]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | ------------------------------------------------------------------------------- | |
3 | lookup3.c, by Bob Jenkins, May 2006, Public Domain. | |
4 | ||
5 | These are functions for producing 32-bit hashes for hash table lookup. | |
6 | hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() | |
7 | are externally useful functions. Routines to test the hash are included | |
8 | if SELF_TEST is defined. You can use this free for any purpose. It's in | |
9 | the public domain. It has no warranty. | |
10 | ||
11 | You probably want to use hashlittle(). hashlittle() and hashbig() | |
12 | hash byte arrays. hashlittle() is is faster than hashbig() on | |
13 | little-endian machines. Intel and AMD are little-endian machines. | |
14 | On second thought, you probably want hashlittle2(), which is identical to | |
15 | hashlittle() except it returns two 32-bit hashes for the price of one. | |
16 | You could implement hashbig2() if you wanted but I haven't bothered here. | |
17 | ||
18 | If you want to find a hash of, say, exactly 7 integers, do | |
19 | a = i1; b = i2; c = i3; | |
20 | mix(a,b,c); | |
21 | a += i4; b += i5; c += i6; | |
22 | mix(a,b,c); | |
23 | a += i7; | |
24 | final(a,b,c); | |
25 | then use c as the hash value. If you have a variable length array of | |
26 | 4-byte integers to hash, use hashword(). If you have a byte array (like | |
27 | a character string), use hashlittle(). If you have several byte arrays, or | |
28 | a mix of things, see the comments above hashlittle(). | |
29 | ||
30 | Why is this so big? I read 12 bytes at a time into 3 4-byte integers, | |
31 | then mix those integers. This is fast (you can do a lot more thorough | |
32 | mixing with 12*3 instructions on 3 integers than you can with 3 instructions | |
33 | on 1 byte), but shoehorning those bytes into integers efficiently is messy. | |
34 | ------------------------------------------------------------------------------- | |
35 | */ | |
36 | ||
37 | #include <stdlib.h> | |
38 | ||
39 | #ifdef HAVE_CONFIG_H | |
40 | #include <jansson_private_config.h> | |
41 | #endif | |
42 | ||
43 | #ifdef HAVE_STDINT_H | |
44 | #include <stdint.h> /* defines uint32_t etc */ | |
45 | #endif | |
46 | ||
47 | #ifdef HAVE_SYS_PARAM_H | |
48 | #include <sys/param.h> /* attempt to define endianness */ | |
49 | #endif | |
50 | ||
51 | #ifdef HAVE_ENDIAN_H | |
52 | # include <endian.h> /* attempt to define endianness */ | |
53 | #endif | |
54 | ||
55 | /* | |
56 | * My best guess at if you are big-endian or little-endian. This may | |
57 | * need adjustment. | |
58 | */ | |
59 | #if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \ | |
60 | __BYTE_ORDER == __LITTLE_ENDIAN) || \ | |
61 | (defined(i386) || defined(__i386__) || defined(__i486__) || \ | |
62 | defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL)) | |
63 | # define HASH_LITTLE_ENDIAN 1 | |
64 | # define HASH_BIG_ENDIAN 0 | |
65 | #elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \ | |
66 | __BYTE_ORDER == __BIG_ENDIAN) || \ | |
67 | (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel)) | |
68 | # define HASH_LITTLE_ENDIAN 0 | |
69 | # define HASH_BIG_ENDIAN 1 | |
70 | #else | |
71 | # define HASH_LITTLE_ENDIAN 0 | |
72 | # define HASH_BIG_ENDIAN 0 | |
73 | #endif | |
74 | ||
75 | #define hashsize(n) ((uint32_t)1<<(n)) | |
76 | #define hashmask(n) (hashsize(n)-1) | |
77 | #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) | |
78 | ||
79 | /* | |
80 | ------------------------------------------------------------------------------- | |
81 | mix -- mix 3 32-bit values reversibly. | |
82 | ||
83 | This is reversible, so any information in (a,b,c) before mix() is | |
84 | still in (a,b,c) after mix(). | |
85 | ||
86 | If four pairs of (a,b,c) inputs are run through mix(), or through | |
87 | mix() in reverse, there are at least 32 bits of the output that | |
88 | are sometimes the same for one pair and different for another pair. | |
89 | This was tested for: | |
90 | * pairs that differed by one bit, by two bits, in any combination | |
91 | of top bits of (a,b,c), or in any combination of bottom bits of | |
92 | (a,b,c). | |
93 | * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed | |
94 | the output delta to a Gray code (a^(a>>1)) so a string of 1's (as | |
95 | is commonly produced by subtraction) look like a single 1-bit | |
96 | difference. | |
97 | * the base values were pseudorandom, all zero but one bit set, or | |
98 | all zero plus a counter that starts at zero. | |
99 | ||
100 | Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that | |
101 | satisfy this are | |
102 | 4 6 8 16 19 4 | |
103 | 9 15 3 18 27 15 | |
104 | 14 9 3 7 17 3 | |
105 | Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing | |
106 | for "differ" defined as + with a one-bit base and a two-bit delta. I | |
107 | used http://burtleburtle.net/bob/hash/avalanche.html to choose | |
108 | the operations, constants, and arrangements of the variables. | |
109 | ||
110 | This does not achieve avalanche. There are input bits of (a,b,c) | |
111 | that fail to affect some output bits of (a,b,c), especially of a. The | |
112 | most thoroughly mixed value is c, but it doesn't really even achieve | |
113 | avalanche in c. | |
114 | ||
115 | This allows some parallelism. Read-after-writes are good at doubling | |
116 | the number of bits affected, so the goal of mixing pulls in the opposite | |
117 | direction as the goal of parallelism. I did what I could. Rotates | |
118 | seem to cost as much as shifts on every machine I could lay my hands | |
119 | on, and rotates are much kinder to the top and bottom bits, so I used | |
120 | rotates. | |
121 | ------------------------------------------------------------------------------- | |
122 | */ | |
123 | #define mix(a,b,c) \ | |
124 | { \ | |
125 | a -= c; a ^= rot(c, 4); c += b; \ | |
126 | b -= a; b ^= rot(a, 6); a += c; \ | |
127 | c -= b; c ^= rot(b, 8); b += a; \ | |
128 | a -= c; a ^= rot(c,16); c += b; \ | |
129 | b -= a; b ^= rot(a,19); a += c; \ | |
130 | c -= b; c ^= rot(b, 4); b += a; \ | |
131 | } | |
132 | ||
133 | /* | |
134 | ------------------------------------------------------------------------------- | |
135 | final -- final mixing of 3 32-bit values (a,b,c) into c | |
136 | ||
137 | Pairs of (a,b,c) values differing in only a few bits will usually | |
138 | produce values of c that look totally different. This was tested for | |
139 | * pairs that differed by one bit, by two bits, in any combination | |
140 | of top bits of (a,b,c), or in any combination of bottom bits of | |
141 | (a,b,c). | |
142 | * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed | |
143 | the output delta to a Gray code (a^(a>>1)) so a string of 1's (as | |
144 | is commonly produced by subtraction) look like a single 1-bit | |
145 | difference. | |
146 | * the base values were pseudorandom, all zero but one bit set, or | |
147 | all zero plus a counter that starts at zero. | |
148 | ||
149 | These constants passed: | |
150 | 14 11 25 16 4 14 24 | |
151 | 12 14 25 16 4 14 24 | |
152 | and these came close: | |
153 | 4 8 15 26 3 22 24 | |
154 | 10 8 15 26 3 22 24 | |
155 | 11 8 15 26 3 22 24 | |
156 | ------------------------------------------------------------------------------- | |
157 | */ | |
158 | #define final(a,b,c) \ | |
159 | { \ | |
160 | c ^= b; c -= rot(b,14); \ | |
161 | a ^= c; a -= rot(c,11); \ | |
162 | b ^= a; b -= rot(a,25); \ | |
163 | c ^= b; c -= rot(b,16); \ | |
164 | a ^= c; a -= rot(c,4); \ | |
165 | b ^= a; b -= rot(a,14); \ | |
166 | c ^= b; c -= rot(b,24); \ | |
167 | } | |
168 | ||
169 | /* | |
170 | ------------------------------------------------------------------------------- | |
171 | hashlittle() -- hash a variable-length key into a 32-bit value | |
172 | k : the key (the unaligned variable-length array of bytes) | |
173 | length : the length of the key, counting by bytes | |
174 | initval : can be any 4-byte value | |
175 | Returns a 32-bit value. Every bit of the key affects every bit of | |
176 | the return value. Two keys differing by one or two bits will have | |
177 | totally different hash values. | |
178 | ||
179 | The best hash table sizes are powers of 2. There is no need to do | |
180 | mod a prime (mod is sooo slow!). If you need less than 32 bits, | |
181 | use a bitmask. For example, if you need only 10 bits, do | |
182 | h = (h & hashmask(10)); | |
183 | In which case, the hash table should have hashsize(10) elements. | |
184 | ||
185 | If you are hashing n strings (uint8_t **)k, do it like this: | |
186 | for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h); | |
187 | ||
188 | By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this | |
189 | code any way you wish, private, educational, or commercial. It's free. | |
190 | ||
191 | Use for hash table lookup, or anything where one collision in 2^^32 is | |
192 | acceptable. Do NOT use for cryptographic purposes. | |
193 | ------------------------------------------------------------------------------- | |
194 | */ | |
195 | ||
196 | static uint32_t hashlittle(const void *key, size_t length, uint32_t initval) | |
197 | { | |
198 | uint32_t a,b,c; /* internal state */ | |
199 | union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ | |
200 | ||
201 | /* Set up the internal state */ | |
202 | a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; | |
203 | ||
204 | u.ptr = key; | |
205 | if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { | |
206 | const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ | |
207 | ||
208 | /* Detect Valgrind or AddressSanitizer */ | |
209 | #ifdef VALGRIND | |
210 | # define NO_MASKING_TRICK 1 | |
211 | #else | |
212 | # if defined(__has_feature) /* Clang */ | |
213 | # if __has_feature(address_sanitizer) /* is ASAN enabled? */ | |
214 | # define NO_MASKING_TRICK 1 | |
215 | # endif | |
216 | # else | |
217 | # if defined(__SANITIZE_ADDRESS__) /* GCC 4.8.x, is ASAN enabled? */ | |
218 | # define NO_MASKING_TRICK 1 | |
219 | # endif | |
220 | # endif | |
221 | #endif | |
222 | ||
223 | #ifdef NO_MASKING_TRICK | |
224 | const uint8_t *k8; | |
225 | #endif | |
226 | ||
227 | /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ | |
228 | while (length > 12) | |
229 | { | |
230 | a += k[0]; | |
231 | b += k[1]; | |
232 | c += k[2]; | |
233 | mix(a,b,c); | |
234 | length -= 12; | |
235 | k += 3; | |
236 | } | |
237 | ||
238 | /*----------------------------- handle the last (probably partial) block */ | |
239 | /* | |
240 | * "k[2]&0xffffff" actually reads beyond the end of the string, but | |
241 | * then masks off the part it's not allowed to read. Because the | |
242 | * string is aligned, the masked-off tail is in the same word as the | |
243 | * rest of the string. Every machine with memory protection I've seen | |
244 | * does it on word boundaries, so is OK with this. But VALGRIND will | |
245 | * still catch it and complain. The masking trick does make the hash | |
246 | * noticably faster for short strings (like English words). | |
247 | */ | |
248 | #ifndef NO_MASKING_TRICK | |
249 | ||
250 | switch(length) | |
251 | { | |
252 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; | |
253 | case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; | |
254 | case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; | |
255 | case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; | |
256 | case 8 : b+=k[1]; a+=k[0]; break; | |
257 | case 7 : b+=k[1]&0xffffff; a+=k[0]; break; | |
258 | case 6 : b+=k[1]&0xffff; a+=k[0]; break; | |
259 | case 5 : b+=k[1]&0xff; a+=k[0]; break; | |
260 | case 4 : a+=k[0]; break; | |
261 | case 3 : a+=k[0]&0xffffff; break; | |
262 | case 2 : a+=k[0]&0xffff; break; | |
263 | case 1 : a+=k[0]&0xff; break; | |
264 | case 0 : return c; /* zero length strings require no mixing */ | |
265 | } | |
266 | ||
267 | #else /* make valgrind happy */ | |
268 | ||
269 | k8 = (const uint8_t *)k; | |
270 | switch(length) | |
271 | { | |
272 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; | |
273 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ | |
274 | case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ | |
275 | case 9 : c+=k8[8]; /* fall through */ | |
276 | case 8 : b+=k[1]; a+=k[0]; break; | |
277 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ | |
278 | case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ | |
279 | case 5 : b+=k8[4]; /* fall through */ | |
280 | case 4 : a+=k[0]; break; | |
281 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ | |
282 | case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ | |
283 | case 1 : a+=k8[0]; break; | |
284 | case 0 : return c; | |
285 | } | |
286 | ||
287 | #endif /* !valgrind */ | |
288 | ||
289 | } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { | |
290 | const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ | |
291 | const uint8_t *k8; | |
292 | ||
293 | /*--------------- all but last block: aligned reads and different mixing */ | |
294 | while (length > 12) | |
295 | { | |
296 | a += k[0] + (((uint32_t)k[1])<<16); | |
297 | b += k[2] + (((uint32_t)k[3])<<16); | |
298 | c += k[4] + (((uint32_t)k[5])<<16); | |
299 | mix(a,b,c); | |
300 | length -= 12; | |
301 | k += 6; | |
302 | } | |
303 | ||
304 | /*----------------------------- handle the last (probably partial) block */ | |
305 | k8 = (const uint8_t *)k; | |
306 | switch(length) | |
307 | { | |
308 | case 12: c+=k[4]+(((uint32_t)k[5])<<16); | |
309 | b+=k[2]+(((uint32_t)k[3])<<16); | |
310 | a+=k[0]+(((uint32_t)k[1])<<16); | |
311 | break; | |
312 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ | |
313 | case 10: c+=k[4]; | |
314 | b+=k[2]+(((uint32_t)k[3])<<16); | |
315 | a+=k[0]+(((uint32_t)k[1])<<16); | |
316 | break; | |
317 | case 9 : c+=k8[8]; /* fall through */ | |
318 | case 8 : b+=k[2]+(((uint32_t)k[3])<<16); | |
319 | a+=k[0]+(((uint32_t)k[1])<<16); | |
320 | break; | |
321 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ | |
322 | case 6 : b+=k[2]; | |
323 | a+=k[0]+(((uint32_t)k[1])<<16); | |
324 | break; | |
325 | case 5 : b+=k8[4]; /* fall through */ | |
326 | case 4 : a+=k[0]+(((uint32_t)k[1])<<16); | |
327 | break; | |
328 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ | |
329 | case 2 : a+=k[0]; | |
330 | break; | |
331 | case 1 : a+=k8[0]; | |
332 | break; | |
333 | case 0 : return c; /* zero length requires no mixing */ | |
334 | } | |
335 | ||
336 | } else { /* need to read the key one byte at a time */ | |
337 | const uint8_t *k = (const uint8_t *)key; | |
338 | ||
339 | /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ | |
340 | while (length > 12) | |
341 | { | |
342 | a += k[0]; | |
343 | a += ((uint32_t)k[1])<<8; | |
344 | a += ((uint32_t)k[2])<<16; | |
345 | a += ((uint32_t)k[3])<<24; | |
346 | b += k[4]; | |
347 | b += ((uint32_t)k[5])<<8; | |
348 | b += ((uint32_t)k[6])<<16; | |
349 | b += ((uint32_t)k[7])<<24; | |
350 | c += k[8]; | |
351 | c += ((uint32_t)k[9])<<8; | |
352 | c += ((uint32_t)k[10])<<16; | |
353 | c += ((uint32_t)k[11])<<24; | |
354 | mix(a,b,c); | |
355 | length -= 12; | |
356 | k += 12; | |
357 | } | |
358 | ||
359 | /*-------------------------------- last block: affect all 32 bits of (c) */ | |
360 | switch(length) /* all the case statements fall through */ | |
361 | { | |
362 | case 12: c+=((uint32_t)k[11])<<24; /* fall through */ | |
363 | case 11: c+=((uint32_t)k[10])<<16; /* fall through */ | |
364 | case 10: c+=((uint32_t)k[9])<<8; /* fall through */ | |
365 | case 9 : c+=k[8]; /* fall through */ | |
366 | case 8 : b+=((uint32_t)k[7])<<24; /* fall through */ | |
367 | case 7 : b+=((uint32_t)k[6])<<16; /* fall through */ | |
368 | case 6 : b+=((uint32_t)k[5])<<8; /* fall through */ | |
369 | case 5 : b+=k[4]; /* fall through */ | |
370 | case 4 : a+=((uint32_t)k[3])<<24; /* fall through */ | |
371 | case 3 : a+=((uint32_t)k[2])<<16; /* fall through */ | |
372 | case 2 : a+=((uint32_t)k[1])<<8; /* fall through */ | |
373 | case 1 : a+=k[0]; | |
374 | break; | |
375 | case 0 : return c; | |
376 | } | |
377 | } | |
378 | ||
379 | final(a,b,c); | |
380 | return c; | |
381 | } |