]> cvs.zerfleddert.de Git - proxmark3-svn/blame_incremental - client/cmddata.c
FIX: Another try to see if the "lf em4x 410xsim" becomes better, added the clock...
[proxmark3-svn] / client / cmddata.c
... / ...
CommitLineData
1//-----------------------------------------------------------------------------
2// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
3//
4// This code is licensed to you under the terms of the GNU GPL, version 2 or,
5// at your option, any later version. See the LICENSE.txt file for the text of
6// the license.
7//-----------------------------------------------------------------------------
8// Data and Graph commands
9//-----------------------------------------------------------------------------
10
11#include <stdio.h>
12#include <stdlib.h>
13#include <string.h>
14#include <limits.h>
15#include "proxmark3.h"
16#include "data.h"
17#include "ui.h"
18#include "graph.h"
19#include "cmdparser.h"
20#include "util.h"
21#include "cmdmain.h"
22#include "cmddata.h"
23
24static int CmdHelp(const char *Cmd);
25
26int CmdAmp(const char *Cmd)
27{
28 int i, rising, falling;
29 int max = INT_MIN, min = INT_MAX;
30
31 for (i = 10; i < GraphTraceLen; ++i) {
32 if (GraphBuffer[i] > max)
33 max = GraphBuffer[i];
34 if (GraphBuffer[i] < min)
35 min = GraphBuffer[i];
36 }
37
38 if (max != min) {
39 rising = falling= 0;
40 for (i = 0; i < GraphTraceLen; ++i) {
41 if (GraphBuffer[i + 1] < GraphBuffer[i]) {
42 if (rising) {
43 GraphBuffer[i] = max;
44 rising = 0;
45 }
46 falling = 1;
47 }
48 if (GraphBuffer[i + 1] > GraphBuffer[i]) {
49 if (falling) {
50 GraphBuffer[i] = min;
51 falling = 0;
52 }
53 rising= 1;
54 }
55 }
56 }
57 RepaintGraphWindow();
58 return 0;
59}
60
61/*
62 * Generic command to demodulate ASK.
63 *
64 * Argument is convention: positive or negative (High mod means zero
65 * or high mod means one)
66 *
67 * Updates the Graph trace with 0/1 values
68 *
69 * Arguments:
70 * c : 0 or 1
71 */
72int Cmdaskdemod(const char *Cmd)
73{
74 int i;
75 int c, high = 0, low = 0;
76
77 sscanf(Cmd, "%i", &c);
78
79 if (c != 0 && c != 1) {
80 PrintAndLog("Invalid argument: %s", Cmd);
81 return 0;
82 }
83
84 /* Detect high and lows */
85 for (i = 0; i < GraphTraceLen; ++i)
86 {
87 if (GraphBuffer[i] > high)
88 high = GraphBuffer[i];
89 else if (GraphBuffer[i] < low)
90 low = GraphBuffer[i];
91 }
92
93 if (GraphBuffer[0] > 0) {
94 GraphBuffer[0] = 1-c;
95 } else {
96 GraphBuffer[0] = c;
97 }
98 for (i = 1; i < GraphTraceLen; ++i) {
99 /* Transitions are detected at each peak
100 * Transitions are either:
101 * - we're low: transition if we hit a high
102 * - we're high: transition if we hit a low
103 * (we need to do it this way because some tags keep high or
104 * low for long periods, others just reach the peak and go
105 * down)
106 */
107 if ((GraphBuffer[i] == high) && (GraphBuffer[i - 1] == c)) {
108 GraphBuffer[i] = 1 - c;
109 } else if ((GraphBuffer[i] == low) && (GraphBuffer[i - 1] == (1 - c))){
110 GraphBuffer[i] = c;
111 } else {
112 /* No transition */
113 GraphBuffer[i] = GraphBuffer[i - 1];
114 }
115 }
116 RepaintGraphWindow();
117 return 0;
118}
119
120int CmdAutoCorr(const char *Cmd)
121{
122 static int CorrelBuffer[MAX_GRAPH_TRACE_LEN];
123
124 int window = atoi(Cmd);
125
126 if (window == 0) {
127 PrintAndLog("needs a window");
128 return 0;
129 }
130 if (window >= GraphTraceLen) {
131 PrintAndLog("window must be smaller than trace (%d samples)",
132 GraphTraceLen);
133 return 0;
134 }
135
136 PrintAndLog("performing %d correlations", GraphTraceLen - window);
137
138 for (int i = 0; i < GraphTraceLen - window; ++i) {
139 int sum = 0;
140 for (int j = 0; j < window; ++j) {
141 sum += (GraphBuffer[j]*GraphBuffer[i + j]) / 256;
142 }
143 CorrelBuffer[i] = sum;
144 }
145 GraphTraceLen = GraphTraceLen - window;
146 memcpy(GraphBuffer, CorrelBuffer, GraphTraceLen * sizeof (int));
147
148 RepaintGraphWindow();
149 return 0;
150}
151
152int CmdBitsamples(const char *Cmd)
153{
154 int cnt = 0;
155 uint8_t got[12288];
156
157 GetFromBigBuf(got,sizeof(got),0);
158 WaitForResponse(CMD_ACK,NULL);
159
160 for (int j = 0; j < sizeof(got); j++) {
161 for (int k = 0; k < 8; k++) {
162 if(got[j] & (1 << (7 - k))) {
163 GraphBuffer[cnt++] = 1;
164 } else {
165 GraphBuffer[cnt++] = 0;
166 }
167 }
168 }
169 GraphTraceLen = cnt;
170 RepaintGraphWindow();
171 return 0;
172}
173
174/*
175 * Convert to a bitstream
176 */
177int CmdBitstream(const char *Cmd)
178{
179 int i, j;
180 int bit;
181 int gtl;
182 int clock;
183 int low = 0;
184 int high = 0;
185 int hithigh, hitlow, first;
186
187 /* Detect high and lows and clock */
188 for (i = 0; i < GraphTraceLen; ++i)
189 {
190 if (GraphBuffer[i] > high)
191 high = GraphBuffer[i];
192 else if (GraphBuffer[i] < low)
193 low = GraphBuffer[i];
194 }
195
196 /* Get our clock */
197 clock = GetClock(Cmd, high, 1);
198 gtl = ClearGraph(0);
199
200 bit = 0;
201 for (i = 0; i < (int)(gtl / clock); ++i)
202 {
203 hithigh = 0;
204 hitlow = 0;
205 first = 1;
206 /* Find out if we hit both high and low peaks */
207 for (j = 0; j < clock; ++j)
208 {
209 if (GraphBuffer[(i * clock) + j] == high)
210 hithigh = 1;
211 else if (GraphBuffer[(i * clock) + j] == low)
212 hitlow = 1;
213 /* it doesn't count if it's the first part of our read
214 because it's really just trailing from the last sequence */
215 if (first && (hithigh || hitlow))
216 hithigh = hitlow = 0;
217 else
218 first = 0;
219
220 if (hithigh && hitlow)
221 break;
222 }
223
224 /* If we didn't hit both high and low peaks, we had a bit transition */
225 if (!hithigh || !hitlow)
226 bit ^= 1;
227
228 AppendGraph(0, clock, bit);
229// for (j = 0; j < (int)(clock/2); j++)
230// GraphBuffer[(i * clock) + j] = bit ^ 1;
231// for (j = (int)(clock/2); j < clock; j++)
232// GraphBuffer[(i * clock) + j] = bit;
233 }
234
235 RepaintGraphWindow();
236 return 0;
237}
238
239int CmdBuffClear(const char *Cmd)
240{
241 UsbCommand c = {CMD_BUFF_CLEAR};
242 SendCommand(&c);
243 ClearGraph(true);
244 return 0;
245}
246
247int CmdDec(const char *Cmd)
248{
249 for (int i = 0; i < (GraphTraceLen / 2); ++i)
250 GraphBuffer[i] = GraphBuffer[i * 2];
251 GraphTraceLen /= 2;
252 PrintAndLog("decimated by 2");
253 RepaintGraphWindow();
254 return 0;
255}
256
257/* Print our clock rate */
258int CmdDetectClockRate(const char *Cmd)
259{
260 int clock = DetectClock(0);
261 PrintAndLog("Auto-detected clock rate: %d", clock);
262 return 0;
263}
264
265int CmdFSKdemod(const char *Cmd)
266{
267 static const int LowTone[] = {
268 1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
269 1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
270 1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
271 1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
272 1, 1, 1, 1, 1, -1, -1, -1, -1, -1
273 };
274 static const int HighTone[] = {
275 1, 1, 1, 1, 1, -1, -1, -1, -1,
276 1, 1, 1, 1, -1, -1, -1, -1,
277 1, 1, 1, 1, -1, -1, -1, -1,
278 1, 1, 1, 1, -1, -1, -1, -1,
279 1, 1, 1, 1, -1, -1, -1, -1,
280 1, 1, 1, 1, -1, -1, -1, -1, -1,
281 };
282
283 int lowLen = sizeof (LowTone) / sizeof (int);
284 int highLen = sizeof (HighTone) / sizeof (int);
285 int convLen = (highLen > lowLen) ? highLen : lowLen;
286 uint32_t hi = 0, lo = 0;
287
288 int i, j;
289 int minMark = 0, maxMark = 0;
290
291 for (i = 0; i < GraphTraceLen - convLen; ++i) {
292 int lowSum = 0, highSum = 0;
293
294 for (j = 0; j < lowLen; ++j) {
295 lowSum += LowTone[j]*GraphBuffer[i+j];
296 }
297 for (j = 0; j < highLen; ++j) {
298 highSum += HighTone[j] * GraphBuffer[i + j];
299 }
300 lowSum = abs(100 * lowSum / lowLen);
301 highSum = abs(100 * highSum / highLen);
302 GraphBuffer[i] = (highSum << 16) | lowSum;
303 }
304
305 for(i = 0; i < GraphTraceLen - convLen - 16; ++i) {
306 int lowTot = 0, highTot = 0;
307 // 10 and 8 are f_s divided by f_l and f_h, rounded
308 for (j = 0; j < 10; ++j) {
309 lowTot += (GraphBuffer[i+j] & 0xffff);
310 }
311 for (j = 0; j < 8; j++) {
312 highTot += (GraphBuffer[i + j] >> 16);
313 }
314 GraphBuffer[i] = lowTot - highTot;
315 if (GraphBuffer[i] > maxMark) maxMark = GraphBuffer[i];
316 if (GraphBuffer[i] < minMark) minMark = GraphBuffer[i];
317 }
318
319 GraphTraceLen -= (convLen + 16);
320 RepaintGraphWindow();
321
322 // Find bit-sync (3 lo followed by 3 high)
323 int max = 0, maxPos = 0;
324 for (i = 0; i < 6000; ++i) {
325 int dec = 0;
326 for (j = 0; j < 3 * lowLen; ++j) {
327 dec -= GraphBuffer[i + j];
328 }
329 for (; j < 3 * (lowLen + highLen ); ++j) {
330 dec += GraphBuffer[i + j];
331 }
332 if (dec > max) {
333 max = dec;
334 maxPos = i;
335 }
336 }
337
338 // place start of bit sync marker in graph
339 GraphBuffer[maxPos] = maxMark;
340 GraphBuffer[maxPos + 1] = minMark;
341
342 maxPos += j;
343
344 // place end of bit sync marker in graph
345 GraphBuffer[maxPos] = maxMark;
346 GraphBuffer[maxPos+1] = minMark;
347
348 PrintAndLog("actual data bits start at sample %d", maxPos);
349 PrintAndLog("length %d/%d", highLen, lowLen);
350
351 uint8_t bits[46];
352 bits[sizeof(bits)-1] = '\0';
353
354 // find bit pairs and manchester decode them
355 for (i = 0; i < arraylen(bits) - 1; ++i) {
356 int dec = 0;
357 for (j = 0; j < lowLen; ++j) {
358 dec -= GraphBuffer[maxPos + j];
359 }
360 for (; j < lowLen + highLen; ++j) {
361 dec += GraphBuffer[maxPos + j];
362 }
363 maxPos += j;
364 // place inter bit marker in graph
365 GraphBuffer[maxPos] = maxMark;
366 GraphBuffer[maxPos + 1] = minMark;
367
368 // hi and lo form a 64 bit pair
369 hi = (hi << 1) | (lo >> 31);
370 lo = (lo << 1);
371 // store decoded bit as binary (in hi/lo) and text (in bits[])
372 if(dec < 0) {
373 bits[i] = '1';
374 lo |= 1;
375 } else {
376 bits[i] = '0';
377 }
378 }
379 PrintAndLog("bits: '%s'", bits);
380 PrintAndLog("hex: %08x %08x", hi, lo);
381 return 0;
382}
383
384int CmdGrid(const char *Cmd)
385{
386 sscanf(Cmd, "%i %i", &PlotGridX, &PlotGridY);
387 PlotGridXdefault= PlotGridX;
388 PlotGridYdefault= PlotGridY;
389 RepaintGraphWindow();
390 return 0;
391}
392
393int CmdHexsamples(const char *Cmd)
394{
395 int i, j;
396 int requested = 0;
397 int offset = 0;
398 char string_buf[25];
399 char* string_ptr = string_buf;
400 uint8_t got[40000];
401
402 sscanf(Cmd, "%i %i", &requested, &offset);
403
404 /* if no args send something */
405 if (requested == 0) {
406 requested = 8;
407 }
408 if (offset + requested > sizeof(got)) {
409 PrintAndLog("Tried to read past end of buffer, <bytes> + <offset> > 40000");
410 return 0;
411 }
412
413 GetFromBigBuf(got,requested,offset);
414 WaitForResponse(CMD_ACK,NULL);
415
416 i = 0;
417 for (j = 0; j < requested; j++) {
418 i++;
419 string_ptr += sprintf(string_ptr, "%02x ", got[j]);
420 if (i == 8) {
421 *(string_ptr - 1) = '\0'; // remove the trailing space
422 PrintAndLog("%s", string_buf);
423 string_buf[0] = '\0';
424 string_ptr = string_buf;
425 i = 0;
426 }
427 if (j == requested - 1 && string_buf[0] != '\0') { // print any remaining bytes
428 *(string_ptr - 1) = '\0';
429 PrintAndLog("%s", string_buf);
430 string_buf[0] = '\0';
431 }
432 }
433 return 0;
434}
435
436int CmdHide(const char *Cmd)
437{
438 HideGraphWindow();
439 return 0;
440}
441
442int CmdHpf(const char *Cmd)
443{
444 int i;
445 int accum = 0;
446
447 for (i = 10; i < GraphTraceLen; ++i)
448 accum += GraphBuffer[i];
449 accum /= (GraphTraceLen - 10);
450 for (i = 0; i < GraphTraceLen; ++i)
451 GraphBuffer[i] -= accum;
452
453 RepaintGraphWindow();
454 return 0;
455}
456
457int CmdSamples(const char *Cmd)
458{
459 uint8_t got[36440] = {0x00};
460
461 int n = strtol(Cmd, NULL, 0);
462 if (n == 0)
463 n = 512;
464 if (n > sizeof(got))
465 n = sizeof(got);
466
467 PrintAndLog("Reading %d samples from device memory\n", n);
468 GetFromBigBuf(got,n,3560);
469 WaitForResponse(CMD_ACK,NULL);
470 for (int j = 0; j < n; ++j) {
471 GraphBuffer[j] = ((int)got[j]) - 128;
472 }
473 GraphTraceLen = n;
474 RepaintGraphWindow();
475 return 0;
476}
477
478int CmdLoad(const char *Cmd)
479{
480 FILE *f = fopen(Cmd, "r");
481 if (!f) {
482 PrintAndLog("couldn't open '%s'", Cmd);
483 return 0;
484 }
485
486 GraphTraceLen = 0;
487 char line[80];
488 while (fgets(line, sizeof (line), f)) {
489 GraphBuffer[GraphTraceLen] = atoi(line);
490 GraphTraceLen++;
491 }
492 fclose(f);
493 PrintAndLog("loaded %d samples", GraphTraceLen);
494 RepaintGraphWindow();
495 return 0;
496}
497
498int CmdLtrim(const char *Cmd)
499{
500 int ds = atoi(Cmd);
501
502 for (int i = ds; i < GraphTraceLen; ++i)
503 GraphBuffer[i-ds] = GraphBuffer[i];
504 GraphTraceLen -= ds;
505
506 RepaintGraphWindow();
507 return 0;
508}
509
510/*
511 * Manchester demodulate a bitstream. The bitstream needs to be already in
512 * the GraphBuffer as 0 and 1 values
513 *
514 * Give the clock rate as argument in order to help the sync - the algorithm
515 * resyncs at each pulse anyway.
516 *
517 * Not optimized by any means, this is the 1st time I'm writing this type of
518 * routine, feel free to improve...
519 *
520 * 1st argument: clock rate (as number of samples per clock rate)
521 * Typical values can be 64, 32, 128...
522 */
523int CmdManchesterDemod(const char *Cmd)
524{
525 int i, j, invert= 0;
526 int bit;
527 int clock;
528 int lastval = 0;
529 int low = 0;
530 int high = 0;
531 int hithigh, hitlow, first;
532 int lc = 0;
533 int bitidx = 0;
534 int bit2idx = 0;
535 int warnings = 0;
536
537 /* check if we're inverting output */
538 if (*Cmd == 'i')
539 {
540 PrintAndLog("Inverting output");
541 invert = 1;
542 ++Cmd;
543 do
544 ++Cmd;
545 while(*Cmd == ' '); // in case a 2nd argument was given
546 }
547
548 /* Holds the decoded bitstream: each clock period contains 2 bits */
549 /* later simplified to 1 bit after manchester decoding. */
550 /* Add 10 bits to allow for noisy / uncertain traces without aborting */
551 /* int BitStream[GraphTraceLen*2/clock+10]; */
552
553 /* But it does not work if compiling on WIndows: therefore we just allocate a */
554 /* large array */
555 uint8_t BitStream[MAX_GRAPH_TRACE_LEN];
556
557 /* Detect high and lows */
558 for (i = 0; i < GraphTraceLen; i++)
559 {
560 if (GraphBuffer[i] > high)
561 high = GraphBuffer[i];
562 else if (GraphBuffer[i] < low)
563 low = GraphBuffer[i];
564 }
565
566 /* Get our clock */
567 clock = GetClock(Cmd, high, 1);
568
569 int tolerance = clock/4;
570
571 /* Detect first transition */
572 /* Lo-Hi (arbitrary) */
573 /* skip to the first high */
574 for (i= 0; i < GraphTraceLen; i++)
575 if (GraphBuffer[i] == high)
576 break;
577 /* now look for the first low */
578 for (; i < GraphTraceLen; i++)
579 {
580 if (GraphBuffer[i] == low)
581 {
582 lastval = i;
583 break;
584 }
585 }
586
587 PrintAndLog("Clock: %d", clock);
588
589 /* If we're not working with 1/0s, demod based off clock */
590 if (high != 1)
591 {
592 PrintAndLog("Entering path A");
593 bit = 0; /* We assume the 1st bit is zero, it may not be
594 * the case: this routine (I think) has an init problem.
595 * Ed.
596 */
597 for (; i < (int)(GraphTraceLen / clock); i++)
598 {
599 hithigh = 0;
600 hitlow = 0;
601 first = 1;
602
603 /* Find out if we hit both high and low peaks */
604 for (j = 0; j < clock; j++)
605 {
606 if (GraphBuffer[(i * clock) + j] == high)
607 hithigh = 1;
608 else if (GraphBuffer[(i * clock) + j] == low)
609 hitlow = 1;
610
611 /* it doesn't count if it's the first part of our read
612 because it's really just trailing from the last sequence */
613 if (first && (hithigh || hitlow))
614 hithigh = hitlow = 0;
615 else
616 first = 0;
617
618 if (hithigh && hitlow)
619 break;
620 }
621
622 /* If we didn't hit both high and low peaks, we had a bit transition */
623 if (!hithigh || !hitlow)
624 bit ^= 1;
625
626 BitStream[bit2idx++] = bit ^ invert;
627 }
628 }
629
630 /* standard 1/0 bitstream */
631 else
632 {
633
634 /* Then detect duration between 2 successive transitions */
635 for (bitidx = 1; i < GraphTraceLen; i++)
636 {
637 if (GraphBuffer[i-1] != GraphBuffer[i])
638 {
639 lc = i-lastval;
640 lastval = i;
641
642 // Error check: if bitidx becomes too large, we do not
643 // have a Manchester encoded bitstream or the clock is really
644 // wrong!
645 if (bitidx > (GraphTraceLen*2/clock+8) ) {
646 PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
647 return 0;
648 }
649 // Then switch depending on lc length:
650 // Tolerance is 1/4 of clock rate (arbitrary)
651 if (abs(lc-clock/2) < tolerance) {
652 // Short pulse : either "1" or "0"
653 BitStream[bitidx++]=GraphBuffer[i-1];
654 } else if (abs(lc-clock) < tolerance) {
655 // Long pulse: either "11" or "00"
656 BitStream[bitidx++]=GraphBuffer[i-1];
657 BitStream[bitidx++]=GraphBuffer[i-1];
658 } else {
659 // Error
660 warnings++;
661 PrintAndLog("Warning: Manchester decode error for pulse width detection.");
662 PrintAndLog("(too many of those messages mean either the stream is not Manchester encoded, or clock is wrong)");
663
664 if (warnings > 10)
665 {
666 PrintAndLog("Error: too many detection errors, aborting.");
667 return 0;
668 }
669 }
670 }
671 }
672
673 // At this stage, we now have a bitstream of "01" ("1") or "10" ("0"), parse it into final decoded bitstream
674 // Actually, we overwrite BitStream with the new decoded bitstream, we just need to be careful
675 // to stop output at the final bitidx2 value, not bitidx
676 for (i = 0; i < bitidx; i += 2) {
677 if ((BitStream[i] == 0) && (BitStream[i+1] == 1)) {
678 BitStream[bit2idx++] = 1 ^ invert;
679 } else if ((BitStream[i] == 1) && (BitStream[i+1] == 0)) {
680 BitStream[bit2idx++] = 0 ^ invert;
681 } else {
682 // We cannot end up in this state, this means we are unsynchronized,
683 // move up 1 bit:
684 i++;
685 warnings++;
686 PrintAndLog("Unsynchronized, resync...");
687 PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
688
689 if (warnings > 10)
690 {
691 PrintAndLog("Error: too many decode errors, aborting.");
692 return 0;
693 }
694 }
695 }
696 }
697
698 PrintAndLog("Manchester decoded bitstream");
699 // Now output the bitstream to the scrollback by line of 16 bits
700 for (i = 0; i < (bit2idx-16); i+=16) {
701 PrintAndLog("%i %i %i %i %i %i %i %i %i %i %i %i %i %i %i %i",
702 BitStream[i],
703 BitStream[i+1],
704 BitStream[i+2],
705 BitStream[i+3],
706 BitStream[i+4],
707 BitStream[i+5],
708 BitStream[i+6],
709 BitStream[i+7],
710 BitStream[i+8],
711 BitStream[i+9],
712 BitStream[i+10],
713 BitStream[i+11],
714 BitStream[i+12],
715 BitStream[i+13],
716 BitStream[i+14],
717 BitStream[i+15]);
718 }
719 return 0;
720}
721
722/* Modulate our data into manchester */
723int CmdManchesterMod(const char *Cmd)
724{
725 int i, j;
726 int clock;
727 int bit, lastbit, wave;
728
729 /* Get our clock */
730 clock = GetClock(Cmd, 0, 1);
731
732 wave = 0;
733 lastbit = 1;
734 for (i = 0; i < (int)(GraphTraceLen / clock); i++)
735 {
736 bit = GraphBuffer[i * clock] ^ 1;
737
738 for (j = 0; j < (int)(clock/2); j++)
739 GraphBuffer[(i * clock) + j] = bit ^ lastbit ^ wave;
740 for (j = (int)(clock/2); j < clock; j++)
741 GraphBuffer[(i * clock) + j] = bit ^ lastbit ^ wave ^ 1;
742
743 /* Keep track of how we start our wave and if we changed or not this time */
744 wave ^= bit ^ lastbit;
745 lastbit = bit;
746 }
747
748 RepaintGraphWindow();
749 return 0;
750}
751
752int CmdNorm(const char *Cmd)
753{
754 int i;
755 int max = INT_MIN, min = INT_MAX;
756
757 for (i = 10; i < GraphTraceLen; ++i) {
758 if (GraphBuffer[i] > max)
759 max = GraphBuffer[i];
760 if (GraphBuffer[i] < min)
761 min = GraphBuffer[i];
762 }
763
764 if (max != min) {
765 for (i = 0; i < GraphTraceLen; ++i) {
766 GraphBuffer[i] = (GraphBuffer[i] - ((max + min) / 2)) * 1000 /
767 (max - min);
768 }
769 }
770 RepaintGraphWindow();
771 return 0;
772}
773
774int CmdPlot(const char *Cmd)
775{
776 ShowGraphWindow();
777 return 0;
778}
779
780int CmdSave(const char *Cmd)
781{
782 FILE *f = fopen(Cmd, "w");
783 if(!f) {
784 PrintAndLog("couldn't open '%s'", Cmd);
785 return 0;
786 }
787 int i;
788 for (i = 0; i < GraphTraceLen; i++) {
789 fprintf(f, "%d\n", GraphBuffer[i]);
790 }
791 fclose(f);
792 PrintAndLog("saved to '%s'", Cmd);
793 return 0;
794}
795
796int CmdScale(const char *Cmd)
797{
798 CursorScaleFactor = atoi(Cmd);
799 if (CursorScaleFactor == 0) {
800 PrintAndLog("bad, can't have zero scale");
801 CursorScaleFactor = 1;
802 }
803 RepaintGraphWindow();
804 return 0;
805}
806
807int CmdThreshold(const char *Cmd)
808{
809 int threshold = atoi(Cmd);
810
811 for (int i = 0; i < GraphTraceLen; ++i) {
812 if (GraphBuffer[i] >= threshold)
813 GraphBuffer[i] = 1;
814 else
815 GraphBuffer[i] = -1;
816 }
817 RepaintGraphWindow();
818 return 0;
819}
820
821int CmdDirectionalThreshold(const char *Cmd)
822{
823 int8_t upThres = param_get8(Cmd, 0);
824 int8_t downThres = param_get8(Cmd, 1);
825
826 printf("Applying Up Threshold: %d, Down Threshold: %d\n", upThres, downThres);
827
828 int lastValue = GraphBuffer[0];
829 GraphBuffer[0] = 0; // Will be changed at the end, but init 0 as we adjust to last samples value if no threshold kicks in.
830
831 for (int i = 1; i < GraphTraceLen; ++i) {
832 // Apply first threshold to samples heading up
833 if (GraphBuffer[i] >= upThres && GraphBuffer[i] > lastValue)
834 {
835 lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it.
836 GraphBuffer[i] = 1;
837 }
838 // Apply second threshold to samples heading down
839 else if (GraphBuffer[i] <= downThres && GraphBuffer[i] < lastValue)
840 {
841 lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it.
842 GraphBuffer[i] = -1;
843 }
844 else
845 {
846 lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it.
847 GraphBuffer[i] = GraphBuffer[i-1];
848
849 }
850 }
851 GraphBuffer[0] = GraphBuffer[1]; // Aline with first edited sample.
852 RepaintGraphWindow();
853 return 0;
854}
855
856int CmdZerocrossings(const char *Cmd)
857{
858 // Zero-crossings aren't meaningful unless the signal is zero-mean.
859 CmdHpf("");
860
861 int sign = 1;
862 int zc = 0;
863 int lastZc = 0;
864
865 for (int i = 0; i < GraphTraceLen; ++i) {
866 if (GraphBuffer[i] * sign >= 0) {
867 // No change in sign, reproduce the previous sample count.
868 zc++;
869 GraphBuffer[i] = lastZc;
870 } else {
871 // Change in sign, reset the sample count.
872 sign = -sign;
873 GraphBuffer[i] = lastZc;
874 if (sign > 0) {
875 lastZc = zc;
876 zc = 0;
877 }
878 }
879 }
880
881 RepaintGraphWindow();
882 return 0;
883}
884
885static command_t CommandTable[] =
886{
887 {"help", CmdHelp, 1, "This help"},
888 {"amp", CmdAmp, 1, "Amplify peaks"},
889 {"askdemod", Cmdaskdemod, 1, "<0 or 1> -- Attempt to demodulate simple ASK tags"},
890 {"autocorr", CmdAutoCorr, 1, "<window length> -- Autocorrelation over window"},
891 {"bitsamples", CmdBitsamples, 0, "Get raw samples as bitstring"},
892 {"bitstream", CmdBitstream, 1, "[clock rate] -- Convert waveform into a bitstream"},
893 {"buffclear", CmdBuffClear, 1, "Clear sample buffer and graph window"},
894 {"dec", CmdDec, 1, "Decimate samples"},
895 {"detectclock", CmdDetectClockRate, 1, "Detect clock rate"},
896 {"fskdemod", CmdFSKdemod, 1, "Demodulate graph window as a HID FSK"},
897 {"grid", CmdGrid, 1, "<x> <y> -- overlay grid on graph window, use zero value to turn off either"},
898 {"hexsamples", CmdHexsamples, 0, "<bytes> [<offset>] -- Dump big buffer as hex bytes"},
899 {"hide", CmdHide, 1, "Hide graph window"},
900 {"hpf", CmdHpf, 1, "Remove DC offset from trace"},
901 {"load", CmdLoad, 1, "<filename> -- Load trace (to graph window"},
902 {"ltrim", CmdLtrim, 1, "<samples> -- Trim samples from left of trace"},
903 {"mandemod", CmdManchesterDemod, 1, "[i] [clock rate] -- Manchester demodulate binary stream (option 'i' to invert output)"},
904 {"manmod", CmdManchesterMod, 1, "[clock rate] -- Manchester modulate a binary stream"},
905 {"norm", CmdNorm, 1, "Normalize max/min to +/-500"},
906 {"plot", CmdPlot, 1, "Show graph window (hit 'h' in window for keystroke help)"},
907 {"samples", CmdSamples, 0, "[512 - 40000] -- Get raw samples for graph window"},
908 {"save", CmdSave, 1, "<filename> -- Save trace (from graph window)"},
909 {"scale", CmdScale, 1, "<int> -- Set cursor display scale"},
910 {"threshold", CmdThreshold, 1, "<threshold> -- Maximize/minimize every value in the graph window depending on threshold"},
911 {"zerocrossings", CmdZerocrossings, 1, "Count time between zero-crossings"},
912 {"dirthreshold", CmdDirectionalThreshold, 1, "<thres up> <thres down> -- Max rising higher up-thres/ Min falling lower down-thres, keep rest as prev."},
913 {NULL, NULL, 0, NULL}
914};
915
916int CmdData(const char *Cmd)
917{
918 CmdsParse(CommandTable, Cmd);
919 return 0;
920}
921
922int CmdHelp(const char *Cmd)
923{
924 CmdsHelp(CommandTable);
925 return 0;
926}
Impressum, Datenschutz