]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Copyright (C) 2014 | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // Low frequency commands | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include <stdlib.h> | |
12 | #include <string.h> | |
13 | #include "lfdemod.h" | |
14 | ||
15 | //by marshmellow | |
16 | //takes 1s and 0s and searches for EM410x format - output EM ID | |
17 | uint64_t Em410xDecode(uint8_t *BitStream,uint32_t BitLen) | |
18 | { | |
19 | //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future | |
20 | // otherwise could be a void with no arguments | |
21 | //set defaults | |
22 | int high=0, low=128; | |
23 | uint64_t lo=0; //hi=0, | |
24 | ||
25 | uint32_t i = 0; | |
26 | uint32_t initLoopMax = 65; | |
27 | if (initLoopMax>BitLen) initLoopMax=BitLen; | |
28 | ||
29 | for (;i < initLoopMax; ++i) //65 samples should be plenty to find high and low values | |
30 | { | |
31 | if (BitStream[i] > high) | |
32 | high = BitStream[i]; | |
33 | else if (BitStream[i] < low) | |
34 | low = BitStream[i]; | |
35 | } | |
36 | if (((high !=1)||(low !=0))){ //allow only 1s and 0s | |
37 | // PrintAndLog("no data found"); | |
38 | return 0; | |
39 | } | |
40 | uint8_t parityTest=0; | |
41 | // 111111111 bit pattern represent start of frame | |
42 | uint8_t frame_marker_mask[] = {1,1,1,1,1,1,1,1,1}; | |
43 | uint32_t idx = 0; | |
44 | uint32_t ii=0; | |
45 | uint8_t resetCnt = 0; | |
46 | while( (idx + 64) < BitLen) { | |
47 | restart: | |
48 | // search for a start of frame marker | |
49 | if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) | |
50 | { // frame marker found | |
51 | idx+=9;//sizeof(frame_marker_mask); | |
52 | for (i=0; i<10;i++){ | |
53 | for(ii=0; ii<5; ++ii){ | |
54 | parityTest += BitStream[(i*5)+ii+idx]; | |
55 | } | |
56 | if (parityTest== ((parityTest>>1)<<1)){ | |
57 | parityTest=0; | |
58 | for (ii=0; ii<4;++ii){ | |
59 | //hi = (hi<<1)|(lo>>31); | |
60 | lo=(lo<<1LL)|(BitStream[(i*5)+ii+idx]); | |
61 | } | |
62 | //PrintAndLog("DEBUG: EM parity passed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d,lo: %d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1],lo); | |
63 | }else {//parity failed | |
64 | //PrintAndLog("DEBUG: EM parity failed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1]); | |
65 | parityTest=0; | |
66 | idx-=8; | |
67 | if (resetCnt>5)return 0; | |
68 | resetCnt++; | |
69 | goto restart;//continue; | |
70 | } | |
71 | } | |
72 | //skip last 5 bit parity test for simplicity. | |
73 | return lo; | |
74 | }else{ | |
75 | idx++; | |
76 | } | |
77 | } | |
78 | return 0; | |
79 | } | |
80 | ||
81 | //by marshmellow | |
82 | //takes 2 arguments - clock and invert both as integers | |
83 | //attempts to demodulate ask while decoding manchester | |
84 | //prints binary found and saves in graphbuffer for further commands | |
85 | int askmandemod(uint8_t * BinStream,uint32_t *BitLen,int *clk, int *invert) | |
86 | { | |
87 | int i; | |
88 | int high = 0, low = 128; | |
89 | *clk=DetectASKClock(BinStream,(size_t)*BitLen,*clk); //clock default | |
90 | ||
91 | if (*clk<8) *clk =64; | |
92 | if (*clk<32) *clk=32; | |
93 | if (*invert != 1) *invert=0; | |
94 | ||
95 | uint32_t initLoopMax = 200; | |
96 | if (initLoopMax>*BitLen) initLoopMax=*BitLen; | |
97 | ||
98 | // Detect high and lows | |
99 | for (i = 0; i < initLoopMax; ++i) //200 samples should be enough to find high and low values | |
100 | { | |
101 | if (BinStream[i] > high) | |
102 | high = BinStream[i]; | |
103 | else if (BinStream[i] < low) | |
104 | low = BinStream[i]; | |
105 | } | |
106 | if ((high < 158) ){ //throw away static | |
107 | return -2; | |
108 | } | |
109 | //25% fuzz in case highs and lows aren't clipped [marshmellow] | |
110 | high=(int)((high-128)*.75)+128; | |
111 | low= (int)((low-128)*.75)+128; | |
112 | ||
113 | //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); | |
114 | int lastBit = 0; //set first clock check | |
115 | uint32_t bitnum = 0; //output counter | |
116 | int tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave | |
117 | if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely | |
118 | int iii = 0; | |
119 | uint32_t gLen = *BitLen; | |
120 | if (gLen > 3000) gLen=3000; | |
121 | uint8_t errCnt =0; | |
122 | uint32_t bestStart = *BitLen; | |
123 | uint32_t bestErrCnt = (*BitLen/1000); | |
124 | uint32_t maxErr = (*BitLen/1000); | |
125 | ||
126 | //loop to find first wave that works | |
127 | for (iii=0; iii < gLen; ++iii){ | |
128 | if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){ | |
129 | lastBit=iii-*clk; | |
130 | errCnt=0; | |
131 | //loop through to see if this start location works | |
132 | for (i = iii; i < *BitLen; ++i) { | |
133 | if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ | |
134 | lastBit+=*clk; | |
135 | } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ | |
136 | //low found and we are expecting a bar | |
137 | lastBit+=*clk; | |
138 | } else { | |
139 | //mid value found or no bar supposed to be here | |
140 | if ((i-lastBit)>(*clk+tol)){ | |
141 | //should have hit a high or low based on clock!! | |
142 | ||
143 | errCnt++; | |
144 | lastBit+=*clk;//skip over until hit too many errors | |
145 | if (errCnt>(maxErr)) break; //allow 1 error for every 1000 samples else start over | |
146 | } | |
147 | } | |
148 | if ((i-iii) >(400 * *clk)) break; //got plenty of bits | |
149 | } | |
150 | //we got more than 64 good bits and not all errors | |
151 | if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt<maxErr)) { | |
152 | //possible good read | |
153 | if (errCnt==0){ | |
154 | bestStart=iii; | |
155 | bestErrCnt=errCnt; | |
156 | break; //great read - finish | |
157 | } | |
158 | if (errCnt<bestErrCnt){ //set this as new best run | |
159 | bestErrCnt=errCnt; | |
160 | bestStart = iii; | |
161 | } | |
162 | } | |
163 | } | |
164 | } | |
165 | if (bestErrCnt<maxErr){ | |
166 | //best run is good enough set to best run and set overwrite BinStream | |
167 | iii=bestStart; | |
168 | lastBit=bestStart-*clk; | |
169 | bitnum=0; | |
170 | for (i = iii; i < *BitLen; ++i) { | |
171 | if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ | |
172 | lastBit+=*clk; | |
173 | BinStream[bitnum] = *invert; | |
174 | bitnum++; | |
175 | } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ | |
176 | //low found and we are expecting a bar | |
177 | lastBit+=*clk; | |
178 | BinStream[bitnum] = 1-*invert; | |
179 | bitnum++; | |
180 | } else { | |
181 | //mid value found or no bar supposed to be here | |
182 | if ((i-lastBit)>(*clk+tol)){ | |
183 | //should have hit a high or low based on clock!! | |
184 | ||
185 | if (bitnum > 0){ | |
186 | BinStream[bitnum]=77; | |
187 | bitnum++; | |
188 | } | |
189 | ||
190 | lastBit+=*clk;//skip over error | |
191 | } | |
192 | } | |
193 | if (bitnum >=400) break; | |
194 | } | |
195 | *BitLen=bitnum; | |
196 | } else{ | |
197 | *invert=bestStart; | |
198 | *clk=iii; | |
199 | return -1; | |
200 | } | |
201 | return bestErrCnt; | |
202 | } | |
203 | ||
204 | //by marshmellow | |
205 | //take 10 and 01 and manchester decode | |
206 | //run through 2 times and take least errCnt | |
207 | int manrawdecode(uint8_t * BitStream, int *bitLen) | |
208 | { | |
209 | int bitnum=0; | |
210 | int errCnt =0; | |
211 | int i=1; | |
212 | int bestErr = 1000; | |
213 | int bestRun = 0; | |
214 | int ii=1; | |
215 | for (ii=1;ii<3;++ii){ | |
216 | i=1; | |
217 | for (i=i+ii;i<*bitLen-2;i+=2){ | |
218 | if(BitStream[i]==1 && (BitStream[i+1]==0)){ | |
219 | } else if((BitStream[i]==0)&& BitStream[i+1]==1){ | |
220 | } else { | |
221 | errCnt++; | |
222 | } | |
223 | if(bitnum>300) break; | |
224 | } | |
225 | if (bestErr>errCnt){ | |
226 | bestErr=errCnt; | |
227 | bestRun=ii; | |
228 | } | |
229 | errCnt=0; | |
230 | } | |
231 | errCnt=bestErr; | |
232 | if (errCnt<20){ | |
233 | ii=bestRun; | |
234 | i=1; | |
235 | for (i=i+ii;i<*bitLen-2;i+=2){ | |
236 | if(BitStream[i]==1 && (BitStream[i+1]==0)){ | |
237 | BitStream[bitnum++]=0; | |
238 | } else if((BitStream[i]==0)&& BitStream[i+1]==1){ | |
239 | BitStream[bitnum++]=1; | |
240 | } else { | |
241 | BitStream[bitnum++]=77; | |
242 | //errCnt++; | |
243 | } | |
244 | if(bitnum>300) break; | |
245 | } | |
246 | *bitLen=bitnum; | |
247 | } | |
248 | return errCnt; | |
249 | } | |
250 | ||
251 | ||
252 | //by marshmellow | |
253 | //take 01 or 10 = 0 and 11 or 00 = 1 | |
254 | int BiphaseRawDecode(uint8_t * BitStream, int *bitLen, int offset) | |
255 | { | |
256 | uint8_t bitnum = 0; | |
257 | uint32_t errCnt = 0; | |
258 | uint32_t i = 1; | |
259 | i=offset; | |
260 | for (;i<*bitLen-2;i+=2){ | |
261 | if((BitStream[i]==1 && BitStream[i+1]==0)||(BitStream[i]==0 && BitStream[i+1]==1)){ | |
262 | BitStream[bitnum++]=1; | |
263 | } else if((BitStream[i]==0 && BitStream[i+1]==0)||(BitStream[i]==1 && BitStream[i+1]==1)){ | |
264 | BitStream[bitnum++]=0; | |
265 | } else { | |
266 | BitStream[bitnum++]=77; | |
267 | errCnt++; | |
268 | } | |
269 | if(bitnum>250) break; | |
270 | } | |
271 | *bitLen=bitnum; | |
272 | return errCnt; | |
273 | } | |
274 | ||
275 | //by marshmellow | |
276 | //takes 2 arguments - clock and invert both as integers | |
277 | //attempts to demodulate ask only | |
278 | //prints binary found and saves in graphbuffer for further commands | |
279 | int askrawdemod(uint8_t *BinStream, int *bitLen,int *clk, int *invert) | |
280 | { | |
281 | uint32_t i; | |
282 | // int invert=0; //invert default | |
283 | int high = 0, low = 128; | |
284 | *clk=DetectASKClock(BinStream,*bitLen,*clk); //clock default | |
285 | uint8_t BitStream[502] = {0}; | |
286 | ||
287 | if (*clk<8) *clk =64; | |
288 | if (*clk<32) *clk=32; | |
289 | if (*invert != 1) *invert = 0; | |
290 | ||
291 | uint32_t initLoopMax = 200; | |
292 | if (initLoopMax>*bitLen) initLoopMax=*bitLen; | |
293 | // Detect high and lows | |
294 | for (i = 0; i < initLoopMax; ++i) //200 samples should be plenty to find high and low values | |
295 | { | |
296 | if (BinStream[i] > high) | |
297 | high = BinStream[i]; | |
298 | else if (BinStream[i] < low) | |
299 | low = BinStream[i]; | |
300 | } | |
301 | if ((high < 158)){ //throw away static | |
302 | return -2; | |
303 | } | |
304 | //25% fuzz in case highs and lows aren't clipped [marshmellow] | |
305 | high=(int)((high-128)*.75)+128; | |
306 | low= (int)((low-128)*.75)+128; | |
307 | ||
308 | int lastBit = 0; //set first clock check | |
309 | uint32_t bitnum = 0; //output counter | |
310 | uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave | |
311 | if (*clk==32) tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely | |
312 | uint32_t iii = 0; | |
313 | uint32_t gLen = *bitLen; | |
314 | if (gLen > 500) gLen=500; | |
315 | uint8_t errCnt =0; | |
316 | uint32_t bestStart = *bitLen; | |
317 | uint32_t bestErrCnt = (*bitLen/1000); | |
318 | uint8_t midBit=0; | |
319 | ||
320 | //loop to find first wave that works | |
321 | for (iii=0; iii < gLen; ++iii){ | |
322 | if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){ | |
323 | lastBit=iii-*clk; | |
324 | //loop through to see if this start location works | |
325 | for (i = iii; i < *bitLen; ++i) { | |
326 | if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ | |
327 | lastBit+=*clk; | |
328 | BitStream[bitnum] = *invert; | |
329 | bitnum++; | |
330 | midBit=0; | |
331 | } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ | |
332 | //low found and we are expecting a bar | |
333 | lastBit+=*clk; | |
334 | BitStream[bitnum] = 1-*invert; | |
335 | bitnum++; | |
336 | midBit=0; | |
337 | } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ | |
338 | //mid bar? | |
339 | midBit=1; | |
340 | BitStream[bitnum]= 1-*invert; | |
341 | bitnum++; | |
342 | } else if ((BinStream[i]>=high)&&(midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ | |
343 | //mid bar? | |
344 | midBit=1; | |
345 | BitStream[bitnum]= *invert; | |
346 | bitnum++; | |
347 | } else if ((i-lastBit)>((*clk/2)+tol)&&(midBit==0)){ | |
348 | //no mid bar found | |
349 | midBit=1; | |
350 | BitStream[bitnum]= BitStream[bitnum-1]; | |
351 | bitnum++; | |
352 | } else { | |
353 | //mid value found or no bar supposed to be here | |
354 | ||
355 | if ((i-lastBit)>(*clk+tol)){ | |
356 | //should have hit a high or low based on clock!! | |
357 | ||
358 | if (bitnum > 0){ | |
359 | BitStream[bitnum]=77; | |
360 | bitnum++; | |
361 | } | |
362 | ||
363 | errCnt++; | |
364 | lastBit+=*clk;//skip over until hit too many errors | |
365 | if (errCnt>((*bitLen/1000))){ //allow 1 error for every 1000 samples else start over | |
366 | errCnt=0; | |
367 | bitnum=0;//start over | |
368 | break; | |
369 | } | |
370 | } | |
371 | } | |
372 | if (bitnum>500) break; | |
373 | } | |
374 | //we got more than 64 good bits and not all errors | |
375 | if ((bitnum > (64+errCnt)) && (errCnt<(*bitLen/1000))) { | |
376 | //possible good read | |
377 | if (errCnt==0) break; //great read - finish | |
378 | if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish | |
379 | if (errCnt<bestErrCnt){ //set this as new best run | |
380 | bestErrCnt=errCnt; | |
381 | bestStart = iii; | |
382 | } | |
383 | } | |
384 | } | |
385 | if (iii>=gLen){ //exhausted test | |
386 | //if there was a ok test go back to that one and re-run the best run (then dump after that run) | |
387 | if (bestErrCnt < (*bitLen/1000)) iii=bestStart; | |
388 | } | |
389 | } | |
390 | if (bitnum>16){ | |
391 | ||
392 | for (i=0; i < bitnum; ++i){ | |
393 | BinStream[i]=BitStream[i]; | |
394 | } | |
395 | *bitLen = bitnum; | |
396 | } else { | |
397 | return -1; | |
398 | } | |
399 | return errCnt; | |
400 | } | |
401 | //translate wave to 11111100000 (1 for each short wave 0 for each long wave) | |
402 | size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow) | |
403 | { | |
404 | uint32_t last_transition = 0; | |
405 | uint32_t idx = 1; | |
406 | uint32_t maxVal=0; | |
407 | if (fchigh==0) fchigh=10; | |
408 | if (fclow==0) fclow=8; | |
409 | // we do care about the actual theshold value as sometimes near the center of the | |
410 | // wave we may get static that changes direction of wave for one value | |
411 | // if our value is too low it might affect the read. and if our tag or | |
412 | // antenna is weak a setting too high might not see anything. [marshmellow] | |
413 | if (size<100) return 0; | |
414 | for(idx=1; idx<100; idx++){ | |
415 | if(maxVal<dest[idx]) maxVal = dest[idx]; | |
416 | } | |
417 | // set close to the top of the wave threshold with 25% margin for error | |
418 | // less likely to get a false transition up there. | |
419 | // (but have to be careful not to go too high and miss some short waves) | |
420 | uint8_t threshold_value = (uint8_t)(((maxVal-128)*.75)+128); | |
421 | ||
422 | // sync to first lo-hi transition, and threshold | |
423 | // Need to threshold first sample | |
424 | ||
425 | if(dest[0] < threshold_value) dest[0] = 0; | |
426 | else dest[0] = 1; | |
427 | ||
428 | size_t numBits = 0; | |
429 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) | |
430 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere | |
431 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 | |
432 | for(idx = 1; idx < size; idx++) { | |
433 | // threshold current value | |
434 | ||
435 | if (dest[idx] < threshold_value) dest[idx] = 0; | |
436 | else dest[idx] = 1; | |
437 | ||
438 | // Check for 0->1 transition | |
439 | if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition | |
440 | if ((idx-last_transition)<(fclow-2)){ //0-5 = garbage noise | |
441 | //do nothing with extra garbage | |
442 | } else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves | |
443 | dest[numBits]=1; | |
444 | } else { //9+ = 10 waves | |
445 | dest[numBits]=0; | |
446 | } | |
447 | last_transition = idx; | |
448 | numBits++; | |
449 | } | |
450 | } | |
451 | return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 | |
452 | } | |
453 | ||
454 | uint32_t myround2(float f) | |
455 | { | |
456 | if (f >= 2000) return 2000;//something bad happened | |
457 | return (uint32_t) (f + (float)0.5); | |
458 | } | |
459 | ||
460 | //translate 11111100000 to 10 | |
461 | size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert,uint8_t fchigh,uint8_t fclow )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, | |
462 | { | |
463 | uint8_t lastval=dest[0]; | |
464 | uint32_t idx=0; | |
465 | size_t numBits=0; | |
466 | uint32_t n=1; | |
467 | ||
468 | for( idx=1; idx < size; idx++) { | |
469 | ||
470 | if (dest[idx]==lastval) { | |
471 | n++; | |
472 | continue; | |
473 | } | |
474 | //if lastval was 1, we have a 1->0 crossing | |
475 | if ( dest[idx-1]==1 ) { | |
476 | n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow)); | |
477 | //n=(n+1) / h2l_crossing_value; | |
478 | } else {// 0->1 crossing | |
479 | n=myround2((float)(n+1)/((float)(rfLen-2)/(float)fchigh)); //-2 for fudge factor | |
480 | //n=(n+1) / l2h_crossing_value; | |
481 | } | |
482 | if (n == 0) n = 1; | |
483 | ||
484 | if(n < maxConsequtiveBits) //Consecutive | |
485 | { | |
486 | if(invert==0){ //invert bits | |
487 | memset(dest+numBits, dest[idx-1] , n); | |
488 | }else{ | |
489 | memset(dest+numBits, dest[idx-1]^1 , n); | |
490 | } | |
491 | numBits += n; | |
492 | } | |
493 | n=0; | |
494 | lastval=dest[idx]; | |
495 | }//end for | |
496 | return numBits; | |
497 | } | |
498 | //by marshmellow (from holiman's base) | |
499 | // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod) | |
500 | int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow) | |
501 | { | |
502 | // FSK demodulator | |
503 | size = fsk_wave_demod(dest, size, fchigh, fclow); | |
504 | size = aggregate_bits(dest, size,rfLen,192,invert,fchigh,fclow); | |
505 | return size; | |
506 | } | |
507 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
508 | int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) | |
509 | { | |
510 | ||
511 | size_t idx=0; //, found=0; //size=0, | |
512 | // FSK demodulator | |
513 | size = fskdemod(dest, size,50,0,10,8); | |
514 | ||
515 | // final loop, go over previously decoded manchester data and decode into usable tag ID | |
516 | // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 | |
517 | uint8_t frame_marker_mask[] = {1,1,1,0,0,0}; | |
518 | int numshifts = 0; | |
519 | idx = 0; | |
520 | //one scan | |
521 | while( idx + sizeof(frame_marker_mask) < size) { | |
522 | // search for a start of frame marker | |
523 | if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) | |
524 | { // frame marker found | |
525 | idx+=sizeof(frame_marker_mask); | |
526 | while(dest[idx] != dest[idx+1] && idx < size-2) | |
527 | { | |
528 | // Keep going until next frame marker (or error) | |
529 | // Shift in a bit. Start by shifting high registers | |
530 | *hi2 = (*hi2<<1)|(*hi>>31); | |
531 | *hi = (*hi<<1)|(*lo>>31); | |
532 | //Then, shift in a 0 or one into low | |
533 | if (dest[idx] && !dest[idx+1]) // 1 0 | |
534 | *lo=(*lo<<1)|0; | |
535 | else // 0 1 | |
536 | *lo=(*lo<<1)|1; | |
537 | numshifts++; | |
538 | idx += 2; | |
539 | } | |
540 | // Hopefully, we read a tag and hit upon the next frame marker | |
541 | if(idx + sizeof(frame_marker_mask) < size) | |
542 | { | |
543 | if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) | |
544 | { | |
545 | //good return | |
546 | return idx; | |
547 | } | |
548 | } | |
549 | // reset | |
550 | *hi2 = *hi = *lo = 0; | |
551 | numshifts = 0; | |
552 | }else { | |
553 | idx++; | |
554 | } | |
555 | } | |
556 | return -1; | |
557 | } | |
558 | ||
559 | uint32_t bytebits_to_byte(uint8_t* src, int numbits) | |
560 | { | |
561 | uint32_t num = 0; | |
562 | for(int i = 0 ; i < numbits ; i++) { | |
563 | num = (num << 1) | (*src); | |
564 | src++; | |
565 | } | |
566 | return num; | |
567 | } | |
568 | ||
569 | int IOdemodFSK(uint8_t *dest, size_t size) | |
570 | { | |
571 | uint32_t idx=0; | |
572 | //make sure buffer has data | |
573 | if (size < 66) return -1; | |
574 | //test samples are not just noise | |
575 | uint8_t testMax=0; | |
576 | for(idx=0;idx<65;idx++){ | |
577 | if (testMax<dest[idx]) testMax=dest[idx]; | |
578 | } | |
579 | idx=0; | |
580 | //if not just noise | |
581 | if (testMax>170){ | |
582 | // FSK demodulator | |
583 | size = fskdemod(dest, size,64,1,10,8); // RF/64 and invert | |
584 | if (size < 65) return -1; //did we get a good demod? | |
585 | //Index map | |
586 | //0 10 20 30 40 50 60 | |
587 | //| | | | | | | | |
588 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
589 | //----------------------------------------------------------------------------- | |
590 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 | |
591 | // | |
592 | //XSF(version)facility:codeone+codetwo | |
593 | //Handle the data | |
594 | uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1}; | |
595 | for( idx=0; idx < (size - 65); idx++) { | |
596 | if ( memcmp(dest + idx, mask, sizeof(mask))==0) { | |
597 | //frame marker found | |
598 | if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){ | |
599 | //confirmed proper separator bits found | |
600 | //return start position | |
601 | return (int) idx; | |
602 | } | |
603 | } | |
604 | } | |
605 | } | |
606 | return 0; | |
607 | } | |
608 | ||
609 | // by marshmellow | |
610 | // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping) | |
611 | // maybe somehow adjust peak trimming value based on samples to fix? | |
612 | int DetectASKClock(uint8_t dest[], size_t size, int clock) | |
613 | { | |
614 | int i=0; | |
615 | int peak=0; | |
616 | int low=128; | |
617 | int clk[]={16,32,40,50,64,100,128,256}; | |
618 | int loopCnt = 256; //don't need to loop through entire array... | |
619 | if (size<loopCnt) loopCnt = size; | |
620 | ||
621 | //if we already have a valid clock quit | |
622 | for (;i<8;++i) | |
623 | if (clk[i]==clock) return clock; | |
624 | ||
625 | //get high and low peak | |
626 | for (i=0;i<loopCnt;++i){ | |
627 | if(dest[i]>peak){ | |
628 | peak = dest[i]; | |
629 | } | |
630 | if(dest[i]<low){ | |
631 | low = dest[i]; | |
632 | } | |
633 | } | |
634 | peak=(int)((peak-128)*.75)+128; | |
635 | low= (int)((low-128)*.75)+128; | |
636 | int ii; | |
637 | int clkCnt; | |
638 | int tol = 0; | |
639 | int bestErr=1000; | |
640 | int errCnt[]={0,0,0,0,0,0,0,0}; | |
641 | //test each valid clock from smallest to greatest to see which lines up | |
642 | for(clkCnt=0; clkCnt<6;++clkCnt){ | |
643 | if (clk[clkCnt]==32){ | |
644 | tol=1; | |
645 | }else{ | |
646 | tol=0; | |
647 | } | |
648 | bestErr=1000; | |
649 | //try lining up the peaks by moving starting point (try first 256) | |
650 | for (ii=0; ii<loopCnt; ++ii){ | |
651 | if ((dest[ii]>=peak) || (dest[ii]<=low)){ | |
652 | errCnt[clkCnt]=0; | |
653 | // now that we have the first one lined up test rest of wave array | |
654 | for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){ | |
655 | if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ | |
656 | }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ | |
657 | }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ | |
658 | }else{ //error no peak detected | |
659 | errCnt[clkCnt]++; | |
660 | } | |
661 | } | |
662 | //if we found no errors this is correct one - return this clock | |
663 | if(errCnt[clkCnt]==0) return clk[clkCnt]; | |
664 | //if we found errors see if it is lowest so far and save it as best run | |
665 | if(errCnt[clkCnt]<bestErr) bestErr=errCnt[clkCnt]; | |
666 | } | |
667 | } | |
668 | } | |
669 | int iii=0; | |
670 | int best=0; | |
671 | for (iii=0; iii<6;++iii){ | |
672 | if (errCnt[iii]<errCnt[best]){ | |
673 | best = iii; | |
674 | } | |
675 | } | |
676 | return clk[best]; | |
677 | } |