]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // | |
3 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
4 | // at your option, any later version. See the LICENSE.txt file for the text of | |
5 | // the license. | |
6 | //----------------------------------------------------------------------------- | |
7 | // Low frequency Indala commands | |
8 | // PSK1, rf/32, 64 or 224 bits (known) | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include "cmdlfindala.h" | |
12 | ||
13 | #include <stdio.h> | |
14 | #include <string.h> | |
15 | #include "comms.h" | |
16 | #include "ui.h" | |
17 | #include "graph.h" | |
18 | #include "cmdparser.h" | |
19 | #include "cmddata.h" //for g_debugMode, demodbuff cmds | |
20 | #include "lfdemod.h" //for indala26decode | |
21 | #include "util.h" //for sprint_bin_break | |
22 | #include "cmdlf.h" //for CmdLFRead | |
23 | #include "cmdmain.h" //for clearCommandBuffer | |
24 | ||
25 | static int CmdHelp(const char *Cmd); | |
26 | ||
27 | // Indala 26 bit decode | |
28 | // by marshmellow | |
29 | // optional arguments - same as PSKDemod (clock & invert & maxerr) | |
30 | int CmdIndalaDecode(const char *Cmd) { | |
31 | int ans; | |
32 | if (strlen(Cmd)>0) { | |
33 | ans = PSKDemod(Cmd, 0); | |
34 | } else { //default to RF/32 | |
35 | ans = PSKDemod("32", 0); | |
36 | } | |
37 | ||
38 | if (!ans) { | |
39 | if (g_debugMode) PrintAndLog("Error1: %i",ans); | |
40 | return 0; | |
41 | } | |
42 | uint8_t invert=0; | |
43 | size_t size = DemodBufferLen; | |
44 | int startIdx = indala64decode(DemodBuffer, &size, &invert); | |
45 | if (startIdx < 0 || size != 64) { | |
46 | // try 224 indala | |
47 | invert = 0; | |
48 | size = DemodBufferLen; | |
49 | startIdx = indala224decode(DemodBuffer, &size, &invert); | |
50 | if (startIdx < 0 || size != 224) { | |
51 | if (g_debugMode) PrintAndLog("Error2: %i",startIdx); | |
52 | return -1; | |
53 | } | |
54 | } | |
55 | setDemodBuf(DemodBuffer, size, (size_t)startIdx); | |
56 | setClockGrid(g_DemodClock, g_DemodStartIdx + (startIdx*g_DemodClock)); | |
57 | if (invert) | |
58 | if (g_debugMode) | |
59 | PrintAndLog("Had to invert bits"); | |
60 | ||
61 | PrintAndLog("BitLen: %d",DemodBufferLen); | |
62 | //convert UID to HEX | |
63 | uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7; | |
64 | uid1=bytebits_to_byte(DemodBuffer,32); | |
65 | uid2=bytebits_to_byte(DemodBuffer+32,32); | |
66 | if (DemodBufferLen==64) { | |
67 | PrintAndLog("Indala UID=%s (%x%08x)", sprint_bin_break(DemodBuffer,DemodBufferLen,16), uid1, uid2); | |
68 | } else if (DemodBufferLen==224) { | |
69 | uid3=bytebits_to_byte(DemodBuffer+64,32); | |
70 | uid4=bytebits_to_byte(DemodBuffer+96,32); | |
71 | uid5=bytebits_to_byte(DemodBuffer+128,32); | |
72 | uid6=bytebits_to_byte(DemodBuffer+160,32); | |
73 | uid7=bytebits_to_byte(DemodBuffer+192,32); | |
74 | PrintAndLog("Indala UID=%s (%x%08x%08x%08x%08x%08x%08x)", | |
75 | sprint_bin_break(DemodBuffer,DemodBufferLen,16), uid1, uid2, uid3, uid4, uid5, uid6, uid7); | |
76 | } | |
77 | if (g_debugMode) { | |
78 | PrintAndLog("DEBUG: printing demodbuffer:"); | |
79 | printDemodBuff(); | |
80 | } | |
81 | return 1; | |
82 | } | |
83 | ||
84 | int CmdIndalaRead(const char *Cmd) { | |
85 | lf_read(true, 30000); | |
86 | return CmdIndalaDecode(""); | |
87 | } | |
88 | ||
89 | // older alternative indala demodulate (has some positives and negatives) | |
90 | // returns false positives more often - but runs against more sets of samples | |
91 | // poor psk signal can be difficult to demod this approach might succeed when the other fails | |
92 | // but the other appears to currently be more accurate than this approach most of the time. | |
93 | int CmdIndalaDemod(const char *Cmd) { | |
94 | // Usage: recover 64bit UID by default, specify "224" as arg to recover a 224bit UID | |
95 | ||
96 | int state = -1; | |
97 | int count = 0; | |
98 | int i, j; | |
99 | ||
100 | // worst case with GraphTraceLen=64000 is < 4096 | |
101 | // under normal conditions it's < 2048 | |
102 | ||
103 | uint8_t rawbits[4096]; | |
104 | int rawbit = 0; | |
105 | int worst = 0, worstPos = 0; | |
106 | ||
107 | //clear clock grid and demod plot | |
108 | setClockGrid(0, 0); | |
109 | DemodBufferLen = 0; | |
110 | ||
111 | // PrintAndLog("Expecting a bit less than %d raw bits", GraphTraceLen / 32); | |
112 | // loop through raw signal - since we know it is psk1 rf/32 fc/2 skip every other value (+=2) | |
113 | for (i = 0; i < GraphTraceLen-1; i += 2) { | |
114 | count += 1; | |
115 | if ((GraphBuffer[i] > GraphBuffer[i + 1]) && (state != 1)) { | |
116 | // appears redundant - marshmellow | |
117 | if (state == 0) { | |
118 | for (j = 0; j < count - 8; j += 16) { | |
119 | rawbits[rawbit++] = 0; | |
120 | } | |
121 | if ((abs(count - j)) > worst) { | |
122 | worst = abs(count - j); | |
123 | worstPos = i; | |
124 | } | |
125 | } | |
126 | state = 1; | |
127 | count = 0; | |
128 | } else if ((GraphBuffer[i] < GraphBuffer[i + 1]) && (state != 0)) { | |
129 | //appears redundant | |
130 | if (state == 1) { | |
131 | for (j = 0; j < count - 8; j += 16) { | |
132 | rawbits[rawbit++] = 1; | |
133 | } | |
134 | if ((abs(count - j)) > worst) { | |
135 | worst = abs(count - j); | |
136 | worstPos = i; | |
137 | } | |
138 | } | |
139 | state = 0; | |
140 | count = 0; | |
141 | } | |
142 | } | |
143 | ||
144 | if (rawbit>0){ | |
145 | PrintAndLog("Recovered %d raw bits, expected: %d", rawbit, GraphTraceLen/32); | |
146 | PrintAndLog("worst metric (0=best..7=worst): %d at pos %d", worst, worstPos); | |
147 | } else { | |
148 | return 0; | |
149 | } | |
150 | ||
151 | // Finding the start of a UID | |
152 | int uidlen, long_wait; | |
153 | if (strcmp(Cmd, "224") == 0) { | |
154 | uidlen = 224; | |
155 | long_wait = 30; | |
156 | } else { | |
157 | uidlen = 64; | |
158 | long_wait = 29; | |
159 | } | |
160 | ||
161 | int start; | |
162 | int first = 0; | |
163 | for (start = 0; start <= rawbit - uidlen; start++) { | |
164 | first = rawbits[start]; | |
165 | for (i = start; i < start + long_wait; i++) { | |
166 | if (rawbits[i] != first) { | |
167 | break; | |
168 | } | |
169 | } | |
170 | if (i == (start + long_wait)) { | |
171 | break; | |
172 | } | |
173 | } | |
174 | ||
175 | if (start == rawbit - uidlen + 1) { | |
176 | PrintAndLog("nothing to wait for"); | |
177 | return 0; | |
178 | } | |
179 | ||
180 | // Inverting signal if needed | |
181 | if (first == 1) { | |
182 | for (i = start; i < rawbit; i++) { | |
183 | rawbits[i] = !rawbits[i]; | |
184 | } | |
185 | } | |
186 | ||
187 | // Dumping UID | |
188 | uint8_t bits[224] = {0x00}; | |
189 | char showbits[225] = {0x00}; | |
190 | int bit; | |
191 | i = start; | |
192 | int times = 0; | |
193 | ||
194 | if (uidlen > rawbit) { | |
195 | PrintAndLog("Warning: not enough raw bits to get a full UID"); | |
196 | for (bit = 0; bit < rawbit; bit++) { | |
197 | bits[bit] = rawbits[i++]; | |
198 | // As we cannot know the parity, let's use "." and "/" | |
199 | showbits[bit] = '.' + bits[bit]; | |
200 | } | |
201 | showbits[bit+1]='\0'; | |
202 | PrintAndLog("Partial UID=%s", showbits); | |
203 | return 0; | |
204 | } else { | |
205 | for (bit = 0; bit < uidlen; bit++) { | |
206 | bits[bit] = rawbits[i++]; | |
207 | showbits[bit] = '0' + bits[bit]; | |
208 | } | |
209 | times = 1; | |
210 | } | |
211 | ||
212 | //convert UID to HEX | |
213 | uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7; | |
214 | int idx; | |
215 | uid1 = uid2 = 0; | |
216 | ||
217 | if (uidlen==64){ | |
218 | for( idx=0; idx<64; idx++) { | |
219 | if (showbits[idx] == '0') { | |
220 | uid1=(uid1<<1)|(uid2>>31); | |
221 | uid2=(uid2<<1)|0; | |
222 | } else { | |
223 | uid1=(uid1<<1)|(uid2>>31); | |
224 | uid2=(uid2<<1)|1; | |
225 | } | |
226 | } | |
227 | PrintAndLog("UID=%s (%x%08x)", showbits, uid1, uid2); | |
228 | } | |
229 | else { | |
230 | uid3 = uid4 = uid5 = uid6 = uid7 = 0; | |
231 | ||
232 | for( idx=0; idx<224; idx++) { | |
233 | uid1=(uid1<<1)|(uid2>>31); | |
234 | uid2=(uid2<<1)|(uid3>>31); | |
235 | uid3=(uid3<<1)|(uid4>>31); | |
236 | uid4=(uid4<<1)|(uid5>>31); | |
237 | uid5=(uid5<<1)|(uid6>>31); | |
238 | uid6=(uid6<<1)|(uid7>>31); | |
239 | ||
240 | if (showbits[idx] == '0') | |
241 | uid7 = (uid7<<1) | 0; | |
242 | else | |
243 | uid7 = (uid7<<1) | 1; | |
244 | } | |
245 | PrintAndLog("UID=%s (%x%08x%08x%08x%08x%08x%08x)", showbits, uid1, uid2, uid3, uid4, uid5, uid6, uid7); | |
246 | } | |
247 | ||
248 | // Checking UID against next occurrences | |
249 | int failed = 0; | |
250 | for (; i + uidlen <= rawbit;) { | |
251 | failed = 0; | |
252 | for (bit = 0; bit < uidlen; bit++) { | |
253 | if (bits[bit] != rawbits[i++]) { | |
254 | failed = 1; | |
255 | break; | |
256 | } | |
257 | } | |
258 | if (failed == 1) { | |
259 | break; | |
260 | } | |
261 | times += 1; | |
262 | } | |
263 | ||
264 | PrintAndLog("Occurrences: %d (expected %d)", times, (rawbit - start) / uidlen); | |
265 | ||
266 | // Remodulating for tag cloning | |
267 | // HACK: 2015-01-04 this will have an impact on our new way of seening lf commands (demod) | |
268 | // since this changes graphbuffer data. | |
269 | GraphTraceLen = 32*uidlen; | |
270 | i = 0; | |
271 | int phase = 0; | |
272 | for (bit = 0; bit < uidlen; bit++) { | |
273 | if (bits[bit] == 0) { | |
274 | phase = 0; | |
275 | } else { | |
276 | phase = 1; | |
277 | } | |
278 | int j; | |
279 | for (j = 0; j < 32; j++) { | |
280 | GraphBuffer[i++] = phase; | |
281 | phase = !phase; | |
282 | } | |
283 | } | |
284 | ||
285 | RepaintGraphWindow(); | |
286 | return 1; | |
287 | } | |
288 | ||
289 | int CmdIndalaClone(const char *Cmd) { | |
290 | UsbCommand c = {0}; | |
291 | unsigned int uid1, uid2, uid3, uid4, uid5, uid6, uid7; | |
292 | ||
293 | uid1 = uid2 = uid3 = uid4 = uid5 = uid6 = uid7 = 0; | |
294 | int n = 0, i = 0; | |
295 | ||
296 | if (strchr(Cmd,'l') != 0) { | |
297 | while (sscanf(&Cmd[i++], "%1x", &n ) == 1) { | |
298 | uid1 = (uid1 << 4) | (uid2 >> 28); | |
299 | uid2 = (uid2 << 4) | (uid3 >> 28); | |
300 | uid3 = (uid3 << 4) | (uid4 >> 28); | |
301 | uid4 = (uid4 << 4) | (uid5 >> 28); | |
302 | uid5 = (uid5 << 4) | (uid6 >> 28); | |
303 | uid6 = (uid6 << 4) | (uid7 >> 28); | |
304 | uid7 = (uid7 << 4) | (n & 0xf); | |
305 | } | |
306 | PrintAndLog("Cloning 224bit tag with UID %x%08x%08x%08x%08x%08x%08x", uid1, uid2, uid3, uid4, uid5, uid6, uid7); | |
307 | c.cmd = CMD_INDALA_CLONE_TAG_L; | |
308 | c.d.asDwords[0] = uid1; | |
309 | c.d.asDwords[1] = uid2; | |
310 | c.d.asDwords[2] = uid3; | |
311 | c.d.asDwords[3] = uid4; | |
312 | c.d.asDwords[4] = uid5; | |
313 | c.d.asDwords[5] = uid6; | |
314 | c.d.asDwords[6] = uid7; | |
315 | } else { | |
316 | while (sscanf(&Cmd[i++], "%1x", &n ) == 1) { | |
317 | uid1 = (uid1 << 4) | (uid2 >> 28); | |
318 | uid2 = (uid2 << 4) | (n & 0xf); | |
319 | } | |
320 | PrintAndLog("Cloning 64bit tag with UID %x%08x", uid1, uid2); | |
321 | c.cmd = CMD_INDALA_CLONE_TAG; | |
322 | c.arg[0] = uid1; | |
323 | c.arg[1] = uid2; | |
324 | } | |
325 | ||
326 | clearCommandBuffer(); | |
327 | SendCommand(&c); | |
328 | return 0; | |
329 | } | |
330 | ||
331 | static command_t CommandTable[] = { | |
332 | {"help", CmdHelp, 1, "This help"}, | |
333 | {"demod", CmdIndalaDecode, 1, "[clock] [invert<0|1>] -- Demodulate an indala tag (PSK1) from GraphBuffer (args optional)"}, | |
334 | {"read", CmdIndalaRead, 0, "Read an Indala Prox tag from the antenna"}, | |
335 | {"clone", CmdIndalaClone, 0, "<UID> ['l']-- Clone Indala to T55x7 (tag must be on antenna)(UID in HEX)(option 'l' for 224 UID"}, | |
336 | {"altdemod", CmdIndalaDemod, 1, "['224'] -- Alternative method to Demodulate samples for Indala 64 bit UID (option '224' for 224 bit)"}, | |
337 | //{"sim", CmdIndalaSim, 0, "<ID> -- indala tag simulator"}, | |
338 | {NULL, NULL, 0, NULL} | |
339 | }; | |
340 | ||
341 | int CmdLFINDALA(const char *Cmd) { | |
342 | CmdsParse(CommandTable, Cmd); | |
343 | return 0; | |
344 | } | |
345 | ||
346 | int CmdHelp(const char *Cmd) { | |
347 | CmdsHelp(CommandTable); | |
348 | return 0; | |
349 | } |