: UUUU | |
58 | [6] = { 0xaa, 0xaa, 0xaa, 0xaa}, // Data: .... | |
59 | [7] = { 0x55, 0x55, 0x55, 0x55}, // Data: UUUU | |
60 | [8] = { 0x00, 0x00, 0x00, 0x00}, // RSK Low | |
61 | [9] = { 0x00, 0x00, 0x00, 0x00}, // RSK High | |
62 | [10] = { 0x00, 0x00, 0x00, 0x00}, // RCF | |
63 | [11] = { 0x00, 0x00, 0x00, 0x00}, // SYNC | |
64 | }, | |
65 | }; | |
66 | ||
67 | // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces. | |
68 | // Historically it used to be FREE_BUFFER_SIZE, which was 2744. | |
69 | #define AUTH_TABLE_LENGTH 2744 | |
70 | static byte_t* auth_table; | |
71 | static size_t auth_table_pos = 0; | |
72 | static size_t auth_table_len = AUTH_TABLE_LENGTH; | |
73 | ||
74 | static byte_t password[4]; | |
75 | static byte_t NrAr[8]; | |
76 | static byte_t key[8]; | |
77 | static uint64_t cipher_state; | |
78 | ||
79 | /* Following is a modified version of cryptolib.com/ciphers/hitag2/ */ | |
80 | // Software optimized 48-bit Philips/NXP Mifare Hitag2 PCF7936/46/47/52 stream cipher algorithm by I.C. Wiener 2006-2007. | |
81 | // For educational purposes only. | |
82 | // No warranties or guarantees of any kind. | |
83 | // This code is released into the public domain by its author. | |
84 | ||
85 | // Basic macros: | |
86 | ||
87 | #define u8 uint8_t | |
88 | #define u32 uint32_t | |
89 | #define u64 uint64_t | |
90 | #define rev8(x) ((((x)>>7)&1)+((((x)>>6)&1)<<1)+((((x)>>5)&1)<<2)+((((x)>>4)&1)<<3)+((((x)>>3)&1)<<4)+((((x)>>2)&1)<<5)+((((x)>>1)&1)<<6)+(((x)&1)<<7)) | |
91 | #define rev16(x) (rev8 (x)+(rev8 (x>> 8)<< 8)) | |
92 | #define rev32(x) (rev16(x)+(rev16(x>>16)<<16)) | |
93 | #define rev64(x) (rev32(x)+(rev32(x>>32)<<32)) | |
94 | #define bit(x,n) (((x)>>(n))&1) | |
95 | #define bit32(x,n) ((((x)[(n)>>5])>>((n)))&1) | |
96 | #define inv32(x,i,n) ((x)[(i)>>5]^=((u32)(n))<<((i)&31)) | |
97 | #define rotl64(x, n) ((((u64)(x))<<((n)&63))+(((u64)(x))>>((0-(n))&63))) | |
98 | ||
99 | // Single bit Hitag2 functions: | |
100 | ||
101 | #define i4(x,a,b,c,d) ((u32)((((x)>>(a))&1)+(((x)>>(b))&1)*2+(((x)>>(c))&1)*4+(((x)>>(d))&1)*8)) | |
102 | ||
103 | static const u32 ht2_f4a = 0x2C79; // 0010 1100 0111 1001 | |
104 | static const u32 ht2_f4b = 0x6671; // 0110 0110 0111 0001 | |
105 | static const u32 ht2_f5c = 0x7907287B; // 0111 1001 0000 0111 0010 1000 0111 1011 | |
106 | ||
107 | static u32 _f20 (const u64 x) | |
108 | { | |
109 | u32 i5; | |
110 | ||
111 | i5 = ((ht2_f4a >> i4 (x, 1, 2, 4, 5)) & 1)* 1 | |
112 | + ((ht2_f4b >> i4 (x, 7,11,13,14)) & 1)* 2 | |
113 | + ((ht2_f4b >> i4 (x,16,20,22,25)) & 1)* 4 | |
114 | + ((ht2_f4b >> i4 (x,27,28,30,32)) & 1)* 8 | |
115 | + ((ht2_f4a >> i4 (x,33,42,43,45)) & 1)*16; | |
116 | ||
117 | return (ht2_f5c >> i5) & 1; | |
118 | } | |
119 | ||
120 | static u64 _hitag2_init (const u64 key, const u32 serial, const u32 IV) | |
121 | { | |
122 | u32 i; | |
123 | u64 x = ((key & 0xFFFF) << 32) + serial; | |
124 | ||
125 | for (i = 0; i < 32; i++) | |
126 | { | |
127 | x >>= 1; | |
128 | x += (u64) (_f20 (x) ^ (((IV >> i) ^ (key >> (i+16))) & 1)) << 47; | |
129 | } | |
130 | return x; | |
131 | } | |
132 | ||
133 | static u64 _hitag2_round (u64 *state) | |
134 | { | |
135 | u64 x = *state; | |
136 | ||
137 | x = (x >> 1) + | |
138 | ((((x >> 0) ^ (x >> 2) ^ (x >> 3) ^ (x >> 6) | |
139 | ^ (x >> 7) ^ (x >> 8) ^ (x >> 16) ^ (x >> 22) | |
140 | ^ (x >> 23) ^ (x >> 26) ^ (x >> 30) ^ (x >> 41) | |
141 | ^ (x >> 42) ^ (x >> 43) ^ (x >> 46) ^ (x >> 47)) & 1) << 47); | |
142 | ||
143 | *state = x; | |
144 | return _f20 (x); | |
145 | } | |
146 | ||
147 | static u32 _hitag2_byte (u64 * x) | |
148 | { | |
149 | u32 i, c; | |
150 | ||
151 | for (i = 0, c = 0; i < 8; i++) c += (u32) _hitag2_round (x) << (i^7); | |
152 | return c; | |
153 | } | |
154 | ||
155 | static int hitag2_reset(void) | |
156 | { | |
157 | tag.state = TAG_STATE_RESET; | |
158 | tag.crypto_active = 0; | |
159 | return 0; | |
160 | } | |
161 | ||
162 | static int hitag2_init(void) | |
163 | { | |
164 | // memcpy(&tag, &resetdata, sizeof(tag)); | |
165 | hitag2_reset(); | |
166 | return 0; | |
167 | } | |
168 | ||
169 | static void hitag2_cipher_reset(struct hitag2_tag *tag, const byte_t *iv) | |
170 | { | |
171 | uint64_t key = ((uint64_t)tag->sectors[2][2]) | | |
172 | ((uint64_t)tag->sectors[2][3] << 8) | | |
173 | ((uint64_t)tag->sectors[1][0] << 16) | | |
174 | ((uint64_t)tag->sectors[1][1] << 24) | | |
175 | ((uint64_t)tag->sectors[1][2] << 32) | | |
176 | ((uint64_t)tag->sectors[1][3] << 40); | |
177 | uint32_t uid = ((uint32_t)tag->sectors[0][0]) | | |
178 | ((uint32_t)tag->sectors[0][1] << 8) | | |
179 | ((uint32_t)tag->sectors[0][2] << 16) | | |
180 | ((uint32_t)tag->sectors[0][3] << 24); | |
181 | uint32_t iv_ = (((uint32_t)(iv[0]))) | | |
182 | (((uint32_t)(iv[1])) << 8) | | |
183 | (((uint32_t)(iv[2])) << 16) | | |
184 | (((uint32_t)(iv[3])) << 24); | |
185 | tag->cs = _hitag2_init(rev64(key), rev32(uid), rev32(iv_)); | |
186 | } | |
187 | ||
188 | static int hitag2_cipher_authenticate(uint64_t* cs, const byte_t *authenticator_is) | |
189 | { | |
190 | byte_t authenticator_should[4]; | |
191 | authenticator_should[0] = ~_hitag2_byte(cs); | |
192 | authenticator_should[1] = ~_hitag2_byte(cs); | |
193 | authenticator_should[2] = ~_hitag2_byte(cs); | |
194 | authenticator_should[3] = ~_hitag2_byte(cs); | |
195 | return (memcmp(authenticator_should, authenticator_is, 4) == 0); | |
196 | } | |
197 | ||
198 | static int hitag2_cipher_transcrypt(uint64_t* cs, byte_t *data, unsigned int bytes, unsigned int bits) | |
199 | { | |
200 | int i; | |
201 | for(i=0; i<bytes; i++) data[i] ^= _hitag2_byte(cs); | |
202 | for(i=0; i<bits; i++) data[bytes] ^= _hitag2_round(cs) << (7-i); | |
203 | return 0; | |
204 | } | |
205 | ||
206 | // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK) | |
207 | // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz | |
208 | // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier) | |
209 | // T0 = TIMER_CLOCK1 / 125000 = 192 | |
210 | #define T0 192 | |
211 | ||
212 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) | |
213 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) | |
214 | ||
215 | #define HITAG_FRAME_LEN 20 | |
216 | #define HITAG_T_STOP 36 /* T_EOF should be > 36 */ | |
217 | #define HITAG_T_LOW 8 /* T_LOW should be 4..10 */ | |
218 | #define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */ | |
219 | #define HITAG_T_1_MIN 25 /* T[1] should be 26..30 */ | |
220 | //#define HITAG_T_EOF 40 /* T_EOF should be > 36 */ | |
221 | #define HITAG_T_EOF 80 /* T_EOF should be > 36 */ | |
222 | #define HITAG_T_WAIT_1 200 /* T_wresp should be 199..206 */ | |
223 | #define HITAG_T_WAIT_2 90 /* T_wresp should be 199..206 */ | |
224 | #define HITAG_T_WAIT_MAX 300 /* bit more than HITAG_T_WAIT_1 + HITAG_T_WAIT_2 */ | |
225 | ||
226 | #define HITAG_T_TAG_ONE_HALF_PERIOD 10 | |
227 | #define HITAG_T_TAG_TWO_HALF_PERIOD 25 | |
228 | #define HITAG_T_TAG_THREE_HALF_PERIOD 41 | |
229 | #define HITAG_T_TAG_FOUR_HALF_PERIOD 57 | |
230 | ||
231 | #define HITAG_T_TAG_HALF_PERIOD 16 | |
232 | #define HITAG_T_TAG_FULL_PERIOD 32 | |
233 | ||
234 | #define HITAG_T_TAG_CAPTURE_ONE_HALF 13 | |
235 | #define HITAG_T_TAG_CAPTURE_TWO_HALF 25 | |
236 | #define HITAG_T_TAG_CAPTURE_THREE_HALF 41 | |
237 | #define HITAG_T_TAG_CAPTURE_FOUR_HALF 57 | |
238 | ||
239 | ||
240 | static void hitag_send_bit(int bit) { | |
241 | LED_A_ON(); | |
242 | // Reset clock for the next bit | |
243 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; | |
244 | ||
245 | // Fixed modulation, earlier proxmark version used inverted signal | |
246 | if(bit == 0) { | |
247 | // Manchester: Unloaded, then loaded |__--| | |
248 | LOW(GPIO_SSC_DOUT); | |
249 | while(AT91C_BASE_TC0->TC_CV < T0*HITAG_T_TAG_HALF_PERIOD); | |
250 | HIGH(GPIO_SSC_DOUT); | |
251 | while(AT91C_BASE_TC0->TC_CV < T0*HITAG_T_TAG_FULL_PERIOD); | |
252 | } else { | |
253 | // Manchester: Loaded, then unloaded |--__| | |
254 | HIGH(GPIO_SSC_DOUT); | |
255 | while(AT91C_BASE_TC0->TC_CV < T0*HITAG_T_TAG_HALF_PERIOD); | |
256 | LOW(GPIO_SSC_DOUT); | |
257 | while(AT91C_BASE_TC0->TC_CV < T0*HITAG_T_TAG_FULL_PERIOD); | |
258 | } | |
259 | LED_A_OFF(); | |
260 | } | |
261 | ||
262 | static void hitag_send_frame(const byte_t* frame, size_t frame_len) | |
263 | { | |
264 | // Send start of frame | |
265 | for(size_t i=0; i<5; i++) { | |
266 | hitag_send_bit(1); | |
267 | } | |
268 | ||
269 | // Send the content of the frame | |
270 | for(size_t i=0; i<frame_len; i++) { | |
271 | hitag_send_bit((frame[i/8] >> (7-(i%8)))&1); | |
272 | } | |
273 | ||
274 | // Drop the modulation | |
275 | LOW(GPIO_SSC_DOUT); | |
276 | } | |
277 | ||
278 | ||
279 | static void hitag2_handle_reader_command(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) | |
280 | { | |
281 | byte_t rx_air[HITAG_FRAME_LEN]; | |
282 | ||
283 | // Copy the (original) received frame how it is send over the air | |
284 | memcpy(rx_air,rx,nbytes(rxlen)); | |
285 | ||
286 | if(tag.crypto_active) { | |
287 | hitag2_cipher_transcrypt(&(tag.cs),rx,rxlen/8,rxlen%8); | |
288 | } | |
289 | ||
290 | // Reset the transmission frame length | |
291 | *txlen = 0; | |
292 | ||
293 | // Try to find out which command was send by selecting on length (in bits) | |
294 | switch (rxlen) { | |
295 | // Received 11000 from the reader, request for UID, send UID | |
296 | case 05: { | |
297 | // Always send over the air in the clear plaintext mode | |
298 | if(rx_air[0] != 0xC0) { | |
299 | // Unknown frame ? | |
300 | return; | |
301 | } | |
302 | *txlen = 32; | |
303 | memcpy(tx,tag.sectors[0],4); | |
304 | tag.crypto_active = 0; | |
305 | } | |
306 | break; | |
307 | ||
308 | // Read/Write command: ..xx x..y yy with yyy == ~xxx, xxx is sector number | |
309 | case 10: { | |
310 | unsigned int sector = (~( ((rx[0]<<2)&0x04) | ((rx[1]>>6)&0x03) ) & 0x07); | |
311 | // Verify complement of sector index | |
312 | if(sector != ((rx[0]>>3)&0x07)) { | |
313 | //DbpString("Transmission error (read/write)"); | |
314 | return; | |
315 | } | |
316 | ||
317 | switch (rx[0] & 0xC6) { | |
318 | // Read command: 11xx x00y | |
319 | case 0xC0: | |
320 | memcpy(tx,tag.sectors[sector],4); | |
321 | *txlen = 32; | |
322 | break; | |
323 | ||
324 | // Inverted Read command: 01xx x10y | |
325 | case 0x44: | |
326 | for (size_t i=0; i<4; i++) { | |
327 | tx[i] = tag.sectors[sector][i] ^ 0xff; | |
328 | } | |
329 | *txlen = 32; | |
330 | break; | |
331 | ||
332 | // Write command: 10xx x01y | |
333 | case 0x82: | |
334 | // Prepare write, acknowledge by repeating command | |
335 | memcpy(tx,rx,nbytes(rxlen)); | |
336 | *txlen = rxlen; | |
337 | tag.active_sector = sector; | |
338 | tag.state=TAG_STATE_WRITING; | |
339 | break; | |
340 | ||
341 | // Unknown command | |
342 | default: | |
343 | Dbprintf("Uknown command: %02x %02x",rx[0],rx[1]); | |
344 | return; | |
345 | break; | |
346 | } | |
347 | } | |
348 | break; | |
349 | ||
350 | // Writing data or Reader password | |
351 | case 32: { | |
352 | if(tag.state == TAG_STATE_WRITING) { | |
353 | // These are the sector contents to be written. We don't have to do anything else. | |
354 | memcpy(tag.sectors[tag.active_sector],rx,nbytes(rxlen)); | |
355 | tag.state=TAG_STATE_RESET; | |
356 | return; | |
357 | } else { | |
358 | // Received RWD password, respond with configuration and our password | |
359 | if(memcmp(rx,tag.sectors[1],4) != 0) { | |
360 | DbpString("Reader password is wrong"); | |
361 | return; | |
362 | } | |
363 | *txlen = 32; | |
364 | memcpy(tx,tag.sectors[3],4); | |
365 | } | |
366 | } | |
367 | break; | |
368 | ||
369 | // Received RWD authentication challenge and respnse | |
370 | case 64: { | |
371 | // Store the authentication attempt | |
372 | if (auth_table_len < (AUTH_TABLE_LENGTH-8)) { | |
373 | memcpy(auth_table+auth_table_len,rx,8); | |
374 | auth_table_len += 8; | |
375 | } | |
376 | ||
377 | // Reset the cipher state | |
378 | hitag2_cipher_reset(&tag,rx); | |
379 | // Check if the authentication was correct | |
380 | if(!hitag2_cipher_authenticate(&(tag.cs),rx+4)) { | |
381 | // The reader failed to authenticate, do nothing | |
382 | Dbprintf("auth: %02x%02x%02x%02x%02x%02x%02x%02x Failed!",rx[0],rx[1],rx[2],rx[3],rx[4],rx[5],rx[6],rx[7]); | |
383 | return; | |
384 | } | |
385 | // Succesful, but commented out reporting back to the Host, this may delay to much. | |
386 | // Dbprintf("auth: %02x%02x%02x%02x%02x%02x%02x%02x OK!",rx[0],rx[1],rx[2],rx[3],rx[4],rx[5],rx[6],rx[7]); | |
387 | ||
388 | // Activate encryption algorithm for all further communication | |
389 | tag.crypto_active = 1; | |
390 | ||
391 | // Use the tag password as response | |
392 | memcpy(tx,tag.sectors[3],4); | |
393 | *txlen = 32; | |
394 | } | |
395 | break; | |
396 | } | |
397 | ||
398 | // LogTraceHitag(rx,rxlen,0,0,false); | |
399 | // LogTraceHitag(tx,*txlen,0,0,true); | |
400 | ||
401 | if(tag.crypto_active) { | |
402 | hitag2_cipher_transcrypt(&(tag.cs), tx, *txlen/8, *txlen%8); | |
403 | } | |
404 | } | |
405 | ||
406 | static void hitag_reader_send_bit(int bit) { | |
407 | LED_A_ON(); | |
408 | // Reset clock for the next bit | |
409 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; | |
410 | ||
411 | // Binary puls length modulation (BPLM) is used to encode the data stream | |
412 | // This means that a transmission of a one takes longer than that of a zero | |
413 | ||
414 | // Enable modulation, which means, drop the field | |
415 | HIGH(GPIO_SSC_DOUT); | |
416 | ||
417 | // Wait for 4-10 times the carrier period | |
418 | while(AT91C_BASE_TC0->TC_CV < T0*6); | |
419 | // SpinDelayUs(8*8); | |
420 | ||
421 | // Disable modulation, just activates the field again | |
422 | LOW(GPIO_SSC_DOUT); | |
423 | ||
424 | if(bit == 0) { | |
425 | // Zero bit: |_-| | |
426 | while(AT91C_BASE_TC0->TC_CV < T0*22); | |
427 | // SpinDelayUs(16*8); | |
428 | } else { | |
429 | // One bit: |_--| | |
430 | while(AT91C_BASE_TC0->TC_CV < T0*28); | |
431 | // SpinDelayUs(22*8); | |
432 | } | |
433 | LED_A_OFF(); | |
434 | } | |
435 | ||
436 | ||
437 | static void hitag_reader_send_frame(const byte_t* frame, size_t frame_len) | |
438 | { | |
439 | // Send the content of the frame | |
440 | for(size_t i=0; i<frame_len; i++) { | |
441 | hitag_reader_send_bit((frame[i/8] >> (7-(i%8)))&1); | |
442 | } | |
443 | // Send EOF | |
444 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; | |
445 | // Enable modulation, which means, drop the field | |
446 | HIGH(GPIO_SSC_DOUT); | |
447 | // Wait for 4-10 times the carrier period | |
448 | while(AT91C_BASE_TC0->TC_CV < T0*6); | |
449 | // Disable modulation, just activates the field again | |
450 | LOW(GPIO_SSC_DOUT); | |
451 | } | |
452 | ||
453 | size_t blocknr; | |
454 | ||
455 | static bool hitag2_password(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) { | |
456 | // Reset the transmission frame length | |
457 | *txlen = 0; | |
458 | ||
459 | // Try to find out which command was send by selecting on length (in bits) | |
460 | switch (rxlen) { | |
461 | // No answer, try to resurrect | |
462 | case 0: { | |
463 | // Stop if there is no answer (after sending password) | |
464 | if (bPwd) { | |
465 | DbpString("Password failed!"); | |
466 | return false; | |
467 | } | |
468 | *txlen = 5; | |
469 | memcpy(tx,"\xc0",nbytes(*txlen)); | |
470 | } break; | |
471 | ||
472 | // Received UID, tag password | |
473 | case 32: { | |
474 | if (!bPwd) { | |
475 | *txlen = 32; | |
476 | memcpy(tx,password,4); | |
477 | bPwd = true; | |
478 | memcpy(tag.sectors[blocknr],rx,4); | |
479 | blocknr++; | |
480 | } else { | |
481 | ||
482 | if(blocknr == 1){ | |
483 | //store password in block1, the TAG answers with Block3, but we need the password in memory | |
484 | memcpy(tag.sectors[blocknr],tx,4); | |
485 | }else{ | |
486 | memcpy(tag.sectors[blocknr],rx,4); | |
487 | } | |
488 | ||
489 | blocknr++; | |
490 | if (blocknr > 7) { | |
491 | DbpString("Read succesful!"); | |
492 | bSuccessful = true; | |
493 | return false; | |
494 | } | |
495 | *txlen = 10; | |
496 | tx[0] = 0xc0 | (blocknr << 3) | ((blocknr^7) >> 2); | |
497 | tx[1] = ((blocknr^7) << 6); | |
498 | } | |
499 | } break; | |
500 | ||
501 | // Unexpected response | |
502 | default: { | |
503 | Dbprintf("Uknown frame length: %d",rxlen); | |
504 | return false; | |
505 | } break; | |
506 | } | |
507 | return true; | |
508 | } | |
509 | ||
510 | static bool hitag2_crypto(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) { | |
511 | // Reset the transmission frame length | |
512 | *txlen = 0; | |
513 | ||
514 | if(bCrypto) { | |
515 | hitag2_cipher_transcrypt(&cipher_state,rx,rxlen/8,rxlen%8); | |
516 | } | |
517 | ||
518 | // Try to find out which command was send by selecting on length (in bits) | |
519 | switch (rxlen) { | |
520 | // No answer, try to resurrect | |
521 | case 0: { | |
522 | // Stop if there is no answer while we are in crypto mode (after sending NrAr) | |
523 | if (bCrypto) { | |
524 | // Failed during authentication | |
525 | if (bAuthenticating) { | |
526 | DbpString("Authentication failed!"); | |
527 | return false; | |
528 | } else { | |
529 | // Failed reading a block, could be (read/write) locked, skip block and re-authenticate | |
530 | if (blocknr == 1) { | |
531 | // Write the low part of the key in memory | |
532 | memcpy(tag.sectors[1],key+2,4); | |
533 | } else if (blocknr == 2) { | |
534 | // Write the high part of the key in memory | |
535 | tag.sectors[2][0] = 0x00; | |
536 | tag.sectors[2][1] = 0x00; | |
537 | tag.sectors[2][2] = key[0]; | |
538 | tag.sectors[2][3] = key[1]; | |
539 | } else { | |
540 | // Just put zero's in the memory (of the unreadable block) | |
541 | memset(tag.sectors[blocknr],0x00,4); | |
542 | } | |
543 | blocknr++; | |
544 | bCrypto = false; | |
545 | } | |
546 | } else { | |
547 | *txlen = 5; | |
548 | memcpy(tx,"\xc0",nbytes(*txlen)); | |
549 | } | |
550 | } break; | |
551 | ||
552 | // Received UID, crypto tag answer | |
553 | case 32: { | |
554 | if (!bCrypto) { | |
555 | uint64_t ui64key = key[0] | ((uint64_t)key[1]) << 8 | ((uint64_t)key[2]) << 16 | ((uint64_t)key[3]) << 24 | ((uint64_t)key[4]) << 32 | ((uint64_t)key[5]) << 40; | |
556 | uint32_t ui32uid = rx[0] | ((uint32_t)rx[1]) << 8 | ((uint32_t)rx[2]) << 16 | ((uint32_t)rx[3]) << 24; | |
557 | cipher_state = _hitag2_init(rev64(ui64key), rev32(ui32uid), 0); | |
558 | memset(tx,0x00,4); | |
559 | memset(tx+4,0xff,4); | |
560 | hitag2_cipher_transcrypt(&cipher_state,tx+4,4,0); | |
561 | *txlen = 64; | |
562 | bCrypto = true; | |
563 | bAuthenticating = true; | |
564 | } else { | |
565 | // Check if we received answer tag (at) | |
566 | if (bAuthenticating) { | |
567 | bAuthenticating = false; | |
568 | } else { | |
569 | // Store the received block | |
570 | memcpy(tag.sectors[blocknr],rx,4); | |
571 | blocknr++; | |
572 | } | |
573 | if (blocknr > 7) { | |
574 | DbpString("Read succesful!"); | |
575 | bSuccessful = true; | |
576 | return false; | |
577 | } | |
578 | *txlen = 10; | |
579 | tx[0] = 0xc0 | (blocknr << 3) | ((blocknr^7) >> 2); | |
580 | tx[1] = ((blocknr^7) << 6); | |
581 | } | |
582 | } break; | |
583 | ||
584 | // Unexpected response | |
585 | default: { | |
586 | Dbprintf("Uknown frame length: %d",rxlen); | |
587 | return false; | |
588 | } break; | |
589 | } | |
590 | ||
591 | ||
592 | if(bCrypto) { | |
593 | // We have to return now to avoid double encryption | |
594 | if (!bAuthenticating) { | |
595 | hitag2_cipher_transcrypt(&cipher_state,tx,*txlen/8,*txlen%8); | |
596 | } | |
597 | } | |
598 | ||
599 | return true; | |
600 | } | |
601 | ||
602 | ||
603 | static bool hitag2_authenticate(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) { | |
604 | // Reset the transmission frame length | |
605 | *txlen = 0; | |
606 | ||
607 | // Try to find out which command was send by selecting on length (in bits) | |
608 | switch (rxlen) { | |
609 | // No answer, try to resurrect | |
610 | case 0: { | |
611 | // Stop if there is no answer while we are in crypto mode (after sending NrAr) | |
612 | if (bCrypto) { | |
613 | DbpString("Authentication failed!"); | |
614 | return false; | |
615 | } | |
616 | *txlen = 5; | |
617 | memcpy(tx,"\xc0",nbytes(*txlen)); | |
618 | } break; | |
619 | ||
620 | // Received UID, crypto tag answer | |
621 | case 32: { | |
622 | if (!bCrypto) { | |
623 | *txlen = 64; | |
624 | memcpy(tx,NrAr,8); | |
625 | bCrypto = true; | |
626 | } else { | |
627 | DbpString("Authentication succesful!"); | |
628 | // We are done... for now | |
629 | return false; | |
630 | } | |
631 | } break; | |
632 | ||
633 | // Unexpected response | |
634 | default: { | |
635 | Dbprintf("Uknown frame length: %d",rxlen); | |
636 | return false; | |
637 | } break; | |
638 | } | |
639 | ||
640 | return true; | |
641 | } | |
642 | ||
643 | ||
644 | static bool hitag2_test_auth_attempts(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) { | |
645 | ||
646 | // Reset the transmission frame length | |
647 | *txlen = 0; | |
648 | ||
649 | // Try to find out which command was send by selecting on length (in bits) | |
650 | switch (rxlen) { | |
651 | // No answer, try to resurrect | |
652 | case 0: { | |
653 | // Stop if there is no answer while we are in crypto mode (after sending NrAr) | |
654 | if (bCrypto) { | |
655 | Dbprintf("auth: %02x%02x%02x%02x%02x%02x%02x%02x Failed, removed entry!",NrAr[0],NrAr[1],NrAr[2],NrAr[3],NrAr[4],NrAr[5],NrAr[6],NrAr[7]); | |
656 | ||
657 | // Removing failed entry from authentiations table | |
658 | memcpy(auth_table+auth_table_pos,auth_table+auth_table_pos+8,8); | |
659 | auth_table_len -= 8; | |
660 | ||
661 | // Return if we reached the end of the authentications table | |
662 | bCrypto = false; | |
663 | if (auth_table_pos == auth_table_len) { | |
664 | return false; | |
665 | } | |
666 | ||
667 | // Copy the next authentication attempt in row (at the same position, b/c we removed last failed entry) | |
668 | memcpy(NrAr,auth_table+auth_table_pos,8); | |
669 | } | |
670 | *txlen = 5; | |
671 | memcpy(tx,"\xc0",nbytes(*txlen)); | |
672 | } break; | |
673 | ||
674 | // Received UID, crypto tag answer, or read block response | |
675 | case 32: { | |
676 | if (!bCrypto) { | |
677 | *txlen = 64; | |
678 | memcpy(tx,NrAr,8); | |
679 | bCrypto = true; | |
680 | } else { | |
681 | Dbprintf("auth: %02x%02x%02x%02x%02x%02x%02x%02x OK",NrAr[0],NrAr[1],NrAr[2],NrAr[3],NrAr[4],NrAr[5],NrAr[6],NrAr[7]); | |
682 | bCrypto = false; | |
683 | if ((auth_table_pos+8) == auth_table_len) { | |
684 | return false; | |
685 | } | |
686 | auth_table_pos += 8; | |
687 | memcpy(NrAr,auth_table+auth_table_pos,8); | |
688 | } | |
689 | } break; | |
690 | ||
691 | default: { | |
692 | Dbprintf("Uknown frame length: %d",rxlen); | |
693 | return false; | |
694 | } break; | |
695 | } | |
696 | ||
697 | return true; | |
698 | } | |
699 | ||
700 | ||
701 | void SnoopHitag(uint32_t type) { | |
702 | int frame_count; | |
703 | int response; | |
704 | int overflow; | |
705 | bool rising_edge; | |
706 | bool reader_frame; | |
707 | int lastbit; | |
708 | bool bSkip; | |
709 | int tag_sof; | |
710 | byte_t rx[HITAG_FRAME_LEN]; | |
711 | size_t rxlen=0; | |
712 | ||
713 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
714 | ||
715 | // Clean up trace and prepare it for storing frames | |
716 | set_tracing(TRUE); | |
717 | clear_trace(); | |
718 | ||
719 | auth_table_len = 0; | |
720 | auth_table_pos = 0; | |
721 | ||
722 | BigBuf_free(); | |
723 | auth_table = (byte_t *)BigBuf_malloc(AUTH_TABLE_LENGTH); | |
724 | memset(auth_table, 0x00, AUTH_TABLE_LENGTH); | |
725 | ||
726 | DbpString("Starting Hitag2 snoop"); | |
727 | LED_D_ON(); | |
728 | ||
729 | // Set up eavesdropping mode, frequency divisor which will drive the FPGA | |
730 | // and analog mux selection. | |
731 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE); | |
732 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
733 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
734 | RELAY_OFF(); | |
735 | ||
736 | // Configure output pin that is connected to the FPGA (for modulating) | |
737 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
738 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
739 | ||
740 | // Disable modulation, we are going to eavesdrop, not modulate ;) | |
741 | LOW(GPIO_SSC_DOUT); | |
742 | ||
743 | // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames | |
744 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); | |
745 | AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME; | |
746 | ||
747 | // Disable timer during configuration | |
748 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; | |
749 | ||
750 | // Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger, | |
751 | // external trigger rising edge, load RA on rising edge of TIOA. | |
752 | uint32_t t1_channel_mode = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_BOTH | AT91C_TC_ABETRG | AT91C_TC_LDRA_BOTH; | |
753 | AT91C_BASE_TC1->TC_CMR = t1_channel_mode; | |
754 | ||
755 | // Enable and reset counter | |
756 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
757 | ||
758 | // Reset the received frame, frame count and timing info | |
759 | memset(rx,0x00,sizeof(rx)); | |
760 | frame_count = 0; | |
761 | response = 0; | |
762 | overflow = 0; | |
763 | reader_frame = false; | |
764 | lastbit = 1; | |
765 | bSkip = true; | |
766 | tag_sof = 4; | |
767 | ||
768 | while(!BUTTON_PRESS()) { | |
769 | // Watchdog hit | |
770 | WDT_HIT(); | |
771 | ||
772 | // Receive frame, watch for at most T0*EOF periods | |
773 | while (AT91C_BASE_TC1->TC_CV < T0*HITAG_T_EOF) { | |
774 | // Check if rising edge in modulation is detected | |
775 | if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) { | |
776 | // Retrieve the new timing values | |
777 | int ra = (AT91C_BASE_TC1->TC_RA/T0); | |
778 | ||
779 | // Find out if we are dealing with a rising or falling edge | |
780 | rising_edge = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME) > 0; | |
781 | ||
782 | // Shorter periods will only happen with reader frames | |
783 | if (!reader_frame && rising_edge && ra < HITAG_T_TAG_CAPTURE_ONE_HALF) { | |
784 | // Switch from tag to reader capture | |
785 | LED_C_OFF(); | |
786 | reader_frame = true; | |
787 | memset(rx,0x00,sizeof(rx)); | |
788 | rxlen = 0; | |
789 | } | |
790 | ||
791 | // Only handle if reader frame and rising edge, or tag frame and falling edge | |
792 | if (reader_frame != rising_edge) { | |
793 | overflow += ra; | |
794 | continue; | |
795 | } | |
796 | ||
797 | // Add the buffered timing values of earlier captured edges which were skipped | |
798 | ra += overflow; | |
799 | overflow = 0; | |
800 | ||
801 | if (reader_frame) { | |
802 | LED_B_ON(); | |
803 | // Capture reader frame | |
804 | if(ra >= HITAG_T_STOP) { | |
805 | if (rxlen != 0) { | |
806 | //DbpString("wierd0?"); | |
807 | } | |
808 | // Capture the T0 periods that have passed since last communication or field drop (reset) | |
809 | response = (ra - HITAG_T_LOW); | |
810 | } else if(ra >= HITAG_T_1_MIN ) { | |
811 | // '1' bit | |
812 | rx[rxlen / 8] |= 1 << (7-(rxlen%8)); | |
813 | rxlen++; | |
814 | } else if(ra >= HITAG_T_0_MIN) { | |
815 | // '0' bit | |
816 | rx[rxlen / 8] |= 0 << (7-(rxlen%8)); | |
817 | rxlen++; | |
818 | } else { | |
819 | // Ignore wierd value, is to small to mean anything | |
820 | } | |
821 | } else { | |
822 | LED_C_ON(); | |
823 | // Capture tag frame (manchester decoding using only falling edges) | |
824 | if(ra >= HITAG_T_EOF) { | |
825 | if (rxlen != 0) { | |
826 | //DbpString("wierd1?"); | |
827 | } | |
828 | // Capture the T0 periods that have passed since last communication or field drop (reset) | |
829 | // We always recieve a 'one' first, which has the falling edge after a half period |-_| | |
830 | response = ra-HITAG_T_TAG_HALF_PERIOD; | |
831 | } else if(ra >= HITAG_T_TAG_CAPTURE_FOUR_HALF) { | |
832 | // Manchester coding example |-_|_-|-_| (101) | |
833 | rx[rxlen / 8] |= 0 << (7-(rxlen%8)); | |
834 | rxlen++; | |
835 | rx[rxlen / 8] |= 1 << (7-(rxlen%8)); | |
836 | rxlen++; | |
837 | } else if(ra >= HITAG_T_TAG_CAPTURE_THREE_HALF) { | |
838 | // Manchester coding example |_-|...|_-|-_| (0...01) | |
839 | rx[rxlen / 8] |= 0 << (7-(rxlen%8)); | |
840 | rxlen++; | |
841 | // We have to skip this half period at start and add the 'one' the second time | |
842 | if (!bSkip) { | |
843 | rx[rxlen / 8] |= 1 << (7-(rxlen%8)); | |
844 | rxlen++; | |
845 | } | |
846 | lastbit = !lastbit; | |
847 | bSkip = !bSkip; | |
848 | } else if(ra >= HITAG_T_TAG_CAPTURE_TWO_HALF) { | |
849 | // Manchester coding example |_-|_-| (00) or |-_|-_| (11) | |
850 | if (tag_sof) { | |
851 | // Ignore bits that are transmitted during SOF | |
852 | tag_sof--; | |
853 | } else { | |
854 | // bit is same as last bit | |
855 | rx[rxlen / 8] |= lastbit << (7-(rxlen%8)); | |
856 | rxlen++; | |
857 | } | |
858 | } else { | |
859 | // Ignore wierd value, is to small to mean anything | |
860 | } | |
861 | } | |
862 | } | |
863 | } | |
864 | ||
865 | // Check if frame was captured | |
866 | if(rxlen > 0) { | |
867 | frame_count++; | |
868 | if (!LogTraceHitag(rx,rxlen,response,0,reader_frame)) { | |
869 | DbpString("Trace full"); | |
870 | break; | |
871 | } | |
872 | ||
873 | // Check if we recognize a valid authentication attempt | |
874 | if (nbytes(rxlen) == 8) { | |
875 | // Store the authentication attempt | |
876 | if (auth_table_len < (AUTH_TABLE_LENGTH-8)) { | |
877 | memcpy(auth_table+auth_table_len,rx,8); | |
878 | auth_table_len += 8; | |
879 | } | |
880 | } | |
881 | ||
882 | // Reset the received frame and response timing info | |
883 | memset(rx,0x00,sizeof(rx)); | |
884 | response = 0; | |
885 | reader_frame = false; | |
886 | lastbit = 1; | |
887 | bSkip = true; | |
888 | tag_sof = 4; | |
889 | overflow = 0; | |
890 | ||
891 | LED_B_OFF(); | |
892 | LED_C_OFF(); | |
893 | } else { | |
894 | // Save the timer overflow, will be 0 when frame was received | |
895 | overflow += (AT91C_BASE_TC1->TC_CV/T0); | |
896 | } | |
897 | // Reset the frame length | |
898 | rxlen = 0; | |
899 | // Reset the timer to restart while-loop that receives frames | |
900 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; | |
901 | } | |
902 | LED_A_ON(); | |
903 | LED_B_OFF(); | |
904 | LED_C_OFF(); | |
905 | LED_D_OFF(); | |
906 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; | |
907 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; | |
908 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
909 | LED_A_OFF(); | |
910 | ||
911 | // Dbprintf("frame received: %d",frame_count); | |
912 | // Dbprintf("Authentication Attempts: %d",(auth_table_len/8)); | |
913 | // DbpString("All done"); | |
914 | } | |
915 | ||
916 | void SimulateHitagTag(bool tag_mem_supplied, byte_t* data) { | |
917 | int frame_count; | |
918 | int response; | |
919 | int overflow; | |
920 | byte_t rx[HITAG_FRAME_LEN]; | |
921 | size_t rxlen=0; | |
922 | byte_t tx[HITAG_FRAME_LEN]; | |
923 | size_t txlen=0; | |
924 | bool bQuitTraceFull = false; | |
925 | bQuiet = false; | |
926 | ||
927 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
928 | ||
929 | // Clean up trace and prepare it for storing frames | |
930 | set_tracing(TRUE); | |
931 | clear_trace(); | |
932 | ||
933 | auth_table_len = 0; | |
934 | auth_table_pos = 0; | |
935 | byte_t* auth_table; | |
936 | BigBuf_free(); | |
937 | auth_table = (byte_t *)BigBuf_malloc(AUTH_TABLE_LENGTH); | |
938 | memset(auth_table, 0x00, AUTH_TABLE_LENGTH); | |
939 | ||
940 | DbpString("Starting Hitag2 simulation"); | |
941 | LED_D_ON(); | |
942 | hitag2_init(); | |
943 | ||
944 | if (tag_mem_supplied) { | |
945 | DbpString("Loading hitag2 memory..."); | |
946 | memcpy((byte_t*)tag.sectors,data,48); | |
947 | } | |
948 | ||
949 | uint32_t block = 0; | |
950 | for (size_t i=0; i<12; i++) { | |
951 | for (size_t j=0; j<4; j++) { | |
952 | block <<= 8; | |
953 | block |= tag.sectors[i][j]; | |
954 | } | |
955 | Dbprintf("| %d | %08x |",i,block); | |
956 | } | |
957 | ||
958 | // Set up simulator mode, frequency divisor which will drive the FPGA | |
959 | // and analog mux selection. | |
960 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD); | |
961 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
962 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
963 | RELAY_OFF(); | |
964 | ||
965 | // Configure output pin that is connected to the FPGA (for modulating) | |
966 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
967 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
968 | ||
969 | // Disable modulation at default, which means release resistance | |
970 | LOW(GPIO_SSC_DOUT); | |
971 | ||
972 | // Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering | |
973 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0); | |
974 | ||
975 | // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames | |
976 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); | |
977 | AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME; | |
978 | ||
979 | // Disable timer during configuration | |
980 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; | |
981 | ||
982 | // Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger, | |
983 | // external trigger rising edge, load RA on rising edge of TIOA. | |
984 | AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_RISING | AT91C_TC_ABETRG | AT91C_TC_LDRA_RISING; | |
985 | ||
986 | // Reset the received frame, frame count and timing info | |
987 | memset(rx,0x00,sizeof(rx)); | |
988 | frame_count = 0; | |
989 | response = 0; | |
990 | overflow = 0; | |
991 | ||
992 | // Enable and reset counter | |
993 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
994 | ||
995 | while(!BUTTON_PRESS()) { | |
996 | // Watchdog hit | |
997 | WDT_HIT(); | |
998 | ||
999 | // Receive frame, watch for at most T0*EOF periods | |
1000 | while (AT91C_BASE_TC1->TC_CV < T0*HITAG_T_EOF) { | |
1001 | // Check if rising edge in modulation is detected | |
1002 | if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) { | |
1003 | // Retrieve the new timing values | |
1004 | int ra = (AT91C_BASE_TC1->TC_RA/T0) + overflow; | |
1005 | overflow = 0; | |
1006 | ||
1007 | // Reset timer every frame, we have to capture the last edge for timing | |
1008 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
1009 | ||
1010 | LED_B_ON(); | |
1011 | ||
1012 | // Capture reader frame | |
1013 | if(ra >= HITAG_T_STOP) { | |
1014 | if (rxlen != 0) { | |
1015 | //DbpString("wierd0?"); | |
1016 | } | |
1017 | // Capture the T0 periods that have passed since last communication or field drop (reset) | |
1018 | response = (ra - HITAG_T_LOW); | |
1019 | } else if(ra >= HITAG_T_1_MIN ) { | |
1020 | // '1' bit | |
1021 | rx[rxlen / 8] |= 1 << (7-(rxlen%8)); | |
1022 | rxlen++; | |
1023 | } else if(ra >= HITAG_T_0_MIN) { | |
1024 | // '0' bit | |
1025 | rx[rxlen / 8] |= 0 << (7-(rxlen%8)); | |
1026 | rxlen++; | |
1027 | } else { | |
1028 | // Ignore wierd value, is to small to mean anything | |
1029 | } | |
1030 | } | |
1031 | } | |
1032 | ||
1033 | // Check if frame was captured | |
1034 | if(rxlen > 4) { | |
1035 | frame_count++; | |
1036 | if (!bQuiet) { | |
1037 | if (!LogTraceHitag(rx,rxlen,response,0,true)) { | |
1038 | DbpString("Trace full"); | |
1039 | if (bQuitTraceFull) { | |
1040 | break; | |
1041 | } else { | |
1042 | bQuiet = true; | |
1043 | } | |
1044 | } | |
1045 | } | |
1046 | ||
1047 | // Disable timer 1 with external trigger to avoid triggers during our own modulation | |
1048 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; | |
1049 | ||
1050 | // Process the incoming frame (rx) and prepare the outgoing frame (tx) | |
1051 | hitag2_handle_reader_command(rx,rxlen,tx,&txlen); | |
1052 | ||
1053 | // Wait for HITAG_T_WAIT_1 carrier periods after the last reader bit, | |
1054 | // not that since the clock counts since the rising edge, but T_Wait1 is | |
1055 | // with respect to the falling edge, we need to wait actually (T_Wait1 - T_Low) | |
1056 | // periods. The gap time T_Low varies (4..10). All timer values are in | |
1057 | // terms of T0 units | |
1058 | while(AT91C_BASE_TC0->TC_CV < T0*(HITAG_T_WAIT_1-HITAG_T_LOW)); | |
1059 | ||
1060 | // Send and store the tag answer (if there is any) | |
1061 | if (txlen) { | |
1062 | // Transmit the tag frame | |
1063 | hitag_send_frame(tx,txlen); | |
1064 | // Store the frame in the trace | |
1065 | if (!bQuiet) { | |
1066 | if (!LogTraceHitag(tx,txlen,0,0,false)) { | |
1067 | DbpString("Trace full"); | |
1068 | if (bQuitTraceFull) { | |
1069 | break; | |
1070 | } else { | |
1071 | bQuiet = true; | |
1072 | } | |
1073 | } | |
1074 | } | |
1075 | } | |
1076 | ||
1077 | // Reset the received frame and response timing info | |
1078 | memset(rx,0x00,sizeof(rx)); | |
1079 | response = 0; | |
1080 | ||
1081 | // Enable and reset external trigger in timer for capturing future frames | |
1082 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
1083 | LED_B_OFF(); | |
1084 | } | |
1085 | // Reset the frame length | |
1086 | rxlen = 0; | |
1087 | // Save the timer overflow, will be 0 when frame was received | |
1088 | overflow += (AT91C_BASE_TC1->TC_CV/T0); | |
1089 | // Reset the timer to restart while-loop that receives frames | |
1090 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; | |
1091 | } | |
1092 | LED_B_OFF(); | |
1093 | LED_D_OFF(); | |
1094 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; | |
1095 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; | |
1096 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1097 | ||
1098 | DbpString("Sim Stopped"); | |
1099 | ||
1100 | } | |
1101 | ||
1102 | void ReaderHitag(hitag_function htf, hitag_data* htd) { | |
1103 | int frame_count; | |
1104 | int response; | |
1105 | byte_t rx[HITAG_FRAME_LEN]; | |
1106 | size_t rxlen=0; | |
1107 | byte_t txbuf[HITAG_FRAME_LEN]; | |
1108 | byte_t* tx = txbuf; | |
1109 | size_t txlen=0; | |
1110 | int lastbit; | |
1111 | bool bSkip; | |
1112 | int reset_sof; | |
1113 | int tag_sof; | |
1114 | int t_wait = HITAG_T_WAIT_MAX; | |
1115 | bool bStop; | |
1116 | bool bQuitTraceFull = false; | |
1117 | ||
1118 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1119 | // Reset the return status | |
1120 | bSuccessful = false; | |
1121 | ||
1122 | // Clean up trace and prepare it for storing frames | |
1123 | set_tracing(TRUE); | |
1124 | clear_trace(); | |
1125 | ||
1126 | DbpString("Starting Hitag reader family"); | |
1127 | ||
1128 | // Check configuration | |
1129 | switch(htf) { | |
1130 | case RHT2F_PASSWORD: { | |
1131 | Dbprintf("List identifier in password mode"); | |
1132 | memcpy(password,htd->pwd.password,4); | |
1133 | blocknr = 0; | |
1134 | bQuitTraceFull = false; | |
1135 | bQuiet = false; | |
1136 | bPwd = false; | |
1137 | } break; | |
1138 | ||
1139 | case RHT2F_AUTHENTICATE: { | |
1140 | DbpString("Authenticating using nr,ar pair:"); | |
1141 | memcpy(NrAr,htd->auth.NrAr,8); | |
1142 | Dbhexdump(8,NrAr,false); | |
1143 | bQuiet = false; | |
1144 | bCrypto = false; | |
1145 | bAuthenticating = false; | |
1146 | bQuitTraceFull = true; | |
1147 | } break; | |
1148 | ||
1149 | case RHT2F_CRYPTO: { | |
1150 | DbpString("Authenticating using key:"); | |
1151 | memcpy(key,htd->crypto.key,4); //HACK; 4 or 6?? I read both in the code. | |
1152 | Dbhexdump(6,key,false); | |
1153 | blocknr = 0; | |
1154 | bQuiet = false; | |
1155 | bCrypto = false; | |
1156 | bAuthenticating = false; | |
1157 | bQuitTraceFull = true; | |
1158 | } break; | |
1159 | ||
1160 | case RHT2F_TEST_AUTH_ATTEMPTS: { | |
1161 | Dbprintf("Testing %d authentication attempts",(auth_table_len/8)); | |
1162 | auth_table_pos = 0; | |
1163 | memcpy(NrAr, auth_table, 8); | |
1164 | bQuitTraceFull = false; | |
1165 | bQuiet = false; | |
1166 | bCrypto = false; | |
1167 | } break; | |
1168 | ||
1169 | default: { | |
1170 | Dbprintf("Error, unknown function: %d",htf); | |
1171 | return; | |
1172 | } break; | |
1173 | } | |
1174 | ||
1175 | LED_D_ON(); | |
1176 | hitag2_init(); | |
1177 | ||
1178 | // Configure output and enable pin that is connected to the FPGA (for modulating) | |
1179 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
1180 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
1181 | ||
1182 | // Set fpga in edge detect with reader field, we can modulate as reader now | |
1183 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD); | |
1184 | ||
1185 | // Set Frequency divisor which will drive the FPGA and analog mux selection | |
1186 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1187 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1188 | RELAY_OFF(); | |
1189 | ||
1190 | // Disable modulation at default, which means enable the field | |
1191 | LOW(GPIO_SSC_DOUT); | |
1192 | ||
1193 | // Give it a bit of time for the resonant antenna to settle. | |
1194 | SpinDelay(30); | |
1195 | ||
1196 | // Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering | |
1197 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0); | |
1198 | ||
1199 | // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the tag frames | |
1200 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); | |
1201 | AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME; | |
1202 | ||
1203 | // Disable timer during configuration | |
1204 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; | |
1205 | ||
1206 | // Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger, | |
1207 | // external trigger rising edge, load RA on falling edge of TIOA. | |
1208 | AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_FALLING | AT91C_TC_ABETRG | AT91C_TC_LDRA_FALLING; | |
1209 | ||
1210 | // Enable and reset counters | |
1211 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
1212 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
1213 | ||
1214 | // Reset the received frame, frame count and timing info | |
1215 | frame_count = 0; | |
1216 | response = 0; | |
1217 | lastbit = 1; | |
1218 | bStop = false; | |
1219 | ||
1220 | // Tag specific configuration settings (sof, timings, etc.) | |
1221 | if (htf < 10){ | |
1222 | // hitagS settings | |
1223 | reset_sof = 1; | |
1224 | t_wait = 200; | |
1225 | DbpString("Configured for hitagS reader"); | |
1226 | } else if (htf < 20) { | |
1227 | // hitag1 settings | |
1228 | reset_sof = 1; | |
1229 | t_wait = 200; | |
1230 | DbpString("Configured for hitag1 reader"); | |
1231 | } else if (htf < 30) { | |
1232 | // hitag2 settings | |
1233 | reset_sof = 4; | |
1234 | t_wait = HITAG_T_WAIT_2; | |
1235 | DbpString("Configured for hitag2 reader"); | |
1236 | } else { | |
1237 | Dbprintf("Error, unknown hitag reader type: %d",htf); | |
1238 | return; | |
1239 | } | |
1240 | ||
1241 | while(!bStop && !BUTTON_PRESS()) { | |
1242 | // Watchdog hit | |
1243 | WDT_HIT(); | |
1244 | ||
1245 | // Check if frame was captured and store it | |
1246 | if(rxlen > 0) { | |
1247 | frame_count++; | |
1248 | if (!bQuiet) { | |
1249 | if (!LogTraceHitag(rx,rxlen,response,0,false)) { | |
1250 | DbpString("Trace full"); | |
1251 | if (bQuitTraceFull) { | |
1252 | break; | |
1253 | } else { | |
1254 | bQuiet = true; | |
1255 | } | |
1256 | } | |
1257 | } | |
1258 | } | |
1259 | ||
1260 | // By default reset the transmission buffer | |
1261 | tx = txbuf; | |
1262 | switch(htf) { | |
1263 | case RHT2F_PASSWORD: { | |
1264 | bStop = !hitag2_password(rx,rxlen,tx,&txlen); | |
1265 | } break; | |
1266 | case RHT2F_AUTHENTICATE: { | |
1267 | bStop = !hitag2_authenticate(rx,rxlen,tx,&txlen); | |
1268 | } break; | |
1269 | case RHT2F_CRYPTO: { | |
1270 | bStop = !hitag2_crypto(rx,rxlen,tx,&txlen); | |
1271 | } break; | |
1272 | case RHT2F_TEST_AUTH_ATTEMPTS: { | |
1273 | bStop = !hitag2_test_auth_attempts(rx,rxlen,tx,&txlen); | |
1274 | } break; | |
1275 | default: { | |
1276 | Dbprintf("Error, unknown function: %d",htf); | |
1277 | return; | |
1278 | } break; | |
1279 | } | |
1280 | ||
1281 | // Send and store the reader command | |
1282 | // Disable timer 1 with external trigger to avoid triggers during our own modulation | |
1283 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; | |
1284 | ||
1285 | // Wait for HITAG_T_WAIT_2 carrier periods after the last tag bit before transmitting, | |
1286 | // Since the clock counts since the last falling edge, a 'one' means that the | |
1287 | // falling edge occured halfway the period. with respect to this falling edge, | |
1288 | // we need to wait (T_Wait2 + half_tag_period) when the last was a 'one'. | |
1289 | // All timer values are in terms of T0 units | |
1290 | while(AT91C_BASE_TC0->TC_CV < T0*(t_wait+(HITAG_T_TAG_HALF_PERIOD*lastbit))); | |
1291 | ||
1292 | // Transmit the reader frame | |
1293 | hitag_reader_send_frame(tx,txlen); | |
1294 | ||
1295 | // Enable and reset external trigger in timer for capturing future frames | |
1296 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
1297 | ||
1298 | // Add transmitted frame to total count | |
1299 | if(txlen > 0) { | |
1300 | frame_count++; | |
1301 | if (!bQuiet) { | |
1302 | // Store the frame in the trace | |
1303 | if (!LogTraceHitag(tx,txlen,HITAG_T_WAIT_2,0,true)) { | |
1304 | if (bQuitTraceFull) { | |
1305 | break; | |
1306 | } else { | |
1307 | bQuiet = true; | |
1308 | } | |
1309 | } | |
1310 | } | |
1311 | } | |
1312 | ||
1313 | // Reset values for receiving frames | |
1314 | memset(rx,0x00,sizeof(rx)); | |
1315 | rxlen = 0; | |
1316 | lastbit = 1; | |
1317 | bSkip = true; | |
1318 | tag_sof = reset_sof; | |
1319 | response = 0; | |
1320 | ||
1321 | // Receive frame, watch for at most T0*EOF periods | |
1322 | while (AT91C_BASE_TC1->TC_CV < T0*HITAG_T_WAIT_MAX) { | |
1323 | // Check if falling edge in tag modulation is detected | |
1324 | if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) { | |
1325 | // Retrieve the new timing values | |
1326 | int ra = (AT91C_BASE_TC1->TC_RA/T0); | |
1327 | ||
1328 | // Reset timer every frame, we have to capture the last edge for timing | |
1329 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; | |
1330 | ||
1331 | LED_B_ON(); | |
1332 | ||
1333 | // Capture tag frame (manchester decoding using only falling edges) | |
1334 | if(ra >= HITAG_T_EOF) { | |
1335 | if (rxlen != 0) { | |
1336 | //DbpString("wierd1?"); | |
1337 | } | |
1338 | // Capture the T0 periods that have passed since last communication or field drop (reset) | |
1339 | // We always recieve a 'one' first, which has the falling edge after a half period |-_| | |
1340 | response = ra-HITAG_T_TAG_HALF_PERIOD; | |
1341 | } else if(ra >= HITAG_T_TAG_CAPTURE_FOUR_HALF) { | |
1342 | // Manchester coding example |-_|_-|-_| (101) | |
1343 | rx[rxlen / 8] |= 0 << (7-(rxlen%8)); | |
1344 | rxlen++; | |
1345 | rx[rxlen / 8] |= 1 << (7-(rxlen%8)); | |
1346 | rxlen++; | |
1347 | } else if(ra >= HITAG_T_TAG_CAPTURE_THREE_HALF) { | |
1348 | // Manchester coding example |_-|...|_-|-_| (0...01) | |
1349 | rx[rxlen / 8] |= 0 << (7-(rxlen%8)); | |
1350 | rxlen++; | |
1351 | // We have to skip this half period at start and add the 'one' the second time | |
1352 | if (!bSkip) { | |
1353 | rx[rxlen / 8] |= 1 << (7-(rxlen%8)); | |
1354 | rxlen++; | |
1355 | } | |
1356 | lastbit = !lastbit; | |
1357 | bSkip = !bSkip; | |
1358 | } else if(ra >= HITAG_T_TAG_CAPTURE_TWO_HALF) { | |
1359 | // Manchester coding example |_-|_-| (00) or |-_|-_| (11) | |
1360 | if (tag_sof) { | |
1361 | // Ignore bits that are transmitted during SOF | |
1362 | tag_sof--; | |
1363 | } else { | |
1364 | // bit is same as last bit | |
1365 | rx[rxlen / 8] |= lastbit << (7-(rxlen%8)); | |
1366 | rxlen++; | |
1367 | } | |
1368 | } else { | |
1369 | // Ignore wierd value, is to small to mean anything | |
1370 | } | |
1371 | } | |
1372 | ||
1373 | // We can break this loop if we received the last bit from a frame | |
1374 | if (AT91C_BASE_TC1->TC_CV > T0*HITAG_T_EOF) { | |
1375 | if (rxlen>0) break; | |
1376 | } | |
1377 | } | |
1378 | } | |
1379 | LED_B_OFF(); | |
1380 | LED_D_OFF(); | |
1381 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; | |
1382 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; | |
1383 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1384 | Dbprintf("frame received: %d",frame_count); | |
1385 | DbpString("All done"); | |
1386 | cmd_send(CMD_ACK,bSuccessful,0,0,(byte_t*)tag.sectors,48); | |
1387 | } |