]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Pretend to be an ISO 14443 tag. We will do this by alternately short- | |
3 | // circuiting and open-circuiting the antenna coil, with the tri-state | |
4 | // pins. | |
5 | // | |
6 | // We communicate over the SSP, as a bitstream (i.e., might as well be | |
7 | // unframed, though we still generate the word sync signal). The output | |
8 | // (ARM -> FPGA) tells us whether to modulate or not. The input (FPGA | |
9 | // -> ARM) is us using the A/D as a fancy comparator; this is with | |
10 | // (software-added) hysteresis, to undo the high-pass filter. | |
11 | // | |
12 | // At this point only Type A is implemented. This means that we are using a | |
13 | // bit rate of 106 kbit/s, or fc/128. Oversample by 4, which ought to make | |
14 | // things practical for the ARM (fc/32, 423.8 kbits/s, ~50 kbytes/s) | |
15 | // | |
16 | // Jonathan Westhues, October 2006 | |
17 | //----------------------------------------------------------------------------- | |
18 | ||
19 | // possible mod_types: | |
20 | `define NO_MODULATION 3'b000 | |
21 | `define MODULATE_BPSK 3'b001 | |
22 | `define MODULATE_212K 3'b010 | |
23 | `define MODULATE_424K 3'b100 | |
24 | `define MODULATE_424K_8BIT 3'b101 | |
25 | ||
26 | module hi_simulate( | |
27 | pck0, ck_1356meg, ck_1356megb, | |
28 | pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4, | |
29 | adc_d, adc_clk, | |
30 | ssp_frame, ssp_din, ssp_dout, ssp_clk, | |
31 | cross_hi, cross_lo, | |
32 | dbg, | |
33 | mod_type | |
34 | ); | |
35 | input pck0, ck_1356meg, ck_1356megb; | |
36 | output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4; | |
37 | input [7:0] adc_d; | |
38 | output adc_clk; | |
39 | input ssp_dout; | |
40 | output ssp_frame, ssp_din, ssp_clk; | |
41 | input cross_hi, cross_lo; | |
42 | output dbg; | |
43 | input [2:0] mod_type; | |
44 | ||
45 | ||
46 | // The comparator with hysteresis on the output from the peak detector. | |
47 | reg after_hysteresis; | |
48 | assign adc_clk = ck_1356meg; | |
49 | ||
50 | always @(negedge adc_clk) | |
51 | begin | |
52 | if(& adc_d[7:5]) after_hysteresis = 1'b1; | |
53 | else if(~(| adc_d[7:5])) after_hysteresis = 1'b0; | |
54 | end | |
55 | ||
56 | ||
57 | // Divide 13.56 MHz to produce various frequencies for SSP_CLK | |
58 | // and modulation. | |
59 | reg [7:0] ssp_clk_divider; | |
60 | ||
61 | always @(posedge adc_clk) | |
62 | ssp_clk_divider <= (ssp_clk_divider + 1); | |
63 | ||
64 | reg ssp_clk; | |
65 | ||
66 | always @(negedge adc_clk) | |
67 | begin | |
68 | if(mod_type == `MODULATE_424K_8BIT) | |
69 | // Get bit every at 53KHz (every 8th carrier bit of 424kHz) | |
70 | ssp_clk <= ssp_clk_divider[7]; | |
71 | else if(mod_type == `MODULATE_212K) | |
72 | // Get next bit at 212kHz | |
73 | ssp_clk <= ssp_clk_divider[5]; | |
74 | else | |
75 | // Get next bit at 424Khz | |
76 | ssp_clk <= ssp_clk_divider[4]; | |
77 | end | |
78 | ||
79 | ||
80 | // Divide SSP_CLK by 8 to produce the byte framing signal; the phase of | |
81 | // this is arbitrary, because it's just a bitstream. | |
82 | // One nasty issue, though: I can't make it work with both rx and tx at | |
83 | // once. The phase wrt ssp_clk must be changed. TODO to find out why | |
84 | // that is and make a better fix. | |
85 | reg [2:0] ssp_frame_divider_to_arm; | |
86 | always @(posedge ssp_clk) | |
87 | ssp_frame_divider_to_arm <= (ssp_frame_divider_to_arm + 1); | |
88 | reg [2:0] ssp_frame_divider_from_arm; | |
89 | always @(negedge ssp_clk) | |
90 | ssp_frame_divider_from_arm <= (ssp_frame_divider_from_arm + 1); | |
91 | ||
92 | ||
93 | reg ssp_frame; | |
94 | always @(ssp_frame_divider_to_arm or ssp_frame_divider_from_arm or mod_type) | |
95 | if(mod_type == `NO_MODULATION) // not modulating, so listening, to ARM | |
96 | ssp_frame = (ssp_frame_divider_to_arm == 3'b000); | |
97 | else | |
98 | ssp_frame = (ssp_frame_divider_from_arm == 3'b000); | |
99 | ||
100 | // Synchronize up the after-hysteresis signal, to produce DIN. | |
101 | reg ssp_din; | |
102 | always @(posedge ssp_clk) | |
103 | ssp_din = after_hysteresis; | |
104 | ||
105 | // Modulating carrier frequency is fc/64 (212kHz) to fc/16 (848kHz). Reuse ssp_clk divider for that. | |
106 | reg modulating_carrier; | |
107 | always @(mod_type or ssp_clk or ssp_dout) | |
108 | if (mod_type == `NO_MODULATION) | |
109 | modulating_carrier <= 1'b0; // no modulation | |
110 | else if (mod_type == `MODULATE_BPSK) | |
111 | modulating_carrier <= ssp_dout ^ ssp_clk_divider[3]; // XOR means BPSK | |
112 | else if (mod_type == `MODULATE_212K) | |
113 | modulating_carrier <= ssp_dout & ssp_clk_divider[5]; // switch 212kHz subcarrier on/off | |
114 | else if (mod_type == `MODULATE_424K || mod_type == `MODULATE_424K_8BIT) | |
115 | modulating_carrier <= ssp_dout & ssp_clk_divider[4]; // switch 424kHz modulation on/off | |
116 | else | |
117 | modulating_carrier <= 1'b0; // yet unused | |
118 | ||
119 | ||
120 | // Load modulation. Toggle only one of these, since we are already producing much deeper | |
121 | // modulation than a real tag would. | |
122 | assign pwr_hi = 1'b0; // HF antenna connected to GND | |
123 | assign pwr_oe3 = 1'b0; // 10k Load | |
124 | assign pwr_oe1 = modulating_carrier; // 33 Ohms Load | |
125 | assign pwr_oe4 = modulating_carrier; // 33 Ohms Load | |
126 | ||
127 | // This is all LF and doesn't matter | |
128 | assign pwr_lo = 1'b0; | |
129 | assign pwr_oe2 = 1'b0; | |
130 | ||
131 | ||
132 | assign dbg = ssp_din; | |
133 | ||
134 | endmodule |