]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Pretend to be an ISO 14443 tag. We will do this by alternately short- | |
3 | // circuiting and open-circuiting the antenna coil, with the tri-state | |
4 | // pins. | |
5 | // | |
6 | // We communicate over the SSP, as a bitstream (i.e., might as well be | |
7 | // unframed, though we still generate the word sync signal). The output | |
8 | // (ARM -> FPGA) tells us whether to modulate or not. The input (FPGA | |
9 | // -> ARM) is us using the A/D as a fancy comparator; this is with | |
10 | // (software-added) hysteresis, to undo the high-pass filter. | |
11 | // | |
12 | // At this point only Type A is implemented. This means that we are using a | |
13 | // bit rate of 106 kbit/s, or fc/128. Oversample by 4, which ought to make | |
14 | // things practical for the ARM (fc/32, 423.8 kbits/s, ~50 kbytes/s) | |
15 | // | |
16 | // Jonathan Westhues, October 2006 | |
17 | //----------------------------------------------------------------------------- | |
18 | ||
19 | module hi_simulate( | |
20 | ck_1356meg, | |
21 | pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4, | |
22 | adc_d, adc_clk, | |
23 | ssp_frame, ssp_din, ssp_dout, ssp_clk, | |
24 | dbg, | |
25 | mod_type | |
26 | ); | |
27 | input ck_1356meg; | |
28 | output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4; | |
29 | input [7:0] adc_d; | |
30 | output adc_clk; | |
31 | input ssp_dout; | |
32 | output ssp_frame, ssp_din, ssp_clk; | |
33 | output dbg; | |
34 | input [2:0] mod_type; | |
35 | ||
36 | ||
37 | // The comparator with hysteresis on the output from the peak detector. | |
38 | reg after_hysteresis; | |
39 | assign adc_clk = ck_1356meg; | |
40 | ||
41 | always @(negedge adc_clk) | |
42 | begin | |
43 | if(& adc_d[7:5]) after_hysteresis = 1'b1; // if (adc_d >= 224) | |
44 | else if(~(| adc_d[7:5])) after_hysteresis = 1'b0; // if (adc_d <= 31) | |
45 | end | |
46 | ||
47 | ||
48 | // Divide 13.56 MHz to produce various frequencies for SSP_CLK | |
49 | // and modulation. | |
50 | reg [7:0] ssp_clk_divider; | |
51 | ||
52 | always @(posedge adc_clk) | |
53 | ssp_clk_divider <= (ssp_clk_divider + 1); | |
54 | ||
55 | reg ssp_clk; | |
56 | ||
57 | always @(negedge adc_clk) | |
58 | begin | |
59 | if(mod_type == `FPGA_HF_SIMULATOR_MODULATE_424K_8BIT) | |
60 | // Get bit every at 53KHz (every 8th carrier bit of 424kHz) | |
61 | ssp_clk <= ssp_clk_divider[7]; | |
62 | else if(mod_type == `FPGA_HF_SIMULATOR_MODULATE_212K) | |
63 | // Get next bit at 212kHz | |
64 | ssp_clk <= ssp_clk_divider[5]; | |
65 | else | |
66 | // Get next bit at 424Khz | |
67 | ssp_clk <= ssp_clk_divider[4]; | |
68 | end | |
69 | ||
70 | ||
71 | // Divide SSP_CLK by 8 to produce the byte framing signal; the phase of | |
72 | // this is arbitrary, because it's just a bitstream. | |
73 | // One nasty issue, though: I can't make it work with both rx and tx at | |
74 | // once. The phase wrt ssp_clk must be changed. TODO to find out why | |
75 | // that is and make a better fix. | |
76 | reg [2:0] ssp_frame_divider_to_arm; | |
77 | always @(posedge ssp_clk) | |
78 | ssp_frame_divider_to_arm <= (ssp_frame_divider_to_arm + 1); | |
79 | reg [2:0] ssp_frame_divider_from_arm; | |
80 | always @(negedge ssp_clk) | |
81 | ssp_frame_divider_from_arm <= (ssp_frame_divider_from_arm + 1); | |
82 | ||
83 | ||
84 | reg ssp_frame; | |
85 | always @(ssp_frame_divider_to_arm or ssp_frame_divider_from_arm or mod_type) | |
86 | if(mod_type == `FPGA_HF_SIMULATOR_NO_MODULATION) // not modulating, so listening, to ARM | |
87 | ssp_frame = (ssp_frame_divider_to_arm == 3'b000); | |
88 | else | |
89 | ssp_frame = (ssp_frame_divider_from_arm == 3'b000); | |
90 | ||
91 | // Synchronize up the after-hysteresis signal, to produce DIN. | |
92 | reg ssp_din; | |
93 | always @(posedge ssp_clk) | |
94 | ssp_din = after_hysteresis; | |
95 | ||
96 | // Modulating carrier frequency is fc/64 (212kHz) to fc/16 (848kHz). Reuse ssp_clk divider for that. | |
97 | reg modulating_carrier; | |
98 | always @(*) | |
99 | if (mod_type == `FPGA_HF_SIMULATOR_NO_MODULATION) | |
100 | modulating_carrier <= 1'b0; // no modulation | |
101 | else if (mod_type == `FPGA_HF_SIMULATOR_MODULATE_BPSK) | |
102 | modulating_carrier <= ssp_dout ^ ssp_clk_divider[3]; // XOR means BPSK | |
103 | else if (mod_type == `FPGA_HF_SIMULATOR_MODULATE_212K) | |
104 | modulating_carrier <= ssp_dout & ssp_clk_divider[5]; // switch 212kHz subcarrier on/off | |
105 | else if (mod_type == `FPGA_HF_SIMULATOR_MODULATE_424K || mod_type == `FPGA_HF_SIMULATOR_MODULATE_424K_8BIT) | |
106 | modulating_carrier <= ssp_dout & ssp_clk_divider[4]; // switch 424kHz modulation on/off | |
107 | else | |
108 | modulating_carrier <= 1'b0; // yet unused | |
109 | ||
110 | ||
111 | // Load modulation. Toggle only one of these, since we are already producing much deeper | |
112 | // modulation than a real tag would. | |
113 | assign pwr_hi = 1'b0; // HF antenna connected to GND | |
114 | assign pwr_oe3 = 1'b0; // 10k Load | |
115 | assign pwr_oe1 = modulating_carrier; // 33 Ohms Load | |
116 | assign pwr_oe4 = modulating_carrier; // 33 Ohms Load | |
117 | ||
118 | // This is all LF and doesn't matter | |
119 | assign pwr_lo = 1'b0; | |
120 | assign pwr_oe2 = 1'b0; | |
121 | ||
122 | ||
123 | assign dbg = ssp_din; | |
124 | ||
125 | endmodule |