]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Copyright (C) 2014 | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // Low frequency demod/decode commands - by marshmellow, holiman, iceman and | |
9 | // many others who came before | |
10 | // | |
11 | // NOTES: | |
12 | // LF Demod functions are placed here to allow the flexability to use client or | |
13 | // device side. Most BUT NOT ALL of these functions are currenlty safe for | |
14 | // device side use currently. (DetectST for example...) | |
15 | // | |
16 | // There are likely many improvements to the code that could be made, please | |
17 | // make suggestions... | |
18 | // | |
19 | // we tried to include author comments so any questions could be directed to | |
20 | // the source. | |
21 | // | |
22 | // There are 4 main sections of code below: | |
23 | // Utilities Section: | |
24 | // for general utilities used by multiple other functions | |
25 | // Clock / Bitrate Detection Section: | |
26 | // for clock detection functions for each modulation | |
27 | // Modulation Demods &/or Decoding Section: | |
28 | // for main general modulation demodulating and encoding decoding code. | |
29 | // Tag format detection section: | |
30 | // for detection of specific tag formats within demodulated data | |
31 | // | |
32 | // marshmellow | |
33 | //----------------------------------------------------------------------------- | |
34 | ||
35 | #include <string.h> // for memset, memcmp and size_t | |
36 | #include "lfdemod.h" | |
37 | #include <stdint.h> // for uint_32+ | |
38 | #include <stdbool.h> // for bool | |
39 | #include "parity.h" // for parity test | |
40 | ||
41 | //********************************************************************************************** | |
42 | //---------------------------------Utilities Section-------------------------------------------- | |
43 | //********************************************************************************************** | |
44 | #define LOWEST_DEFAULT_CLOCK 32 | |
45 | #define FSK_PSK_THRESHOLD 123 | |
46 | ||
47 | //to allow debug print calls when used not on device | |
48 | void dummy(char *fmt, ...){} | |
49 | #ifndef ON_DEVICE | |
50 | #include "ui.h" | |
51 | #include "cmdparser.h" | |
52 | #include "cmddata.h" | |
53 | #define prnt PrintAndLog | |
54 | #else | |
55 | uint8_t g_debugMode=0; | |
56 | #define prnt dummy | |
57 | #endif | |
58 | ||
59 | uint8_t justNoise(uint8_t *BitStream, size_t size) { | |
60 | //test samples are not just noise | |
61 | uint8_t justNoise1 = 1; | |
62 | for(size_t idx=0; idx < size && justNoise1 ;idx++){ | |
63 | justNoise1 = BitStream[idx] < FSK_PSK_THRESHOLD; | |
64 | } | |
65 | return justNoise1; | |
66 | } | |
67 | ||
68 | //by marshmellow | |
69 | //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise | |
70 | int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo) { | |
71 | *high=0; | |
72 | *low=255; | |
73 | // get high and low thresholds | |
74 | for (size_t i=0; i < size; i++){ | |
75 | if (BitStream[i] > *high) *high = BitStream[i]; | |
76 | if (BitStream[i] < *low) *low = BitStream[i]; | |
77 | } | |
78 | if (*high < FSK_PSK_THRESHOLD) return -1; // just noise | |
79 | *high = ((*high-128)*fuzzHi + 12800)/100; | |
80 | *low = ((*low-128)*fuzzLo + 12800)/100; | |
81 | return 1; | |
82 | } | |
83 | ||
84 | // by marshmellow | |
85 | // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType | |
86 | // returns 1 if passed | |
87 | bool parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType) { | |
88 | return oddparity32(bits) ^ pType; | |
89 | } | |
90 | ||
91 | // by marshmellow | |
92 | // takes a array of binary values, start position, length of bits per parity (includes parity bit - MAX 32), | |
93 | // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run) | |
94 | size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen) { | |
95 | uint32_t parityWd = 0; | |
96 | size_t bitCnt = 0; | |
97 | for (int word = 0; word < (bLen); word+=pLen) { | |
98 | for (int bit=0; bit < pLen; bit++) { | |
99 | if (word+bit >= bLen) break; | |
100 | parityWd = (parityWd << 1) | BitStream[startIdx+word+bit]; | |
101 | BitStream[bitCnt++] = (BitStream[startIdx+word+bit]); | |
102 | } | |
103 | if (word+pLen > bLen) break; | |
104 | ||
105 | bitCnt--; // overwrite parity with next data | |
106 | // if parity fails then return 0 | |
107 | switch (pType) { | |
108 | case 3: if (BitStream[bitCnt]==1) {return 0;} break; //should be 0 spacer bit | |
109 | case 2: if (BitStream[bitCnt]==0) {return 0;} break; //should be 1 spacer bit | |
110 | default: if (parityTest(parityWd, pLen, pType) == 0) {return 0;} break; //test parity | |
111 | } | |
112 | parityWd = 0; | |
113 | } | |
114 | // if we got here then all the parities passed | |
115 | //return size | |
116 | return bitCnt; | |
117 | } | |
118 | ||
119 | // by marshmellow | |
120 | // takes a array of binary values, length of bits per parity (includes parity bit), | |
121 | // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run) | |
122 | // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added | |
123 | size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType) { | |
124 | uint32_t parityWd = 0; | |
125 | size_t j = 0, bitCnt = 0; | |
126 | for (int word = 0; word < sourceLen; word+=pLen-1) { | |
127 | for (int bit=0; bit < pLen-1; bit++){ | |
128 | parityWd = (parityWd << 1) | BitSource[word+bit]; | |
129 | dest[j++] = (BitSource[word+bit]); | |
130 | } | |
131 | // if parity fails then return 0 | |
132 | switch (pType) { | |
133 | case 3: dest[j++]=0; break; // marker bit which should be a 0 | |
134 | case 2: dest[j++]=1; break; // marker bit which should be a 1 | |
135 | default: | |
136 | dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1; | |
137 | break; | |
138 | } | |
139 | bitCnt += pLen; | |
140 | parityWd = 0; | |
141 | } | |
142 | // if we got here then all the parities passed | |
143 | //return ID start index and size | |
144 | return bitCnt; | |
145 | } | |
146 | ||
147 | uint32_t bytebits_to_byte(uint8_t *src, size_t numbits) { | |
148 | uint32_t num = 0; | |
149 | for(int i = 0 ; i < numbits ; i++) | |
150 | { | |
151 | num = (num << 1) | (*src); | |
152 | src++; | |
153 | } | |
154 | return num; | |
155 | } | |
156 | ||
157 | //least significant bit first | |
158 | uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits) { | |
159 | uint32_t num = 0; | |
160 | for(int i = 0 ; i < numbits ; i++) | |
161 | { | |
162 | num = (num << 1) | *(src + (numbits-(i+1))); | |
163 | } | |
164 | return num; | |
165 | } | |
166 | ||
167 | // search for given preamble in given BitStream and return success=1 or fail=0 and startIndex (where it was found) and length if not fineone | |
168 | // fineone does not look for a repeating preamble for em4x05/4x69 sends preamble once, so look for it once in the first pLen bits | |
169 | bool preambleSearchEx(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx, bool findone) { | |
170 | // Sanity check. If preamble length is bigger than bitstream length. | |
171 | if ( *size <= pLen ) return false; | |
172 | ||
173 | uint8_t foundCnt = 0; | |
174 | for (size_t idx = 0; idx < *size - pLen; idx++) { | |
175 | if (memcmp(BitStream+idx, preamble, pLen) == 0) { | |
176 | //first index found | |
177 | foundCnt++; | |
178 | if (foundCnt == 1) { | |
179 | if (g_debugMode) prnt("DEBUG: preamble found at %u", idx); | |
180 | *startIdx = idx; | |
181 | if (findone) return true; | |
182 | } else if (foundCnt == 2) { | |
183 | *size = idx - *startIdx; | |
184 | return true; | |
185 | } | |
186 | } | |
187 | } | |
188 | return false; | |
189 | } | |
190 | ||
191 | //by marshmellow | |
192 | //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length | |
193 | uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx) { | |
194 | return (preambleSearchEx(BitStream, preamble, pLen, size, startIdx, false)) ? 1 : 0; | |
195 | } | |
196 | ||
197 | // find start of modulating data (for fsk and psk) in case of beginning noise or slow chip startup. | |
198 | size_t findModStart(uint8_t dest[], size_t size, uint8_t expWaveSize) { | |
199 | size_t i = 0; | |
200 | size_t waveSizeCnt = 0; | |
201 | uint8_t thresholdCnt = 0; | |
202 | bool isAboveThreshold = dest[i++] >= FSK_PSK_THRESHOLD; | |
203 | for (; i < size-20; i++ ) { | |
204 | if(dest[i] < FSK_PSK_THRESHOLD && isAboveThreshold) { | |
205 | thresholdCnt++; | |
206 | if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break; | |
207 | isAboveThreshold = false; | |
208 | waveSizeCnt = 0; | |
209 | } else if (dest[i] >= FSK_PSK_THRESHOLD && !isAboveThreshold) { | |
210 | thresholdCnt++; | |
211 | if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break; | |
212 | isAboveThreshold = true; | |
213 | waveSizeCnt = 0; | |
214 | } else { | |
215 | waveSizeCnt++; | |
216 | } | |
217 | if (thresholdCnt > 10) break; | |
218 | } | |
219 | if (g_debugMode == 2) prnt("DEBUG: threshold Count reached at %u, count: %u",i, thresholdCnt); | |
220 | return i; | |
221 | } | |
222 | ||
223 | int getClosestClock(int testclk) { | |
224 | uint8_t fndClk[] = {8,16,32,40,50,64,128}; | |
225 | ||
226 | for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) | |
227 | if (testclk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && testclk <= fndClk[clkCnt]+1) | |
228 | return fndClk[clkCnt]; | |
229 | ||
230 | return 0; | |
231 | } | |
232 | ||
233 | void getNextLow(uint8_t samples[], size_t size, int low, size_t *i) { | |
234 | while ((samples[*i] > low) && (*i < size)) | |
235 | *i+=1; | |
236 | } | |
237 | ||
238 | void getNextHigh(uint8_t samples[], size_t size, int high, size_t *i) { | |
239 | while ((samples[*i] < high) && (*i < size)) | |
240 | *i+=1; | |
241 | } | |
242 | ||
243 | // load wave counters | |
244 | bool loadWaveCounters(uint8_t samples[], size_t size, int lowToLowWaveLen[], int highToLowWaveLen[], int *waveCnt, int *skip, int *minClk, int *high, int *low) { | |
245 | size_t i=0, firstLow, firstHigh; | |
246 | size_t testsize = (size < 512) ? size : 512; | |
247 | ||
248 | if ( getHiLo(samples, testsize, high, low, 80, 80) == -1 ) { | |
249 | if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting"); | |
250 | return false; //just noise | |
251 | } | |
252 | ||
253 | // get to first full low to prime loop and skip incomplete first pulse | |
254 | getNextHigh(samples, size, *high, &i); | |
255 | getNextLow(samples, size, *low, &i); | |
256 | *skip = i; | |
257 | ||
258 | // populate tmpbuff buffer with pulse lengths | |
259 | while (i < size) { | |
260 | // measure from low to low | |
261 | firstLow = i; | |
262 | //find first high point for this wave | |
263 | getNextHigh(samples, size, *high, &i); | |
264 | firstHigh = i; | |
265 | ||
266 | getNextLow(samples, size, *low, &i); | |
267 | ||
268 | if (*waveCnt >= (size/LOWEST_DEFAULT_CLOCK)) | |
269 | break; | |
270 | ||
271 | highToLowWaveLen[*waveCnt] = i - firstHigh; //first high to first low | |
272 | lowToLowWaveLen[*waveCnt] = i - firstLow; | |
273 | *waveCnt += 1; | |
274 | if (i-firstLow < *minClk && i < size) { | |
275 | *minClk = i - firstLow; | |
276 | } | |
277 | } | |
278 | return true; | |
279 | } | |
280 | ||
281 | size_t pskFindFirstPhaseShift(uint8_t samples[], size_t size, uint8_t *curPhase, size_t waveStart, uint16_t fc, uint16_t *fullWaveLen) { | |
282 | uint16_t loopCnt = (size+3 < 4096) ? size : 4096; //don't need to loop through entire array... | |
283 | ||
284 | uint16_t avgWaveVal=0, lastAvgWaveVal=0; | |
285 | size_t i = waveStart, waveEnd, waveLenCnt, firstFullWave; | |
286 | for (; i<loopCnt; i++) { | |
287 | // find peak // was "samples[i] + fc" but why? must have been used to weed out some wave error... removed.. | |
288 | if (samples[i] < samples[i+1] && samples[i+1] >= samples[i+2]){ | |
289 | waveEnd = i+1; | |
290 | if (g_debugMode == 2) prnt("DEBUG PSK: waveEnd: %u, waveStart: %u", waveEnd, waveStart); | |
291 | waveLenCnt = waveEnd-waveStart; | |
292 | if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+8)){ //not first peak and is a large wave but not out of whack | |
293 | lastAvgWaveVal = avgWaveVal/(waveLenCnt); | |
294 | firstFullWave = waveStart; | |
295 | *fullWaveLen = waveLenCnt; | |
296 | //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting) | |
297 | if (lastAvgWaveVal > FSK_PSK_THRESHOLD) *curPhase ^= 1; | |
298 | return firstFullWave; | |
299 | } | |
300 | waveStart = i+1; | |
301 | avgWaveVal = 0; | |
302 | } | |
303 | avgWaveVal += samples[i+2]; | |
304 | } | |
305 | return 0; | |
306 | } | |
307 | ||
308 | //by marshmellow | |
309 | //amplify based on ask edge detection - not accurate enough to use all the time | |
310 | void askAmp(uint8_t *BitStream, size_t size) { | |
311 | uint8_t Last = 128; | |
312 | for(size_t i = 1; i<size; i++){ | |
313 | if (BitStream[i]-BitStream[i-1]>=30) //large jump up | |
314 | Last = 255; | |
315 | else if(BitStream[i-1]-BitStream[i]>=20) //large jump down | |
316 | Last = 0; | |
317 | ||
318 | BitStream[i-1] = Last; | |
319 | } | |
320 | return; | |
321 | } | |
322 | ||
323 | uint32_t manchesterEncode2Bytes(uint16_t datain) { | |
324 | uint32_t output = 0; | |
325 | uint8_t curBit = 0; | |
326 | for (uint8_t i=0; i<16; i++) { | |
327 | curBit = (datain >> (15-i) & 1); | |
328 | output |= (1<<(((15-i)*2)+curBit)); | |
329 | } | |
330 | return output; | |
331 | } | |
332 | ||
333 | //by marshmellow | |
334 | //encode binary data into binary manchester | |
335 | //NOTE: BitStream must have triple the size of "size" available in memory to do the swap | |
336 | int ManchesterEncode(uint8_t *BitStream, size_t size) { | |
337 | //allow up to 4K out (means BitStream must be at least 2048+4096 to handle the swap) | |
338 | size = (size>2048) ? 2048 : size; | |
339 | size_t modIdx = size; | |
340 | size_t i; | |
341 | for (size_t idx=0; idx < size; idx++){ | |
342 | BitStream[idx+modIdx++] = BitStream[idx]; | |
343 | BitStream[idx+modIdx++] = BitStream[idx]^1; | |
344 | } | |
345 | for (i=0; i<(size*2); i++){ | |
346 | BitStream[i] = BitStream[i+size]; | |
347 | } | |
348 | return i; | |
349 | } | |
350 | ||
351 | // by marshmellow | |
352 | // to detect a wave that has heavily clipped (clean) samples | |
353 | uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low) { | |
354 | bool allArePeaks = true; | |
355 | uint16_t cntPeaks=0; | |
356 | size_t loopEnd = 512+160; | |
357 | if (loopEnd > size) loopEnd = size; | |
358 | for (size_t i=160; i<loopEnd; i++){ | |
359 | if (dest[i]>low && dest[i]<high) | |
360 | allArePeaks = false; | |
361 | else | |
362 | cntPeaks++; | |
363 | } | |
364 | if (!allArePeaks){ | |
365 | if (cntPeaks > 300) return true; | |
366 | } | |
367 | return allArePeaks; | |
368 | } | |
369 | ||
370 | //********************************************************************************************** | |
371 | //-------------------Clock / Bitrate Detection Section------------------------------------------ | |
372 | //********************************************************************************************** | |
373 | ||
374 | // by marshmellow | |
375 | // to help detect clocks on heavily clipped samples | |
376 | // based on count of low to low | |
377 | int DetectStrongAskClock(uint8_t dest[], size_t size, int high, int low, int *clock) { | |
378 | size_t startwave; | |
379 | size_t i = 100; | |
380 | size_t minClk = 255; | |
381 | int shortestWaveIdx = 0; | |
382 | // get to first full low to prime loop and skip incomplete first pulse | |
383 | getNextHigh(dest, size, high, &i); | |
384 | getNextLow(dest, size, low, &i); | |
385 | ||
386 | // loop through all samples | |
387 | while (i < size) { | |
388 | // measure from low to low | |
389 | startwave = i; | |
390 | ||
391 | getNextHigh(dest, size, high, &i); | |
392 | getNextLow(dest, size, low, &i); | |
393 | //get minimum measured distance | |
394 | if (i-startwave < minClk && i < size) { | |
395 | minClk = i - startwave; | |
396 | shortestWaveIdx = startwave; | |
397 | } | |
398 | } | |
399 | // set clock | |
400 | if (g_debugMode==2) prnt("DEBUG ASK: DetectStrongAskClock smallest wave: %d",minClk); | |
401 | *clock = getClosestClock(minClk); | |
402 | if (*clock == 0) | |
403 | return 0; | |
404 | ||
405 | return shortestWaveIdx; | |
406 | } | |
407 | ||
408 | // by marshmellow | |
409 | // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping) | |
410 | // maybe somehow adjust peak trimming value based on samples to fix? | |
411 | // return start index of best starting position for that clock and return clock (by reference) | |
412 | int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr) { | |
413 | size_t i=1; | |
414 | uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255}; | |
415 | uint8_t clkEnd = 9; | |
416 | uint8_t loopCnt = 255; //don't need to loop through entire array... | |
417 | if (size <= loopCnt+60) return -1; //not enough samples | |
418 | size -= 60; //sometimes there is a strange end wave - filter out this.... | |
419 | //if we already have a valid clock | |
420 | uint8_t clockFnd=0; | |
421 | for (;i<clkEnd;++i) | |
422 | if (clk[i] == *clock) clockFnd = i; | |
423 | //clock found but continue to find best startpos | |
424 | ||
425 | //get high and low peak | |
426 | int peak, low; | |
427 | if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1; | |
428 | ||
429 | //test for large clean peaks | |
430 | if (!clockFnd){ | |
431 | if (DetectCleanAskWave(dest, size, peak, low)==1){ | |
432 | int ans = DetectStrongAskClock(dest, size, peak, low, clock); | |
433 | if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %i, ShortestWave: %i",clock, ans); | |
434 | if (ans > 0) { | |
435 | return ans; //return shortest wave start position | |
436 | } | |
437 | } | |
438 | } | |
439 | uint8_t ii; | |
440 | uint8_t clkCnt, tol = 0; | |
441 | uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; | |
442 | uint8_t bestStart[]={0,0,0,0,0,0,0,0,0}; | |
443 | size_t errCnt = 0; | |
444 | size_t arrLoc, loopEnd; | |
445 | ||
446 | if (clockFnd>0) { | |
447 | clkCnt = clockFnd; | |
448 | clkEnd = clockFnd+1; | |
449 | } | |
450 | else clkCnt=1; | |
451 | ||
452 | //test each valid clock from smallest to greatest to see which lines up | |
453 | for(; clkCnt < clkEnd; clkCnt++){ | |
454 | if (clk[clkCnt] <= 32){ | |
455 | tol=1; | |
456 | }else{ | |
457 | tol=0; | |
458 | } | |
459 | //if no errors allowed - keep start within the first clock | |
460 | if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) loopCnt=clk[clkCnt]*2; | |
461 | bestErr[clkCnt]=1000; | |
462 | //try lining up the peaks by moving starting point (try first few clocks) | |
463 | for (ii=0; ii < loopCnt; ii++){ | |
464 | if (dest[ii] < peak && dest[ii] > low) continue; | |
465 | ||
466 | errCnt=0; | |
467 | // now that we have the first one lined up test rest of wave array | |
468 | loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1; | |
469 | for (i=0; i < loopEnd; ++i){ | |
470 | arrLoc = ii + (i * clk[clkCnt]); | |
471 | if (dest[arrLoc] >= peak || dest[arrLoc] <= low){ | |
472 | }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){ | |
473 | }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){ | |
474 | }else{ //error no peak detected | |
475 | errCnt++; | |
476 | } | |
477 | } | |
478 | //if we found no errors then we can stop here and a low clock (common clocks) | |
479 | // this is correct one - return this clock | |
480 | if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk[clkCnt],errCnt,ii,i); | |
481 | if(errCnt==0 && clkCnt<7) { | |
482 | if (!clockFnd) *clock = clk[clkCnt]; | |
483 | return ii; | |
484 | } | |
485 | //if we found errors see if it is lowest so far and save it as best run | |
486 | if(errCnt<bestErr[clkCnt]){ | |
487 | bestErr[clkCnt]=errCnt; | |
488 | bestStart[clkCnt]=ii; | |
489 | } | |
490 | } | |
491 | } | |
492 | uint8_t iii; | |
493 | uint8_t best=0; | |
494 | for (iii=1; iii<clkEnd; ++iii){ | |
495 | if (bestErr[iii] < bestErr[best]){ | |
496 | if (bestErr[iii] == 0) bestErr[iii]=1; | |
497 | // current best bit to error ratio vs new bit to error ratio | |
498 | if ( (size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii] ){ | |
499 | best = iii; | |
500 | } | |
501 | } | |
502 | if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d",clk[iii],bestErr[iii],clk[best],bestStart[best]); | |
503 | } | |
504 | if (!clockFnd) *clock = clk[best]; | |
505 | return bestStart[best]; | |
506 | } | |
507 | ||
508 | int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low, bool *strong) { | |
509 | //find shortest transition from high to low | |
510 | *strong = false; | |
511 | size_t i = 0; | |
512 | size_t transition1 = 0; | |
513 | int lowestTransition = 255; | |
514 | bool lastWasHigh = false; | |
515 | size_t transitionSampleCount = 0; | |
516 | //find first valid beginning of a high or low wave | |
517 | while ((dest[i] >= peak || dest[i] <= low) && (i < size)) | |
518 | ++i; | |
519 | while ((dest[i] < peak && dest[i] > low) && (i < size)) | |
520 | ++i; | |
521 | lastWasHigh = (dest[i] >= peak); | |
522 | ||
523 | if (i==size) return 0; | |
524 | transition1 = i; | |
525 | ||
526 | for (;i < size; i++) { | |
527 | if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) { | |
528 | lastWasHigh = (dest[i] >= peak); | |
529 | if (i-transition1 < lowestTransition) lowestTransition = i-transition1; | |
530 | transition1 = i; | |
531 | } else if (dest[i] < peak && dest[i] > low) { | |
532 | transitionSampleCount++; | |
533 | } | |
534 | } | |
535 | if (lowestTransition == 255) lowestTransition = 0; | |
536 | if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition); | |
537 | // if less than 10% of the samples were not peaks (or 90% were peaks) then we have a strong wave | |
538 | if (transitionSampleCount / size < 10) { | |
539 | *strong = true; | |
540 | lowestTransition = getClosestClock(lowestTransition); | |
541 | } | |
542 | return lowestTransition; | |
543 | } | |
544 | ||
545 | //by marshmellow | |
546 | //detect nrz clock by reading #peaks vs no peaks(or errors) | |
547 | int DetectNRZClock(uint8_t dest[], size_t size, int clock, size_t *clockStartIdx) { | |
548 | size_t i=0; | |
549 | uint8_t clk[]={8,16,32,40,50,64,100,128,255}; | |
550 | size_t loopCnt = 4096; //don't need to loop through entire array... | |
551 | if (size == 0) return 0; | |
552 | if (size<loopCnt) loopCnt = size-20; | |
553 | //if we already have a valid clock quit | |
554 | for (; i < 8; ++i) | |
555 | if (clk[i] == clock) return clock; | |
556 | ||
557 | //get high and low peak | |
558 | int peak, low; | |
559 | if (getHiLo(dest, loopCnt, &peak, &low, 90, 90) < 1) return 0; | |
560 | ||
561 | bool strong = false; | |
562 | int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low, &strong); | |
563 | if (strong) return lowestTransition; | |
564 | size_t ii; | |
565 | uint8_t clkCnt; | |
566 | uint8_t tol = 0; | |
567 | uint16_t smplCnt = 0; | |
568 | int16_t peakcnt = 0; | |
569 | int16_t peaksdet[] = {0,0,0,0,0,0,0,0}; | |
570 | uint16_t minPeak = 255; | |
571 | bool firstpeak = true; | |
572 | //test for large clipped waves - ignore first peak | |
573 | for (i=0; i<loopCnt; i++) { | |
574 | if (dest[i] >= peak || dest[i] <= low) { | |
575 | if (firstpeak) continue; | |
576 | smplCnt++; | |
577 | } else { | |
578 | firstpeak = false; | |
579 | if (smplCnt > 0) { | |
580 | if (minPeak > smplCnt && smplCnt > 7) minPeak = smplCnt; | |
581 | peakcnt++; | |
582 | if (g_debugMode == 2) prnt("DEBUG NRZ: minPeak: %d, smplCnt: %d, peakcnt: %d",minPeak,smplCnt,peakcnt); | |
583 | smplCnt = 0; | |
584 | } | |
585 | } | |
586 | } | |
587 | if (minPeak < 8) return 0; | |
588 | bool errBitHigh = 0; | |
589 | bool bitHigh = 0; | |
590 | uint8_t ignoreCnt = 0; | |
591 | uint8_t ignoreWindow = 4; | |
592 | bool lastPeakHigh = 0; | |
593 | int lastBit = 0; | |
594 | size_t bestStart[]={0,0,0,0,0,0,0,0,0}; | |
595 | peakcnt=0; | |
596 | //test each valid clock from smallest to greatest to see which lines up | |
597 | for(clkCnt=0; clkCnt < 8; ++clkCnt) { | |
598 | //ignore clocks smaller than smallest peak | |
599 | if (clk[clkCnt] < minPeak - (clk[clkCnt]/4)) continue; | |
600 | //try lining up the peaks by moving starting point (try first 256) | |
601 | for (ii=20; ii < loopCnt; ++ii) { | |
602 | if ((dest[ii] >= peak) || (dest[ii] <= low)) { | |
603 | peakcnt = 0; | |
604 | bitHigh = false; | |
605 | ignoreCnt = 0; | |
606 | lastBit = ii-clk[clkCnt]; | |
607 | //loop through to see if this start location works | |
608 | for (i = ii; i < size-20; ++i) { | |
609 | //if we are at a clock bit | |
610 | if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) { | |
611 | //test high/low | |
612 | if (dest[i] >= peak || dest[i] <= low) { | |
613 | //if same peak don't count it | |
614 | if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) { | |
615 | peakcnt++; | |
616 | } | |
617 | lastPeakHigh = (dest[i] >= peak); | |
618 | bitHigh = true; | |
619 | errBitHigh = false; | |
620 | ignoreCnt = ignoreWindow; | |
621 | lastBit += clk[clkCnt]; | |
622 | } else if (i == lastBit + clk[clkCnt] + tol) { | |
623 | lastBit += clk[clkCnt]; | |
624 | } | |
625 | //else if not a clock bit and no peaks | |
626 | } else if (dest[i] < peak && dest[i] > low) { | |
627 | if (ignoreCnt==0) { | |
628 | bitHigh=false; | |
629 | if (errBitHigh==true) peakcnt--; | |
630 | errBitHigh=false; | |
631 | } else { | |
632 | ignoreCnt--; | |
633 | } | |
634 | // else if not a clock bit but we have a peak | |
635 | } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) { | |
636 | //error bar found no clock... | |
637 | errBitHigh=true; | |
638 | } | |
639 | } | |
640 | if(peakcnt>peaksdet[clkCnt]) { | |
641 | bestStart[clkCnt]=ii; | |
642 | peaksdet[clkCnt]=peakcnt; | |
643 | } | |
644 | } | |
645 | } | |
646 | } | |
647 | int iii=7; | |
648 | uint8_t best=0; | |
649 | for (iii=7; iii > 0; iii--) { | |
650 | if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) { | |
651 | if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) { | |
652 | best = iii; | |
653 | } | |
654 | } else if (peaksdet[iii] > peaksdet[best]) { | |
655 | best = iii; | |
656 | } | |
657 | if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, minPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],minPeak, clk[best], lowestTransition); | |
658 | } | |
659 | *clockStartIdx = bestStart[best]; | |
660 | return clk[best]; | |
661 | } | |
662 | ||
663 | //by marshmellow | |
664 | //countFC is to detect the field clock lengths. | |
665 | //counts and returns the 2 most common wave lengths | |
666 | //mainly used for FSK field clock detection | |
667 | uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj) { | |
668 | uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
669 | uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
670 | uint8_t fcLensFnd = 0; | |
671 | uint8_t lastFCcnt = 0; | |
672 | uint8_t fcCounter = 0; | |
673 | size_t i; | |
674 | if (size < 180) return 0; | |
675 | ||
676 | // prime i to first up transition | |
677 | for (i = 160; i < size-20; i++) | |
678 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) | |
679 | break; | |
680 | ||
681 | for (; i < size-20; i++){ | |
682 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ | |
683 | // new up transition | |
684 | fcCounter++; | |
685 | if (fskAdj){ | |
686 | //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8) | |
687 | if (lastFCcnt==5 && fcCounter==9) fcCounter--; | |
688 | //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5) | |
689 | if ((fcCounter==9) || fcCounter==4) fcCounter++; | |
690 | // save last field clock count (fc/xx) | |
691 | lastFCcnt = fcCounter; | |
692 | } | |
693 | // find which fcLens to save it to: | |
694 | for (int ii=0; ii<15; ii++){ | |
695 | if (fcLens[ii]==fcCounter){ | |
696 | fcCnts[ii]++; | |
697 | fcCounter=0; | |
698 | break; | |
699 | } | |
700 | } | |
701 | if (fcCounter>0 && fcLensFnd<15){ | |
702 | //add new fc length | |
703 | fcCnts[fcLensFnd]++; | |
704 | fcLens[fcLensFnd++]=fcCounter; | |
705 | } | |
706 | fcCounter=0; | |
707 | } else { | |
708 | // count sample | |
709 | fcCounter++; | |
710 | } | |
711 | } | |
712 | ||
713 | uint8_t best1=14, best2=14, best3=14; | |
714 | uint16_t maxCnt1=0; | |
715 | // go through fclens and find which ones are bigest 2 | |
716 | for (i=0; i<15; i++){ | |
717 | // get the 3 best FC values | |
718 | if (fcCnts[i]>maxCnt1) { | |
719 | best3=best2; | |
720 | best2=best1; | |
721 | maxCnt1=fcCnts[i]; | |
722 | best1=i; | |
723 | } else if(fcCnts[i]>fcCnts[best2]){ | |
724 | best3=best2; | |
725 | best2=i; | |
726 | } else if(fcCnts[i]>fcCnts[best3]){ | |
727 | best3=i; | |
728 | } | |
729 | if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]); | |
730 | if (fcLens[i]==0) break; | |
731 | } | |
732 | if (fcLens[best1]==0) return 0; | |
733 | uint8_t fcH=0, fcL=0; | |
734 | if (fcLens[best1]>fcLens[best2]){ | |
735 | fcH=fcLens[best1]; | |
736 | fcL=fcLens[best2]; | |
737 | } else{ | |
738 | fcH=fcLens[best2]; | |
739 | fcL=fcLens[best1]; | |
740 | } | |
741 | if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) { | |
742 | if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]); | |
743 | return 0; //lots of waves not psk or fsk | |
744 | } | |
745 | // TODO: take top 3 answers and compare to known Field clocks to get top 2 | |
746 | ||
747 | uint16_t fcs = (((uint16_t)fcH)<<8) | fcL; | |
748 | if (fskAdj) return fcs; | |
749 | return (uint16_t)fcLens[best2] << 8 | fcLens[best1]; | |
750 | } | |
751 | ||
752 | //by marshmellow | |
753 | //detect psk clock by reading each phase shift | |
754 | // a phase shift is determined by measuring the sample length of each wave | |
755 | int DetectPSKClock(uint8_t dest[], size_t size, int clock, size_t *firstPhaseShift, uint8_t *curPhase, uint8_t *fc) { | |
756 | uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock | |
757 | uint16_t loopCnt = 4096; //don't need to loop through entire array... | |
758 | if (size == 0) return 0; | |
759 | if (size+3<loopCnt) loopCnt = size-20; | |
760 | ||
761 | uint16_t fcs = countFC(dest, size, 0); | |
762 | *fc = fcs & 0xFF; | |
763 | if (g_debugMode==2) prnt("DEBUG PSK: FC: %d, FC2: %d",*fc, fcs>>8); | |
764 | if ((fcs>>8) == 10 && *fc == 8) return 0; | |
765 | if (*fc!=2 && *fc!=4 && *fc!=8) return 0; | |
766 | ||
767 | //if we already have a valid clock quit | |
768 | size_t i=1; | |
769 | for (; i < 8; ++i) | |
770 | if (clk[i] == clock) return clock; | |
771 | ||
772 | size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0; | |
773 | ||
774 | uint8_t clkCnt, tol=1; | |
775 | uint16_t peakcnt=0, errCnt=0, waveLenCnt=0, fullWaveLen=0; | |
776 | uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; | |
777 | uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0}; | |
778 | ||
779 | //find start of modulating data in trace | |
780 | i = findModStart(dest, size, *fc); | |
781 | ||
782 | firstFullWave = pskFindFirstPhaseShift(dest, size, curPhase, i, *fc, &fullWaveLen); | |
783 | if (firstFullWave == 0) { | |
784 | // no phase shift detected - could be all 1's or 0's - doesn't matter where we start | |
785 | // so skip a little to ensure we are past any Start Signal | |
786 | firstFullWave = 160; | |
787 | fullWaveLen = 0; | |
788 | } | |
789 | ||
790 | *firstPhaseShift = firstFullWave; | |
791 | if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); | |
792 | //test each valid clock from greatest to smallest to see which lines up | |
793 | for(clkCnt=7; clkCnt >= 1 ; clkCnt--) { | |
794 | tol = *fc/2; | |
795 | lastClkBit = firstFullWave; //set end of wave as clock align | |
796 | waveStart = 0; | |
797 | errCnt=0; | |
798 | peakcnt=0; | |
799 | if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit); | |
800 | ||
801 | for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){ | |
802 | //top edge of wave = start of new wave | |
803 | if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ | |
804 | if (waveStart == 0) { | |
805 | waveStart = i+1; | |
806 | waveLenCnt=0; | |
807 | } else { //waveEnd | |
808 | waveEnd = i+1; | |
809 | waveLenCnt = waveEnd-waveStart; | |
810 | if (waveLenCnt > *fc){ | |
811 | //if this wave is a phase shift | |
812 | if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,*fc); | |
813 | if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit | |
814 | peakcnt++; | |
815 | lastClkBit+=clk[clkCnt]; | |
816 | } else if (i<lastClkBit+8){ | |
817 | //noise after a phase shift - ignore | |
818 | } else { //phase shift before supposed to based on clock | |
819 | errCnt++; | |
820 | } | |
821 | } else if (i+1 > lastClkBit + clk[clkCnt] + tol + *fc){ | |
822 | lastClkBit+=clk[clkCnt]; //no phase shift but clock bit | |
823 | } | |
824 | waveStart=i+1; | |
825 | } | |
826 | } | |
827 | } | |
828 | if (errCnt == 0){ | |
829 | return clk[clkCnt]; | |
830 | } | |
831 | if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt; | |
832 | if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt; | |
833 | } | |
834 | //all tested with errors | |
835 | //return the highest clk with the most peaks found | |
836 | uint8_t best=7; | |
837 | for (i=7; i>=1; i--){ | |
838 | if (peaksdet[i] > peaksdet[best]) { | |
839 | best = i; | |
840 | } | |
841 | if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]); | |
842 | } | |
843 | return clk[best]; | |
844 | } | |
845 | ||
846 | //by marshmellow | |
847 | //detects the bit clock for FSK given the high and low Field Clocks | |
848 | uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow, int *firstClockEdge) { | |
849 | uint8_t clk[] = {8,16,32,40,50,64,100,128,0}; | |
850 | uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
851 | uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
852 | uint8_t rfLensFnd = 0; | |
853 | uint8_t lastFCcnt = 0; | |
854 | uint16_t fcCounter = 0; | |
855 | uint16_t rfCounter = 0; | |
856 | uint8_t firstBitFnd = 0; | |
857 | size_t i; | |
858 | if (size == 0) return 0; | |
859 | ||
860 | uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2); | |
861 | rfLensFnd=0; | |
862 | fcCounter=0; | |
863 | rfCounter=0; | |
864 | firstBitFnd=0; | |
865 | //PrintAndLog("DEBUG: fcTol: %d",fcTol); | |
866 | // prime i to first peak / up transition | |
867 | for (i = 160; i < size-20; i++) | |
868 | if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]) | |
869 | break; | |
870 | ||
871 | for (; i < size-20; i++){ | |
872 | fcCounter++; | |
873 | rfCounter++; | |
874 | ||
875 | if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1]) | |
876 | continue; | |
877 | // else new peak | |
878 | // if we got less than the small fc + tolerance then set it to the small fc | |
879 | // if it is inbetween set it to the last counter | |
880 | if (fcCounter < fcHigh && fcCounter > fcLow) | |
881 | fcCounter = lastFCcnt; | |
882 | else if (fcCounter < fcLow+fcTol) | |
883 | fcCounter = fcLow; | |
884 | else //set it to the large fc | |
885 | fcCounter = fcHigh; | |
886 | ||
887 | //look for bit clock (rf/xx) | |
888 | if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){ | |
889 | //not the same size as the last wave - start of new bit sequence | |
890 | if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit | |
891 | for (int ii=0; ii<15; ii++){ | |
892 | if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){ | |
893 | rfCnts[ii]++; | |
894 | rfCounter = 0; | |
895 | break; | |
896 | } | |
897 | } | |
898 | if (rfCounter > 0 && rfLensFnd < 15){ | |
899 | //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter); | |
900 | rfCnts[rfLensFnd]++; | |
901 | rfLens[rfLensFnd++] = rfCounter; | |
902 | } | |
903 | } else { | |
904 | *firstClockEdge = i; | |
905 | firstBitFnd++; | |
906 | } | |
907 | rfCounter=0; | |
908 | lastFCcnt=fcCounter; | |
909 | } | |
910 | fcCounter=0; | |
911 | } | |
912 | uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15; | |
913 | ||
914 | for (i=0; i<15; i++){ | |
915 | //get highest 2 RF values (might need to get more values to compare or compare all?) | |
916 | if (rfCnts[i]>rfCnts[rfHighest]){ | |
917 | rfHighest3=rfHighest2; | |
918 | rfHighest2=rfHighest; | |
919 | rfHighest=i; | |
920 | } else if(rfCnts[i]>rfCnts[rfHighest2]){ | |
921 | rfHighest3=rfHighest2; | |
922 | rfHighest2=i; | |
923 | } else if(rfCnts[i]>rfCnts[rfHighest3]){ | |
924 | rfHighest3=i; | |
925 | } | |
926 | if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]); | |
927 | } | |
928 | // set allowed clock remainder tolerance to be 1 large field clock length+1 | |
929 | // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off | |
930 | uint8_t tol1 = fcHigh+1; | |
931 | ||
932 | if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]); | |
933 | ||
934 | // loop to find the highest clock that has a remainder less than the tolerance | |
935 | // compare samples counted divided by | |
936 | // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less) | |
937 | int ii=7; | |
938 | for (; ii>=2; ii--){ | |
939 | if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){ | |
940 | if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){ | |
941 | if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){ | |
942 | if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]); | |
943 | break; | |
944 | } | |
945 | } | |
946 | } | |
947 | } | |
948 | ||
949 | if (ii<2) return 0; // oops we went too far | |
950 | ||
951 | return clk[ii]; | |
952 | } | |
953 | ||
954 | //********************************************************************************************** | |
955 | //--------------------Modulation Demods &/or Decoding Section----------------------------------- | |
956 | //********************************************************************************************** | |
957 | ||
958 | // look for Sequence Terminator - should be pulses of clk*(1 or 2), clk*2, clk*(1.5 or 2), by idx we mean graph position index... | |
959 | bool findST(int *stStopLoc, int *stStartIdx, int lowToLowWaveLen[], int highToLowWaveLen[], int clk, int tol, int buffSize, size_t *i) { | |
960 | if (buffSize < *i+4) return false; | |
961 | ||
962 | for (; *i < buffSize - 4; *i+=1) { | |
963 | *stStartIdx += lowToLowWaveLen[*i]; //caution part of this wave may be data and part may be ST.... to be accounted for in main function for now... | |
964 | if (lowToLowWaveLen[*i] >= clk*1-tol && lowToLowWaveLen[*i] <= (clk*2)+tol && highToLowWaveLen[*i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior | |
965 | if (lowToLowWaveLen[*i+1] >= clk*2-tol && lowToLowWaveLen[*i+1] <= clk*2+tol && highToLowWaveLen[*i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2 | |
966 | if (lowToLowWaveLen[*i+2] >= (clk*3)/2-tol && lowToLowWaveLen[*i+2] <= clk*2+tol && highToLowWaveLen[*i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave | |
967 | if (lowToLowWaveLen[*i+3] >= clk*1-tol && lowToLowWaveLen[*i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit | |
968 | *stStopLoc = *i + 3; | |
969 | return true; | |
970 | } | |
971 | } | |
972 | } | |
973 | } | |
974 | } | |
975 | return false; | |
976 | } | |
977 | //by marshmellow | |
978 | //attempt to identify a Sequence Terminator in ASK modulated raw wave | |
979 | bool DetectST(uint8_t buffer[], size_t *size, int *foundclock, size_t *ststart, size_t *stend) { | |
980 | size_t bufsize = *size; | |
981 | //need to loop through all samples and identify our clock, look for the ST pattern | |
982 | int clk = 0; | |
983 | int tol = 0; | |
984 | int j=0, high, low, skip=0, start=0, end=0, minClk=255; | |
985 | size_t i = 0; | |
986 | //probably should malloc... || test if memory is available ... handle device side? memory danger!!! [marshmellow] | |
987 | int tmpbuff[bufsize / LOWEST_DEFAULT_CLOCK]; // low to low wave count //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured | |
988 | int waveLen[bufsize / LOWEST_DEFAULT_CLOCK]; // high to low wave count //if clock is larger then we waste memory in array size that is not needed... | |
989 | //size_t testsize = (bufsize < 512) ? bufsize : 512; | |
990 | int phaseoff = 0; | |
991 | high = low = 128; | |
992 | memset(tmpbuff, 0, sizeof(tmpbuff)); | |
993 | memset(waveLen, 0, sizeof(waveLen)); | |
994 | ||
995 | if (!loadWaveCounters(buffer, bufsize, tmpbuff, waveLen, &j, &skip, &minClk, &high, &low)) return false; | |
996 | // set clock - might be able to get this externally and remove this work... | |
997 | clk = getClosestClock(minClk); | |
998 | // clock not found - ERROR | |
999 | if (clk == 0) { | |
1000 | if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting"); | |
1001 | return false; | |
1002 | } | |
1003 | *foundclock = clk; | |
1004 | ||
1005 | tol = clk/8; | |
1006 | if (!findST(&start, &skip, tmpbuff, waveLen, clk, tol, j, &i)) { | |
1007 | // first ST not found - ERROR | |
1008 | if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting"); | |
1009 | return false; | |
1010 | } else { | |
1011 | if (g_debugMode==2) prnt("DEBUG STT: first STT found at wave: %i, skip: %i, j=%i", start, skip, j); | |
1012 | } | |
1013 | if (waveLen[i+2] > clk*1+tol) | |
1014 | phaseoff = 0; | |
1015 | else | |
1016 | phaseoff = clk/2; | |
1017 | ||
1018 | // skip over the remainder of ST | |
1019 | skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point | |
1020 | ||
1021 | // now do it again to find the end | |
1022 | int dummy1 = 0; | |
1023 | end = skip; | |
1024 | i+=3; | |
1025 | if (!findST(&dummy1, &end, tmpbuff, waveLen, clk, tol, j, &i)) { | |
1026 | //didn't find second ST - ERROR | |
1027 | if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting"); | |
1028 | return false; | |
1029 | } | |
1030 | end -= phaseoff; | |
1031 | if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff); | |
1032 | //now begin to trim out ST so we can use normal demod cmds | |
1033 | start = skip; | |
1034 | size_t datalen = end - start; | |
1035 | // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock | |
1036 | if ( clk - (datalen % clk) <= clk/8) { | |
1037 | // padd the amount off - could be problematic... but shouldn't happen often | |
1038 | datalen += clk - (datalen % clk); | |
1039 | } else if ( (datalen % clk) <= clk/8 ) { | |
1040 | // padd the amount off - could be problematic... but shouldn't happen often | |
1041 | datalen -= datalen % clk; | |
1042 | } else { | |
1043 | if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk); | |
1044 | return false; | |
1045 | } | |
1046 | // if datalen is less than one t55xx block - ERROR | |
1047 | if (datalen/clk < 8*4) { | |
1048 | if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting"); | |
1049 | return false; | |
1050 | } | |
1051 | size_t dataloc = start; | |
1052 | if (buffer[dataloc-(clk*4)-(clk/4)] <= low && buffer[dataloc] <= low && buffer[dataloc-(clk*4)] >= high) { | |
1053 | //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start | |
1054 | for ( i=0; i <= (clk/4); ++i ) { | |
1055 | if ( buffer[dataloc - (clk*4) - i] <= low ) { | |
1056 | dataloc -= i; | |
1057 | break; | |
1058 | } | |
1059 | } | |
1060 | } | |
1061 | ||
1062 | size_t newloc = 0; | |
1063 | i=0; | |
1064 | if (g_debugMode==2) prnt("DEBUG STT: Starting STT trim - start: %d, datalen: %d ",dataloc, datalen); | |
1065 | bool firstrun = true; | |
1066 | // warning - overwriting buffer given with raw wave data with ST removed... | |
1067 | while ( dataloc < bufsize-(clk/2) ) { | |
1068 | //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part) | |
1069 | if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+clk/4]<high && buffer[dataloc+clk/4]>low) { | |
1070 | for(i=0; i < clk/2-tol; ++i) { | |
1071 | buffer[dataloc+i] = high+5; | |
1072 | } | |
1073 | } //test for small spike outlier (high between two lows) in the case of very strong waves | |
1074 | if (buffer[dataloc] > low && buffer[dataloc+clk/4] <= low) { | |
1075 | for(i=0; i < clk/4; ++i) { | |
1076 | buffer[dataloc+i] = buffer[dataloc+clk/4]; | |
1077 | } | |
1078 | } | |
1079 | if (firstrun) { | |
1080 | *stend = dataloc; | |
1081 | *ststart = dataloc-(clk*4); | |
1082 | firstrun=false; | |
1083 | } | |
1084 | for (i=0; i<datalen; ++i) { | |
1085 | if (i+newloc < bufsize) { | |
1086 | if (i+newloc < dataloc) | |
1087 | buffer[i+newloc] = buffer[dataloc]; | |
1088 | ||
1089 | dataloc++; | |
1090 | } | |
1091 | } | |
1092 | newloc += i; | |
1093 | //skip next ST - we just assume it will be there from now on... | |
1094 | if (g_debugMode==2) prnt("DEBUG STT: skipping STT at %d to %d", dataloc, dataloc+(clk*4)); | |
1095 | dataloc += clk*4; | |
1096 | } | |
1097 | *size = newloc; | |
1098 | return true; | |
1099 | } | |
1100 | ||
1101 | //by marshmellow | |
1102 | //take 11 10 01 11 00 and make 01100 ... miller decoding | |
1103 | //check for phase errors - should never have half a 1 or 0 by itself and should never exceed 1111 or 0000 in a row | |
1104 | //decodes miller encoded binary | |
1105 | //NOTE askrawdemod will NOT demod miller encoded ask unless the clock is manually set to 1/2 what it is detected as! | |
1106 | int millerRawDecode(uint8_t *BitStream, size_t *size, int invert) { | |
1107 | if (*size < 16) return -1; | |
1108 | uint16_t MaxBits = 512, errCnt = 0; | |
1109 | size_t i, bitCnt=0; | |
1110 | uint8_t alignCnt = 0, curBit = BitStream[0], alignedIdx = 0; | |
1111 | uint8_t halfClkErr = 0; | |
1112 | //find alignment, needs 4 1s or 0s to properly align | |
1113 | for (i=1; i < *size-1; i++) { | |
1114 | alignCnt = (BitStream[i] == curBit) ? alignCnt+1 : 0; | |
1115 | curBit = BitStream[i]; | |
1116 | if (alignCnt == 4) break; | |
1117 | } | |
1118 | // for now error if alignment not found. later add option to run it with multiple offsets... | |
1119 | if (alignCnt != 4) { | |
1120 | if (g_debugMode) prnt("ERROR MillerDecode: alignment not found so either your bitstream is not miller or your data does not have a 101 in it"); | |
1121 | return -1; | |
1122 | } | |
1123 | alignedIdx = (i-1) % 2; | |
1124 | for (i=alignedIdx; i < *size-3; i+=2) { | |
1125 | halfClkErr = (uint8_t)((halfClkErr << 1 | BitStream[i]) & 0xFF); | |
1126 | if ( (halfClkErr & 0x7) == 5 || (halfClkErr & 0x7) == 2 || (i > 2 && (halfClkErr & 0x7) == 0) || (halfClkErr & 0x1F) == 0x1F) { | |
1127 | errCnt++; | |
1128 | BitStream[bitCnt++] = 7; | |
1129 | continue; | |
1130 | } | |
1131 | BitStream[bitCnt++] = BitStream[i] ^ BitStream[i+1] ^ invert; | |
1132 | ||
1133 | if (bitCnt > MaxBits) break; | |
1134 | } | |
1135 | *size = bitCnt; | |
1136 | return errCnt; | |
1137 | } | |
1138 | ||
1139 | //by marshmellow | |
1140 | //take 01 or 10 = 1 and 11 or 00 = 0 | |
1141 | //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010 | |
1142 | //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding | |
1143 | int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int *offset, int invert) { | |
1144 | uint16_t bitnum = 0; | |
1145 | uint16_t errCnt = 0; | |
1146 | size_t i = *offset; | |
1147 | uint16_t MaxBits=512; | |
1148 | //if not enough samples - error | |
1149 | if (*size < 51) return -1; | |
1150 | //check for phase change faults - skip one sample if faulty | |
1151 | uint8_t offsetA = 1, offsetB = 1; | |
1152 | for (; i<48; i+=2){ | |
1153 | if (BitStream[i+1]==BitStream[i+2]) offsetA=0; | |
1154 | if (BitStream[i+2]==BitStream[i+3]) offsetB=0; | |
1155 | } | |
1156 | if (!offsetA && offsetB) *offset+=1; | |
1157 | for (i=*offset; i<*size-3; i+=2){ | |
1158 | //check for phase error | |
1159 | if (BitStream[i+1]==BitStream[i+2]) { | |
1160 | BitStream[bitnum++]=7; | |
1161 | errCnt++; | |
1162 | } | |
1163 | if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){ | |
1164 | BitStream[bitnum++]=1^invert; | |
1165 | } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){ | |
1166 | BitStream[bitnum++]=invert; | |
1167 | } else { | |
1168 | BitStream[bitnum++]=7; | |
1169 | errCnt++; | |
1170 | } | |
1171 | if(bitnum>MaxBits) break; | |
1172 | } | |
1173 | *size=bitnum; | |
1174 | return errCnt; | |
1175 | } | |
1176 | ||
1177 | //by marshmellow | |
1178 | //take 10 and 01 and manchester decode | |
1179 | //run through 2 times and take least errCnt | |
1180 | int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert, uint8_t *alignPos) { | |
1181 | uint16_t bitnum=0, MaxBits = 512, errCnt = 0; | |
1182 | size_t i, ii; | |
1183 | uint16_t bestErr = 1000, bestRun = 0; | |
1184 | if (*size < 16) return -1; | |
1185 | //find correct start position [alignment] | |
1186 | for (ii=0;ii<2;++ii){ | |
1187 | for (i=ii; i<*size-3; i+=2) | |
1188 | if (BitStream[i]==BitStream[i+1]) | |
1189 | errCnt++; | |
1190 | ||
1191 | if (bestErr>errCnt){ | |
1192 | bestErr=errCnt; | |
1193 | bestRun=ii; | |
1194 | } | |
1195 | errCnt=0; | |
1196 | } | |
1197 | *alignPos=bestRun; | |
1198 | //decode | |
1199 | for (i=bestRun; i < *size-3; i+=2){ | |
1200 | if(BitStream[i] == 1 && (BitStream[i+1] == 0)){ | |
1201 | BitStream[bitnum++]=invert; | |
1202 | } else if((BitStream[i] == 0) && BitStream[i+1] == 1){ | |
1203 | BitStream[bitnum++]=invert^1; | |
1204 | } else { | |
1205 | BitStream[bitnum++]=7; | |
1206 | } | |
1207 | if(bitnum>MaxBits) break; | |
1208 | } | |
1209 | *size=bitnum; | |
1210 | return bestErr; | |
1211 | } | |
1212 | ||
1213 | //by marshmellow | |
1214 | //demodulates strong heavily clipped samples | |
1215 | int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low, int *startIdx) | |
1216 | { | |
1217 | *startIdx=0; | |
1218 | size_t bitCnt=0, smplCnt=1, errCnt=0; | |
1219 | bool waveHigh = (BinStream[0] >= high); | |
1220 | for (size_t i=1; i < *size; i++){ | |
1221 | if (BinStream[i] >= high && waveHigh){ | |
1222 | smplCnt++; | |
1223 | } else if (BinStream[i] <= low && !waveHigh){ | |
1224 | smplCnt++; | |
1225 | } else { //transition | |
1226 | if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){ | |
1227 | if (smplCnt > clk-(clk/4)-1) { //full clock | |
1228 | if (smplCnt > clk + (clk/4)+1) { //too many samples | |
1229 | errCnt++; | |
1230 | if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i); | |
1231 | BinStream[bitCnt++] = 7; | |
1232 | } else if (waveHigh) { | |
1233 | BinStream[bitCnt++] = invert; | |
1234 | BinStream[bitCnt++] = invert; | |
1235 | } else if (!waveHigh) { | |
1236 | BinStream[bitCnt++] = invert ^ 1; | |
1237 | BinStream[bitCnt++] = invert ^ 1; | |
1238 | } | |
1239 | if (*startIdx==0) *startIdx = i-clk; | |
1240 | waveHigh = !waveHigh; | |
1241 | smplCnt = 0; | |
1242 | } else if (smplCnt > (clk/2) - (clk/4)-1) { //half clock | |
1243 | if (waveHigh) { | |
1244 | BinStream[bitCnt++] = invert; | |
1245 | } else if (!waveHigh) { | |
1246 | BinStream[bitCnt++] = invert ^ 1; | |
1247 | } | |
1248 | if (*startIdx==0) *startIdx = i-(clk/2); | |
1249 | waveHigh = !waveHigh; | |
1250 | smplCnt = 0; | |
1251 | } else { | |
1252 | smplCnt++; | |
1253 | //transition bit oops | |
1254 | } | |
1255 | } else { //haven't hit new high or new low yet | |
1256 | smplCnt++; | |
1257 | } | |
1258 | } | |
1259 | } | |
1260 | *size = bitCnt; | |
1261 | return errCnt; | |
1262 | } | |
1263 | ||
1264 | //by marshmellow | |
1265 | //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester | |
1266 | int askdemod_ext(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType, int *startIdx) { | |
1267 | if (*size==0) return -1; | |
1268 | int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default | |
1269 | if (*clk==0 || start < 0) return -3; | |
1270 | if (*invert != 1) *invert = 0; | |
1271 | if (amp==1) askAmp(BinStream, *size); | |
1272 | if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d, amp %d", *clk, start, amp); | |
1273 | ||
1274 | //start pos from detect ask clock is 1/2 clock offset | |
1275 | // NOTE: can be negative (demod assumes rest of wave was there) | |
1276 | *startIdx = start - (*clk/2); | |
1277 | uint8_t initLoopMax = 255; | |
1278 | if (initLoopMax > *size) initLoopMax = *size; | |
1279 | // Detect high and lows | |
1280 | //25% clip in case highs and lows aren't clipped [marshmellow] | |
1281 | int high, low; | |
1282 | if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1) | |
1283 | return -2; //just noise | |
1284 | ||
1285 | size_t errCnt = 0; | |
1286 | // if clean clipped waves detected run alternate demod | |
1287 | if (DetectCleanAskWave(BinStream, *size, high, low)) { | |
1288 | if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod"); | |
1289 | errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low, startIdx); | |
1290 | if (askType) { //askman | |
1291 | uint8_t alignPos = 0; | |
1292 | errCnt = manrawdecode(BinStream, size, 0, &alignPos); | |
1293 | *startIdx += *clk/2 * alignPos; | |
1294 | if (g_debugMode) prnt("DEBUG ASK CLEAN: startIdx %i, alignPos %u", *startIdx, alignPos); | |
1295 | return errCnt; | |
1296 | } else { //askraw | |
1297 | return errCnt; | |
1298 | } | |
1299 | } | |
1300 | if (g_debugMode) prnt("DEBUG ASK WEAK: startIdx %i", *startIdx); | |
1301 | if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod"); | |
1302 | ||
1303 | int lastBit; //set first clock check - can go negative | |
1304 | size_t i, bitnum = 0; //output counter | |
1305 | uint8_t midBit = 0; | |
1306 | uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave | |
1307 | if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely | |
1308 | size_t MaxBits = 3072; //max bits to collect | |
1309 | lastBit = start - *clk; | |
1310 | ||
1311 | for (i = start; i < *size; ++i) { | |
1312 | if (i-lastBit >= *clk-tol){ | |
1313 | if (BinStream[i] >= high) { | |
1314 | BinStream[bitnum++] = *invert; | |
1315 | } else if (BinStream[i] <= low) { | |
1316 | BinStream[bitnum++] = *invert ^ 1; | |
1317 | } else if (i-lastBit >= *clk+tol) { | |
1318 | if (bitnum > 0) { | |
1319 | if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i); | |
1320 | BinStream[bitnum++]=7; | |
1321 | errCnt++; | |
1322 | } | |
1323 | } else { //in tolerance - looking for peak | |
1324 | continue; | |
1325 | } | |
1326 | midBit = 0; | |
1327 | lastBit += *clk; | |
1328 | } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){ | |
1329 | if (BinStream[i] >= high) { | |
1330 | BinStream[bitnum++] = *invert; | |
1331 | } else if (BinStream[i] <= low) { | |
1332 | BinStream[bitnum++] = *invert ^ 1; | |
1333 | } else if (i-lastBit >= *clk/2+tol) { | |
1334 | BinStream[bitnum] = BinStream[bitnum-1]; | |
1335 | bitnum++; | |
1336 | } else { //in tolerance - looking for peak | |
1337 | continue; | |
1338 | } | |
1339 | midBit = 1; | |
1340 | } | |
1341 | if (bitnum >= MaxBits) break; | |
1342 | } | |
1343 | *size = bitnum; | |
1344 | return errCnt; | |
1345 | } | |
1346 | ||
1347 | int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType) { | |
1348 | int start = 0; | |
1349 | return askdemod_ext(BinStream, size, clk, invert, maxErr, amp, askType, &start); | |
1350 | } | |
1351 | ||
1352 | // by marshmellow - demodulate NRZ wave - requires a read with strong signal | |
1353 | // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak | |
1354 | int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert, int *startIdx) { | |
1355 | if (justNoise(dest, *size)) return -1; | |
1356 | size_t clkStartIdx = 0; | |
1357 | *clk = DetectNRZClock(dest, *size, *clk, &clkStartIdx); | |
1358 | if (*clk==0) return -2; | |
1359 | size_t i, gLen = 4096; | |
1360 | if (gLen>*size) gLen = *size-20; | |
1361 | int high, low; | |
1362 | if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low | |
1363 | ||
1364 | uint8_t bit=0; | |
1365 | //convert wave samples to 1's and 0's | |
1366 | for(i=20; i < *size-20; i++){ | |
1367 | if (dest[i] >= high) bit = 1; | |
1368 | if (dest[i] <= low) bit = 0; | |
1369 | dest[i] = bit; | |
1370 | } | |
1371 | //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit) | |
1372 | size_t lastBit = 0; | |
1373 | size_t numBits = 0; | |
1374 | for(i=21; i < *size-20; i++) { | |
1375 | //if transition detected or large number of same bits - store the passed bits | |
1376 | if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) { | |
1377 | memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk); | |
1378 | numBits += (i - lastBit + (*clk/4)) / *clk; | |
1379 | if (lastBit == 0) { | |
1380 | *startIdx = i - (numBits * *clk); | |
1381 | if (g_debugMode==2) prnt("DEBUG NRZ: startIdx %i", *startIdx); | |
1382 | } | |
1383 | lastBit = i-1; | |
1384 | } | |
1385 | } | |
1386 | *size = numBits; | |
1387 | return 0; | |
1388 | } | |
1389 | ||
1390 | //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq]) | |
1391 | size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow, int *startIdx) { | |
1392 | size_t last_transition = 0; | |
1393 | size_t idx = 1; | |
1394 | if (fchigh==0) fchigh=10; | |
1395 | if (fclow==0) fclow=8; | |
1396 | //set the threshold close to 0 (graph) or 128 std to avoid static | |
1397 | size_t preLastSample = 0; | |
1398 | size_t LastSample = 0; | |
1399 | size_t currSample = 0; | |
1400 | if ( size < 1024 ) return 0; // not enough samples | |
1401 | ||
1402 | //find start of modulating data in trace | |
1403 | idx = findModStart(dest, size, fchigh); | |
1404 | // Need to threshold first sample | |
1405 | if(dest[idx] < FSK_PSK_THRESHOLD) dest[0] = 0; | |
1406 | else dest[0] = 1; | |
1407 | ||
1408 | last_transition = idx; | |
1409 | idx++; | |
1410 | size_t numBits = 0; | |
1411 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) | |
1412 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere | |
1413 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 | |
1414 | // (could also be fc/5 && fc/7 for fsk1 = 4-9) | |
1415 | for(; idx < size; idx++) { | |
1416 | // threshold current value | |
1417 | if (dest[idx] < FSK_PSK_THRESHOLD) dest[idx] = 0; | |
1418 | else dest[idx] = 1; | |
1419 | ||
1420 | // Check for 0->1 transition | |
1421 | if (dest[idx-1] < dest[idx]) { | |
1422 | preLastSample = LastSample; | |
1423 | LastSample = currSample; | |
1424 | currSample = idx-last_transition; | |
1425 | if (currSample < (fclow-2)) { //0-5 = garbage noise (or 0-3) | |
1426 | //do nothing with extra garbage | |
1427 | } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5) | |
1428 | //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5) | |
1429 | if (numBits > 1 && LastSample > (fchigh-2) && (preLastSample < (fchigh-1))){ | |
1430 | dest[numBits-1]=1; | |
1431 | } | |
1432 | dest[numBits++]=1; | |
1433 | if (numBits > 0 && *startIdx==0) *startIdx = idx - fclow; | |
1434 | } else if (currSample > (fchigh+1) && numBits < 3) { //12 + and first two bit = unusable garbage | |
1435 | //do nothing with beginning garbage and reset.. should be rare.. | |
1436 | numBits = 0; | |
1437 | } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's) | |
1438 | dest[numBits++]=1; | |
1439 | if (numBits > 0 && *startIdx==0) *startIdx = idx - fclow; | |
1440 | } else { //9+ = 10 sample waves (or 6+ = 7) | |
1441 | dest[numBits++]=0; | |
1442 | if (numBits > 0 && *startIdx==0) *startIdx = idx - fchigh; | |
1443 | } | |
1444 | last_transition = idx; | |
1445 | } | |
1446 | } | |
1447 | return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 | |
1448 | } | |
1449 | ||
1450 | //translate 11111100000 to 10 | |
1451 | //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock | |
1452 | size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow, int *startIdx) { | |
1453 | uint8_t lastval=dest[0]; | |
1454 | size_t idx=0; | |
1455 | size_t numBits=0; | |
1456 | uint32_t n=1; | |
1457 | for( idx=1; idx < size; idx++) { | |
1458 | n++; | |
1459 | if (dest[idx]==lastval) continue; //skip until we hit a transition | |
1460 | ||
1461 | //find out how many bits (n) we collected (use 1/2 clk tolerance) | |
1462 | //if lastval was 1, we have a 1->0 crossing | |
1463 | if (dest[idx-1]==1) { | |
1464 | n = (n * fclow + rfLen/2) / rfLen; | |
1465 | } else {// 0->1 crossing | |
1466 | n = (n * fchigh + rfLen/2) / rfLen; | |
1467 | } | |
1468 | if (n == 0) n = 1; | |
1469 | ||
1470 | //first transition - save startidx | |
1471 | if (numBits == 0) { | |
1472 | if (lastval == 1) { //high to low | |
1473 | *startIdx += (fclow * idx) - (n*rfLen); | |
1474 | if (g_debugMode==2) prnt("DEBUG FSK: startIdx %i, fclow*idx %i, n*rflen %u", *startIdx, fclow*(idx), n*rfLen); | |
1475 | } else { | |
1476 | *startIdx += (fchigh * idx) - (n*rfLen); | |
1477 | if (g_debugMode==2) prnt("DEBUG FSK: startIdx %i, fchigh*idx %i, n*rflen %u", *startIdx, fchigh*(idx), n*rfLen); | |
1478 | } | |
1479 | } | |
1480 | ||
1481 | //add to our destination the bits we collected | |
1482 | memset(dest+numBits, dest[idx-1]^invert , n); | |
1483 | numBits += n; | |
1484 | n=0; | |
1485 | lastval=dest[idx]; | |
1486 | }//end for | |
1487 | // if valid extra bits at the end were all the same frequency - add them in | |
1488 | if (n > rfLen/fchigh) { | |
1489 | if (dest[idx-2]==1) { | |
1490 | n = (n * fclow + rfLen/2) / rfLen; | |
1491 | } else { | |
1492 | n = (n * fchigh + rfLen/2) / rfLen; | |
1493 | } | |
1494 | memset(dest+numBits, dest[idx-1]^invert , n); | |
1495 | numBits += n; | |
1496 | } | |
1497 | return numBits; | |
1498 | } | |
1499 | ||
1500 | //by marshmellow (from holiman's base) | |
1501 | // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod) | |
1502 | int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow, int *startIdx) { | |
1503 | if (justNoise(dest, size)) return 0; | |
1504 | // FSK demodulator | |
1505 | size = fsk_wave_demod(dest, size, fchigh, fclow, startIdx); | |
1506 | size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow, startIdx); | |
1507 | return size; | |
1508 | } | |
1509 | ||
1510 | // by marshmellow | |
1511 | // convert psk1 demod to psk2 demod | |
1512 | // only transition waves are 1s | |
1513 | void psk1TOpsk2(uint8_t *BitStream, size_t size) { | |
1514 | size_t i=1; | |
1515 | uint8_t lastBit=BitStream[0]; | |
1516 | for (; i<size; i++){ | |
1517 | if (BitStream[i]==7){ | |
1518 | //ignore errors | |
1519 | } else if (lastBit!=BitStream[i]){ | |
1520 | lastBit=BitStream[i]; | |
1521 | BitStream[i]=1; | |
1522 | } else { | |
1523 | BitStream[i]=0; | |
1524 | } | |
1525 | } | |
1526 | return; | |
1527 | } | |
1528 | ||
1529 | // by marshmellow | |
1530 | // convert psk2 demod to psk1 demod | |
1531 | // from only transition waves are 1s to phase shifts change bit | |
1532 | void psk2TOpsk1(uint8_t *BitStream, size_t size) { | |
1533 | uint8_t phase=0; | |
1534 | for (size_t i=0; i<size; i++){ | |
1535 | if (BitStream[i]==1){ | |
1536 | phase ^=1; | |
1537 | } | |
1538 | BitStream[i]=phase; | |
1539 | } | |
1540 | return; | |
1541 | } | |
1542 | ||
1543 | //by marshmellow - demodulate PSK1 wave | |
1544 | //uses wave lengths (# Samples) | |
1545 | int pskRawDemod_ext(uint8_t dest[], size_t *size, int *clock, int *invert, int *startIdx) { | |
1546 | if (*size < 170) return -1; | |
1547 | ||
1548 | uint8_t curPhase = *invert; | |
1549 | uint8_t fc=0; | |
1550 | size_t i=0, numBits=0, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0; | |
1551 | uint16_t fullWaveLen=0, waveLenCnt=0, avgWaveVal; | |
1552 | uint16_t errCnt=0, errCnt2=0; | |
1553 | ||
1554 | *clock = DetectPSKClock(dest, *size, *clock, &firstFullWave, &curPhase, &fc); | |
1555 | if (*clock <= 0) return -1; | |
1556 | //if clock detect found firstfullwave... | |
1557 | uint16_t tol = fc/2; | |
1558 | if (firstFullWave == 0) { | |
1559 | //find start of modulating data in trace | |
1560 | i = findModStart(dest, *size, fc); | |
1561 | //find first phase shift | |
1562 | firstFullWave = pskFindFirstPhaseShift(dest, *size, &curPhase, i, fc, &fullWaveLen); | |
1563 | if (firstFullWave == 0) { | |
1564 | // no phase shift detected - could be all 1's or 0's - doesn't matter where we start | |
1565 | // so skip a little to ensure we are past any Start Signal | |
1566 | firstFullWave = 160; | |
1567 | memset(dest, curPhase, firstFullWave / *clock); | |
1568 | } else { | |
1569 | memset(dest, curPhase^1, firstFullWave / *clock); | |
1570 | } | |
1571 | } else { | |
1572 | memset(dest, curPhase^1, firstFullWave / *clock); | |
1573 | } | |
1574 | //advance bits | |
1575 | numBits += (firstFullWave / *clock); | |
1576 | *startIdx = firstFullWave - (*clock * numBits)+2; | |
1577 | //set start of wave as clock align | |
1578 | lastClkBit = firstFullWave; | |
1579 | if (g_debugMode==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u, startIdx %i",firstFullWave,fullWaveLen, *startIdx); | |
1580 | if (g_debugMode==2) prnt("DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc); | |
1581 | waveStart = 0; | |
1582 | dest[numBits++] = curPhase; //set first read bit | |
1583 | for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++) { | |
1584 | //top edge of wave = start of new wave | |
1585 | if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]) { | |
1586 | if (waveStart == 0) { | |
1587 | waveStart = i+1; | |
1588 | waveLenCnt = 0; | |
1589 | avgWaveVal = dest[i+1]; | |
1590 | } else { //waveEnd | |
1591 | waveEnd = i+1; | |
1592 | waveLenCnt = waveEnd-waveStart; | |
1593 | if (waveLenCnt > fc) { | |
1594 | //this wave is a phase shift | |
1595 | //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc); | |
1596 | if (i+1 >= lastClkBit + *clock - tol) { //should be a clock bit | |
1597 | curPhase ^= 1; | |
1598 | dest[numBits++] = curPhase; | |
1599 | lastClkBit += *clock; | |
1600 | } else if (i < lastClkBit+10+fc) { | |
1601 | //noise after a phase shift - ignore | |
1602 | } else { //phase shift before supposed to based on clock | |
1603 | errCnt++; | |
1604 | dest[numBits++] = 7; | |
1605 | } | |
1606 | } else if (i+1 > lastClkBit + *clock + tol + fc) { | |
1607 | lastClkBit += *clock; //no phase shift but clock bit | |
1608 | dest[numBits++] = curPhase; | |
1609 | } else if (waveLenCnt < fc - 1) { //wave is smaller than field clock (shouldn't happen often) | |
1610 | errCnt2++; | |
1611 | if(errCnt2 > 101) return errCnt2; | |
1612 | avgWaveVal += dest[i+1]; | |
1613 | continue; | |
1614 | } | |
1615 | avgWaveVal = 0; | |
1616 | waveStart = i+1; | |
1617 | } | |
1618 | } | |
1619 | avgWaveVal += dest[i+1]; | |
1620 | } | |
1621 | *size = numBits; | |
1622 | return errCnt; | |
1623 | } | |
1624 | ||
1625 | int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) { | |
1626 | int startIdx = 0; | |
1627 | return pskRawDemod_ext(dest, size, clock, invert, &startIdx); | |
1628 | } | |
1629 | ||
1630 | //********************************************************************************************** | |
1631 | //-----------------Tag format detection section------------------------------------------------- | |
1632 | //********************************************************************************************** | |
1633 | ||
1634 | // by marshmellow | |
1635 | // FSK Demod then try to locate an AWID ID | |
1636 | int AWIDdemodFSK(uint8_t *dest, size_t *size, int *waveStartIdx) { | |
1637 | //make sure buffer has enough data | |
1638 | if (*size < 96*50) return -1; | |
1639 | ||
1640 | // FSK demodulator | |
1641 | *size = fskdemod(dest, *size, 50, 1, 10, 8, waveStartIdx); // fsk2a RF/50 | |
1642 | if (*size < 96) return -3; //did we get a good demod? | |
1643 | ||
1644 | uint8_t preamble[] = {0,0,0,0,0,0,0,1}; | |
1645 | size_t startIdx = 0; | |
1646 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
1647 | if (errChk == 0) return -4; //preamble not found | |
1648 | if (*size != 96) return -5; | |
1649 | return (int)startIdx; | |
1650 | } | |
1651 | ||
1652 | //by marshmellow | |
1653 | //takes 1s and 0s and searches for EM410x format - output EM ID | |
1654 | uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo) | |
1655 | { | |
1656 | //sanity checks | |
1657 | if (*size < 64) return 0; | |
1658 | if (BitStream[1]>1) return 0; //allow only 1s and 0s | |
1659 | ||
1660 | // 111111111 bit pattern represent start of frame | |
1661 | // include 0 in front to help get start pos | |
1662 | uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1}; | |
1663 | uint8_t errChk = 0; | |
1664 | uint8_t FmtLen = 10; // sets of 4 bits = end data | |
1665 | *startIdx = 0; | |
1666 | errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx); | |
1667 | if ( errChk == 0 || (*size != 64 && *size != 128) ) return 0; | |
1668 | if (*size == 128) FmtLen = 22; // 22 sets of 4 bits | |
1669 | ||
1670 | //skip last 4bit parity row for simplicity | |
1671 | *size = removeParity(BitStream, *startIdx + sizeof(preamble), 5, 0, FmtLen * 5); | |
1672 | if (*size == 40) { // std em410x format | |
1673 | *hi = 0; | |
1674 | *lo = ((uint64_t)(bytebits_to_byte(BitStream, 8)) << 32) | (bytebits_to_byte(BitStream + 8, 32)); | |
1675 | } else if (*size == 88) { // long em format | |
1676 | *hi = (bytebits_to_byte(BitStream, 24)); | |
1677 | *lo = ((uint64_t)(bytebits_to_byte(BitStream + 24, 32)) << 32) | (bytebits_to_byte(BitStream + 24 + 32, 32)); | |
1678 | } else { | |
1679 | if (g_debugMode) prnt("Error removing parity: %u", *size); | |
1680 | return 0; | |
1681 | } | |
1682 | return 1; | |
1683 | } | |
1684 | ||
1685 | // Ask/Biphase Demod then try to locate an ISO 11784/85 ID | |
1686 | // BitStream must contain previously askrawdemod and biphasedemoded data | |
1687 | int FDXBdemodBI(uint8_t *dest, size_t *size) { | |
1688 | //make sure buffer has enough data | |
1689 | if (*size < 128) return -1; | |
1690 | ||
1691 | size_t startIdx = 0; | |
1692 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1}; | |
1693 | ||
1694 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
1695 | if (errChk == 0) return -2; //preamble not found | |
1696 | if (*size != 128) return -3; //wrong size for fdxb | |
1697 | //return start position | |
1698 | return (int)startIdx; | |
1699 | } | |
1700 | ||
1701 | // by marshmellow | |
1702 | // demod gProxIIDemod | |
1703 | // error returns as -x | |
1704 | // success returns start position in BitStream | |
1705 | // BitStream must contain previously askrawdemod and biphasedemoded data | |
1706 | int gProxII_Demod(uint8_t BitStream[], size_t *size) { | |
1707 | size_t startIdx=0; | |
1708 | uint8_t preamble[] = {1,1,1,1,1,0}; | |
1709 | ||
1710 | uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx); | |
1711 | if (errChk == 0) return -3; //preamble not found | |
1712 | if (*size != 96) return -2; //should have found 96 bits | |
1713 | //check first 6 spacer bits to verify format | |
1714 | if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){ | |
1715 | //confirmed proper separator bits found | |
1716 | //return start position | |
1717 | return (int) startIdx; | |
1718 | } | |
1719 | return -5; //spacer bits not found - not a valid gproxII | |
1720 | } | |
1721 | ||
1722 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
1723 | int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo, int *waveStartIdx) { | |
1724 | size_t numStart=0, size2=*size, startIdx=0; | |
1725 | // FSK demodulator fsk2a so invert and fc/10/8 | |
1726 | *size = fskdemod(dest, size2, 50, 1, 10, 8, waveStartIdx); | |
1727 | if (*size < 96*2) return -2; | |
1728 | // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 | |
1729 | uint8_t preamble[] = {0,0,0,1,1,1,0,1}; | |
1730 | // find bitstring in array | |
1731 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
1732 | if (errChk == 0) return -3; //preamble not found | |
1733 | ||
1734 | numStart = startIdx + sizeof(preamble); | |
1735 | // final loop, go over previously decoded FSK data and manchester decode into usable tag ID | |
1736 | for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ | |
1737 | if (dest[idx] == dest[idx+1]){ | |
1738 | return -4; //not manchester data | |
1739 | } | |
1740 | *hi2 = (*hi2<<1)|(*hi>>31); | |
1741 | *hi = (*hi<<1)|(*lo>>31); | |
1742 | //Then, shift in a 0 or one into low | |
1743 | if (dest[idx] && !dest[idx+1]) // 1 0 | |
1744 | *lo=(*lo<<1)|1; | |
1745 | else // 0 1 | |
1746 | *lo=(*lo<<1)|0; | |
1747 | } | |
1748 | return (int)startIdx; | |
1749 | } | |
1750 | ||
1751 | int IOdemodFSK(uint8_t *dest, size_t size, int *waveStartIdx) { | |
1752 | //make sure buffer has data | |
1753 | if (size < 66*64) return -2; | |
1754 | // FSK demodulator RF/64, fsk2a so invert, and fc/10/8 | |
1755 | size = fskdemod(dest, size, 64, 1, 10, 8, waveStartIdx); | |
1756 | if (size < 65) return -3; //did we get a good demod? | |
1757 | //Index map | |
1758 | //0 10 20 30 40 50 60 | |
1759 | //| | | | | | | | |
1760 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
1761 | //----------------------------------------------------------------------------- | |
1762 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 | |
1763 | // | |
1764 | //XSF(version)facility:codeone+codetwo | |
1765 | //Handle the data | |
1766 | size_t startIdx = 0; | |
1767 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1}; | |
1768 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx); | |
1769 | if (errChk == 0) return -4; //preamble not found | |
1770 | ||
1771 | if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){ | |
1772 | //confirmed proper separator bits found | |
1773 | //return start position | |
1774 | return (int) startIdx; | |
1775 | } | |
1776 | return -5; | |
1777 | } | |
1778 | ||
1779 | // redesigned by marshmellow adjusted from existing decode functions | |
1780 | // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more | |
1781 | int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert) { | |
1782 | //26 bit 40134 format (don't know other formats) | |
1783 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; | |
1784 | uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0}; | |
1785 | size_t startidx = 0; | |
1786 | if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){ | |
1787 | // if didn't find preamble try again inverting | |
1788 | if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1; | |
1789 | *invert ^= 1; | |
1790 | } | |
1791 | if (*size != 64 && *size != 224) return -2; | |
1792 | if (*invert==1) | |
1793 | for (size_t i = startidx; i < *size + startidx; i++) | |
1794 | bitStream[i] ^= 1; | |
1795 | ||
1796 | return (int) startidx; | |
1797 | } | |
1798 | ||
1799 | // loop to get raw paradox waveform then FSK demodulate the TAG ID from it | |
1800 | int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo, int *waveStartIdx) { | |
1801 | size_t numStart=0, size2=*size, startIdx=0; | |
1802 | // FSK demodulator | |
1803 | *size = fskdemod(dest, size2,50,1,10,8,waveStartIdx); //fsk2a | |
1804 | if (*size < 96) return -2; | |
1805 | ||
1806 | // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 | |
1807 | uint8_t preamble[] = {0,0,0,0,1,1,1,1}; | |
1808 | ||
1809 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
1810 | if (errChk == 0) return -3; //preamble not found | |
1811 | ||
1812 | numStart = startIdx + sizeof(preamble); | |
1813 | // final loop, go over previously decoded FSK data and manchester decode into usable tag ID | |
1814 | for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ | |
1815 | if (dest[idx] == dest[idx+1]) | |
1816 | return -4; //not manchester data | |
1817 | *hi2 = (*hi2<<1)|(*hi>>31); | |
1818 | *hi = (*hi<<1)|(*lo>>31); | |
1819 | //Then, shift in a 0 or one into low | |
1820 | if (dest[idx] && !dest[idx+1]) // 1 0 | |
1821 | *lo=(*lo<<1)|1; | |
1822 | else // 0 1 | |
1823 | *lo=(*lo<<1)|0; | |
1824 | } | |
1825 | return (int)startIdx; | |
1826 | } | |
1827 | ||
1828 | // find presco preamble 0x10D in already demoded data | |
1829 | int PrescoDemod(uint8_t *dest, size_t *size) { | |
1830 | //make sure buffer has data | |
1831 | if (*size < 64*2) return -2; | |
1832 | ||
1833 | size_t startIdx = 0; | |
1834 | uint8_t preamble[] = {1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0}; | |
1835 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
1836 | if (errChk == 0) return -4; //preamble not found | |
1837 | //return start position | |
1838 | return (int) startIdx; | |
1839 | } | |
1840 | ||
1841 | // by marshmellow | |
1842 | // FSK Demod then try to locate a Farpointe Data (pyramid) ID | |
1843 | int PyramiddemodFSK(uint8_t *dest, size_t *size, int *waveStartIdx) { | |
1844 | //make sure buffer has data | |
1845 | if (*size < 128*50) return -5; | |
1846 | ||
1847 | // FSK demodulator | |
1848 | *size = fskdemod(dest, *size, 50, 1, 10, 8, waveStartIdx); // fsk2a RF/50 | |
1849 | if (*size < 128) return -2; //did we get a good demod? | |
1850 | ||
1851 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; | |
1852 | size_t startIdx = 0; | |
1853 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
1854 | if (errChk == 0) return -4; //preamble not found | |
1855 | if (*size != 128) return -3; | |
1856 | return (int)startIdx; | |
1857 | } | |
1858 | ||
1859 | // by marshmellow | |
1860 | // find viking preamble 0xF200 in already demoded data | |
1861 | int VikingDemod_AM(uint8_t *dest, size_t *size) { | |
1862 | //make sure buffer has data | |
1863 | if (*size < 64*2) return -2; | |
1864 | ||
1865 | size_t startIdx = 0; | |
1866 | uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
1867 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
1868 | if (errChk == 0) return -4; //preamble not found | |
1869 | uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^ bytebits_to_byte(dest+startIdx+8,8) ^ bytebits_to_byte(dest+startIdx+16,8) | |
1870 | ^ bytebits_to_byte(dest+startIdx+24,8) ^ bytebits_to_byte(dest+startIdx+32,8) ^ bytebits_to_byte(dest+startIdx+40,8) | |
1871 | ^ bytebits_to_byte(dest+startIdx+48,8) ^ bytebits_to_byte(dest+startIdx+56,8); | |
1872 | if ( checkCalc != 0xA8 ) return -5; | |
1873 | if (*size != 64) return -6; | |
1874 | //return start position | |
1875 | return (int) startIdx; | |
1876 | } | |
1877 | ||
1878 | // by iceman | |
1879 | // find Visa2000 preamble in already demoded data | |
1880 | int Visa2kDemod_AM(uint8_t *dest, size_t *size) { | |
1881 | if (*size < 96) return -1; //make sure buffer has data | |
1882 | size_t startIdx = 0; | |
1883 | uint8_t preamble[] = {0,1,0,1,0,1,1,0,0,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0}; | |
1884 | if (preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx) == 0) | |
1885 | return -2; //preamble not found | |
1886 | if (*size != 96) return -3; //wrong demoded size | |
1887 | //return start position | |
1888 | return (int)startIdx; | |
1889 | } |