]> cvs.zerfleddert.de Git - proxmark3-svn/blame_incremental - armsrc/lfops.c
added CDA transaction to `hf emv genac`
[proxmark3-svn] / armsrc / lfops.c
... / ...
CommitLineData
1//-----------------------------------------------------------------------------
2// This code is licensed to you under the terms of the GNU GPL, version 2 or,
3// at your option, any later version. See the LICENSE.txt file for the text of
4// the license.
5//-----------------------------------------------------------------------------
6// Miscellaneous routines for low frequency tag operations.
7// Tags supported here so far are Texas Instruments (TI), HID, EM4x05, EM410x
8// Also routines for raw mode reading/simulating of LF waveform
9//-----------------------------------------------------------------------------
10
11#include "proxmark3.h"
12#include "apps.h"
13#include "util.h"
14#include "hitag2.h"
15#include "crc16.h"
16#include "string.h"
17#include "lfdemod.h"
18#include "lfsampling.h"
19#include "protocols.h"
20#include "usb_cdc.h" // for usb_poll_validate_length
21
22/**
23 * Function to do a modulation and then get samples.
24 * @param delay_off
25 * @param period_0
26 * @param period_1
27 * @param command
28 */
29void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command)
30{
31 // start timer
32 StartTicks();
33
34 // use lf config settings
35 sample_config *sc = getSamplingConfig();
36
37 // Make sure the tag is reset
38 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
39 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
40 WaitMS(2500);
41
42 // clear read buffer (after fpga bitstream loaded...)
43 BigBuf_Clear_keep_EM();
44
45 // power on
46 LFSetupFPGAForADC(sc->divisor, 1);
47
48 // And a little more time for the tag to fully power up
49 WaitMS(2000);
50 // if delay_off = 0 then just bitbang 1 = antenna on 0 = off for respective periods.
51 bool bitbang = delay_off == 0;
52 // now modulate the reader field
53
54 if (bitbang) {
55 // HACK it appears the loop and if statements take up about 7us so adjust waits accordingly...
56 uint8_t hack_cnt = 7;
57 if (period_0 < hack_cnt || period_1 < hack_cnt) {
58 DbpString("Warning periods cannot be less than 7us in bit bang mode");
59 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
60 LED_D_OFF();
61 return;
62 }
63
64 // hack2 needed--- it appears to take about 8-16us to turn the antenna back on
65 // leading to ~ 1 to 2 125khz samples extra in every off period
66 // so we should test for last 0 before next 1 and reduce period_0 by this extra amount...
67 // but is this time different for every antenna or other hw builds??? more testing needed
68
69 // prime cmd_len to save time comparing strings while modulating
70 int cmd_len = 0;
71 while(command[cmd_len] != '\0' && command[cmd_len] != ' ')
72 cmd_len++;
73
74 int counter = 0;
75 bool off = false;
76 for (counter = 0; counter < cmd_len; counter++) {
77 // if cmd = 0 then turn field off
78 if (command[counter] == '0') {
79 // if field already off leave alone (affects timing otherwise)
80 if (off == false) {
81 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
82 LED_D_OFF();
83 off = true;
84 }
85 // note we appear to take about 7us to switch over (or run the if statements/loop...)
86 WaitUS(period_0-hack_cnt);
87 // else if cmd = 1 then turn field on
88 } else {
89 // if field already on leave alone (affects timing otherwise)
90 if (off) {
91 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
92 LED_D_ON();
93 off = false;
94 }
95 // note we appear to take about 7us to switch over (or run the if statements/loop...)
96 WaitUS(period_1-hack_cnt);
97 }
98 }
99 } else { // old mode of cmd read using delay as off period
100 while(*command != '\0' && *command != ' ') {
101 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
102 LED_D_OFF();
103 WaitUS(delay_off);
104 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
105 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
106 LED_D_ON();
107 if(*(command++) == '0') {
108 WaitUS(period_0);
109 } else {
110 WaitUS(period_1);
111 }
112 }
113 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
114 LED_D_OFF();
115 WaitUS(delay_off);
116 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
117 }
118
119 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
120
121 // now do the read
122 DoAcquisition_config(false, 0);
123
124 // Turn off antenna
125 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
126 // tell client we are done
127 cmd_send(CMD_ACK,0,0,0,0,0);
128}
129
130/* blank r/w tag data stream
131...0000000000000000 01111111
1321010101010101010101010101010101010101010101010101010101010101010
1330011010010100001
13401111111
135101010101010101[0]000...
136
137[5555fe852c5555555555555555fe0000]
138*/
139void ReadTItag(void)
140{
141 // some hardcoded initial params
142 // when we read a TI tag we sample the zerocross line at 2Mhz
143 // TI tags modulate a 1 as 16 cycles of 123.2Khz
144 // TI tags modulate a 0 as 16 cycles of 134.2Khz
145 #define FSAMPLE 2000000
146 #define FREQLO 123200
147 #define FREQHI 134200
148
149 signed char *dest = (signed char *)BigBuf_get_addr();
150 uint16_t n = BigBuf_max_traceLen();
151 // 128 bit shift register [shift3:shift2:shift1:shift0]
152 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
153
154 int i, cycles=0, samples=0;
155 // how many sample points fit in 16 cycles of each frequency
156 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
157 // when to tell if we're close enough to one freq or another
158 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
159
160 // TI tags charge at 134.2Khz
161 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
162 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
163
164 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
165 // connects to SSP_DIN and the SSP_DOUT logic level controls
166 // whether we're modulating the antenna (high)
167 // or listening to the antenna (low)
168 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
169
170 // get TI tag data into the buffer
171 AcquireTiType();
172
173 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
174
175 for (i=0; i<n-1; i++) {
176 // count cycles by looking for lo to hi zero crossings
177 if ( (dest[i]<0) && (dest[i+1]>0) ) {
178 cycles++;
179 // after 16 cycles, measure the frequency
180 if (cycles>15) {
181 cycles=0;
182 samples=i-samples; // number of samples in these 16 cycles
183
184 // TI bits are coming to us lsb first so shift them
185 // right through our 128 bit right shift register
186 shift0 = (shift0>>1) | (shift1 << 31);
187 shift1 = (shift1>>1) | (shift2 << 31);
188 shift2 = (shift2>>1) | (shift3 << 31);
189 shift3 >>= 1;
190
191 // check if the cycles fall close to the number
192 // expected for either the low or high frequency
193 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
194 // low frequency represents a 1
195 shift3 |= (1<<31);
196 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
197 // high frequency represents a 0
198 } else {
199 // probably detected a gay waveform or noise
200 // use this as gaydar or discard shift register and start again
201 shift3 = shift2 = shift1 = shift0 = 0;
202 }
203 samples = i;
204
205 // for each bit we receive, test if we've detected a valid tag
206
207 // if we see 17 zeroes followed by 6 ones, we might have a tag
208 // remember the bits are backwards
209 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
210 // if start and end bytes match, we have a tag so break out of the loop
211 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
212 cycles = 0xF0B; //use this as a flag (ugly but whatever)
213 break;
214 }
215 }
216 }
217 }
218 }
219
220 // if flag is set we have a tag
221 if (cycles!=0xF0B) {
222 DbpString("Info: No valid tag detected.");
223 } else {
224 // put 64 bit data into shift1 and shift0
225 shift0 = (shift0>>24) | (shift1 << 8);
226 shift1 = (shift1>>24) | (shift2 << 8);
227
228 // align 16 bit crc into lower half of shift2
229 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
230
231 // if r/w tag, check ident match
232 if (shift3 & (1<<15) ) {
233 DbpString("Info: TI tag is rewriteable");
234 // only 15 bits compare, last bit of ident is not valid
235 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
236 DbpString("Error: Ident mismatch!");
237 } else {
238 DbpString("Info: TI tag ident is valid");
239 }
240 } else {
241 DbpString("Info: TI tag is readonly");
242 }
243
244 // WARNING the order of the bytes in which we calc crc below needs checking
245 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
246 // bytes in reverse or something
247 // calculate CRC
248 uint32_t crc=0;
249
250 crc = update_crc16(crc, (shift0)&0xff);
251 crc = update_crc16(crc, (shift0>>8)&0xff);
252 crc = update_crc16(crc, (shift0>>16)&0xff);
253 crc = update_crc16(crc, (shift0>>24)&0xff);
254 crc = update_crc16(crc, (shift1)&0xff);
255 crc = update_crc16(crc, (shift1>>8)&0xff);
256 crc = update_crc16(crc, (shift1>>16)&0xff);
257 crc = update_crc16(crc, (shift1>>24)&0xff);
258
259 Dbprintf("Info: Tag data: %x%08x, crc=%x",
260 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
261 if (crc != (shift2&0xffff)) {
262 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
263 } else {
264 DbpString("Info: CRC is good");
265 }
266 }
267}
268
269void WriteTIbyte(uint8_t b)
270{
271 int i = 0;
272
273 // modulate 8 bits out to the antenna
274 for (i=0; i<8; i++)
275 {
276 if (b&(1<<i)) {
277 // stop modulating antenna
278 LOW(GPIO_SSC_DOUT);
279 SpinDelayUs(1000);
280 // modulate antenna
281 HIGH(GPIO_SSC_DOUT);
282 SpinDelayUs(1000);
283 } else {
284 // stop modulating antenna
285 LOW(GPIO_SSC_DOUT);
286 SpinDelayUs(300);
287 // modulate antenna
288 HIGH(GPIO_SSC_DOUT);
289 SpinDelayUs(1700);
290 }
291 }
292}
293
294void AcquireTiType(void)
295{
296 int i, j, n;
297 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
298 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
299 #define TIBUFLEN 1250
300
301 // clear buffer
302 uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
303 BigBuf_Clear_ext(false);
304
305 // Set up the synchronous serial port
306 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
307 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
308
309 // steal this pin from the SSP and use it to control the modulation
310 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
311 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
312
313 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
314 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
315
316 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
317 // 48/2 = 24 MHz clock must be divided by 12
318 AT91C_BASE_SSC->SSC_CMR = 12;
319
320 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
321 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
322 AT91C_BASE_SSC->SSC_TCMR = 0;
323 AT91C_BASE_SSC->SSC_TFMR = 0;
324
325 LED_D_ON();
326
327 // modulate antenna
328 HIGH(GPIO_SSC_DOUT);
329
330 // Charge TI tag for 50ms.
331 SpinDelay(50);
332
333 // stop modulating antenna and listen
334 LOW(GPIO_SSC_DOUT);
335
336 LED_D_OFF();
337
338 i = 0;
339 for(;;) {
340 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
341 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
342 i++; if(i >= TIBUFLEN) break;
343 }
344 WDT_HIT();
345 }
346
347 // return stolen pin to SSP
348 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
349 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
350
351 char *dest = (char *)BigBuf_get_addr();
352 n = TIBUFLEN*32;
353 // unpack buffer
354 for (i=TIBUFLEN-1; i>=0; i--) {
355 for (j=0; j<32; j++) {
356 if(BigBuf[i] & (1 << j)) {
357 dest[--n] = 1;
358 } else {
359 dest[--n] = -1;
360 }
361 }
362 }
363}
364
365// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
366// if crc provided, it will be written with the data verbatim (even if bogus)
367// if not provided a valid crc will be computed from the data and written.
368void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
369{
370 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
371 if(crc == 0) {
372 crc = update_crc16(crc, (idlo)&0xff);
373 crc = update_crc16(crc, (idlo>>8)&0xff);
374 crc = update_crc16(crc, (idlo>>16)&0xff);
375 crc = update_crc16(crc, (idlo>>24)&0xff);
376 crc = update_crc16(crc, (idhi)&0xff);
377 crc = update_crc16(crc, (idhi>>8)&0xff);
378 crc = update_crc16(crc, (idhi>>16)&0xff);
379 crc = update_crc16(crc, (idhi>>24)&0xff);
380 }
381 Dbprintf("Writing to tag: %x%08x, crc=%x",
382 (unsigned int) idhi, (unsigned int) idlo, crc);
383
384 // TI tags charge at 134.2Khz
385 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
386 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
387 // connects to SSP_DIN and the SSP_DOUT logic level controls
388 // whether we're modulating the antenna (high)
389 // or listening to the antenna (low)
390 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
391 LED_A_ON();
392
393 // steal this pin from the SSP and use it to control the modulation
394 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
395 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
396
397 // writing algorithm:
398 // a high bit consists of a field off for 1ms and field on for 1ms
399 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
400 // initiate a charge time of 50ms (field on) then immediately start writing bits
401 // start by writing 0xBB (keyword) and 0xEB (password)
402 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
403 // finally end with 0x0300 (write frame)
404 // all data is sent lsb firts
405 // finish with 15ms programming time
406
407 // modulate antenna
408 HIGH(GPIO_SSC_DOUT);
409 SpinDelay(50); // charge time
410
411 WriteTIbyte(0xbb); // keyword
412 WriteTIbyte(0xeb); // password
413 WriteTIbyte( (idlo )&0xff );
414 WriteTIbyte( (idlo>>8 )&0xff );
415 WriteTIbyte( (idlo>>16)&0xff );
416 WriteTIbyte( (idlo>>24)&0xff );
417 WriteTIbyte( (idhi )&0xff );
418 WriteTIbyte( (idhi>>8 )&0xff );
419 WriteTIbyte( (idhi>>16)&0xff );
420 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
421 WriteTIbyte( (crc )&0xff ); // crc lo
422 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
423 WriteTIbyte(0x00); // write frame lo
424 WriteTIbyte(0x03); // write frame hi
425 HIGH(GPIO_SSC_DOUT);
426 SpinDelay(50); // programming time
427
428 LED_A_OFF();
429
430 // get TI tag data into the buffer
431 AcquireTiType();
432
433 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
434 DbpString("Now use `lf ti read` to check");
435}
436
437void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
438{
439 int i;
440 uint8_t *tab = BigBuf_get_addr();
441
442 //note FpgaDownloadAndGo destroys the bigbuf so be sure this is called before now...
443 //FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
444 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
445
446 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
447
448 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
449 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
450
451 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
452 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
453
454 i = 0;
455 for(;;) {
456 //wait until SSC_CLK goes HIGH
457 int ii = 0;
458 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
459 //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
460 if ( ii == 1000 ) {
461 if (BUTTON_PRESS() || usb_poll_validate_length() ) {
462 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
463 DbpString("Stopped");
464 return;
465 }
466 ii=0;
467 }
468 WDT_HIT();
469 ii++;
470 }
471 if (ledcontrol)
472 LED_D_ON();
473
474 if(tab[i])
475 OPEN_COIL();
476 else
477 SHORT_COIL();
478
479 if (ledcontrol)
480 LED_D_OFF();
481 ii=0;
482 //wait until SSC_CLK goes LOW
483 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
484 //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
485 if ( ii == 1000 ) {
486 if (BUTTON_PRESS() || usb_poll_validate_length() ) {
487 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
488 DbpString("Stopped");
489 return;
490 }
491 ii=0;
492 }
493 WDT_HIT();
494 ii++;
495 }
496
497 i++;
498 if(i == period) {
499
500 i = 0;
501 if (gap) {
502 SHORT_COIL();
503 SpinDelayUs(gap);
504 }
505 }
506
507 }
508}
509
510#define DEBUG_FRAME_CONTENTS 1
511void SimulateTagLowFrequencyBidir(int divisor, int t0)
512{
513}
514
515// compose fc/8 fc/10 waveform (FSK2)
516static void fc(int c, int *n)
517{
518 uint8_t *dest = BigBuf_get_addr();
519 int idx;
520
521 // for when we want an fc8 pattern every 4 logical bits
522 if(c==0) {
523 dest[((*n)++)]=1;
524 dest[((*n)++)]=1;
525 dest[((*n)++)]=1;
526 dest[((*n)++)]=1;
527 dest[((*n)++)]=0;
528 dest[((*n)++)]=0;
529 dest[((*n)++)]=0;
530 dest[((*n)++)]=0;
531 }
532
533 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
534 if(c==8) {
535 for (idx=0; idx<6; idx++) {
536 dest[((*n)++)]=1;
537 dest[((*n)++)]=1;
538 dest[((*n)++)]=1;
539 dest[((*n)++)]=1;
540 dest[((*n)++)]=0;
541 dest[((*n)++)]=0;
542 dest[((*n)++)]=0;
543 dest[((*n)++)]=0;
544 }
545 }
546
547 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
548 if(c==10) {
549 for (idx=0; idx<5; idx++) {
550 dest[((*n)++)]=1;
551 dest[((*n)++)]=1;
552 dest[((*n)++)]=1;
553 dest[((*n)++)]=1;
554 dest[((*n)++)]=1;
555 dest[((*n)++)]=0;
556 dest[((*n)++)]=0;
557 dest[((*n)++)]=0;
558 dest[((*n)++)]=0;
559 dest[((*n)++)]=0;
560 }
561 }
562}
563// compose fc/X fc/Y waveform (FSKx)
564static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
565{
566 uint8_t *dest = BigBuf_get_addr();
567 uint8_t halfFC = fc/2;
568 uint8_t wavesPerClock = clock/fc;
569 uint8_t mod = clock % fc; //modifier
570 uint8_t modAdj = fc/mod; //how often to apply modifier
571 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=true;
572 // loop through clock - step field clock
573 for (uint8_t idx=0; idx < wavesPerClock; idx++){
574 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
575 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
576 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
577 *n += fc;
578 }
579 if (mod>0) (*modCnt)++;
580 if ((mod>0) && modAdjOk){ //fsk2
581 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
582 memset(dest+(*n), 0, fc-halfFC);
583 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
584 *n += fc;
585 }
586 }
587 if (mod>0 && !modAdjOk){ //fsk1
588 memset(dest+(*n), 0, mod-(mod/2));
589 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
590 *n += mod;
591 }
592}
593
594// prepare a waveform pattern in the buffer based on the ID given then
595// simulate a HID tag until the button is pressed
596void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
597{
598 int n=0, i=0;
599 /*
600 HID tag bitstream format
601 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
602 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
603 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
604 A fc8 is inserted before every 4 bits
605 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
606 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
607 */
608
609 if (hi>0xFFF) {
610 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
611 return;
612 }
613 // set LF so we don't kill the bigbuf we are setting with simulation data.
614 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
615
616 fc(0,&n);
617 // special start of frame marker containing invalid bit sequences
618 fc(8, &n); fc(8, &n); // invalid
619 fc(8, &n); fc(10, &n); // logical 0
620 fc(10, &n); fc(10, &n); // invalid
621 fc(8, &n); fc(10, &n); // logical 0
622
623 WDT_HIT();
624 // manchester encode bits 43 to 32
625 for (i=11; i>=0; i--) {
626 if ((i%4)==3) fc(0,&n);
627 if ((hi>>i)&1) {
628 fc(10, &n); fc(8, &n); // low-high transition
629 } else {
630 fc(8, &n); fc(10, &n); // high-low transition
631 }
632 }
633
634 WDT_HIT();
635 // manchester encode bits 31 to 0
636 for (i=31; i>=0; i--) {
637 if ((i%4)==3) fc(0,&n);
638 if ((lo>>i)&1) {
639 fc(10, &n); fc(8, &n); // low-high transition
640 } else {
641 fc(8, &n); fc(10, &n); // high-low transition
642 }
643 }
644
645 if (ledcontrol)
646 LED_A_ON();
647 SimulateTagLowFrequency(n, 0, ledcontrol);
648
649 if (ledcontrol)
650 LED_A_OFF();
651}
652
653// prepare a waveform pattern in the buffer based on the ID given then
654// simulate a FSK tag until the button is pressed
655// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
656void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
657{
658 int ledcontrol=1;
659 int n=0, i=0;
660 uint8_t fcHigh = arg1 >> 8;
661 uint8_t fcLow = arg1 & 0xFF;
662 uint16_t modCnt = 0;
663 uint8_t clk = arg2 & 0xFF;
664 uint8_t invert = (arg2 >> 8) & 1;
665
666 // set LF so we don't kill the bigbuf we are setting with simulation data.
667 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
668
669 for (i=0; i<size; i++){
670 if (BitStream[i] == invert){
671 fcAll(fcLow, &n, clk, &modCnt);
672 } else {
673 fcAll(fcHigh, &n, clk, &modCnt);
674 }
675 }
676 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
677 /*Dbprintf("DEBUG: First 32:");
678 uint8_t *dest = BigBuf_get_addr();
679 i=0;
680 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
681 i+=16;
682 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
683 */
684 if (ledcontrol)
685 LED_A_ON();
686
687 SimulateTagLowFrequency(n, 0, ledcontrol);
688
689 if (ledcontrol)
690 LED_A_OFF();
691}
692
693// compose ask waveform for one bit(ASK)
694static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
695{
696 uint8_t *dest = BigBuf_get_addr();
697 uint8_t halfClk = clock/2;
698 // c = current bit 1 or 0
699 if (manchester==1){
700 memset(dest+(*n), c, halfClk);
701 memset(dest+(*n) + halfClk, c^1, halfClk);
702 } else {
703 memset(dest+(*n), c, clock);
704 }
705 *n += clock;
706}
707
708static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
709{
710 uint8_t *dest = BigBuf_get_addr();
711 uint8_t halfClk = clock/2;
712 if (c){
713 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
714 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
715 } else {
716 memset(dest+(*n), c ^ *phase, clock);
717 *phase ^= 1;
718 }
719 *n += clock;
720}
721
722static void stAskSimBit(int *n, uint8_t clock) {
723 uint8_t *dest = BigBuf_get_addr();
724 uint8_t halfClk = clock/2;
725 //ST = .5 high .5 low 1.5 high .5 low 1 high
726 memset(dest+(*n), 1, halfClk);
727 memset(dest+(*n) + halfClk, 0, halfClk);
728 memset(dest+(*n) + clock, 1, clock + halfClk);
729 memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
730 memset(dest+(*n) + clock*3, 1, clock);
731 *n += clock*4;
732}
733
734// args clock, ask/man or askraw, invert, transmission separator
735void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
736{
737 int ledcontrol = 1;
738 int n=0, i=0;
739 uint8_t clk = (arg1 >> 8) & 0xFF;
740 uint8_t encoding = arg1 & 0xFF;
741 uint8_t separator = arg2 & 1;
742 uint8_t invert = (arg2 >> 8) & 1;
743
744 // set LF so we don't kill the bigbuf we are setting with simulation data.
745 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
746
747 if (encoding==2){ //biphase
748 uint8_t phase=0;
749 for (i=0; i<size; i++){
750 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
751 }
752 if (phase==1) { //run a second set inverted to keep phase in check
753 for (i=0; i<size; i++){
754 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
755 }
756 }
757 } else { // ask/manchester || ask/raw
758 for (i=0; i<size; i++){
759 askSimBit(BitStream[i]^invert, &n, clk, encoding);
760 }
761 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase)
762 for (i=0; i<size; i++){
763 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
764 }
765 }
766 }
767 if (separator==1 && encoding == 1)
768 stAskSimBit(&n, clk);
769 else if (separator==1)
770 Dbprintf("sorry but separator option not yet available");
771
772 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
773 //DEBUG
774 //Dbprintf("First 32:");
775 //uint8_t *dest = BigBuf_get_addr();
776 //i=0;
777 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
778 //i+=16;
779 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
780
781 if (ledcontrol) LED_A_ON();
782 SimulateTagLowFrequency(n, 0, ledcontrol);
783 if (ledcontrol) LED_A_OFF();
784}
785
786//carrier can be 2,4 or 8
787static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
788{
789 uint8_t *dest = BigBuf_get_addr();
790 uint8_t halfWave = waveLen/2;
791 //uint8_t idx;
792 int i = 0;
793 if (phaseChg){
794 // write phase change
795 memset(dest+(*n), *curPhase^1, halfWave);
796 memset(dest+(*n) + halfWave, *curPhase, halfWave);
797 *n += waveLen;
798 *curPhase ^= 1;
799 i += waveLen;
800 }
801 //write each normal clock wave for the clock duration
802 for (; i < clk; i+=waveLen){
803 memset(dest+(*n), *curPhase, halfWave);
804 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
805 *n += waveLen;
806 }
807}
808
809// args clock, carrier, invert,
810void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
811{
812 int ledcontrol=1;
813 int n=0, i=0;
814 uint8_t clk = arg1 >> 8;
815 uint8_t carrier = arg1 & 0xFF;
816 uint8_t invert = arg2 & 0xFF;
817 uint8_t curPhase = 0;
818 // set LF so we don't kill the bigbuf we are setting with simulation data.
819 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
820
821 for (i=0; i<size; i++){
822 if (BitStream[i] == curPhase){
823 pskSimBit(carrier, &n, clk, &curPhase, false);
824 } else {
825 pskSimBit(carrier, &n, clk, &curPhase, true);
826 }
827 }
828 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
829 //Dbprintf("DEBUG: First 32:");
830 //uint8_t *dest = BigBuf_get_addr();
831 //i=0;
832 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
833 //i+=16;
834 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
835
836 if (ledcontrol) LED_A_ON();
837 SimulateTagLowFrequency(n, 0, ledcontrol);
838 if (ledcontrol) LED_A_OFF();
839}
840
841// loop to get raw HID waveform then FSK demodulate the TAG ID from it
842void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
843{
844 uint8_t *dest = BigBuf_get_addr();
845 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
846 size_t size;
847 uint32_t hi2=0, hi=0, lo=0;
848 int idx=0;
849 int dummyIdx = 0;
850 // Configure to go in 125Khz listen mode
851 LFSetupFPGAForADC(95, true);
852
853 //clear read buffer
854 BigBuf_Clear_keep_EM();
855
856 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
857
858 WDT_HIT();
859 if (ledcontrol) LED_A_ON();
860
861 DoAcquisition_default(-1,true);
862 // FSK demodulator
863 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
864 size = 50*128*2; //big enough to catch 2 sequences of largest format
865 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo, &dummyIdx);
866
867 if (idx>0 && lo>0 && (size==96 || size==192)){
868 // go over previously decoded manchester data and decode into usable tag ID
869 if (hi2 != 0){ //extra large HID tags 88/192 bits
870 Dbprintf("TAG ID: %x%08x%08x (%d)",
871 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
872 }else { //standard HID tags 44/96 bits
873 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
874 uint8_t bitlen = 0;
875 uint32_t fc = 0;
876 uint32_t cardnum = 0;
877 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
878 uint32_t lo2=0;
879 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
880 uint8_t idx3 = 1;
881 while(lo2 > 1){ //find last bit set to 1 (format len bit)
882 lo2=lo2 >> 1;
883 idx3++;
884 }
885 bitlen = idx3+19;
886 fc =0;
887 cardnum=0;
888 if(bitlen == 26){
889 cardnum = (lo>>1)&0xFFFF;
890 fc = (lo>>17)&0xFF;
891 }
892 if(bitlen == 37){
893 cardnum = (lo>>1)&0x7FFFF;
894 fc = ((hi&0xF)<<12)|(lo>>20);
895 }
896 if(bitlen == 34){
897 cardnum = (lo>>1)&0xFFFF;
898 fc= ((hi&1)<<15)|(lo>>17);
899 }
900 if(bitlen == 35){
901 cardnum = (lo>>1)&0xFFFFF;
902 fc = ((hi&1)<<11)|(lo>>21);
903 }
904 }
905 else { //if bit 38 is not set then 37 bit format is used
906 bitlen= 37;
907 fc =0;
908 cardnum=0;
909 if(bitlen==37){
910 cardnum = (lo>>1)&0x7FFFF;
911 fc = ((hi&0xF)<<12)|(lo>>20);
912 }
913 }
914 //Dbprintf("TAG ID: %x%08x (%d)",
915 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
916 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
917 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
918 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
919 }
920 if (findone){
921 if (ledcontrol) LED_A_OFF();
922 *high = hi;
923 *low = lo;
924 break;
925 }
926 // reset
927 }
928 hi2 = hi = lo = idx = 0;
929 WDT_HIT();
930 }
931
932 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
933 DbpString("Stopped");
934 if (ledcontrol) LED_A_OFF();
935}
936
937// loop to get raw HID waveform then FSK demodulate the TAG ID from it
938void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
939{
940 uint8_t *dest = BigBuf_get_addr();
941 size_t size;
942 int idx=0, dummyIdx=0;
943 //clear read buffer
944 BigBuf_Clear_keep_EM();
945 // Configure to go in 125Khz listen mode
946 LFSetupFPGAForADC(95, true);
947
948 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
949
950 WDT_HIT();
951 if (ledcontrol) LED_A_ON();
952
953 DoAcquisition_default(-1,true);
954 // FSK demodulator
955 size = 50*128*2; //big enough to catch 2 sequences of largest format
956 idx = AWIDdemodFSK(dest, &size, &dummyIdx);
957
958 if (idx<=0 || size!=96) continue;
959 // Index map
960 // 0 10 20 30 40 50 60
961 // | | | | | | |
962 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
963 // -----------------------------------------------------------------------------
964 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
965 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
966 // |---26 bit---| |-----117----||-------------142-------------|
967 // b = format bit len, o = odd parity of last 3 bits
968 // f = facility code, c = card number
969 // w = wiegand parity
970 // (26 bit format shown)
971
972 //get raw ID before removing parities
973 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
974 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
975 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
976
977 size = removeParity(dest, idx+8, 4, 1, 88);
978 if (size != 66) continue;
979 // ok valid card found!
980
981 // Index map
982 // 0 10 20 30 40 50 60
983 // | | | | | | |
984 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
985 // -----------------------------------------------------------------------------
986 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
987 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
988 // |26 bit| |-117--| |-----142------|
989 // b = format bit len, o = odd parity of last 3 bits
990 // f = facility code, c = card number
991 // w = wiegand parity
992 // (26 bit format shown)
993
994 uint32_t fc = 0;
995 uint32_t cardnum = 0;
996 uint32_t code1 = 0;
997 uint32_t code2 = 0;
998 uint8_t fmtLen = bytebits_to_byte(dest,8);
999 if (fmtLen==26){
1000 fc = bytebits_to_byte(dest+9, 8);
1001 cardnum = bytebits_to_byte(dest+17, 16);
1002 code1 = bytebits_to_byte(dest+8,fmtLen);
1003 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
1004 } else {
1005 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
1006 if (fmtLen>32){
1007 code1 = bytebits_to_byte(dest+8,fmtLen-32);
1008 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
1009 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
1010 } else{
1011 code1 = bytebits_to_byte(dest+8,fmtLen);
1012 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
1013 }
1014 }
1015 if (findone){
1016 if (ledcontrol) LED_A_OFF();
1017 break;
1018 }
1019 // reset
1020 idx = 0;
1021 WDT_HIT();
1022 }
1023 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1024 DbpString("Stopped");
1025 if (ledcontrol) LED_A_OFF();
1026}
1027
1028void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
1029{
1030 uint8_t *dest = BigBuf_get_addr();
1031
1032 size_t size=0, idx=0;
1033 int clk=0, invert=0, errCnt=0, maxErr=20;
1034 uint32_t hi=0;
1035 uint64_t lo=0;
1036 //clear read buffer
1037 BigBuf_Clear_keep_EM();
1038 // Configure to go in 125Khz listen mode
1039 LFSetupFPGAForADC(95, true);
1040
1041 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1042
1043 WDT_HIT();
1044 if (ledcontrol) LED_A_ON();
1045
1046 DoAcquisition_default(-1,true);
1047 size = BigBuf_max_traceLen();
1048 //askdemod and manchester decode
1049 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
1050 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
1051 WDT_HIT();
1052
1053 if (errCnt<0) continue;
1054
1055 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
1056 if (errCnt){
1057 if (size>64){
1058 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
1059 hi,
1060 (uint32_t)(lo>>32),
1061 (uint32_t)lo,
1062 (uint32_t)(lo&0xFFFF),
1063 (uint32_t)((lo>>16LL) & 0xFF),
1064 (uint32_t)(lo & 0xFFFFFF));
1065 } else {
1066 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
1067 (uint32_t)(lo>>32),
1068 (uint32_t)lo,
1069 (uint32_t)(lo&0xFFFF),
1070 (uint32_t)((lo>>16LL) & 0xFF),
1071 (uint32_t)(lo & 0xFFFFFF));
1072 }
1073
1074 if (findone){
1075 if (ledcontrol) LED_A_OFF();
1076 *high=lo>>32;
1077 *low=lo & 0xFFFFFFFF;
1078 break;
1079 }
1080 }
1081 WDT_HIT();
1082 hi = lo = size = idx = 0;
1083 clk = invert = errCnt = 0;
1084 }
1085 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1086 DbpString("Stopped");
1087 if (ledcontrol) LED_A_OFF();
1088}
1089
1090void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
1091{
1092 uint8_t *dest = BigBuf_get_addr();
1093 int idx=0;
1094 uint32_t code=0, code2=0;
1095 uint8_t version=0;
1096 uint8_t facilitycode=0;
1097 uint16_t number=0;
1098 int dummyIdx=0;
1099 //clear read buffer
1100 BigBuf_Clear_keep_EM();
1101 // Configure to go in 125Khz listen mode
1102 LFSetupFPGAForADC(95, true);
1103
1104 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1105 WDT_HIT();
1106 if (ledcontrol) LED_A_ON();
1107 DoAcquisition_default(-1,true);
1108 //fskdemod and get start index
1109 WDT_HIT();
1110 idx = IOdemodFSK(dest, BigBuf_max_traceLen(), &dummyIdx);
1111 if (idx<0) continue;
1112 //valid tag found
1113
1114 //Index map
1115 //0 10 20 30 40 50 60
1116 //| | | | | | |
1117 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1118 //-----------------------------------------------------------------------------
1119 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1120 //
1121 //XSF(version)facility:codeone+codetwo
1122 //Handle the data
1123 if(findone){ //only print binary if we are doing one
1124 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1125 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1126 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1127 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1128 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1129 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1130 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1131 }
1132 code = bytebits_to_byte(dest+idx,32);
1133 code2 = bytebits_to_byte(dest+idx+32,32);
1134 version = bytebits_to_byte(dest+idx+27,8); //14,4
1135 facilitycode = bytebits_to_byte(dest+idx+18,8);
1136 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1137
1138 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
1139 // if we're only looking for one tag
1140 if (findone){
1141 if (ledcontrol) LED_A_OFF();
1142 //LED_A_OFF();
1143 *high=code;
1144 *low=code2;
1145 break;
1146 }
1147 code=code2=0;
1148 version=facilitycode=0;
1149 number=0;
1150 idx=0;
1151
1152 WDT_HIT();
1153 }
1154 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1155 DbpString("Stopped");
1156 if (ledcontrol) LED_A_OFF();
1157}
1158
1159/*------------------------------
1160 * T5555/T5557/T5567/T5577 routines
1161 *------------------------------
1162 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1163 *
1164 * Relevant communication times in microsecond
1165 * To compensate antenna falling times shorten the write times
1166 * and enlarge the gap ones.
1167 * Q5 tags seems to have issues when these values changes.
1168 */
1169#define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1170#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1171#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1172#define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1173#define READ_GAP 15*8
1174
1175void TurnReadLFOn(int delay) {
1176 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1177 // Give it a bit of time for the resonant antenna to settle.
1178 WaitUS(delay); //155*8 //50*8
1179}
1180
1181// Write one bit to card
1182void T55xxWriteBit(int bit) {
1183 if (!bit)
1184 TurnReadLFOn(WRITE_0);
1185 else
1186 TurnReadLFOn(WRITE_1);
1187 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1188 WaitUS(WRITE_GAP);
1189}
1190
1191// Send T5577 reset command then read stream (see if we can identify the start of the stream)
1192void T55xxResetRead(void) {
1193 LED_A_ON();
1194 //clear buffer now so it does not interfere with timing later
1195 BigBuf_Clear_keep_EM();
1196
1197 // Set up FPGA, 125kHz
1198 LFSetupFPGAForADC(95, true);
1199 StartTicks();
1200 // make sure tag is fully powered up...
1201 WaitMS(5);
1202
1203 // Trigger T55x7 in mode.
1204 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1205 WaitUS(START_GAP);
1206
1207 // reset tag - op code 00
1208 T55xxWriteBit(0);
1209 T55xxWriteBit(0);
1210
1211 TurnReadLFOn(READ_GAP);
1212
1213 // Acquisition
1214 DoPartialAcquisition(0, true, BigBuf_max_traceLen(), 0);
1215
1216 // Turn the field off
1217 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1218 cmd_send(CMD_ACK,0,0,0,0,0);
1219 LED_A_OFF();
1220}
1221
1222// Write one card block in page 0, no lock
1223void T55xxWriteBlockExt(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
1224 LED_A_ON();
1225 bool PwdMode = arg & 0x1;
1226 uint8_t Page = (arg & 0x2)>>1;
1227 bool testMode = arg & 0x4;
1228 uint32_t i = 0;
1229
1230 // Set up FPGA, 125kHz
1231 LFSetupFPGAForADC(95, true);
1232 StartTicks();
1233 // make sure tag is fully powered up...
1234 WaitMS(5);
1235 // Trigger T55x7 in mode.
1236 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1237 WaitUS(START_GAP);
1238
1239 if (testMode) Dbprintf("TestMODE");
1240 // Std Opcode 10
1241 T55xxWriteBit(testMode ? 0 : 1);
1242 T55xxWriteBit(testMode ? 1 : Page); //Page 0
1243
1244 if (PwdMode) {
1245 // Send Pwd
1246 for (i = 0x80000000; i != 0; i >>= 1)
1247 T55xxWriteBit(Pwd & i);
1248 }
1249 // Send Lock bit
1250 T55xxWriteBit(0);
1251
1252 // Send Data
1253 for (i = 0x80000000; i != 0; i >>= 1)
1254 T55xxWriteBit(Data & i);
1255
1256 // Send Block number
1257 for (i = 0x04; i != 0; i >>= 1)
1258 T55xxWriteBit(Block & i);
1259
1260 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1261 // so wait a little more)
1262
1263 // "there is a clock delay before programming"
1264 // - programming takes ~5.6ms for t5577 ~18ms for E5550 or t5567
1265 // so we should wait 1 clock + 5.6ms then read response?
1266 // but we need to know we are dealing with t5577 vs t5567 vs e5550 (or q5) marshmellow...
1267 if (testMode) {
1268 //TESTMODE TIMING TESTS:
1269 // <566us does nothing
1270 // 566-568 switches between wiping to 0s and doing nothing
1271 // 5184 wipes and allows 1 block to be programmed.
1272 // indefinite power on wipes and then programs all blocks with bitshifted data sent.
1273 TurnReadLFOn(5184);
1274
1275 } else {
1276 TurnReadLFOn(20 * 1000);
1277 //could attempt to do a read to confirm write took
1278 // as the tag should repeat back the new block
1279 // until it is reset, but to confirm it we would
1280 // need to know the current block 0 config mode for
1281 // modulation clock an other details to demod the response...
1282 // response should be (for t55x7) a 0 bit then (ST if on)
1283 // block data written in on repeat until reset.
1284
1285 //DoPartialAcquisition(20, true, 12000);
1286 }
1287
1288 // turn field off
1289 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1290 LED_A_OFF();
1291}
1292
1293// Write one card block in page 0, no lock
1294void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
1295 T55xxWriteBlockExt(Data, Block, Pwd, arg);
1296 cmd_send(CMD_ACK,0,0,0,0,0);
1297}
1298
1299// Read one card block in page [page]
1300void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
1301 LED_A_ON();
1302 bool PwdMode = arg0 & 0x1;
1303 uint8_t Page = (arg0 & 0x2) >> 1;
1304 uint32_t i = 0;
1305 bool RegReadMode = (Block == 0xFF);//regular read mode
1306
1307 //clear buffer now so it does not interfere with timing later
1308 BigBuf_Clear_ext(false);
1309
1310 //make sure block is at max 7
1311 Block &= 0x7;
1312
1313 // Set up FPGA, 125kHz to power up the tag
1314 LFSetupFPGAForADC(95, true);
1315 StartTicks();
1316 // make sure tag is fully powered up...
1317 WaitMS(5);
1318 // Trigger T55x7 Direct Access Mode with start gap
1319 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1320 WaitUS(START_GAP);
1321
1322 // Opcode 1[page]
1323 T55xxWriteBit(1);
1324 T55xxWriteBit(Page); //Page 0
1325
1326 if (PwdMode){
1327 // Send Pwd
1328 for (i = 0x80000000; i != 0; i >>= 1)
1329 T55xxWriteBit(Pwd & i);
1330 }
1331 // Send a zero bit separation
1332 T55xxWriteBit(0);
1333
1334 // Send Block number (if direct access mode)
1335 if (!RegReadMode)
1336 for (i = 0x04; i != 0; i >>= 1)
1337 T55xxWriteBit(Block & i);
1338
1339 // Turn field on to read the response
1340 // 137*8 seems to get to the start of data pretty well...
1341 // but we want to go past the start and let the repeating data settle in...
1342 TurnReadLFOn(210*8);
1343
1344 // Acquisition
1345 // Now do the acquisition
1346 DoPartialAcquisition(0, true, 12000, 0);
1347
1348 // Turn the field off
1349 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1350 cmd_send(CMD_ACK,0,0,0,0,0);
1351 LED_A_OFF();
1352}
1353
1354void T55xxWakeUp(uint32_t Pwd){
1355 LED_B_ON();
1356 uint32_t i = 0;
1357
1358 // Set up FPGA, 125kHz
1359 LFSetupFPGAForADC(95, true);
1360 StartTicks();
1361 // make sure tag is fully powered up...
1362 WaitMS(5);
1363
1364 // Trigger T55x7 Direct Access Mode
1365 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1366 WaitUS(START_GAP);
1367
1368 // Opcode 10
1369 T55xxWriteBit(1);
1370 T55xxWriteBit(0); //Page 0
1371
1372 // Send Pwd
1373 for (i = 0x80000000; i != 0; i >>= 1)
1374 T55xxWriteBit(Pwd & i);
1375
1376 // Turn and leave field on to let the begin repeating transmission
1377 TurnReadLFOn(20*1000);
1378}
1379
1380/*-------------- Cloning routines -----------*/
1381
1382void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
1383 // write last block first and config block last (if included)
1384 for (uint8_t i = numblocks+startblock; i > startblock; i--) {
1385 T55xxWriteBlockExt(blockdata[i-1],i-1,0,0);
1386 }
1387}
1388
1389// Copy HID id to card and setup block 0 config
1390void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
1391 uint32_t data[] = {0,0,0,0,0,0,0};
1392 uint8_t last_block = 0;
1393
1394 if (longFMT) {
1395 // Ensure no more than 84 bits supplied
1396 if (hi2>0xFFFFF) {
1397 DbpString("Tags can only have 84 bits.");
1398 return;
1399 }
1400 // Build the 6 data blocks for supplied 84bit ID
1401 last_block = 6;
1402 // load preamble (1D) & long format identifier (9E manchester encoded)
1403 data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
1404 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1405 data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
1406 data[3] = manchesterEncode2Bytes(hi >> 16);
1407 data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
1408 data[5] = manchesterEncode2Bytes(lo >> 16);
1409 data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
1410 } else {
1411 // Ensure no more than 44 bits supplied
1412 if (hi>0xFFF) {
1413 DbpString("Tags can only have 44 bits.");
1414 return;
1415 }
1416 // Build the 3 data blocks for supplied 44bit ID
1417 last_block = 3;
1418 // load preamble
1419 data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
1420 data[2] = manchesterEncode2Bytes(lo >> 16);
1421 data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
1422 }
1423 // load chip config block
1424 data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
1425
1426 //TODO add selection of chip for Q5 or T55x7
1427 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1428
1429 LED_D_ON();
1430 // Program the data blocks for supplied ID
1431 // and the block 0 for HID format
1432 WriteT55xx(data, 0, last_block+1);
1433
1434 LED_D_OFF();
1435
1436 DbpString("DONE!");
1437}
1438
1439void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
1440 uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1441 //TODO add selection of chip for Q5 or T55x7
1442 // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1443
1444 LED_D_ON();
1445 // Program the data blocks for supplied ID
1446 // and the block 0 config
1447 WriteT55xx(data, 0, 3);
1448
1449 LED_D_OFF();
1450
1451 DbpString("DONE!");
1452}
1453
1454// Clone Indala 64-bit tag by UID to T55x7
1455void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
1456 //Program the 2 data blocks for supplied 64bit UID
1457 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1458 uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1459 //TODO add selection of chip for Q5 or T55x7
1460 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1461
1462 WriteT55xx(data, 0, 3);
1463 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1464 // T5567WriteBlock(0x603E1042,0);
1465 DbpString("DONE!");
1466}
1467// Clone Indala 224-bit tag by UID to T55x7
1468void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
1469 //Program the 7 data blocks for supplied 224bit UID
1470 uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
1471 // and the block 0 for Indala224 format
1472 //Config for Indala (RF/32;PSK2 with RF/2;Maxblock=7)
1473 data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK2 | (7 << T55x7_MAXBLOCK_SHIFT);
1474 //TODO add selection of chip for Q5 or T55x7
1475 // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK2 | 7 << T5555_MAXBLOCK_SHIFT;
1476 WriteT55xx(data, 0, 8);
1477 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1478 // T5567WriteBlock(0x603E10E2,0);
1479 DbpString("DONE!");
1480}
1481// clone viking tag to T55xx
1482void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
1483 uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
1484 if (Q5) data[0] = T5555_SET_BITRATE(32) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
1485 // Program the data blocks for supplied ID and the block 0 config
1486 WriteT55xx(data, 0, 3);
1487 LED_D_OFF();
1488 cmd_send(CMD_ACK,0,0,0,0,0);
1489}
1490
1491// Define 9bit header for EM410x tags
1492#define EM410X_HEADER 0x1FF
1493#define EM410X_ID_LENGTH 40
1494
1495void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
1496 int i, id_bit;
1497 uint64_t id = EM410X_HEADER;
1498 uint64_t rev_id = 0; // reversed ID
1499 int c_parity[4]; // column parity
1500 int r_parity = 0; // row parity
1501 uint32_t clock = 0;
1502
1503 // Reverse ID bits given as parameter (for simpler operations)
1504 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1505 if (i < 32) {
1506 rev_id = (rev_id << 1) | (id_lo & 1);
1507 id_lo >>= 1;
1508 } else {
1509 rev_id = (rev_id << 1) | (id_hi & 1);
1510 id_hi >>= 1;
1511 }
1512 }
1513
1514 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1515 id_bit = rev_id & 1;
1516
1517 if (i % 4 == 0) {
1518 // Don't write row parity bit at start of parsing
1519 if (i)
1520 id = (id << 1) | r_parity;
1521 // Start counting parity for new row
1522 r_parity = id_bit;
1523 } else {
1524 // Count row parity
1525 r_parity ^= id_bit;
1526 }
1527
1528 // First elements in column?
1529 if (i < 4)
1530 // Fill out first elements
1531 c_parity[i] = id_bit;
1532 else
1533 // Count column parity
1534 c_parity[i % 4] ^= id_bit;
1535
1536 // Insert ID bit
1537 id = (id << 1) | id_bit;
1538 rev_id >>= 1;
1539 }
1540
1541 // Insert parity bit of last row
1542 id = (id << 1) | r_parity;
1543
1544 // Fill out column parity at the end of tag
1545 for (i = 0; i < 4; ++i)
1546 id = (id << 1) | c_parity[i];
1547
1548 // Add stop bit
1549 id <<= 1;
1550
1551 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1552 LED_D_ON();
1553
1554 // Write EM410x ID
1555 uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
1556
1557 clock = (card & 0xFF00) >> 8;
1558 clock = (clock == 0) ? 64 : clock;
1559 Dbprintf("Clock rate: %d", clock);
1560 if (card & 0xFF) { //t55x7
1561 clock = GetT55xxClockBit(clock);
1562 if (clock == 0) {
1563 Dbprintf("Invalid clock rate: %d", clock);
1564 return;
1565 }
1566 data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
1567 } else { //t5555 (Q5)
1568 data[0] = T5555_SET_BITRATE(clock) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
1569 }
1570
1571 WriteT55xx(data, 0, 3);
1572
1573 LED_D_OFF();
1574 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1575 (uint32_t)(id >> 32), (uint32_t)id);
1576}
1577
1578//-----------------------------------
1579// EM4469 / EM4305 routines
1580//-----------------------------------
1581#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1582#define FWD_CMD_WRITE 0xA
1583#define FWD_CMD_READ 0x9
1584#define FWD_CMD_DISABLE 0x5
1585
1586uint8_t forwardLink_data[64]; //array of forwarded bits
1587uint8_t * forward_ptr; //ptr for forward message preparation
1588uint8_t fwd_bit_sz; //forwardlink bit counter
1589uint8_t * fwd_write_ptr; //forwardlink bit pointer
1590
1591//====================================================================
1592// prepares command bits
1593// see EM4469 spec
1594//====================================================================
1595//--------------------------------------------------------------------
1596// VALUES TAKEN FROM EM4x function: SendForward
1597// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1598// WRITE_GAP = 128; (16*8)
1599// WRITE_1 = 256 32*8; (32*8)
1600
1601// These timings work for 4469/4269/4305 (with the 55*8 above)
1602// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1603
1604uint8_t Prepare_Cmd( uint8_t cmd ) {
1605
1606 *forward_ptr++ = 0; //start bit
1607 *forward_ptr++ = 0; //second pause for 4050 code
1608
1609 *forward_ptr++ = cmd;
1610 cmd >>= 1;
1611 *forward_ptr++ = cmd;
1612 cmd >>= 1;
1613 *forward_ptr++ = cmd;
1614 cmd >>= 1;
1615 *forward_ptr++ = cmd;
1616
1617 return 6; //return number of emited bits
1618}
1619
1620//====================================================================
1621// prepares address bits
1622// see EM4469 spec
1623//====================================================================
1624uint8_t Prepare_Addr( uint8_t addr ) {
1625
1626 register uint8_t line_parity;
1627
1628 uint8_t i;
1629 line_parity = 0;
1630 for(i=0;i<6;i++) {
1631 *forward_ptr++ = addr;
1632 line_parity ^= addr;
1633 addr >>= 1;
1634 }
1635
1636 *forward_ptr++ = (line_parity & 1);
1637
1638 return 7; //return number of emited bits
1639}
1640
1641//====================================================================
1642// prepares data bits intreleaved with parity bits
1643// see EM4469 spec
1644//====================================================================
1645uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1646
1647 register uint8_t line_parity;
1648 register uint8_t column_parity;
1649 register uint8_t i, j;
1650 register uint16_t data;
1651
1652 data = data_low;
1653 column_parity = 0;
1654
1655 for(i=0; i<4; i++) {
1656 line_parity = 0;
1657 for(j=0; j<8; j++) {
1658 line_parity ^= data;
1659 column_parity ^= (data & 1) << j;
1660 *forward_ptr++ = data;
1661 data >>= 1;
1662 }
1663 *forward_ptr++ = line_parity;
1664 if(i == 1)
1665 data = data_hi;
1666 }
1667
1668 for(j=0; j<8; j++) {
1669 *forward_ptr++ = column_parity;
1670 column_parity >>= 1;
1671 }
1672 *forward_ptr = 0;
1673
1674 return 45; //return number of emited bits
1675}
1676
1677//====================================================================
1678// Forward Link send function
1679// Requires: forwarLink_data filled with valid bits (1 bit per byte)
1680// fwd_bit_count set with number of bits to be sent
1681//====================================================================
1682void SendForward(uint8_t fwd_bit_count) {
1683
1684 fwd_write_ptr = forwardLink_data;
1685 fwd_bit_sz = fwd_bit_count;
1686
1687 // Set up FPGA, 125kHz or 95 divisor
1688 LFSetupFPGAForADC(95, true);
1689
1690 // force 1st mod pulse (start gap must be longer for 4305)
1691 fwd_bit_sz--; //prepare next bit modulation
1692 fwd_write_ptr++;
1693 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1694 WaitUS(55*8); //55 cycles off (8us each)for 4305 //another reader has 37 here...
1695 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1696 WaitUS(18*8); //18 cycles on (8us each)
1697
1698 // now start writting
1699 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1700 if(((*fwd_write_ptr++) & 1) == 1)
1701 WaitUS(32*8); //32 cycles at 125Khz (8us each)
1702 else {
1703 //These timings work for 4469/4269/4305 (with the 55*8 above)
1704 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1705 WaitUS(23*8); //23 cycles off (8us each)
1706 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1707 WaitUS(18*8); //18 cycles on (8us each)
1708 }
1709 }
1710}
1711
1712void EM4xLogin(uint32_t Password) {
1713
1714 uint8_t fwd_bit_count;
1715
1716 forward_ptr = forwardLink_data;
1717 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1718 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1719
1720 SendForward(fwd_bit_count);
1721
1722 //Wait for command to complete
1723 SpinDelay(20);
1724}
1725
1726void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1727
1728 uint8_t fwd_bit_count;
1729
1730 // Clear destination buffer before sending the command
1731 BigBuf_Clear_ext(false);
1732
1733 LED_A_ON();
1734 StartTicks();
1735 //If password mode do login
1736 if (PwdMode == 1) EM4xLogin(Pwd);
1737
1738 forward_ptr = forwardLink_data;
1739 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1740 fwd_bit_count += Prepare_Addr( Address );
1741
1742 SendForward(fwd_bit_count);
1743 WaitUS(400);
1744 // Now do the acquisition
1745 DoPartialAcquisition(20, true, 6000, 1000);
1746
1747 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1748 LED_A_OFF();
1749 cmd_send(CMD_ACK,0,0,0,0,0);
1750}
1751
1752void EM4xWriteWord(uint32_t flag, uint32_t Data, uint32_t Pwd) {
1753
1754 bool PwdMode = (flag & 0xF);
1755 uint8_t Address = (flag >> 8) & 0xFF;
1756 uint8_t fwd_bit_count;
1757
1758 //clear buffer now so it does not interfere with timing later
1759 BigBuf_Clear_ext(false);
1760
1761 LED_A_ON();
1762 StartTicks();
1763 //If password mode do login
1764 if (PwdMode) EM4xLogin(Pwd);
1765
1766 forward_ptr = forwardLink_data;
1767 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1768 fwd_bit_count += Prepare_Addr( Address );
1769 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1770
1771 SendForward(fwd_bit_count);
1772
1773 //Wait for write to complete
1774 //SpinDelay(10);
1775
1776 WaitUS(6500);
1777 //Capture response if one exists
1778 DoPartialAcquisition(20, true, 6000, 1000);
1779
1780 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1781 LED_A_OFF();
1782 cmd_send(CMD_ACK,0,0,0,0,0);
1783}
1784/*
1785Reading a COTAG.
1786
1787COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
1788because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
1789
1790READER START SEQUENCE:
1791burst 800 us, gap 2.2 msecs
1792burst 3.6 msecs gap 2.2 msecs
1793burst 800 us gap 2.2 msecs
1794pulse 3.6 msecs
1795
1796This triggers a COTAG tag to response
1797*/
1798void Cotag(uint32_t arg0) {
1799
1800#define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
1801#define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
1802
1803 uint8_t rawsignal = arg0 & 0xF;
1804
1805 LED_A_ON();
1806
1807 // Switching to LF image on FPGA. This might empty BigBuff
1808 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1809
1810 //clear buffer now so it does not interfere with timing later
1811 BigBuf_Clear_ext(false);
1812
1813 // Set up FPGA, 132kHz to power up the tag
1814 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89);
1815 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1816
1817 // Connect the A/D to the peak-detected low-frequency path.
1818 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1819
1820 // Now set up the SSC to get the ADC samples that are now streaming at us.
1821 FpgaSetupSsc();
1822
1823 // start clock - 1.5ticks is 1us
1824 StartTicks();
1825
1826 //send COTAG start pulse
1827 ON(740) OFF
1828 ON(3330) OFF
1829 ON(740) OFF
1830 ON(1000)
1831
1832 switch(rawsignal) {
1833 case 0: doCotagAcquisition(50000); break;
1834 case 1: doCotagAcquisitionManchester(); break;
1835 case 2: DoAcquisition_config(true, 0); break;
1836 }
1837
1838 // Turn the field off
1839 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1840 cmd_send(CMD_ACK,0,0,0,0,0);
1841 LED_A_OFF();
1842}
Impressum, Datenschutz