]> cvs.zerfleddert.de Git - proxmark3-svn/blame_incremental - armsrc/lfops.c
Fix for USB uart slowness since PR #720 (#787)
[proxmark3-svn] / armsrc / lfops.c
... / ...
CommitLineData
1//-----------------------------------------------------------------------------
2// This code is licensed to you under the terms of the GNU GPL, version 2 or,
3// at your option, any later version. See the LICENSE.txt file for the text of
4// the license.
5//-----------------------------------------------------------------------------
6// Miscellaneous routines for low frequency tag operations.
7// Tags supported here so far are Texas Instruments (TI), HID, EM4x05, EM410x
8// Also routines for raw mode reading/simulating of LF waveform
9//-----------------------------------------------------------------------------
10
11#include "proxmark3.h"
12#include "apps.h"
13#include "util.h"
14#include "hitag2.h"
15#include "crc16.h"
16#include "string.h"
17#include "lfdemod.h"
18#include "lfsampling.h"
19#include "protocols.h"
20#include "usb_cdc.h" // for usb_poll_validate_length
21
22/**
23 * Function to do a modulation and then get samples.
24 * @param delay_off
25 * @param period_0
26 * @param period_1
27 * @param command
28 */
29void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command)
30{
31 // start timer
32 StartTicks();
33
34 // use lf config settings
35 sample_config *sc = getSamplingConfig();
36
37 // Make sure the tag is reset
38 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
39 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
40 WaitMS(2500);
41
42 // clear read buffer (after fpga bitstream loaded...)
43 BigBuf_Clear_keep_EM();
44
45 // power on
46 LFSetupFPGAForADC(sc->divisor, 1);
47
48 // And a little more time for the tag to fully power up
49 WaitMS(2000);
50 // if delay_off = 0 then just bitbang 1 = antenna on 0 = off for respective periods.
51 bool bitbang = delay_off == 0;
52 // now modulate the reader field
53
54 if (bitbang) {
55 // HACK it appears the loop and if statements take up about 7us so adjust waits accordingly...
56 uint8_t hack_cnt = 7;
57 if (period_0 < hack_cnt || period_1 < hack_cnt) {
58 DbpString("Warning periods cannot be less than 7us in bit bang mode");
59 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
60 LED_D_OFF();
61 return;
62 }
63
64 // hack2 needed--- it appears to take about 8-16us to turn the antenna back on
65 // leading to ~ 1 to 2 125khz samples extra in every off period
66 // so we should test for last 0 before next 1 and reduce period_0 by this extra amount...
67 // but is this time different for every antenna or other hw builds??? more testing needed
68
69 // prime cmd_len to save time comparing strings while modulating
70 int cmd_len = 0;
71 while(command[cmd_len] != '\0' && command[cmd_len] != ' ')
72 cmd_len++;
73
74 int counter = 0;
75 bool off = false;
76 for (counter = 0; counter < cmd_len; counter++) {
77 // if cmd = 0 then turn field off
78 if (command[counter] == '0') {
79 // if field already off leave alone (affects timing otherwise)
80 if (off == false) {
81 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
82 LED_D_OFF();
83 off = true;
84 }
85 // note we appear to take about 7us to switch over (or run the if statements/loop...)
86 WaitUS(period_0-hack_cnt);
87 // else if cmd = 1 then turn field on
88 } else {
89 // if field already on leave alone (affects timing otherwise)
90 if (off) {
91 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
92 LED_D_ON();
93 off = false;
94 }
95 // note we appear to take about 7us to switch over (or run the if statements/loop...)
96 WaitUS(period_1-hack_cnt);
97 }
98 }
99 } else { // old mode of cmd read using delay as off period
100 while(*command != '\0' && *command != ' ') {
101 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
102 LED_D_OFF();
103 WaitUS(delay_off);
104 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
105 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
106 LED_D_ON();
107 if(*(command++) == '0') {
108 WaitUS(period_0);
109 } else {
110 WaitUS(period_1);
111 }
112 }
113 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
114 LED_D_OFF();
115 WaitUS(delay_off);
116 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
117 }
118
119 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
120
121 // now do the read
122 DoAcquisition_config(false, 0);
123
124 // Turn off antenna
125 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
126 // tell client we are done
127 cmd_send(CMD_ACK,0,0,0,0,0);
128}
129
130/* blank r/w tag data stream
131...0000000000000000 01111111
1321010101010101010101010101010101010101010101010101010101010101010
1330011010010100001
13401111111
135101010101010101[0]000...
136
137[5555fe852c5555555555555555fe0000]
138*/
139void ReadTItag(void)
140{
141 // some hardcoded initial params
142 // when we read a TI tag we sample the zerocross line at 2Mhz
143 // TI tags modulate a 1 as 16 cycles of 123.2Khz
144 // TI tags modulate a 0 as 16 cycles of 134.2Khz
145 #define FSAMPLE 2000000
146 #define FREQLO 123200
147 #define FREQHI 134200
148
149 signed char *dest = (signed char *)BigBuf_get_addr();
150 uint16_t n = BigBuf_max_traceLen();
151 // 128 bit shift register [shift3:shift2:shift1:shift0]
152 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
153
154 int i, cycles=0, samples=0;
155 // how many sample points fit in 16 cycles of each frequency
156 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
157 // when to tell if we're close enough to one freq or another
158 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
159
160 // TI tags charge at 134.2Khz
161 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
162 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
163
164 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
165 // connects to SSP_DIN and the SSP_DOUT logic level controls
166 // whether we're modulating the antenna (high)
167 // or listening to the antenna (low)
168 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
169
170 // get TI tag data into the buffer
171 AcquireTiType();
172
173 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
174
175 for (i=0; i<n-1; i++) {
176 // count cycles by looking for lo to hi zero crossings
177 if ( (dest[i]<0) && (dest[i+1]>0) ) {
178 cycles++;
179 // after 16 cycles, measure the frequency
180 if (cycles>15) {
181 cycles=0;
182 samples=i-samples; // number of samples in these 16 cycles
183
184 // TI bits are coming to us lsb first so shift them
185 // right through our 128 bit right shift register
186 shift0 = (shift0>>1) | (shift1 << 31);
187 shift1 = (shift1>>1) | (shift2 << 31);
188 shift2 = (shift2>>1) | (shift3 << 31);
189 shift3 >>= 1;
190
191 // check if the cycles fall close to the number
192 // expected for either the low or high frequency
193 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
194 // low frequency represents a 1
195 shift3 |= (1<<31);
196 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
197 // high frequency represents a 0
198 } else {
199 // probably detected a gay waveform or noise
200 // use this as gaydar or discard shift register and start again
201 shift3 = shift2 = shift1 = shift0 = 0;
202 }
203 samples = i;
204
205 // for each bit we receive, test if we've detected a valid tag
206
207 // if we see 17 zeroes followed by 6 ones, we might have a tag
208 // remember the bits are backwards
209 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
210 // if start and end bytes match, we have a tag so break out of the loop
211 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
212 cycles = 0xF0B; //use this as a flag (ugly but whatever)
213 break;
214 }
215 }
216 }
217 }
218 }
219
220 // if flag is set we have a tag
221 if (cycles!=0xF0B) {
222 DbpString("Info: No valid tag detected.");
223 } else {
224 // put 64 bit data into shift1 and shift0
225 shift0 = (shift0>>24) | (shift1 << 8);
226 shift1 = (shift1>>24) | (shift2 << 8);
227
228 // align 16 bit crc into lower half of shift2
229 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
230
231 // if r/w tag, check ident match
232 if (shift3 & (1<<15) ) {
233 DbpString("Info: TI tag is rewriteable");
234 // only 15 bits compare, last bit of ident is not valid
235 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
236 DbpString("Error: Ident mismatch!");
237 } else {
238 DbpString("Info: TI tag ident is valid");
239 }
240 } else {
241 DbpString("Info: TI tag is readonly");
242 }
243
244 // WARNING the order of the bytes in which we calc crc below needs checking
245 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
246 // bytes in reverse or something
247 // calculate CRC
248 uint32_t crc=0;
249
250 crc = update_crc16(crc, (shift0)&0xff);
251 crc = update_crc16(crc, (shift0>>8)&0xff);
252 crc = update_crc16(crc, (shift0>>16)&0xff);
253 crc = update_crc16(crc, (shift0>>24)&0xff);
254 crc = update_crc16(crc, (shift1)&0xff);
255 crc = update_crc16(crc, (shift1>>8)&0xff);
256 crc = update_crc16(crc, (shift1>>16)&0xff);
257 crc = update_crc16(crc, (shift1>>24)&0xff);
258
259 Dbprintf("Info: Tag data: %x%08x, crc=%x",
260 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
261 if (crc != (shift2&0xffff)) {
262 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
263 } else {
264 DbpString("Info: CRC is good");
265 }
266 }
267}
268
269void WriteTIbyte(uint8_t b)
270{
271 int i = 0;
272
273 // modulate 8 bits out to the antenna
274 for (i=0; i<8; i++)
275 {
276 if (b&(1<<i)) {
277 // stop modulating antenna
278 LOW(GPIO_SSC_DOUT);
279 SpinDelayUs(1000);
280 // modulate antenna
281 HIGH(GPIO_SSC_DOUT);
282 SpinDelayUs(1000);
283 } else {
284 // stop modulating antenna
285 LOW(GPIO_SSC_DOUT);
286 SpinDelayUs(300);
287 // modulate antenna
288 HIGH(GPIO_SSC_DOUT);
289 SpinDelayUs(1700);
290 }
291 }
292}
293
294void AcquireTiType(void)
295{
296 int i, j, n;
297 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
298 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
299 #define TIBUFLEN 1250
300
301 // clear buffer
302 uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
303 BigBuf_Clear_ext(false);
304
305 // Set up the synchronous serial port
306 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
307 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
308
309 // steal this pin from the SSP and use it to control the modulation
310 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
311 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
312
313 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
314 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
315
316 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
317 // 48/2 = 24 MHz clock must be divided by 12
318 AT91C_BASE_SSC->SSC_CMR = 12;
319
320 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
321 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
322 AT91C_BASE_SSC->SSC_TCMR = 0;
323 AT91C_BASE_SSC->SSC_TFMR = 0;
324
325 LED_D_ON();
326
327 // modulate antenna
328 HIGH(GPIO_SSC_DOUT);
329
330 // Charge TI tag for 50ms.
331 SpinDelay(50);
332
333 // stop modulating antenna and listen
334 LOW(GPIO_SSC_DOUT);
335
336 LED_D_OFF();
337
338 i = 0;
339 for(;;) {
340 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
341 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
342 i++; if(i >= TIBUFLEN) break;
343 }
344 WDT_HIT();
345 }
346
347 // return stolen pin to SSP
348 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
349 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
350
351 char *dest = (char *)BigBuf_get_addr();
352 n = TIBUFLEN*32;
353 // unpack buffer
354 for (i=TIBUFLEN-1; i>=0; i--) {
355 for (j=0; j<32; j++) {
356 if(BigBuf[i] & (1 << j)) {
357 dest[--n] = 1;
358 } else {
359 dest[--n] = -1;
360 }
361 }
362 }
363}
364
365// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
366// if crc provided, it will be written with the data verbatim (even if bogus)
367// if not provided a valid crc will be computed from the data and written.
368void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
369{
370 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
371 if(crc == 0) {
372 crc = update_crc16(crc, (idlo)&0xff);
373 crc = update_crc16(crc, (idlo>>8)&0xff);
374 crc = update_crc16(crc, (idlo>>16)&0xff);
375 crc = update_crc16(crc, (idlo>>24)&0xff);
376 crc = update_crc16(crc, (idhi)&0xff);
377 crc = update_crc16(crc, (idhi>>8)&0xff);
378 crc = update_crc16(crc, (idhi>>16)&0xff);
379 crc = update_crc16(crc, (idhi>>24)&0xff);
380 }
381 Dbprintf("Writing to tag: %x%08x, crc=%x",
382 (unsigned int) idhi, (unsigned int) idlo, crc);
383
384 // TI tags charge at 134.2Khz
385 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
386 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
387 // connects to SSP_DIN and the SSP_DOUT logic level controls
388 // whether we're modulating the antenna (high)
389 // or listening to the antenna (low)
390 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
391 LED_A_ON();
392
393 // steal this pin from the SSP and use it to control the modulation
394 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
395 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
396
397 // writing algorithm:
398 // a high bit consists of a field off for 1ms and field on for 1ms
399 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
400 // initiate a charge time of 50ms (field on) then immediately start writing bits
401 // start by writing 0xBB (keyword) and 0xEB (password)
402 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
403 // finally end with 0x0300 (write frame)
404 // all data is sent lsb firts
405 // finish with 15ms programming time
406
407 // modulate antenna
408 HIGH(GPIO_SSC_DOUT);
409 SpinDelay(50); // charge time
410
411 WriteTIbyte(0xbb); // keyword
412 WriteTIbyte(0xeb); // password
413 WriteTIbyte( (idlo )&0xff );
414 WriteTIbyte( (idlo>>8 )&0xff );
415 WriteTIbyte( (idlo>>16)&0xff );
416 WriteTIbyte( (idlo>>24)&0xff );
417 WriteTIbyte( (idhi )&0xff );
418 WriteTIbyte( (idhi>>8 )&0xff );
419 WriteTIbyte( (idhi>>16)&0xff );
420 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
421 WriteTIbyte( (crc )&0xff ); // crc lo
422 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
423 WriteTIbyte(0x00); // write frame lo
424 WriteTIbyte(0x03); // write frame hi
425 HIGH(GPIO_SSC_DOUT);
426 SpinDelay(50); // programming time
427
428 LED_A_OFF();
429
430 // get TI tag data into the buffer
431 AcquireTiType();
432
433 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
434 DbpString("Now use `lf ti read` to check");
435}
436
437void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
438{
439 int i;
440 uint8_t *tab = BigBuf_get_addr();
441
442 //note FpgaDownloadAndGo destroys the bigbuf so be sure this is called before now...
443 //FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
444 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
445
446 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
447
448 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
449 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
450
451 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
452 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
453
454 i = 0;
455 for(;;) {
456 //wait until SSC_CLK goes HIGH
457 int ii = 0;
458 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
459 //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
460 if ( ii == 1000 ) {
461 if (BUTTON_PRESS() || usb_poll_validate_length() ) {
462 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
463 DbpString("Stopped");
464 return;
465 }
466 ii=0;
467 }
468 WDT_HIT();
469 ii++;
470 }
471 if (ledcontrol)
472 LED_D_ON();
473
474 if(tab[i])
475 OPEN_COIL();
476 else
477 SHORT_COIL();
478
479 if (ledcontrol)
480 LED_D_OFF();
481 ii=0;
482 //wait until SSC_CLK goes LOW
483 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
484 //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
485 if ( ii == 1000 ) {
486 if (BUTTON_PRESS() || usb_poll_validate_length() ) {
487 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
488 DbpString("Stopped");
489 return;
490 }
491 ii=0;
492 }
493 WDT_HIT();
494 ii++;
495 }
496
497 i++;
498 if(i == period) {
499
500 i = 0;
501 if (gap) {
502 SHORT_COIL();
503 SpinDelayUs(gap);
504 }
505 }
506
507 }
508}
509
510#define DEBUG_FRAME_CONTENTS 1
511void SimulateTagLowFrequencyBidir(int divisor, int t0)
512{
513}
514
515// compose fc/8 fc/10 waveform (FSK2)
516static void fc(int c, int *n)
517{
518 uint8_t *dest = BigBuf_get_addr();
519 int idx;
520
521 // for when we want an fc8 pattern every 4 logical bits
522 if(c==0) {
523 dest[((*n)++)]=1;
524 dest[((*n)++)]=1;
525 dest[((*n)++)]=1;
526 dest[((*n)++)]=1;
527 dest[((*n)++)]=0;
528 dest[((*n)++)]=0;
529 dest[((*n)++)]=0;
530 dest[((*n)++)]=0;
531 }
532
533 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
534 if(c==8) {
535 for (idx=0; idx<6; idx++) {
536 dest[((*n)++)]=1;
537 dest[((*n)++)]=1;
538 dest[((*n)++)]=1;
539 dest[((*n)++)]=1;
540 dest[((*n)++)]=0;
541 dest[((*n)++)]=0;
542 dest[((*n)++)]=0;
543 dest[((*n)++)]=0;
544 }
545 }
546
547 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
548 if(c==10) {
549 for (idx=0; idx<5; idx++) {
550 dest[((*n)++)]=1;
551 dest[((*n)++)]=1;
552 dest[((*n)++)]=1;
553 dest[((*n)++)]=1;
554 dest[((*n)++)]=1;
555 dest[((*n)++)]=0;
556 dest[((*n)++)]=0;
557 dest[((*n)++)]=0;
558 dest[((*n)++)]=0;
559 dest[((*n)++)]=0;
560 }
561 }
562}
563// compose fc/X fc/Y waveform (FSKx)
564static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
565{
566 uint8_t *dest = BigBuf_get_addr();
567 uint8_t halfFC = fc/2;
568 uint8_t wavesPerClock = clock/fc;
569 uint8_t mod = clock % fc; //modifier
570 uint8_t modAdj = fc/mod; //how often to apply modifier
571 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=true;
572 // loop through clock - step field clock
573 for (uint8_t idx=0; idx < wavesPerClock; idx++){
574 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
575 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
576 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
577 *n += fc;
578 }
579 if (mod>0) (*modCnt)++;
580 if ((mod>0) && modAdjOk){ //fsk2
581 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
582 memset(dest+(*n), 0, fc-halfFC);
583 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
584 *n += fc;
585 }
586 }
587 if (mod>0 && !modAdjOk){ //fsk1
588 memset(dest+(*n), 0, mod-(mod/2));
589 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
590 *n += mod;
591 }
592}
593
594// prepare a waveform pattern in the buffer based on the ID given then
595// simulate a HID tag until the button is pressed
596void CmdHIDsimTAG(int hi2, int hi, int lo, int ledcontrol)
597{
598 int n=0, i=0;
599 /*
600 HID tag bitstream format
601 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
602 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
603 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
604 A fc8 is inserted before every 4 bits
605 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
606 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
607 */
608
609 if (hi2>0x0FFFFFFF) {
610 DbpString("Tags can only have 44 or 84 bits. - USE lf simfsk for larger tags");
611 return;
612 }
613 // set LF so we don't kill the bigbuf we are setting with simulation data.
614 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
615
616 fc(0,&n);
617 // special start of frame marker containing invalid bit sequences
618 fc(8, &n); fc(8, &n); // invalid
619 fc(8, &n); fc(10, &n); // logical 0
620 fc(10, &n); fc(10, &n); // invalid
621 fc(8, &n); fc(10, &n); // logical 0
622
623 WDT_HIT();
624 if (hi2 > 0 || hi > 0xFFF){
625 // manchester encode bits 91 to 64 (91-84 are part of the header)
626 for (i=27; i>=0; i--) {
627 if ((i%4)==3) fc(0,&n);
628 if ((hi2>>i)&1) {
629 fc(10, &n); fc(8, &n); // low-high transition
630 } else {
631 fc(8, &n); fc(10, &n); // high-low transition
632 }
633 }
634 WDT_HIT();
635 // manchester encode bits 63 to 32
636 for (i=31; i>=0; i--) {
637 if ((i%4)==3) fc(0,&n);
638 if ((hi>>i)&1) {
639 fc(10, &n); fc(8, &n); // low-high transition
640 } else {
641 fc(8, &n); fc(10, &n); // high-low transition
642 }
643 }
644 } else {
645 // manchester encode bits 43 to 32
646 for (i=11; i>=0; i--) {
647 if ((i%4)==3) fc(0,&n);
648 if ((hi>>i)&1) {
649 fc(10, &n); fc(8, &n); // low-high transition
650 } else {
651 fc(8, &n); fc(10, &n); // high-low transition
652 }
653 }
654 }
655
656 WDT_HIT();
657 // manchester encode bits 31 to 0
658 for (i=31; i>=0; i--) {
659 if ((i%4)==3) fc(0,&n);
660 if ((lo>>i)&1) {
661 fc(10, &n); fc(8, &n); // low-high transition
662 } else {
663 fc(8, &n); fc(10, &n); // high-low transition
664 }
665 }
666
667 if (ledcontrol)
668 LED_A_ON();
669 SimulateTagLowFrequency(n, 0, ledcontrol);
670
671 if (ledcontrol)
672 LED_A_OFF();
673}
674
675// prepare a waveform pattern in the buffer based on the ID given then
676// simulate a FSK tag until the button is pressed
677// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
678void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
679{
680 int ledcontrol=1;
681 int n=0, i=0;
682 uint8_t fcHigh = arg1 >> 8;
683 uint8_t fcLow = arg1 & 0xFF;
684 uint16_t modCnt = 0;
685 uint8_t clk = arg2 & 0xFF;
686 uint8_t invert = (arg2 >> 8) & 1;
687
688 // set LF so we don't kill the bigbuf we are setting with simulation data.
689 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
690
691 for (i=0; i<size; i++){
692 if (BitStream[i] == invert){
693 fcAll(fcLow, &n, clk, &modCnt);
694 } else {
695 fcAll(fcHigh, &n, clk, &modCnt);
696 }
697 }
698 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
699 /*Dbprintf("DEBUG: First 32:");
700 uint8_t *dest = BigBuf_get_addr();
701 i=0;
702 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
703 i+=16;
704 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
705 */
706 if (ledcontrol)
707 LED_A_ON();
708
709 SimulateTagLowFrequency(n, 0, ledcontrol);
710
711 if (ledcontrol)
712 LED_A_OFF();
713}
714
715// compose ask waveform for one bit(ASK)
716static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
717{
718 uint8_t *dest = BigBuf_get_addr();
719 uint8_t halfClk = clock/2;
720 // c = current bit 1 or 0
721 if (manchester==1){
722 memset(dest+(*n), c, halfClk);
723 memset(dest+(*n) + halfClk, c^1, halfClk);
724 } else {
725 memset(dest+(*n), c, clock);
726 }
727 *n += clock;
728}
729
730static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
731{
732 uint8_t *dest = BigBuf_get_addr();
733 uint8_t halfClk = clock/2;
734 if (c){
735 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
736 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
737 } else {
738 memset(dest+(*n), c ^ *phase, clock);
739 *phase ^= 1;
740 }
741 *n += clock;
742}
743
744static void stAskSimBit(int *n, uint8_t clock) {
745 uint8_t *dest = BigBuf_get_addr();
746 uint8_t halfClk = clock/2;
747 //ST = .5 high .5 low 1.5 high .5 low 1 high
748 memset(dest+(*n), 1, halfClk);
749 memset(dest+(*n) + halfClk, 0, halfClk);
750 memset(dest+(*n) + clock, 1, clock + halfClk);
751 memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
752 memset(dest+(*n) + clock*3, 1, clock);
753 *n += clock*4;
754}
755
756// args clock, ask/man or askraw, invert, transmission separator
757void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
758{
759 int ledcontrol = 1;
760 int n=0, i=0;
761 uint8_t clk = (arg1 >> 8) & 0xFF;
762 uint8_t encoding = arg1 & 0xFF;
763 uint8_t separator = arg2 & 1;
764 uint8_t invert = (arg2 >> 8) & 1;
765
766 // set LF so we don't kill the bigbuf we are setting with simulation data.
767 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
768
769 if (encoding==2){ //biphase
770 uint8_t phase=0;
771 for (i=0; i<size; i++){
772 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
773 }
774 if (phase==1) { //run a second set inverted to keep phase in check
775 for (i=0; i<size; i++){
776 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
777 }
778 }
779 } else { // ask/manchester || ask/raw
780 for (i=0; i<size; i++){
781 askSimBit(BitStream[i]^invert, &n, clk, encoding);
782 }
783 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase)
784 for (i=0; i<size; i++){
785 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
786 }
787 }
788 }
789 if (separator==1 && encoding == 1)
790 stAskSimBit(&n, clk);
791 else if (separator==1)
792 Dbprintf("sorry but separator option not yet available");
793
794 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
795 //DEBUG
796 //Dbprintf("First 32:");
797 //uint8_t *dest = BigBuf_get_addr();
798 //i=0;
799 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
800 //i+=16;
801 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
802
803 if (ledcontrol) LED_A_ON();
804 SimulateTagLowFrequency(n, 0, ledcontrol);
805 if (ledcontrol) LED_A_OFF();
806}
807
808//carrier can be 2,4 or 8
809static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
810{
811 uint8_t *dest = BigBuf_get_addr();
812 uint8_t halfWave = waveLen/2;
813 //uint8_t idx;
814 int i = 0;
815 if (phaseChg){
816 // write phase change
817 memset(dest+(*n), *curPhase^1, halfWave);
818 memset(dest+(*n) + halfWave, *curPhase, halfWave);
819 *n += waveLen;
820 *curPhase ^= 1;
821 i += waveLen;
822 }
823 //write each normal clock wave for the clock duration
824 for (; i < clk; i+=waveLen){
825 memset(dest+(*n), *curPhase, halfWave);
826 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
827 *n += waveLen;
828 }
829}
830
831// args clock, carrier, invert,
832void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
833{
834 int ledcontrol=1;
835 int n=0, i=0;
836 uint8_t clk = arg1 >> 8;
837 uint8_t carrier = arg1 & 0xFF;
838 uint8_t invert = arg2 & 0xFF;
839 uint8_t curPhase = 0;
840 // set LF so we don't kill the bigbuf we are setting with simulation data.
841 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
842
843 for (i=0; i<size; i++){
844 if (BitStream[i] == curPhase){
845 pskSimBit(carrier, &n, clk, &curPhase, false);
846 } else {
847 pskSimBit(carrier, &n, clk, &curPhase, true);
848 }
849 }
850 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
851 //Dbprintf("DEBUG: First 32:");
852 //uint8_t *dest = BigBuf_get_addr();
853 //i=0;
854 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
855 //i+=16;
856 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
857
858 if (ledcontrol) LED_A_ON();
859 SimulateTagLowFrequency(n, 0, ledcontrol);
860 if (ledcontrol) LED_A_OFF();
861}
862
863// loop to get raw HID waveform then FSK demodulate the TAG ID from it
864void CmdHIDdemodFSK(int findone, int *high2, int *high, int *low, int ledcontrol)
865{
866 uint8_t *dest = BigBuf_get_addr();
867 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
868 size_t size;
869 uint32_t hi2=0, hi=0, lo=0;
870 int idx=0;
871 int dummyIdx = 0;
872 // Configure to go in 125Khz listen mode
873 LFSetupFPGAForADC(95, true);
874
875 //clear read buffer
876 BigBuf_Clear_keep_EM();
877
878 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
879 WDT_HIT();
880 if (ledcontrol) LED_A_ON();
881
882 DoAcquisition_default(-1,true);
883 // FSK demodulator
884 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
885 size = 50*128*2; //big enough to catch 2 sequences of largest format
886 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo, &dummyIdx);
887
888 if (idx>0 && lo>0 && (size==96 || size==192)){
889 uint8_t bitlen = 0;
890 uint32_t fc = 0;
891 uint32_t cardnum = 0;
892 bool decoded = false;
893
894 // go over previously decoded manchester data and decode into usable tag ID
895 if ((hi2 & 0x000FFFF) != 0){ //extra large HID tags 88/192 bits
896 uint32_t bp = hi2 & 0x000FFFFF;
897 bitlen = 63;
898 while (bp > 0) {
899 bp = bp >> 1;
900 bitlen++;
901 }
902 } else if ((hi >> 6) > 0) {
903 uint32_t bp = hi;
904 bitlen = 31;
905 while (bp > 0) {
906 bp = bp >> 1;
907 bitlen++;
908 }
909 } else if (((hi >> 5) & 1) == 0) {
910 bitlen = 37;
911 } else if ((hi & 0x0000001F) > 0 ) {
912 uint32_t bp = (hi & 0x0000001F);
913 bitlen = 31;
914 while (bp > 0) {
915 bp = bp >> 1;
916 bitlen++;
917 }
918 } else {
919 uint32_t bp = lo;
920 bitlen = 0;
921 while (bp > 0) {
922 bp = bp >> 1;
923 bitlen++;
924 }
925 }
926 switch (bitlen){
927 case 26:
928 cardnum = (lo>>1)&0xFFFF;
929 fc = (lo>>17)&0xFF;
930 decoded = true;
931 break;
932 case 35:
933 cardnum = (lo>>1)&0xFFFFF;
934 fc = ((hi&1)<<11)|(lo>>21);
935 decoded = true;
936 break;
937 }
938
939 if (hi2 != 0) //extra large HID tags 88/192 bits
940 Dbprintf("TAG ID: %x%08x%08x (%d)",
941 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
942 else
943 Dbprintf("TAG ID: %x%08x (%d)",
944 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
945
946 if (decoded)
947 Dbprintf("Format Len: %dbits - FC: %d - Card: %d",
948 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
949
950 if (findone){
951 if (ledcontrol) LED_A_OFF();
952 *high2 = hi2;
953 *high = hi;
954 *low = lo;
955 break;
956 }
957 // reset
958 }
959 hi2 = hi = lo = idx = 0;
960 WDT_HIT();
961 }
962
963 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
964 DbpString("Stopped");
965 if (ledcontrol) LED_A_OFF();
966}
967
968// loop to get raw HID waveform then FSK demodulate the TAG ID from it
969void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
970{
971 uint8_t *dest = BigBuf_get_addr();
972 size_t size;
973 int idx=0, dummyIdx=0;
974 //clear read buffer
975 BigBuf_Clear_keep_EM();
976 // Configure to go in 125Khz listen mode
977 LFSetupFPGAForADC(95, true);
978
979 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
980
981 WDT_HIT();
982 if (ledcontrol) LED_A_ON();
983
984 DoAcquisition_default(-1,true);
985 // FSK demodulator
986 size = 50*128*2; //big enough to catch 2 sequences of largest format
987 idx = AWIDdemodFSK(dest, &size, &dummyIdx);
988
989 if (idx<=0 || size!=96) continue;
990 // Index map
991 // 0 10 20 30 40 50 60
992 // | | | | | | |
993 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
994 // -----------------------------------------------------------------------------
995 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
996 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
997 // |---26 bit---| |-----117----||-------------142-------------|
998 // b = format bit len, o = odd parity of last 3 bits
999 // f = facility code, c = card number
1000 // w = wiegand parity
1001 // (26 bit format shown)
1002
1003 //get raw ID before removing parities
1004 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
1005 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
1006 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
1007
1008 size = removeParity(dest, idx+8, 4, 1, 88);
1009 if (size != 66) continue;
1010 // ok valid card found!
1011
1012 // Index map
1013 // 0 10 20 30 40 50 60
1014 // | | | | | | |
1015 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
1016 // -----------------------------------------------------------------------------
1017 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
1018 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
1019 // |26 bit| |-117--| |-----142------|
1020 // b = format bit len, o = odd parity of last 3 bits
1021 // f = facility code, c = card number
1022 // w = wiegand parity
1023 // (26 bit format shown)
1024
1025 uint32_t fc = 0;
1026 uint32_t cardnum = 0;
1027 uint32_t code1 = 0;
1028 uint32_t code2 = 0;
1029 uint8_t fmtLen = bytebits_to_byte(dest,8);
1030 if (fmtLen==26){
1031 fc = bytebits_to_byte(dest+9, 8);
1032 cardnum = bytebits_to_byte(dest+17, 16);
1033 code1 = bytebits_to_byte(dest+8,fmtLen);
1034 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
1035 } else {
1036 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
1037 if (fmtLen>32){
1038 code1 = bytebits_to_byte(dest+8,fmtLen-32);
1039 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
1040 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
1041 } else{
1042 code1 = bytebits_to_byte(dest+8,fmtLen);
1043 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
1044 }
1045 }
1046 if (findone){
1047 if (ledcontrol) LED_A_OFF();
1048 break;
1049 }
1050 // reset
1051 idx = 0;
1052 WDT_HIT();
1053 }
1054 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1055 DbpString("Stopped");
1056 if (ledcontrol) LED_A_OFF();
1057}
1058
1059void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
1060{
1061 uint8_t *dest = BigBuf_get_addr();
1062
1063 size_t size=0, idx=0;
1064 int clk=0, invert=0, errCnt=0, maxErr=20;
1065 uint32_t hi=0;
1066 uint64_t lo=0;
1067 //clear read buffer
1068 BigBuf_Clear_keep_EM();
1069 // Configure to go in 125Khz listen mode
1070 LFSetupFPGAForADC(95, true);
1071
1072 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1073
1074 WDT_HIT();
1075 if (ledcontrol) LED_A_ON();
1076
1077 DoAcquisition_default(-1,true);
1078 size = BigBuf_max_traceLen();
1079 //askdemod and manchester decode
1080 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
1081 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
1082 WDT_HIT();
1083
1084 if (errCnt<0) continue;
1085
1086 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
1087 if (errCnt){
1088 if (size>64){
1089 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
1090 hi,
1091 (uint32_t)(lo>>32),
1092 (uint32_t)lo,
1093 (uint32_t)(lo&0xFFFF),
1094 (uint32_t)((lo>>16LL) & 0xFF),
1095 (uint32_t)(lo & 0xFFFFFF));
1096 } else {
1097 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
1098 (uint32_t)(lo>>32),
1099 (uint32_t)lo,
1100 (uint32_t)(lo&0xFFFF),
1101 (uint32_t)((lo>>16LL) & 0xFF),
1102 (uint32_t)(lo & 0xFFFFFF));
1103 }
1104
1105 if (findone){
1106 if (ledcontrol) LED_A_OFF();
1107 *high=lo>>32;
1108 *low=lo & 0xFFFFFFFF;
1109 break;
1110 }
1111 }
1112 WDT_HIT();
1113 hi = lo = size = idx = 0;
1114 clk = invert = errCnt = 0;
1115 }
1116 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1117 DbpString("Stopped");
1118 if (ledcontrol) LED_A_OFF();
1119}
1120
1121void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
1122{
1123 uint8_t *dest = BigBuf_get_addr();
1124 int idx=0;
1125 uint32_t code=0, code2=0;
1126 uint8_t version=0;
1127 uint8_t facilitycode=0;
1128 uint16_t number=0;
1129 int dummyIdx=0;
1130 //clear read buffer
1131 BigBuf_Clear_keep_EM();
1132 // Configure to go in 125Khz listen mode
1133 LFSetupFPGAForADC(95, true);
1134
1135 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1136 WDT_HIT();
1137 if (ledcontrol) LED_A_ON();
1138 DoAcquisition_default(-1,true);
1139 //fskdemod and get start index
1140 WDT_HIT();
1141 idx = IOdemodFSK(dest, BigBuf_max_traceLen(), &dummyIdx);
1142 if (idx<0) continue;
1143 //valid tag found
1144
1145 //Index map
1146 //0 10 20 30 40 50 60
1147 //| | | | | | |
1148 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1149 //-----------------------------------------------------------------------------
1150 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1151 //
1152 //XSF(version)facility:codeone+codetwo
1153 //Handle the data
1154 if(findone){ //only print binary if we are doing one
1155 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1156 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1157 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1158 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1159 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1160 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1161 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1162 }
1163 code = bytebits_to_byte(dest+idx,32);
1164 code2 = bytebits_to_byte(dest+idx+32,32);
1165 version = bytebits_to_byte(dest+idx+27,8); //14,4
1166 facilitycode = bytebits_to_byte(dest+idx+18,8);
1167 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1168
1169 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
1170 // if we're only looking for one tag
1171 if (findone){
1172 if (ledcontrol) LED_A_OFF();
1173 //LED_A_OFF();
1174 *high=code;
1175 *low=code2;
1176 break;
1177 }
1178 code=code2=0;
1179 version=facilitycode=0;
1180 number=0;
1181 idx=0;
1182
1183 WDT_HIT();
1184 }
1185 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1186 DbpString("Stopped");
1187 if (ledcontrol) LED_A_OFF();
1188}
1189
1190/*------------------------------
1191 * T5555/T5557/T5567/T5577 routines
1192 *------------------------------
1193 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1194 *
1195 * Relevant communication times in microsecond
1196 * To compensate antenna falling times shorten the write times
1197 * and enlarge the gap ones.
1198 * Q5 tags seems to have issues when these values changes.
1199 */
1200#define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1201#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1202#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1203#define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1204#define READ_GAP 15*8
1205
1206void TurnReadLFOn(int delay) {
1207 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1208 // Give it a bit of time for the resonant antenna to settle.
1209 WaitUS(delay); //155*8 //50*8
1210}
1211
1212// Write one bit to card
1213void T55xxWriteBit(int bit) {
1214 if (!bit)
1215 TurnReadLFOn(WRITE_0);
1216 else
1217 TurnReadLFOn(WRITE_1);
1218 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1219 WaitUS(WRITE_GAP);
1220}
1221
1222// Send T5577 reset command then read stream (see if we can identify the start of the stream)
1223void T55xxResetRead(void) {
1224 LED_A_ON();
1225 //clear buffer now so it does not interfere with timing later
1226 BigBuf_Clear_keep_EM();
1227
1228 // Set up FPGA, 125kHz
1229 LFSetupFPGAForADC(95, true);
1230 StartTicks();
1231 // make sure tag is fully powered up...
1232 WaitMS(5);
1233
1234 // Trigger T55x7 in mode.
1235 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1236 WaitUS(START_GAP);
1237
1238 // reset tag - op code 00
1239 T55xxWriteBit(0);
1240 T55xxWriteBit(0);
1241
1242 TurnReadLFOn(READ_GAP);
1243
1244 // Acquisition
1245 DoPartialAcquisition(0, true, BigBuf_max_traceLen(), 0);
1246
1247 // Turn the field off
1248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1249 cmd_send(CMD_ACK,0,0,0,0,0);
1250 LED_A_OFF();
1251}
1252
1253// Write one card block in page 0, no lock
1254void T55xxWriteBlockExt(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
1255 LED_A_ON();
1256 bool PwdMode = arg & 0x1;
1257 uint8_t Page = (arg & 0x2)>>1;
1258 bool testMode = arg & 0x4;
1259 uint32_t i = 0;
1260
1261 // Set up FPGA, 125kHz
1262 LFSetupFPGAForADC(95, true);
1263 StartTicks();
1264 // make sure tag is fully powered up...
1265 WaitMS(5);
1266 // Trigger T55x7 in mode.
1267 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1268 WaitUS(START_GAP);
1269
1270 if (testMode) Dbprintf("TestMODE");
1271 // Std Opcode 10
1272 T55xxWriteBit(testMode ? 0 : 1);
1273 T55xxWriteBit(testMode ? 1 : Page); //Page 0
1274
1275 if (PwdMode) {
1276 // Send Pwd
1277 for (i = 0x80000000; i != 0; i >>= 1)
1278 T55xxWriteBit(Pwd & i);
1279 }
1280 // Send Lock bit
1281 T55xxWriteBit(0);
1282
1283 // Send Data
1284 for (i = 0x80000000; i != 0; i >>= 1)
1285 T55xxWriteBit(Data & i);
1286
1287 // Send Block number
1288 for (i = 0x04; i != 0; i >>= 1)
1289 T55xxWriteBit(Block & i);
1290
1291 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1292 // so wait a little more)
1293
1294 // "there is a clock delay before programming"
1295 // - programming takes ~5.6ms for t5577 ~18ms for E5550 or t5567
1296 // so we should wait 1 clock + 5.6ms then read response?
1297 // but we need to know we are dealing with t5577 vs t5567 vs e5550 (or q5) marshmellow...
1298 if (testMode) {
1299 //TESTMODE TIMING TESTS:
1300 // <566us does nothing
1301 // 566-568 switches between wiping to 0s and doing nothing
1302 // 5184 wipes and allows 1 block to be programmed.
1303 // indefinite power on wipes and then programs all blocks with bitshifted data sent.
1304 TurnReadLFOn(5184);
1305
1306 } else {
1307 TurnReadLFOn(20 * 1000);
1308 //could attempt to do a read to confirm write took
1309 // as the tag should repeat back the new block
1310 // until it is reset, but to confirm it we would
1311 // need to know the current block 0 config mode for
1312 // modulation clock an other details to demod the response...
1313 // response should be (for t55x7) a 0 bit then (ST if on)
1314 // block data written in on repeat until reset.
1315
1316 //DoPartialAcquisition(20, true, 12000);
1317 }
1318
1319 // turn field off
1320 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1321 LED_A_OFF();
1322}
1323
1324// Write one card block in page 0, no lock
1325void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
1326 T55xxWriteBlockExt(Data, Block, Pwd, arg);
1327 cmd_send(CMD_ACK,0,0,0,0,0);
1328}
1329
1330// Read one card block in page [page]
1331void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
1332 LED_A_ON();
1333 bool PwdMode = arg0 & 0x1;
1334 uint8_t Page = (arg0 & 0x2) >> 1;
1335 uint32_t i = 0;
1336 bool RegReadMode = (Block == 0xFF);//regular read mode
1337
1338 //clear buffer now so it does not interfere with timing later
1339 BigBuf_Clear_ext(false);
1340
1341 //make sure block is at max 7
1342 Block &= 0x7;
1343
1344 // Set up FPGA, 125kHz to power up the tag
1345 LFSetupFPGAForADC(95, true);
1346 StartTicks();
1347 // make sure tag is fully powered up...
1348 WaitMS(5);
1349 // Trigger T55x7 Direct Access Mode with start gap
1350 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1351 WaitUS(START_GAP);
1352
1353 // Opcode 1[page]
1354 T55xxWriteBit(1);
1355 T55xxWriteBit(Page); //Page 0
1356
1357 if (PwdMode){
1358 // Send Pwd
1359 for (i = 0x80000000; i != 0; i >>= 1)
1360 T55xxWriteBit(Pwd & i);
1361 }
1362 // Send a zero bit separation
1363 T55xxWriteBit(0);
1364
1365 // Send Block number (if direct access mode)
1366 if (!RegReadMode)
1367 for (i = 0x04; i != 0; i >>= 1)
1368 T55xxWriteBit(Block & i);
1369
1370 // Turn field on to read the response
1371 // 137*8 seems to get to the start of data pretty well...
1372 // but we want to go past the start and let the repeating data settle in...
1373 TurnReadLFOn(210*8);
1374
1375 // Acquisition
1376 // Now do the acquisition
1377 DoPartialAcquisition(0, true, 12000, 0);
1378
1379 // Turn the field off
1380 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1381 cmd_send(CMD_ACK,0,0,0,0,0);
1382 LED_A_OFF();
1383}
1384
1385void T55xxWakeUp(uint32_t Pwd){
1386 LED_B_ON();
1387 uint32_t i = 0;
1388
1389 // Set up FPGA, 125kHz
1390 LFSetupFPGAForADC(95, true);
1391 StartTicks();
1392 // make sure tag is fully powered up...
1393 WaitMS(5);
1394
1395 // Trigger T55x7 Direct Access Mode
1396 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1397 WaitUS(START_GAP);
1398
1399 // Opcode 10
1400 T55xxWriteBit(1);
1401 T55xxWriteBit(0); //Page 0
1402
1403 // Send Pwd
1404 for (i = 0x80000000; i != 0; i >>= 1)
1405 T55xxWriteBit(Pwd & i);
1406
1407 // Turn and leave field on to let the begin repeating transmission
1408 TurnReadLFOn(20*1000);
1409}
1410
1411/*-------------- Cloning routines -----------*/
1412
1413void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
1414 // write last block first and config block last (if included)
1415 for (uint8_t i = numblocks+startblock; i > startblock; i--) {
1416 T55xxWriteBlockExt(blockdata[i-1],i-1,0,0);
1417 }
1418}
1419
1420// Copy a HID-like card (e.g. HID Proximity, Paradox) to a T55x7 compatible card
1421void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT, uint8_t preamble) {
1422 uint32_t data[] = {0,0,0,0,0,0,0};
1423 uint8_t last_block = 0;
1424
1425 if (longFMT) {
1426 // Ensure no more than 84 bits supplied
1427 if (hi2>0xFFFFF) {
1428 DbpString("Tags can only have 84 bits.");
1429 return;
1430 }
1431 // Build the 6 data blocks for supplied 84bit ID
1432 last_block = 6;
1433 // load preamble & long format identifier (9E manchester encoded)
1434 data[1] = (preamble << 24) | 0x96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
1435 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1436 data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
1437 data[3] = manchesterEncode2Bytes(hi >> 16);
1438 data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
1439 data[5] = manchesterEncode2Bytes(lo >> 16);
1440 data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
1441 } else {
1442 // Ensure no more than 44 bits supplied
1443 if (hi>0xFFF) {
1444 DbpString("Tags can only have 44 bits.");
1445 return;
1446 }
1447 // Build the 3 data blocks for supplied 44bit ID
1448 last_block = 3;
1449 // load preamble
1450 data[1] = (preamble << 24) | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
1451 data[2] = manchesterEncode2Bytes(lo >> 16);
1452 data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
1453 }
1454 // load chip config block
1455 data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
1456
1457 //TODO add selection of chip for Q5 or T55x7
1458 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1459
1460 LED_D_ON();
1461 // Program the data blocks for supplied ID
1462 // and the block 0 for HID format
1463 WriteT55xx(data, 0, last_block+1);
1464
1465 LED_D_OFF();
1466
1467 DbpString("DONE!");
1468}
1469
1470void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
1471 uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1472 //TODO add selection of chip for Q5 or T55x7
1473 // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1474
1475 LED_D_ON();
1476 // Program the data blocks for supplied ID
1477 // and the block 0 config
1478 WriteT55xx(data, 0, 3);
1479
1480 LED_D_OFF();
1481
1482 DbpString("DONE!");
1483}
1484
1485// Clone Indala 64-bit tag by UID to T55x7
1486void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
1487 //Program the 2 data blocks for supplied 64bit UID
1488 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1489 uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1490 //TODO add selection of chip for Q5 or T55x7
1491 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1492
1493 WriteT55xx(data, 0, 3);
1494 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1495 // T5567WriteBlock(0x603E1042,0);
1496 DbpString("DONE!");
1497}
1498// Clone Indala 224-bit tag by UID to T55x7
1499void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
1500 //Program the 7 data blocks for supplied 224bit UID
1501 uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
1502 // and the block 0 for Indala224 format
1503 //Config for Indala (RF/32;PSK2 with RF/2;Maxblock=7)
1504 data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK2 | (7 << T55x7_MAXBLOCK_SHIFT);
1505 //TODO add selection of chip for Q5 or T55x7
1506 // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK2 | 7 << T5555_MAXBLOCK_SHIFT;
1507 WriteT55xx(data, 0, 8);
1508 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1509 // T5567WriteBlock(0x603E10E2,0);
1510 DbpString("DONE!");
1511}
1512// clone viking tag to T55xx
1513void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
1514 uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
1515 if (Q5) data[0] = T5555_SET_BITRATE(32) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
1516 // Program the data blocks for supplied ID and the block 0 config
1517 WriteT55xx(data, 0, 3);
1518 LED_D_OFF();
1519 cmd_send(CMD_ACK,0,0,0,0,0);
1520}
1521
1522// Define 9bit header for EM410x tags
1523#define EM410X_HEADER 0x1FF
1524#define EM410X_ID_LENGTH 40
1525
1526void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
1527 int i, id_bit;
1528 uint64_t id = EM410X_HEADER;
1529 uint64_t rev_id = 0; // reversed ID
1530 int c_parity[4]; // column parity
1531 int r_parity = 0; // row parity
1532 uint32_t clock = 0;
1533
1534 // Reverse ID bits given as parameter (for simpler operations)
1535 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1536 if (i < 32) {
1537 rev_id = (rev_id << 1) | (id_lo & 1);
1538 id_lo >>= 1;
1539 } else {
1540 rev_id = (rev_id << 1) | (id_hi & 1);
1541 id_hi >>= 1;
1542 }
1543 }
1544
1545 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1546 id_bit = rev_id & 1;
1547
1548 if (i % 4 == 0) {
1549 // Don't write row parity bit at start of parsing
1550 if (i)
1551 id = (id << 1) | r_parity;
1552 // Start counting parity for new row
1553 r_parity = id_bit;
1554 } else {
1555 // Count row parity
1556 r_parity ^= id_bit;
1557 }
1558
1559 // First elements in column?
1560 if (i < 4)
1561 // Fill out first elements
1562 c_parity[i] = id_bit;
1563 else
1564 // Count column parity
1565 c_parity[i % 4] ^= id_bit;
1566
1567 // Insert ID bit
1568 id = (id << 1) | id_bit;
1569 rev_id >>= 1;
1570 }
1571
1572 // Insert parity bit of last row
1573 id = (id << 1) | r_parity;
1574
1575 // Fill out column parity at the end of tag
1576 for (i = 0; i < 4; ++i)
1577 id = (id << 1) | c_parity[i];
1578
1579 // Add stop bit
1580 id <<= 1;
1581
1582 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1583 LED_D_ON();
1584
1585 // Write EM410x ID
1586 uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
1587
1588 clock = (card & 0xFF00) >> 8;
1589 clock = (clock == 0) ? 64 : clock;
1590 Dbprintf("Clock rate: %d", clock);
1591 if (card & 0xFF) { //t55x7
1592 clock = GetT55xxClockBit(clock);
1593 if (clock == 0) {
1594 Dbprintf("Invalid clock rate: %d", clock);
1595 return;
1596 }
1597 data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
1598 } else { //t5555 (Q5)
1599 data[0] = T5555_SET_BITRATE(clock) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
1600 }
1601
1602 WriteT55xx(data, 0, 3);
1603
1604 LED_D_OFF();
1605 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1606 (uint32_t)(id >> 32), (uint32_t)id);
1607}
1608
1609//-----------------------------------
1610// EM4469 / EM4305 routines
1611//-----------------------------------
1612#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1613#define FWD_CMD_WRITE 0xA
1614#define FWD_CMD_READ 0x9
1615#define FWD_CMD_DISABLE 0x5
1616
1617uint8_t forwardLink_data[64]; //array of forwarded bits
1618uint8_t * forward_ptr; //ptr for forward message preparation
1619uint8_t fwd_bit_sz; //forwardlink bit counter
1620uint8_t * fwd_write_ptr; //forwardlink bit pointer
1621
1622//====================================================================
1623// prepares command bits
1624// see EM4469 spec
1625//====================================================================
1626//--------------------------------------------------------------------
1627// VALUES TAKEN FROM EM4x function: SendForward
1628// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1629// WRITE_GAP = 128; (16*8)
1630// WRITE_1 = 256 32*8; (32*8)
1631
1632// These timings work for 4469/4269/4305 (with the 55*8 above)
1633// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1634
1635uint8_t Prepare_Cmd( uint8_t cmd ) {
1636
1637 *forward_ptr++ = 0; //start bit
1638 *forward_ptr++ = 0; //second pause for 4050 code
1639
1640 *forward_ptr++ = cmd;
1641 cmd >>= 1;
1642 *forward_ptr++ = cmd;
1643 cmd >>= 1;
1644 *forward_ptr++ = cmd;
1645 cmd >>= 1;
1646 *forward_ptr++ = cmd;
1647
1648 return 6; //return number of emited bits
1649}
1650
1651//====================================================================
1652// prepares address bits
1653// see EM4469 spec
1654//====================================================================
1655uint8_t Prepare_Addr( uint8_t addr ) {
1656
1657 register uint8_t line_parity;
1658
1659 uint8_t i;
1660 line_parity = 0;
1661 for(i=0;i<6;i++) {
1662 *forward_ptr++ = addr;
1663 line_parity ^= addr;
1664 addr >>= 1;
1665 }
1666
1667 *forward_ptr++ = (line_parity & 1);
1668
1669 return 7; //return number of emited bits
1670}
1671
1672//====================================================================
1673// prepares data bits intreleaved with parity bits
1674// see EM4469 spec
1675//====================================================================
1676uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1677
1678 register uint8_t line_parity;
1679 register uint8_t column_parity;
1680 register uint8_t i, j;
1681 register uint16_t data;
1682
1683 data = data_low;
1684 column_parity = 0;
1685
1686 for(i=0; i<4; i++) {
1687 line_parity = 0;
1688 for(j=0; j<8; j++) {
1689 line_parity ^= data;
1690 column_parity ^= (data & 1) << j;
1691 *forward_ptr++ = data;
1692 data >>= 1;
1693 }
1694 *forward_ptr++ = line_parity;
1695 if(i == 1)
1696 data = data_hi;
1697 }
1698
1699 for(j=0; j<8; j++) {
1700 *forward_ptr++ = column_parity;
1701 column_parity >>= 1;
1702 }
1703 *forward_ptr = 0;
1704
1705 return 45; //return number of emited bits
1706}
1707
1708//====================================================================
1709// Forward Link send function
1710// Requires: forwarLink_data filled with valid bits (1 bit per byte)
1711// fwd_bit_count set with number of bits to be sent
1712//====================================================================
1713void SendForward(uint8_t fwd_bit_count) {
1714
1715 fwd_write_ptr = forwardLink_data;
1716 fwd_bit_sz = fwd_bit_count;
1717
1718 // Set up FPGA, 125kHz or 95 divisor
1719 LFSetupFPGAForADC(95, true);
1720
1721 // force 1st mod pulse (start gap must be longer for 4305)
1722 fwd_bit_sz--; //prepare next bit modulation
1723 fwd_write_ptr++;
1724 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1725 WaitUS(55*8); //55 cycles off (8us each)for 4305 //another reader has 37 here...
1726 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1727 WaitUS(18*8); //18 cycles on (8us each)
1728
1729 // now start writting
1730 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1731 if(((*fwd_write_ptr++) & 1) == 1)
1732 WaitUS(32*8); //32 cycles at 125Khz (8us each)
1733 else {
1734 //These timings work for 4469/4269/4305 (with the 55*8 above)
1735 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1736 WaitUS(23*8); //23 cycles off (8us each)
1737 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1738 WaitUS(18*8); //18 cycles on (8us each)
1739 }
1740 }
1741}
1742
1743void EM4xLogin(uint32_t Password) {
1744
1745 uint8_t fwd_bit_count;
1746
1747 forward_ptr = forwardLink_data;
1748 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1749 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1750
1751 SendForward(fwd_bit_count);
1752
1753 //Wait for command to complete
1754 SpinDelay(20);
1755}
1756
1757void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1758
1759 uint8_t fwd_bit_count;
1760
1761 // Clear destination buffer before sending the command
1762 BigBuf_Clear_ext(false);
1763
1764 LED_A_ON();
1765 StartTicks();
1766 //If password mode do login
1767 if (PwdMode == 1) EM4xLogin(Pwd);
1768
1769 forward_ptr = forwardLink_data;
1770 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1771 fwd_bit_count += Prepare_Addr( Address );
1772
1773 SendForward(fwd_bit_count);
1774 WaitUS(400);
1775 // Now do the acquisition
1776 DoPartialAcquisition(20, true, 6000, 1000);
1777
1778 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1779 LED_A_OFF();
1780 cmd_send(CMD_ACK,0,0,0,0,0);
1781}
1782
1783void EM4xWriteWord(uint32_t flag, uint32_t Data, uint32_t Pwd) {
1784
1785 bool PwdMode = (flag & 0xF);
1786 uint8_t Address = (flag >> 8) & 0xFF;
1787 uint8_t fwd_bit_count;
1788
1789 //clear buffer now so it does not interfere with timing later
1790 BigBuf_Clear_ext(false);
1791
1792 LED_A_ON();
1793 StartTicks();
1794 //If password mode do login
1795 if (PwdMode) EM4xLogin(Pwd);
1796
1797 forward_ptr = forwardLink_data;
1798 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1799 fwd_bit_count += Prepare_Addr( Address );
1800 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1801
1802 SendForward(fwd_bit_count);
1803
1804 //Wait for write to complete
1805 //SpinDelay(10);
1806
1807 WaitUS(6500);
1808 //Capture response if one exists
1809 DoPartialAcquisition(20, true, 6000, 1000);
1810
1811 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1812 LED_A_OFF();
1813 cmd_send(CMD_ACK,0,0,0,0,0);
1814}
1815/*
1816Reading a COTAG.
1817
1818COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
1819because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
1820
1821READER START SEQUENCE:
1822burst 800 us, gap 2.2 msecs
1823burst 3.6 msecs gap 2.2 msecs
1824burst 800 us gap 2.2 msecs
1825pulse 3.6 msecs
1826
1827This triggers a COTAG tag to response
1828*/
1829void Cotag(uint32_t arg0) {
1830
1831#define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
1832#define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
1833
1834 uint8_t rawsignal = arg0 & 0xF;
1835
1836 LED_A_ON();
1837
1838 // Switching to LF image on FPGA. This might empty BigBuff
1839 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1840
1841 //clear buffer now so it does not interfere with timing later
1842 BigBuf_Clear_ext(false);
1843
1844 // Set up FPGA, 132kHz to power up the tag
1845 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89);
1846 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1847
1848 // Connect the A/D to the peak-detected low-frequency path.
1849 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1850
1851 // Now set up the SSC to get the ADC samples that are now streaming at us.
1852 FpgaSetupSsc(FPGA_MAJOR_MODE_LF_ADC);
1853
1854 // start clock - 1.5ticks is 1us
1855 StartTicks();
1856
1857 //send COTAG start pulse
1858 ON(740) OFF
1859 ON(3330) OFF
1860 ON(740) OFF
1861 ON(1000)
1862
1863 switch(rawsignal) {
1864 case 0: doCotagAcquisition(50000); break;
1865 case 1: doCotagAcquisitionManchester(); break;
1866 case 2: DoAcquisition_config(true, 0); break;
1867 }
1868
1869 // Turn the field off
1870 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1871 cmd_send(CMD_ACK,0,0,0,0,0);
1872 LED_A_OFF();
1873}
Impressum, Datenschutz