| 1 | //----------------------------------------------------------------------------- |
| 2 | // Jonathan Westhues, Mar 2006 |
| 3 | // Edits by Gerhard de Koning Gans, Sep 2007 (##) |
| 4 | // |
| 5 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
| 6 | // at your option, any later version. See the LICENSE.txt file for the text of |
| 7 | // the license. |
| 8 | //----------------------------------------------------------------------------- |
| 9 | // The main application code. This is the first thing called after start.c |
| 10 | // executes. |
| 11 | //----------------------------------------------------------------------------- |
| 12 | #include "usb_cdc.h" |
| 13 | #include "proxmark3.h" |
| 14 | #include "apps.h" |
| 15 | #include "util.h" |
| 16 | #include "printf.h" |
| 17 | #include "string.h" |
| 18 | #include "legicrf.h" |
| 19 | #include "lfsampling.h" |
| 20 | #include "BigBuf.h" |
| 21 | #include "mifareutil.h" |
| 22 | |
| 23 | #ifdef WITH_LCD |
| 24 | #include "LCD.h" |
| 25 | #endif |
| 26 | |
| 27 | // Craig Young - 14a stand-alone code |
| 28 | #ifdef WITH_ISO14443a_StandAlone |
| 29 | #include "iso14443a.h" |
| 30 | #include "protocols.h" |
| 31 | #endif |
| 32 | |
| 33 | //============================================================================= |
| 34 | // A buffer where we can queue things up to be sent through the FPGA, for |
| 35 | // any purpose (fake tag, as reader, whatever). We go MSB first, since that |
| 36 | // is the order in which they go out on the wire. |
| 37 | //============================================================================= |
| 38 | |
| 39 | #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits |
| 40 | uint8_t ToSend[TOSEND_BUFFER_SIZE]; |
| 41 | int ToSendMax = 0; |
| 42 | static int ToSendBit; |
| 43 | struct common_area common_area __attribute__((section(".commonarea"))); |
| 44 | |
| 45 | void ToSendReset(void) |
| 46 | { |
| 47 | ToSendMax = -1; |
| 48 | ToSendBit = 8; |
| 49 | } |
| 50 | |
| 51 | void ToSendStuffBit(int b) { |
| 52 | if(ToSendBit >= 8) { |
| 53 | ++ToSendMax; |
| 54 | ToSend[ToSendMax] = 0; |
| 55 | ToSendBit = 0; |
| 56 | } |
| 57 | |
| 58 | if(b) |
| 59 | ToSend[ToSendMax] |= (1 << (7 - ToSendBit)); |
| 60 | |
| 61 | ++ToSendBit; |
| 62 | |
| 63 | if(ToSendMax >= sizeof(ToSend)) { |
| 64 | ToSendBit = 0; |
| 65 | DbpString("ToSendStuffBit overflowed!"); |
| 66 | } |
| 67 | } |
| 68 | |
| 69 | void PrintToSendBuffer(void){ |
| 70 | DbpString("Printing ToSendBuffer:"); |
| 71 | Dbhexdump(ToSendMax, ToSend, 0); |
| 72 | } |
| 73 | |
| 74 | void print_result(char *name, uint8_t *buf, size_t len) { |
| 75 | uint8_t *p = buf; |
| 76 | |
| 77 | if ( len % 16 == 0 ) { |
| 78 | for(; p-buf < len; p += 16) |
| 79 | Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", |
| 80 | name, |
| 81 | p-buf, |
| 82 | len, |
| 83 | p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15] |
| 84 | ); |
| 85 | } |
| 86 | else { |
| 87 | for(; p-buf < len; p += 8) |
| 88 | Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x", |
| 89 | name, |
| 90 | p-buf, |
| 91 | len, |
| 92 | p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]); |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | //============================================================================= |
| 97 | // Debug print functions, to go out over USB, to the usual PC-side client. |
| 98 | //============================================================================= |
| 99 | |
| 100 | void DbpStringEx(char *str, uint32_t cmd){ |
| 101 | byte_t len = strlen(str); |
| 102 | cmd_send(CMD_DEBUG_PRINT_STRING,len, cmd,0,(byte_t*)str,len); |
| 103 | } |
| 104 | |
| 105 | void DbpString(char *str) { |
| 106 | DbpStringEx(str, 0); |
| 107 | } |
| 108 | |
| 109 | #if 0 |
| 110 | void DbpIntegers(int x1, int x2, int x3) { |
| 111 | cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0); |
| 112 | } |
| 113 | #endif |
| 114 | void DbprintfEx(uint32_t cmd, const char *fmt, ...) { |
| 115 | // should probably limit size here; oh well, let's just use a big buffer |
| 116 | char output_string[128] = {0x00}; |
| 117 | va_list ap; |
| 118 | |
| 119 | va_start(ap, fmt); |
| 120 | kvsprintf(fmt, output_string, 10, ap); |
| 121 | va_end(ap); |
| 122 | |
| 123 | DbpStringEx(output_string, cmd); |
| 124 | } |
| 125 | |
| 126 | void Dbprintf(const char *fmt, ...) { |
| 127 | // should probably limit size here; oh well, let's just use a big buffer |
| 128 | char output_string[128] = {0x00}; |
| 129 | va_list ap; |
| 130 | |
| 131 | va_start(ap, fmt); |
| 132 | kvsprintf(fmt, output_string, 10, ap); |
| 133 | va_end(ap); |
| 134 | |
| 135 | DbpString(output_string); |
| 136 | } |
| 137 | |
| 138 | // prints HEX & ASCII |
| 139 | void Dbhexdump(int len, uint8_t *d, bool bAsci) { |
| 140 | int l=0, i; |
| 141 | char ascii[9]; |
| 142 | |
| 143 | while (len>0) { |
| 144 | |
| 145 | l = (len>8) ? 8 : len; |
| 146 | |
| 147 | memcpy(ascii,d,l); |
| 148 | ascii[l]=0; |
| 149 | |
| 150 | // filter safe ascii |
| 151 | for (i=0; i<l; ++i) |
| 152 | if (ascii[i]<32 || ascii[i]>126) ascii[i]='.'; |
| 153 | |
| 154 | if (bAsci) |
| 155 | Dbprintf("%-8s %*D",ascii,l,d," "); |
| 156 | else |
| 157 | Dbprintf("%*D",l,d," "); |
| 158 | |
| 159 | len -= 8; |
| 160 | d += 8; |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | //----------------------------------------------------------------------------- |
| 165 | // Read an ADC channel and block till it completes, then return the result |
| 166 | // in ADC units (0 to 1023). Also a routine to average 32 samples and |
| 167 | // return that. |
| 168 | //----------------------------------------------------------------------------- |
| 169 | static int ReadAdc(int ch) |
| 170 | { |
| 171 | uint32_t d; |
| 172 | |
| 173 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; |
| 174 | AT91C_BASE_ADC->ADC_MR = |
| 175 | ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz |
| 176 | ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us |
| 177 | ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us |
| 178 | |
| 179 | // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value. |
| 180 | // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant |
| 181 | // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged. |
| 182 | // |
| 183 | // The maths are: |
| 184 | // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be |
| 185 | // |
| 186 | // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%) |
| 187 | // |
| 188 | // Note: with the "historic" values in the comments above, the error was 34% !!! |
| 189 | |
| 190 | AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch); |
| 191 | |
| 192 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; |
| 193 | |
| 194 | while (!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) ; |
| 195 | |
| 196 | d = AT91C_BASE_ADC->ADC_CDR[ch]; |
| 197 | return d; |
| 198 | } |
| 199 | |
| 200 | int AvgAdc(int ch) // was static - merlok |
| 201 | { |
| 202 | int i, a = 0; |
| 203 | for(i = 0; i < 32; ++i) |
| 204 | a += ReadAdc(ch); |
| 205 | |
| 206 | return (a + 15) >> 5; |
| 207 | } |
| 208 | |
| 209 | |
| 210 | void MeasureAntennaTuning(void) { |
| 211 | |
| 212 | uint8_t LF_Results[256]; |
| 213 | int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; |
| 214 | int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV |
| 215 | |
| 216 | memset(LF_Results, 0, sizeof(LF_Results)); |
| 217 | LED_B_ON(); |
| 218 | |
| 219 | /* |
| 220 | * Sweeps the useful LF range of the proxmark from |
| 221 | * 46.8kHz (divisor=255) to 600kHz (divisor=19) and |
| 222 | * read the voltage in the antenna, the result left |
| 223 | * in the buffer is a graph which should clearly show |
| 224 | * the resonating frequency of your LF antenna |
| 225 | * ( hopefully around 95 if it is tuned to 125kHz!) |
| 226 | */ |
| 227 | |
| 228 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
| 229 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
| 230 | |
| 231 | for (i = 255; i >= 19; i--) { |
| 232 | WDT_HIT(); |
| 233 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); |
| 234 | SpinDelay(20); |
| 235 | adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10); |
| 236 | if (i==95) vLf125 = adcval; // voltage at 125Khz |
| 237 | if (i==89) vLf134 = adcval; // voltage at 134Khz |
| 238 | |
| 239 | LF_Results[i] = adcval >> 8; // scale int to fit in byte for graphing purposes |
| 240 | if(LF_Results[i] > peak) { |
| 241 | peakv = adcval; |
| 242 | peak = LF_Results[i]; |
| 243 | peakf = i; |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | LED_A_ON(); |
| 248 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. |
| 249 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
| 250 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); |
| 251 | SpinDelay(20); |
| 252 | vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; |
| 253 | |
| 254 | cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134 << 16), vHf, peakf | (peakv << 16), LF_Results, 256); |
| 255 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 256 | LEDsoff(); |
| 257 | } |
| 258 | |
| 259 | void MeasureAntennaTuningHf(void) { |
| 260 | int vHf = 0; // in mV |
| 261 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. |
| 262 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
| 263 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); |
| 264 | |
| 265 | while ( !BUTTON_PRESS() ){ |
| 266 | SpinDelay(20); |
| 267 | vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; |
| 268 | //Dbprintf("%d mV",vHf); |
| 269 | DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF, "%d mV",vHf); |
| 270 | } |
| 271 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 272 | DbpString("cancelled"); |
| 273 | } |
| 274 | |
| 275 | |
| 276 | void ReadMem(int addr) { |
| 277 | const uint8_t *data = ((uint8_t *)addr); |
| 278 | |
| 279 | Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x", |
| 280 | addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); |
| 281 | } |
| 282 | |
| 283 | /* osimage version information is linked in */ |
| 284 | extern struct version_information version_information; |
| 285 | /* bootrom version information is pointed to from _bootphase1_version_pointer */ |
| 286 | extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__; |
| 287 | void SendVersion(void) |
| 288 | { |
| 289 | char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */ |
| 290 | char VersionString[USB_CMD_DATA_SIZE] = { '\0' }; |
| 291 | |
| 292 | /* Try to find the bootrom version information. Expect to find a pointer at |
| 293 | * symbol _bootphase1_version_pointer, perform slight sanity checks on the |
| 294 | * pointer, then use it. |
| 295 | */ |
| 296 | char *bootrom_version = *(char**)&_bootphase1_version_pointer; |
| 297 | |
| 298 | if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) { |
| 299 | strcat(VersionString, "bootrom version information appears invalid\n"); |
| 300 | } else { |
| 301 | FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version); |
| 302 | strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); |
| 303 | } |
| 304 | |
| 305 | FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information); |
| 306 | strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); |
| 307 | |
| 308 | FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp)); |
| 309 | strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); |
| 310 | |
| 311 | FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp)); |
| 312 | strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); |
| 313 | |
| 314 | // Send Chip ID and used flash memory |
| 315 | uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start; |
| 316 | uint32_t compressed_data_section_size = common_area.arg1; |
| 317 | cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString)); |
| 318 | } |
| 319 | |
| 320 | // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time. |
| 321 | // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included. |
| 322 | void printUSBSpeed(void) |
| 323 | { |
| 324 | Dbprintf("USB Speed:"); |
| 325 | Dbprintf(" Sending USB packets to client..."); |
| 326 | |
| 327 | #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds |
| 328 | uint8_t *test_data = BigBuf_get_addr(); |
| 329 | uint32_t end_time; |
| 330 | |
| 331 | uint32_t start_time = end_time = GetTickCount(); |
| 332 | uint32_t bytes_transferred = 0; |
| 333 | |
| 334 | LED_B_ON(); |
| 335 | while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) { |
| 336 | cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE); |
| 337 | end_time = GetTickCount(); |
| 338 | bytes_transferred += USB_CMD_DATA_SIZE; |
| 339 | } |
| 340 | LED_B_OFF(); |
| 341 | |
| 342 | Dbprintf(" Time elapsed: %dms", end_time - start_time); |
| 343 | Dbprintf(" Bytes transferred: %d", bytes_transferred); |
| 344 | Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s", |
| 345 | 1000 * bytes_transferred / (end_time - start_time)); |
| 346 | |
| 347 | } |
| 348 | |
| 349 | /** |
| 350 | * Prints runtime information about the PM3. |
| 351 | **/ |
| 352 | void SendStatus(void) { |
| 353 | BigBuf_print_status(); |
| 354 | Fpga_print_status(); |
| 355 | printConfig(); //LF Sampling config |
| 356 | printUSBSpeed(); |
| 357 | Dbprintf("Various"); |
| 358 | Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL); |
| 359 | Dbprintf(" ToSendMax..........%d", ToSendMax); |
| 360 | Dbprintf(" ToSendBit..........%d", ToSendBit); |
| 361 | Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE); |
| 362 | |
| 363 | cmd_send(CMD_ACK,1,0,0,0,0); |
| 364 | } |
| 365 | |
| 366 | #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF) |
| 367 | |
| 368 | #define OPTS 2 |
| 369 | void StandAloneMode() |
| 370 | { |
| 371 | DbpString("Stand-alone mode! No PC necessary."); |
| 372 | // Oooh pretty -- notify user we're in elite samy mode now |
| 373 | LED(LED_RED, 200); |
| 374 | LED(LED_ORANGE, 200); |
| 375 | LED(LED_GREEN, 200); |
| 376 | LED(LED_ORANGE, 200); |
| 377 | LED(LED_RED, 200); |
| 378 | LED(LED_ORANGE, 200); |
| 379 | LED(LED_GREEN, 200); |
| 380 | LED(LED_ORANGE, 200); |
| 381 | LED(LED_RED, 200); |
| 382 | } |
| 383 | #endif |
| 384 | |
| 385 | #ifdef WITH_ISO14443a_StandAlone |
| 386 | |
| 387 | typedef struct { |
| 388 | uint8_t uid[10]; |
| 389 | uint8_t uidlen; |
| 390 | uint8_t atqa[2]; |
| 391 | uint8_t sak; |
| 392 | } __attribute__((__packed__)) card_clone_t; |
| 393 | |
| 394 | void StandAloneMode14a() |
| 395 | { |
| 396 | StandAloneMode(); |
| 397 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
| 398 | |
| 399 | int selected = 0, playing = 0, iGotoRecord = 0, iGotoClone = 0; |
| 400 | int cardRead[OPTS] = {0}; |
| 401 | |
| 402 | card_clone_t uids[OPTS]; |
| 403 | iso14a_card_select_t card_info[OPTS]; |
| 404 | uint8_t params = (MAGIC_SINGLE | MAGIC_DATAIN); |
| 405 | |
| 406 | LED(selected + 1, 0); |
| 407 | |
| 408 | for (;;) |
| 409 | { |
| 410 | usb_poll(); |
| 411 | WDT_HIT(); |
| 412 | SpinDelay(300); |
| 413 | |
| 414 | if (iGotoRecord == 1 || cardRead[selected] == 0) |
| 415 | { |
| 416 | iGotoRecord = 0; |
| 417 | LEDsoff(); |
| 418 | LED(selected + 1, 0); |
| 419 | LED(LED_RED2, 0); |
| 420 | |
| 421 | // record |
| 422 | Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected); |
| 423 | /* need this delay to prevent catching some weird data */ |
| 424 | SpinDelay(500); |
| 425 | iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); |
| 426 | |
| 427 | for ( ; ; ) |
| 428 | { |
| 429 | WDT_HIT(); |
| 430 | if (BUTTON_PRESS()) { |
| 431 | if (cardRead[selected]) { |
| 432 | Dbprintf("Button press detected -- replaying card in bank[%d]", selected); |
| 433 | break; |
| 434 | } |
| 435 | else if (cardRead[(selected+1) % OPTS]) { |
| 436 | Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS); |
| 437 | selected = (selected+1) % OPTS; |
| 438 | break; // playing = 1; |
| 439 | } |
| 440 | else { |
| 441 | Dbprintf("Button press detected but no stored tag to play. (Ignoring button)"); |
| 442 | SpinDelay(300); |
| 443 | } |
| 444 | } |
| 445 | if (!iso14443a_select_card(NULL, &card_info[selected], NULL, true, 0)) |
| 446 | continue; |
| 447 | else |
| 448 | { |
| 449 | Dbprintf("Read UID:"); |
| 450 | Dbhexdump(card_info[selected].uidlen, card_info[selected].uid, 0); |
| 451 | |
| 452 | if (memcmp(uids[(selected+1)%OPTS].uid, card_info[selected].uid, card_info[selected].uidlen ) == 0 ) { |
| 453 | Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping."); |
| 454 | } |
| 455 | else { |
| 456 | |
| 457 | uids[selected].sak = card_info[selected].sak; |
| 458 | uids[selected].uidlen = card_info[selected].uidlen; |
| 459 | memcpy(uids[selected].uid , card_info[selected].uid, uids[selected].uidlen); |
| 460 | memcpy(uids[selected].atqa, card_info[selected].atqa, 2); |
| 461 | |
| 462 | if (uids[selected].uidlen > 4) |
| 463 | Dbprintf("Bank[%d] received a 7-byte UID", selected); |
| 464 | else |
| 465 | Dbprintf("Bank[%d] received a 4-byte UID", selected); |
| 466 | break; |
| 467 | } |
| 468 | } |
| 469 | } |
| 470 | Dbprintf("ATQA = %02X%02X", uids[selected].atqa[0], uids[selected].atqa[1]); |
| 471 | Dbprintf("SAK = %02X", uids[selected].sak); |
| 472 | LEDsoff(); |
| 473 | LED(LED_GREEN, 200); |
| 474 | LED(LED_ORANGE, 200); |
| 475 | LED(LED_GREEN, 200); |
| 476 | LED(LED_ORANGE, 200); |
| 477 | |
| 478 | LEDsoff(); |
| 479 | LED(selected + 1, 0); |
| 480 | |
| 481 | // Next state is replay: |
| 482 | playing = 1; |
| 483 | |
| 484 | cardRead[selected] = 1; |
| 485 | } |
| 486 | /* MF Classic UID clone */ |
| 487 | else if (iGotoClone==1) |
| 488 | { |
| 489 | iGotoClone=0; |
| 490 | LEDsoff(); |
| 491 | LED(selected + 1, 0); |
| 492 | LED(LED_ORANGE, 250); |
| 493 | |
| 494 | // magiccards holds 4bytes uid. |
| 495 | uint64_t tmpuid = bytes_to_num(uids[selected].uid, 4); |
| 496 | |
| 497 | // record |
| 498 | Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, tmpuid & 0xFFFFFFFF); |
| 499 | |
| 500 | // wait for button to be released |
| 501 | // Delay cloning until card is in place |
| 502 | while(BUTTON_PRESS()) |
| 503 | WDT_HIT(); |
| 504 | |
| 505 | Dbprintf("Starting clone. [Bank: %u]", selected); |
| 506 | // need this delay to prevent catching some weird data |
| 507 | SpinDelay(500); |
| 508 | // Begin clone function here: |
| 509 | /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards: |
| 510 | UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}}; |
| 511 | memcpy(c.d.asBytes, data, 16); |
| 512 | SendCommand(&c); |
| 513 | |
| 514 | Block read is similar: |
| 515 | UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}}; |
| 516 | We need to imitate that call with blockNo 0 to set a uid. |
| 517 | |
| 518 | The get and set commands are handled in this file: |
| 519 | // Work with "magic Chinese" card |
| 520 | case CMD_MIFARE_CSETBLOCK: |
| 521 | MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes); |
| 522 | break; |
| 523 | case CMD_MIFARE_CGETBLOCK: |
| 524 | MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes); |
| 525 | break; |
| 526 | |
| 527 | mfCSetUID provides example logic for UID set workflow: |
| 528 | -Read block0 from card in field with MifareCGetBlock() |
| 529 | -Configure new values without replacing reserved bytes |
| 530 | memcpy(block0, uid, 4); // Copy UID bytes from byte array |
| 531 | // Mifare UID BCC |
| 532 | block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5 |
| 533 | Bytes 5-7 are reserved SAK and ATQA for mifare classic |
| 534 | -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it |
| 535 | */ |
| 536 | uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0}; |
| 537 | // arg0 = Flags, arg1=blockNo |
| 538 | MifareCGetBlock(params, 0, oldBlock0); |
| 539 | if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) { |
| 540 | Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected); |
| 541 | playing = 1; |
| 542 | } |
| 543 | else { |
| 544 | Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0], oldBlock0[1], oldBlock0[2], oldBlock0[3]); |
| 545 | memcpy(newBlock0, oldBlock0, 16); |
| 546 | |
| 547 | // Copy uid for bank (2nd is for longer UIDs not supported if classic) |
| 548 | memcpy(newBlock0, uids[selected].uid, 4); |
| 549 | newBlock0[4] = newBlock0[0] ^ newBlock0[1] ^ newBlock0[2] ^ newBlock0[3]; |
| 550 | |
| 551 | // arg0 = workFlags, arg1 = blockNo, datain |
| 552 | MifareCSetBlock(params, 0, newBlock0); |
| 553 | MifareCGetBlock(params, 0, testBlock0); |
| 554 | |
| 555 | if (memcmp(testBlock0, newBlock0, 16)==0) { |
| 556 | DbpString("Cloned successfull!"); |
| 557 | cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it |
| 558 | playing = 0; |
| 559 | iGotoRecord = 1; |
| 560 | selected = (selected + 1) % OPTS; |
| 561 | } else { |
| 562 | Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected); |
| 563 | playing = 1; |
| 564 | } |
| 565 | } |
| 566 | LEDsoff(); |
| 567 | LED(selected + 1, 0); |
| 568 | } |
| 569 | // Change where to record (or begin playing) |
| 570 | else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected]) |
| 571 | { |
| 572 | LEDsoff(); |
| 573 | LED(selected + 1, 0); |
| 574 | |
| 575 | // Begin transmitting |
| 576 | if (playing) |
| 577 | { |
| 578 | LED(LED_GREEN, 0); |
| 579 | DbpString("Playing"); |
| 580 | for ( ; ; ) { |
| 581 | WDT_HIT(); |
| 582 | int button_action = BUTTON_HELD(1000); |
| 583 | if (button_action == 0) { // No button action, proceed with sim |
| 584 | |
| 585 | uint8_t flags = FLAG_4B_UID_IN_DATA; |
| 586 | uint8_t data[USB_CMD_DATA_SIZE] = {0}; // in case there is a read command received we shouldn't break |
| 587 | |
| 588 | memcpy(data, uids[selected].uid, uids[selected].uidlen); |
| 589 | |
| 590 | uint64_t tmpuid = bytes_to_num(uids[selected].uid, uids[selected].uidlen); |
| 591 | |
| 592 | if ( uids[selected].uidlen == 7 ) { |
| 593 | flags = FLAG_7B_UID_IN_DATA; |
| 594 | Dbprintf("Simulating ISO14443a tag with uid: %02x%08x [Bank: %u]", tmpuid >> 32, tmpuid & 0xFFFFFFFF , selected); |
| 595 | } else { |
| 596 | Dbprintf("Simulating ISO14443a tag with uid: %08x [Bank: %u]", tmpuid & 0xFFFFFFFF , selected); |
| 597 | } |
| 598 | |
| 599 | if (uids[selected].sak == 0x08 && uids[selected].atqa[0] == 0x04 && uids[selected].atqa[1] == 0) { |
| 600 | DbpString("Mifare Classic 1k"); |
| 601 | SimulateIso14443aTag(1, flags, data); |
| 602 | } else if (uids[selected].sak == 0x18 && uids[selected].atqa[0] == 0x02 && uids[selected].atqa[1] == 0) { |
| 603 | DbpString("Mifare Classic 4k (4b uid)"); |
| 604 | SimulateIso14443aTag(8, flags, data); |
| 605 | } else if (uids[selected].sak == 0x08 && uids[selected].atqa[0] == 0x44 && uids[selected].atqa[1] == 0) { |
| 606 | DbpString("Mifare Classic 4k (7b uid)"); |
| 607 | SimulateIso14443aTag(8, flags, data); |
| 608 | } else if (uids[selected].sak == 0x00 && uids[selected].atqa[0] == 0x44 && uids[selected].atqa[1] == 0) { |
| 609 | DbpString("Mifare Ultralight"); |
| 610 | SimulateIso14443aTag(2, flags, data); |
| 611 | } else if (uids[selected].sak == 0x20 && uids[selected].atqa[0] == 0x04 && uids[selected].atqa[1] == 0x03) { |
| 612 | DbpString("Mifare DESFire"); |
| 613 | SimulateIso14443aTag(3, flags, data); |
| 614 | } |
| 615 | else { |
| 616 | Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation"); |
| 617 | SimulateIso14443aTag(1, flags, data); |
| 618 | } |
| 619 | } |
| 620 | else if (button_action == BUTTON_SINGLE_CLICK) { |
| 621 | selected = (selected + 1) % OPTS; |
| 622 | Dbprintf("Done playing. Switching to record mode on bank %d",selected); |
| 623 | iGotoRecord = 1; |
| 624 | break; |
| 625 | } |
| 626 | else if (button_action == BUTTON_HOLD) { |
| 627 | Dbprintf("Playtime over. Begin cloning..."); |
| 628 | iGotoClone = 1; |
| 629 | break; |
| 630 | } |
| 631 | WDT_HIT(); |
| 632 | } |
| 633 | |
| 634 | /* We pressed a button so ignore it here with a delay */ |
| 635 | SpinDelay(300); |
| 636 | LEDsoff(); |
| 637 | LED(selected + 1, 0); |
| 638 | } |
| 639 | else |
| 640 | while(BUTTON_PRESS()) |
| 641 | WDT_HIT(); |
| 642 | } |
| 643 | } |
| 644 | } |
| 645 | #elif WITH_LF |
| 646 | // samy's sniff and repeat routine |
| 647 | void SamyRun() |
| 648 | { |
| 649 | StandAloneMode(); |
| 650 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
| 651 | |
| 652 | int high[OPTS], low[OPTS]; |
| 653 | int selected = 0; |
| 654 | int playing = 0; |
| 655 | int cardRead = 0; |
| 656 | |
| 657 | // Turn on selected LED |
| 658 | LED(selected + 1, 0); |
| 659 | |
| 660 | for (;;) { |
| 661 | usb_poll(); |
| 662 | WDT_HIT(); |
| 663 | |
| 664 | // Was our button held down or pressed? |
| 665 | int button_pressed = BUTTON_HELD(1000); |
| 666 | SpinDelay(300); |
| 667 | |
| 668 | // Button was held for a second, begin recording |
| 669 | if (button_pressed > 0 && cardRead == 0) |
| 670 | { |
| 671 | LEDsoff(); |
| 672 | LED(selected + 1, 0); |
| 673 | LED(LED_RED2, 0); |
| 674 | |
| 675 | // record |
| 676 | DbpString("Starting recording"); |
| 677 | |
| 678 | // wait for button to be released |
| 679 | while(BUTTON_PRESS()) |
| 680 | WDT_HIT(); |
| 681 | |
| 682 | /* need this delay to prevent catching some weird data */ |
| 683 | SpinDelay(500); |
| 684 | |
| 685 | CmdHIDdemodFSK(1, &high[selected], &low[selected], 0); |
| 686 | Dbprintf("Recorded %x %x %08x", selected, high[selected], low[selected]); |
| 687 | |
| 688 | LEDsoff(); |
| 689 | LED(selected + 1, 0); |
| 690 | // Finished recording |
| 691 | // If we were previously playing, set playing off |
| 692 | // so next button push begins playing what we recorded |
| 693 | playing = 0; |
| 694 | cardRead = 1; |
| 695 | } |
| 696 | else if (button_pressed > 0 && cardRead == 1) { |
| 697 | LEDsoff(); |
| 698 | LED(selected + 1, 0); |
| 699 | LED(LED_ORANGE, 0); |
| 700 | |
| 701 | // record |
| 702 | Dbprintf("Cloning %x %x %08x", selected, high[selected], low[selected]); |
| 703 | |
| 704 | // wait for button to be released |
| 705 | while(BUTTON_PRESS()) |
| 706 | WDT_HIT(); |
| 707 | |
| 708 | /* need this delay to prevent catching some weird data */ |
| 709 | SpinDelay(500); |
| 710 | |
| 711 | CopyHIDtoT55x7(0, high[selected], low[selected], 0); |
| 712 | Dbprintf("Cloned %x %x %08x", selected, high[selected], low[selected]); |
| 713 | |
| 714 | LEDsoff(); |
| 715 | LED(selected + 1, 0); |
| 716 | // Finished recording |
| 717 | |
| 718 | // If we were previously playing, set playing off |
| 719 | // so next button push begins playing what we recorded |
| 720 | playing = 0; |
| 721 | cardRead = 0; |
| 722 | } |
| 723 | |
| 724 | // Change where to record (or begin playing) |
| 725 | else if (button_pressed) { |
| 726 | // Next option if we were previously playing |
| 727 | if (playing) |
| 728 | selected = (selected + 1) % OPTS; |
| 729 | playing = !playing; |
| 730 | |
| 731 | LEDsoff(); |
| 732 | LED(selected + 1, 0); |
| 733 | |
| 734 | // Begin transmitting |
| 735 | if (playing) |
| 736 | { |
| 737 | LED(LED_GREEN, 0); |
| 738 | DbpString("Playing"); |
| 739 | // wait for button to be released |
| 740 | while(BUTTON_PRESS()) |
| 741 | WDT_HIT(); |
| 742 | |
| 743 | Dbprintf("%x %x %08x", selected, high[selected], low[selected]); |
| 744 | CmdHIDsimTAG(high[selected], low[selected], 0); |
| 745 | DbpString("Done playing"); |
| 746 | |
| 747 | if (BUTTON_HELD(1000) > 0) { |
| 748 | DbpString("Exiting"); |
| 749 | LEDsoff(); |
| 750 | return; |
| 751 | } |
| 752 | |
| 753 | /* We pressed a button so ignore it here with a delay */ |
| 754 | SpinDelay(300); |
| 755 | |
| 756 | // when done, we're done playing, move to next option |
| 757 | selected = (selected + 1) % OPTS; |
| 758 | playing = !playing; |
| 759 | LEDsoff(); |
| 760 | LED(selected + 1, 0); |
| 761 | } |
| 762 | else |
| 763 | while(BUTTON_PRESS()) |
| 764 | WDT_HIT(); |
| 765 | } |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | #endif |
| 770 | /* |
| 771 | OBJECTIVE |
| 772 | Listen and detect an external reader. Determine the best location |
| 773 | for the antenna. |
| 774 | |
| 775 | INSTRUCTIONS: |
| 776 | Inside the ListenReaderField() function, there is two mode. |
| 777 | By default, when you call the function, you will enter mode 1. |
| 778 | If you press the PM3 button one time, you will enter mode 2. |
| 779 | If you press the PM3 button a second time, you will exit the function. |
| 780 | |
| 781 | DESCRIPTION OF MODE 1: |
| 782 | This mode just listens for an external reader field and lights up green |
| 783 | for HF and/or red for LF. This is the original mode of the detectreader |
| 784 | function. |
| 785 | |
| 786 | DESCRIPTION OF MODE 2: |
| 787 | This mode will visually represent, using the LEDs, the actual strength of the |
| 788 | current compared to the maximum current detected. Basically, once you know |
| 789 | what kind of external reader is present, it will help you spot the best location to place |
| 790 | your antenna. You will probably not get some good results if there is a LF and a HF reader |
| 791 | at the same place! :-) |
| 792 | |
| 793 | LIGHT SCHEME USED: |
| 794 | */ |
| 795 | static const char LIGHT_SCHEME[] = { |
| 796 | 0x0, /* ---- | No field detected */ |
| 797 | 0x1, /* X--- | 14% of maximum current detected */ |
| 798 | 0x2, /* -X-- | 29% of maximum current detected */ |
| 799 | 0x4, /* --X- | 43% of maximum current detected */ |
| 800 | 0x8, /* ---X | 57% of maximum current detected */ |
| 801 | 0xC, /* --XX | 71% of maximum current detected */ |
| 802 | 0xE, /* -XXX | 86% of maximum current detected */ |
| 803 | 0xF, /* XXXX | 100% of maximum current detected */ |
| 804 | }; |
| 805 | static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]); |
| 806 | |
| 807 | void ListenReaderField(int limit) { |
| 808 | #define LF_ONLY 1 |
| 809 | #define HF_ONLY 2 |
| 810 | #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE |
| 811 | |
| 812 | int lf_av, lf_av_new, lf_baseline= 0, lf_max; |
| 813 | int hf_av, hf_av_new, hf_baseline= 0, hf_max; |
| 814 | int mode=1, display_val, display_max, i; |
| 815 | |
| 816 | // switch off FPGA - we don't want to measure our own signal |
| 817 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
| 818 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 819 | |
| 820 | LEDsoff(); |
| 821 | |
| 822 | lf_av = lf_max = AvgAdc(ADC_CHAN_LF); |
| 823 | |
| 824 | if(limit != HF_ONLY) { |
| 825 | Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10); |
| 826 | lf_baseline = lf_av; |
| 827 | } |
| 828 | |
| 829 | hf_av = hf_max = AvgAdc(ADC_CHAN_HF); |
| 830 | |
| 831 | if (limit != LF_ONLY) { |
| 832 | Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10); |
| 833 | hf_baseline = hf_av; |
| 834 | } |
| 835 | |
| 836 | for(;;) { |
| 837 | if (BUTTON_PRESS()) { |
| 838 | SpinDelay(500); |
| 839 | switch (mode) { |
| 840 | case 1: |
| 841 | mode=2; |
| 842 | DbpString("Signal Strength Mode"); |
| 843 | break; |
| 844 | case 2: |
| 845 | default: |
| 846 | DbpString("Stopped"); |
| 847 | LEDsoff(); |
| 848 | return; |
| 849 | break; |
| 850 | } |
| 851 | } |
| 852 | WDT_HIT(); |
| 853 | |
| 854 | if (limit != HF_ONLY) { |
| 855 | if(mode == 1) { |
| 856 | if (ABS(lf_av - lf_baseline) > REPORT_CHANGE) |
| 857 | LED_D_ON(); |
| 858 | else |
| 859 | LED_D_OFF(); |
| 860 | } |
| 861 | |
| 862 | lf_av_new = AvgAdc(ADC_CHAN_LF); |
| 863 | // see if there's a significant change |
| 864 | if(ABS(lf_av - lf_av_new) > REPORT_CHANGE) { |
| 865 | Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10); |
| 866 | lf_av = lf_av_new; |
| 867 | if (lf_av > lf_max) |
| 868 | lf_max = lf_av; |
| 869 | } |
| 870 | } |
| 871 | |
| 872 | if (limit != LF_ONLY) { |
| 873 | if (mode == 1){ |
| 874 | if (ABS(hf_av - hf_baseline) > REPORT_CHANGE) |
| 875 | LED_B_ON(); |
| 876 | else |
| 877 | LED_B_OFF(); |
| 878 | } |
| 879 | |
| 880 | hf_av_new = AvgAdc(ADC_CHAN_HF); |
| 881 | // see if there's a significant change |
| 882 | if(ABS(hf_av - hf_av_new) > REPORT_CHANGE) { |
| 883 | Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10); |
| 884 | hf_av = hf_av_new; |
| 885 | if (hf_av > hf_max) |
| 886 | hf_max = hf_av; |
| 887 | } |
| 888 | } |
| 889 | |
| 890 | if(mode == 2) { |
| 891 | if (limit == LF_ONLY) { |
| 892 | display_val = lf_av; |
| 893 | display_max = lf_max; |
| 894 | } else if (limit == HF_ONLY) { |
| 895 | display_val = hf_av; |
| 896 | display_max = hf_max; |
| 897 | } else { /* Pick one at random */ |
| 898 | if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) { |
| 899 | display_val = hf_av; |
| 900 | display_max = hf_max; |
| 901 | } else { |
| 902 | display_val = lf_av; |
| 903 | display_max = lf_max; |
| 904 | } |
| 905 | } |
| 906 | for (i=0; i<LIGHT_LEN; i++) { |
| 907 | if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) { |
| 908 | if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF(); |
| 909 | if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF(); |
| 910 | if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF(); |
| 911 | if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF(); |
| 912 | break; |
| 913 | } |
| 914 | } |
| 915 | } |
| 916 | } |
| 917 | } |
| 918 | |
| 919 | void UsbPacketReceived(uint8_t *packet, int len) |
| 920 | { |
| 921 | UsbCommand *c = (UsbCommand *)packet; |
| 922 | |
| 923 | //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]); |
| 924 | |
| 925 | switch(c->cmd) { |
| 926 | #ifdef WITH_LF |
| 927 | case CMD_SET_LF_SAMPLING_CONFIG: |
| 928 | setSamplingConfig((sample_config *) c->d.asBytes); |
| 929 | break; |
| 930 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: |
| 931 | cmd_send(CMD_ACK, SampleLF(c->arg[0]),0,0,0,0); |
| 932 | break; |
| 933 | case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: |
| 934 | ModThenAcquireRawAdcSamples125k(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 935 | break; |
| 936 | case CMD_LF_SNOOP_RAW_ADC_SAMPLES: |
| 937 | cmd_send(CMD_ACK,SnoopLF(),0,0,0,0); |
| 938 | break; |
| 939 | case CMD_HID_DEMOD_FSK: |
| 940 | CmdHIDdemodFSK(c->arg[0], 0, 0, 1); |
| 941 | break; |
| 942 | case CMD_HID_SIM_TAG: |
| 943 | CmdHIDsimTAG(c->arg[0], c->arg[1], 1); |
| 944 | break; |
| 945 | case CMD_FSK_SIM_TAG: |
| 946 | CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 947 | break; |
| 948 | case CMD_ASK_SIM_TAG: |
| 949 | CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 950 | break; |
| 951 | case CMD_PSK_SIM_TAG: |
| 952 | CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 953 | break; |
| 954 | case CMD_HID_CLONE_TAG: |
| 955 | CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); |
| 956 | break; |
| 957 | case CMD_IO_DEMOD_FSK: |
| 958 | CmdIOdemodFSK(c->arg[0], 0, 0, 1); |
| 959 | break; |
| 960 | case CMD_IO_CLONE_TAG: |
| 961 | CopyIOtoT55x7(c->arg[0], c->arg[1]); |
| 962 | break; |
| 963 | case CMD_EM410X_DEMOD: |
| 964 | CmdEM410xdemod(c->arg[0], 0, 0, 1); |
| 965 | break; |
| 966 | case CMD_EM410X_WRITE_TAG: |
| 967 | WriteEM410x(c->arg[0], c->arg[1], c->arg[2]); |
| 968 | break; |
| 969 | case CMD_READ_TI_TYPE: |
| 970 | ReadTItag(); |
| 971 | break; |
| 972 | case CMD_WRITE_TI_TYPE: |
| 973 | WriteTItag(c->arg[0],c->arg[1],c->arg[2]); |
| 974 | break; |
| 975 | case CMD_SIMULATE_TAG_125K: |
| 976 | LED_A_ON(); |
| 977 | SimulateTagLowFrequency(c->arg[0], c->arg[1], 1); |
| 978 | LED_A_OFF(); |
| 979 | break; |
| 980 | case CMD_LF_SIMULATE_BIDIR: |
| 981 | SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]); |
| 982 | break; |
| 983 | case CMD_INDALA_CLONE_TAG: |
| 984 | CopyIndala64toT55x7(c->arg[0], c->arg[1]); |
| 985 | break; |
| 986 | case CMD_INDALA_CLONE_TAG_L: |
| 987 | CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]); |
| 988 | break; |
| 989 | case CMD_T55XX_READ_BLOCK: |
| 990 | T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]); |
| 991 | break; |
| 992 | case CMD_T55XX_WRITE_BLOCK: |
| 993 | T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); |
| 994 | break; |
| 995 | case CMD_T55XX_WAKEUP: |
| 996 | T55xxWakeUp(c->arg[0]); |
| 997 | break; |
| 998 | case CMD_T55XX_RESET_READ: |
| 999 | T55xxResetRead(); |
| 1000 | break; |
| 1001 | case CMD_PCF7931_READ: |
| 1002 | ReadPCF7931(); |
| 1003 | break; |
| 1004 | case CMD_PCF7931_WRITE: |
| 1005 | WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]); |
| 1006 | break; |
| 1007 | case CMD_EM4X_READ_WORD: |
| 1008 | EM4xReadWord(c->arg[0], c->arg[1], c->arg[2]); |
| 1009 | break; |
| 1010 | case CMD_EM4X_WRITE_WORD: |
| 1011 | EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2]); |
| 1012 | break; |
| 1013 | case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation |
| 1014 | CmdAWIDdemodFSK(c->arg[0], 0, 0, 1); |
| 1015 | break; |
| 1016 | case CMD_VIKING_CLONE_TAG: |
| 1017 | CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]); |
| 1018 | break; |
| 1019 | case CMD_COTAG: |
| 1020 | Cotag(c->arg[0]); |
| 1021 | break; |
| 1022 | #endif |
| 1023 | |
| 1024 | #ifdef WITH_HITAG |
| 1025 | case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type |
| 1026 | SnoopHitag(c->arg[0]); |
| 1027 | break; |
| 1028 | case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content |
| 1029 | SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes); |
| 1030 | break; |
| 1031 | case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function |
| 1032 | ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes); |
| 1033 | break; |
| 1034 | case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content |
| 1035 | SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes); |
| 1036 | break; |
| 1037 | case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file |
| 1038 | check_challenges((bool)c->arg[0],(byte_t*)c->d.asBytes); |
| 1039 | break; |
| 1040 | case CMD_READ_HITAG_S: //Reader for only Hitag S tags, args = key or challenge |
| 1041 | ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes); |
| 1042 | break; |
| 1043 | case CMD_WR_HITAG_S: //writer for Hitag tags args=data to write,page and key or challenge |
| 1044 | WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]); |
| 1045 | break; |
| 1046 | #endif |
| 1047 | |
| 1048 | #ifdef WITH_ISO15693 |
| 1049 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: |
| 1050 | AcquireRawAdcSamplesIso15693(); |
| 1051 | break; |
| 1052 | case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693: |
| 1053 | RecordRawAdcSamplesIso15693(); |
| 1054 | break; |
| 1055 | case CMD_ISO_15693_COMMAND: |
| 1056 | DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); |
| 1057 | break; |
| 1058 | case CMD_ISO_15693_FIND_AFI: |
| 1059 | BruteforceIso15693Afi(c->arg[0]); |
| 1060 | break; |
| 1061 | case CMD_ISO_15693_DEBUG: |
| 1062 | SetDebugIso15693(c->arg[0]); |
| 1063 | break; |
| 1064 | case CMD_READER_ISO_15693: |
| 1065 | ReaderIso15693(c->arg[0]); |
| 1066 | break; |
| 1067 | case CMD_SIMTAG_ISO_15693: |
| 1068 | SimTagIso15693(c->arg[0], c->d.asBytes); |
| 1069 | break; |
| 1070 | #endif |
| 1071 | |
| 1072 | #ifdef WITH_LEGICRF |
| 1073 | case CMD_SIMULATE_TAG_LEGIC_RF: |
| 1074 | LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]); |
| 1075 | break; |
| 1076 | case CMD_WRITER_LEGIC_RF: |
| 1077 | LegicRfWriter( c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 1078 | break; |
| 1079 | case CMD_READER_LEGIC_RF: |
| 1080 | LegicRfReader(c->arg[0], c->arg[1], c->arg[2]); |
| 1081 | break; |
| 1082 | case CMD_LEGIC_INFO: |
| 1083 | LegicRfInfo(); |
| 1084 | break; |
| 1085 | case CMD_LEGIC_ESET: |
| 1086 | LegicEMemSet(c->arg[0], c->arg[1], c->d.asBytes); |
| 1087 | break; |
| 1088 | #endif |
| 1089 | |
| 1090 | #ifdef WITH_ISO14443b |
| 1091 | case CMD_READ_SRI_TAG: |
| 1092 | ReadSTMemoryIso14443b(c->arg[0]); |
| 1093 | break; |
| 1094 | case CMD_SNOOP_ISO_14443B: |
| 1095 | SnoopIso14443b(); |
| 1096 | break; |
| 1097 | case CMD_SIMULATE_TAG_ISO_14443B: |
| 1098 | SimulateIso14443bTag(c->arg[0]); |
| 1099 | break; |
| 1100 | case CMD_ISO_14443B_COMMAND: |
| 1101 | //SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); |
| 1102 | SendRawCommand14443B_Ex(c); |
| 1103 | break; |
| 1104 | #endif |
| 1105 | |
| 1106 | #ifdef WITH_ISO14443a |
| 1107 | case CMD_SNOOP_ISO_14443a: |
| 1108 | SniffIso14443a(c->arg[0]); |
| 1109 | break; |
| 1110 | case CMD_READER_ISO_14443a: |
| 1111 | ReaderIso14443a(c); |
| 1112 | break; |
| 1113 | case CMD_SIMULATE_TAG_ISO_14443a: |
| 1114 | SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID |
| 1115 | break; |
| 1116 | case CMD_EPA_PACE_COLLECT_NONCE: |
| 1117 | EPA_PACE_Collect_Nonce(c); |
| 1118 | break; |
| 1119 | case CMD_EPA_PACE_REPLAY: |
| 1120 | EPA_PACE_Replay(c); |
| 1121 | break; |
| 1122 | case CMD_READER_MIFARE: |
| 1123 | ReaderMifare(c->arg[0], c->arg[1], c->arg[2]); |
| 1124 | break; |
| 1125 | case CMD_MIFARE_READBL: |
| 1126 | MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 1127 | break; |
| 1128 | case CMD_MIFAREU_READBL: |
| 1129 | MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes); |
| 1130 | break; |
| 1131 | case CMD_MIFAREUC_AUTH: |
| 1132 | MifareUC_Auth(c->arg[0],c->d.asBytes); |
| 1133 | break; |
| 1134 | case CMD_MIFAREU_READCARD: |
| 1135 | MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 1136 | break; |
| 1137 | case CMD_MIFAREUC_SETPWD: |
| 1138 | MifareUSetPwd(c->arg[0], c->d.asBytes); |
| 1139 | break; |
| 1140 | case CMD_MIFARE_READSC: |
| 1141 | MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 1142 | break; |
| 1143 | case CMD_MIFARE_WRITEBL: |
| 1144 | MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 1145 | break; |
| 1146 | //case CMD_MIFAREU_WRITEBL_COMPAT: |
| 1147 | //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes); |
| 1148 | //break; |
| 1149 | case CMD_MIFAREU_WRITEBL: |
| 1150 | MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes); |
| 1151 | break; |
| 1152 | case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES: |
| 1153 | MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 1154 | break; |
| 1155 | case CMD_MIFARE_NESTED: |
| 1156 | MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 1157 | break; |
| 1158 | case CMD_MIFARE_CHKKEYS: |
| 1159 | MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 1160 | break; |
| 1161 | case CMD_SIMULATE_MIFARE_CARD: |
| 1162 | Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 1163 | break; |
| 1164 | |
| 1165 | // emulator |
| 1166 | case CMD_MIFARE_SET_DBGMODE: |
| 1167 | MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 1168 | break; |
| 1169 | case CMD_MIFARE_EML_MEMCLR: |
| 1170 | MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 1171 | break; |
| 1172 | case CMD_MIFARE_EML_MEMSET: |
| 1173 | MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 1174 | break; |
| 1175 | case CMD_MIFARE_EML_MEMGET: |
| 1176 | MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 1177 | break; |
| 1178 | case CMD_MIFARE_EML_CARDLOAD: |
| 1179 | MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 1180 | break; |
| 1181 | |
| 1182 | // Work with "magic Chinese" card |
| 1183 | case CMD_MIFARE_CSETBLOCK: |
| 1184 | MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes); |
| 1185 | break; |
| 1186 | case CMD_MIFARE_CGETBLOCK: |
| 1187 | MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes); |
| 1188 | break; |
| 1189 | case CMD_MIFARE_CIDENT: |
| 1190 | MifareCIdent(); |
| 1191 | break; |
| 1192 | |
| 1193 | // mifare sniffer |
| 1194 | case CMD_MIFARE_SNIFFER: |
| 1195 | SniffMifare(c->arg[0]); |
| 1196 | break; |
| 1197 | |
| 1198 | //mifare desfire |
| 1199 | case CMD_MIFARE_DESFIRE_READBL: break; |
| 1200 | case CMD_MIFARE_DESFIRE_WRITEBL: break; |
| 1201 | case CMD_MIFARE_DESFIRE_AUTH1: |
| 1202 | MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 1203 | break; |
| 1204 | case CMD_MIFARE_DESFIRE_AUTH2: |
| 1205 | //MifareDES_Auth2(c->arg[0],c->d.asBytes); |
| 1206 | break; |
| 1207 | case CMD_MIFARE_DES_READER: |
| 1208 | //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes); |
| 1209 | break; |
| 1210 | case CMD_MIFARE_DESFIRE_INFO: |
| 1211 | MifareDesfireGetInformation(); |
| 1212 | break; |
| 1213 | case CMD_MIFARE_DESFIRE: |
| 1214 | MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes); |
| 1215 | break; |
| 1216 | case CMD_MIFARE_COLLECT_NONCES: |
| 1217 | break; |
| 1218 | #endif |
| 1219 | #ifdef WITH_EMV |
| 1220 | case CMD_EMV_TRANSACTION: |
| 1221 | EMVTransaction(); |
| 1222 | break; |
| 1223 | case CMD_EMV_GET_RANDOM_NUM: |
| 1224 | //EMVgetUDOL(); |
| 1225 | break; |
| 1226 | case CMD_EMV_LOAD_VALUE: |
| 1227 | EMVloadvalue(c->arg[0], c->d.asBytes); |
| 1228 | break; |
| 1229 | case CMD_EMV_DUMP_CARD: |
| 1230 | EMVdumpcard(); |
| 1231 | break; |
| 1232 | #endif |
| 1233 | #ifdef WITH_ICLASS |
| 1234 | // Makes use of ISO14443a FPGA Firmware |
| 1235 | case CMD_SNOOP_ICLASS: |
| 1236 | SnoopIClass(); |
| 1237 | break; |
| 1238 | case CMD_SIMULATE_TAG_ICLASS: |
| 1239 | SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 1240 | break; |
| 1241 | case CMD_READER_ICLASS: |
| 1242 | ReaderIClass(c->arg[0]); |
| 1243 | break; |
| 1244 | case CMD_READER_ICLASS_REPLAY: |
| 1245 | ReaderIClass_Replay(c->arg[0], c->d.asBytes); |
| 1246 | break; |
| 1247 | case CMD_ICLASS_EML_MEMSET: |
| 1248 | emlSet(c->d.asBytes,c->arg[0], c->arg[1]); |
| 1249 | break; |
| 1250 | case CMD_ICLASS_WRITEBLOCK: |
| 1251 | iClass_WriteBlock(c->arg[0], c->d.asBytes); |
| 1252 | break; |
| 1253 | case CMD_ICLASS_READCHECK: // auth step 1 |
| 1254 | iClass_ReadCheck(c->arg[0], c->arg[1]); |
| 1255 | break; |
| 1256 | case CMD_ICLASS_READBLOCK: |
| 1257 | iClass_ReadBlk(c->arg[0]); |
| 1258 | break; |
| 1259 | case CMD_ICLASS_AUTHENTICATION: //check |
| 1260 | iClass_Authentication(c->d.asBytes); |
| 1261 | break; |
| 1262 | case CMD_ICLASS_DUMP: |
| 1263 | iClass_Dump(c->arg[0], c->arg[1]); |
| 1264 | break; |
| 1265 | case CMD_ICLASS_CLONE: |
| 1266 | iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes); |
| 1267 | break; |
| 1268 | #endif |
| 1269 | #ifdef WITH_HFSNOOP |
| 1270 | case CMD_HF_SNIFFER: |
| 1271 | HfSnoop(c->arg[0], c->arg[1]); |
| 1272 | break; |
| 1273 | #endif |
| 1274 | |
| 1275 | case CMD_BUFF_CLEAR: |
| 1276 | BigBuf_Clear(); |
| 1277 | break; |
| 1278 | |
| 1279 | case CMD_MEASURE_ANTENNA_TUNING: |
| 1280 | MeasureAntennaTuning(); |
| 1281 | break; |
| 1282 | |
| 1283 | case CMD_MEASURE_ANTENNA_TUNING_HF: |
| 1284 | MeasureAntennaTuningHf(); |
| 1285 | break; |
| 1286 | |
| 1287 | case CMD_LISTEN_READER_FIELD: |
| 1288 | ListenReaderField(c->arg[0]); |
| 1289 | break; |
| 1290 | |
| 1291 | case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control |
| 1292 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 1293 | SpinDelay(200); |
| 1294 | LED_D_OFF(); // LED D indicates field ON or OFF |
| 1295 | break; |
| 1296 | |
| 1297 | case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: { |
| 1298 | LED_B_ON(); |
| 1299 | uint8_t *BigBuf = BigBuf_get_addr(); |
| 1300 | size_t len = 0; |
| 1301 | size_t startidx = c->arg[0]; |
| 1302 | uint8_t isok = FALSE; |
| 1303 | // arg0 = startindex |
| 1304 | // arg1 = length bytes to transfer |
| 1305 | // arg2 = RFU |
| 1306 | //Dbprintf("transfer to client parameters: %llu | %llu | %llu", c->arg[0], c->arg[1], c->arg[2]); |
| 1307 | |
| 1308 | for(size_t i = 0; i < c->arg[1]; i += USB_CMD_DATA_SIZE) { |
| 1309 | len = MIN( (c->arg[1] - i), USB_CMD_DATA_SIZE); |
| 1310 | isok = cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, i, len, BigBuf_get_traceLen(), BigBuf + startidx + i, len); |
| 1311 | if (!isok) |
| 1312 | Dbprintf("transfer to client failed :: | bytes %d", len); |
| 1313 | } |
| 1314 | // Trigger a finish downloading signal with an ACK frame |
| 1315 | cmd_send(CMD_ACK, 1, 0, BigBuf_get_traceLen(), getSamplingConfig(), sizeof(sample_config)); |
| 1316 | LED_B_OFF(); |
| 1317 | break; |
| 1318 | } |
| 1319 | case CMD_DOWNLOADED_SIM_SAMPLES_125K: { |
| 1320 | // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before. |
| 1321 | // to be able to use this one for uploading data to device |
| 1322 | // arg1 = 0 upload for LF usage |
| 1323 | // 1 upload for HF usage |
| 1324 | if ( c->arg[1] == 0 ) |
| 1325 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
| 1326 | else |
| 1327 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
| 1328 | uint8_t *b = BigBuf_get_addr(); |
| 1329 | memcpy( b + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE); |
| 1330 | cmd_send(CMD_ACK,1,0,0,0,0); |
| 1331 | break; |
| 1332 | } |
| 1333 | case CMD_DOWNLOAD_EML_BIGBUF: { |
| 1334 | LED_B_ON(); |
| 1335 | uint8_t *cardmem = BigBuf_get_EM_addr(); |
| 1336 | size_t len = 0; |
| 1337 | for(size_t i=0; i < c->arg[1]; i += USB_CMD_DATA_SIZE) { |
| 1338 | len = MIN((c->arg[1] - i), USB_CMD_DATA_SIZE); |
| 1339 | cmd_send(CMD_DOWNLOADED_EML_BIGBUF, i, len, CARD_MEMORY_SIZE, cardmem + c->arg[0] + i, len); |
| 1340 | } |
| 1341 | // Trigger a finish downloading signal with an ACK frame |
| 1342 | cmd_send(CMD_ACK, 1, 0, CARD_MEMORY_SIZE, 0, 0); |
| 1343 | LED_B_OFF(); |
| 1344 | break; |
| 1345 | } |
| 1346 | case CMD_READ_MEM: |
| 1347 | ReadMem(c->arg[0]); |
| 1348 | break; |
| 1349 | |
| 1350 | case CMD_SET_LF_DIVISOR: |
| 1351 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
| 1352 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]); |
| 1353 | break; |
| 1354 | |
| 1355 | case CMD_SET_ADC_MUX: |
| 1356 | switch(c->arg[0]) { |
| 1357 | case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break; |
| 1358 | case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break; |
| 1359 | case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break; |
| 1360 | case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break; |
| 1361 | } |
| 1362 | break; |
| 1363 | |
| 1364 | case CMD_VERSION: |
| 1365 | SendVersion(); |
| 1366 | break; |
| 1367 | case CMD_STATUS: |
| 1368 | SendStatus(); |
| 1369 | break; |
| 1370 | case CMD_PING: |
| 1371 | cmd_send(CMD_ACK,0,0,0,0,0); |
| 1372 | break; |
| 1373 | #ifdef WITH_LCD |
| 1374 | case CMD_LCD_RESET: |
| 1375 | LCDReset(); |
| 1376 | break; |
| 1377 | case CMD_LCD: |
| 1378 | LCDSend(c->arg[0]); |
| 1379 | break; |
| 1380 | #endif |
| 1381 | case CMD_SETUP_WRITE: |
| 1382 | case CMD_FINISH_WRITE: |
| 1383 | case CMD_HARDWARE_RESET: |
| 1384 | usb_disable(); |
| 1385 | SpinDelay(2000); |
| 1386 | AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; |
| 1387 | for(;;) { |
| 1388 | // We're going to reset, and the bootrom will take control. |
| 1389 | } |
| 1390 | break; |
| 1391 | |
| 1392 | case CMD_START_FLASH: |
| 1393 | if(common_area.flags.bootrom_present) { |
| 1394 | common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE; |
| 1395 | } |
| 1396 | usb_disable(); |
| 1397 | AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; |
| 1398 | for(;;); |
| 1399 | break; |
| 1400 | |
| 1401 | case CMD_DEVICE_INFO: { |
| 1402 | uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS; |
| 1403 | if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT; |
| 1404 | cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0); |
| 1405 | break; |
| 1406 | } |
| 1407 | default: |
| 1408 | Dbprintf("%s: 0x%04x","unknown command:",c->cmd); |
| 1409 | break; |
| 1410 | } |
| 1411 | } |
| 1412 | |
| 1413 | void __attribute__((noreturn)) AppMain(void) |
| 1414 | { |
| 1415 | SpinDelay(100); |
| 1416 | clear_trace(); |
| 1417 | if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) { |
| 1418 | /* Initialize common area */ |
| 1419 | memset(&common_area, 0, sizeof(common_area)); |
| 1420 | common_area.magic = COMMON_AREA_MAGIC; |
| 1421 | common_area.version = 1; |
| 1422 | } |
| 1423 | common_area.flags.osimage_present = 1; |
| 1424 | |
| 1425 | LEDsoff(); |
| 1426 | |
| 1427 | // Init USB device |
| 1428 | usb_enable(); |
| 1429 | |
| 1430 | // The FPGA gets its clock from us from PCK0 output, so set that up. |
| 1431 | AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0; |
| 1432 | AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0; |
| 1433 | AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0; |
| 1434 | // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz |
| 1435 | AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0 |
| 1436 | AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0; |
| 1437 | |
| 1438 | // Reset SPI |
| 1439 | AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST; |
| 1440 | // Reset SSC |
| 1441 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; |
| 1442 | |
| 1443 | // Load the FPGA image, which we have stored in our flash. |
| 1444 | // (the HF version by default) |
| 1445 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
| 1446 | |
| 1447 | StartTickCount(); |
| 1448 | |
| 1449 | #ifdef WITH_LCD |
| 1450 | LCDInit(); |
| 1451 | #endif |
| 1452 | |
| 1453 | byte_t rx[sizeof(UsbCommand)]; |
| 1454 | size_t rx_len; |
| 1455 | |
| 1456 | for(;;) { |
| 1457 | if ( usb_poll_validate_length() ) { |
| 1458 | rx_len = usb_read(rx, sizeof(UsbCommand)); |
| 1459 | |
| 1460 | if (rx_len) |
| 1461 | UsbPacketReceived(rx, rx_len); |
| 1462 | } |
| 1463 | WDT_HIT(); |
| 1464 | |
| 1465 | #ifdef WITH_LF |
| 1466 | #ifndef WITH_ISO14443a_StandAlone |
| 1467 | if (BUTTON_HELD(1000) > 0) |
| 1468 | SamyRun(); |
| 1469 | #endif |
| 1470 | #endif |
| 1471 | #ifdef WITH_ISO14443a |
| 1472 | #ifdef WITH_ISO14443a_StandAlone |
| 1473 | if (BUTTON_HELD(1000) > 0) |
| 1474 | StandAloneMode14a(); |
| 1475 | #endif |
| 1476 | #endif |
| 1477 | } |
| 1478 | } |