| 1 | //----------------------------------------------------------------------------- |
| 2 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
| 3 | // at your option, any later version. See the LICENSE.txt file for the text of |
| 4 | // the license. |
| 5 | //----------------------------------------------------------------------------- |
| 6 | // Miscellaneous routines for low frequency tag operations. |
| 7 | // Tags supported here so far are Texas Instruments (TI), HID |
| 8 | // Also routines for raw mode reading/simulating of LF waveform |
| 9 | //----------------------------------------------------------------------------- |
| 10 | |
| 11 | #include "proxmark3.h" |
| 12 | #include "apps.h" |
| 13 | #include "util.h" |
| 14 | #include "hitag2.h" |
| 15 | #include "crc16.h" |
| 16 | #include "string.h" |
| 17 | #include "lfdemod.h" |
| 18 | #include "lfsampling.h" |
| 19 | #include "usb_cdc.h" //test |
| 20 | |
| 21 | /** |
| 22 | * Function to do a modulation and then get samples. |
| 23 | * @param delay_off |
| 24 | * @param period_0 |
| 25 | * @param period_1 |
| 26 | * @param command |
| 27 | */ |
| 28 | void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command) |
| 29 | { |
| 30 | |
| 31 | int divisor_used = 95; // 125 KHz |
| 32 | // see if 'h' was specified |
| 33 | |
| 34 | if (command[strlen((char *) command) - 1] == 'h') |
| 35 | divisor_used = 88; // 134.8 KHz |
| 36 | |
| 37 | sample_config sc = { 0,0,1, divisor_used, 0}; |
| 38 | setSamplingConfig(&sc); |
| 39 | |
| 40 | /* Make sure the tag is reset */ |
| 41 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
| 42 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 43 | SpinDelay(2500); |
| 44 | |
| 45 | LFSetupFPGAForADC(sc.divisor, 1); |
| 46 | |
| 47 | // And a little more time for the tag to fully power up |
| 48 | SpinDelay(2000); |
| 49 | |
| 50 | // now modulate the reader field |
| 51 | while(*command != '\0' && *command != ' ') { |
| 52 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 53 | LED_D_OFF(); |
| 54 | SpinDelayUs(delay_off); |
| 55 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); |
| 56 | |
| 57 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
| 58 | LED_D_ON(); |
| 59 | if(*(command++) == '0') |
| 60 | SpinDelayUs(period_0); |
| 61 | else |
| 62 | SpinDelayUs(period_1); |
| 63 | } |
| 64 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 65 | LED_D_OFF(); |
| 66 | SpinDelayUs(delay_off); |
| 67 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); |
| 68 | |
| 69 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
| 70 | |
| 71 | // now do the read |
| 72 | DoAcquisition_config(false); |
| 73 | } |
| 74 | |
| 75 | |
| 76 | |
| 77 | /* blank r/w tag data stream |
| 78 | ...0000000000000000 01111111 |
| 79 | 1010101010101010101010101010101010101010101010101010101010101010 |
| 80 | 0011010010100001 |
| 81 | 01111111 |
| 82 | 101010101010101[0]000... |
| 83 | |
| 84 | [5555fe852c5555555555555555fe0000] |
| 85 | */ |
| 86 | void ReadTItag(void) |
| 87 | { |
| 88 | // some hardcoded initial params |
| 89 | // when we read a TI tag we sample the zerocross line at 2Mhz |
| 90 | // TI tags modulate a 1 as 16 cycles of 123.2Khz |
| 91 | // TI tags modulate a 0 as 16 cycles of 134.2Khz |
| 92 | #define FSAMPLE 2000000 |
| 93 | #define FREQLO 123200 |
| 94 | #define FREQHI 134200 |
| 95 | |
| 96 | signed char *dest = (signed char *)BigBuf_get_addr(); |
| 97 | uint16_t n = BigBuf_max_traceLen(); |
| 98 | // 128 bit shift register [shift3:shift2:shift1:shift0] |
| 99 | uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; |
| 100 | |
| 101 | int i, cycles=0, samples=0; |
| 102 | // how many sample points fit in 16 cycles of each frequency |
| 103 | uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; |
| 104 | // when to tell if we're close enough to one freq or another |
| 105 | uint32_t threshold = (sampleslo - sampleshi + 1)>>1; |
| 106 | |
| 107 | // TI tags charge at 134.2Khz |
| 108 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
| 109 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz |
| 110 | |
| 111 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line |
| 112 | // connects to SSP_DIN and the SSP_DOUT logic level controls |
| 113 | // whether we're modulating the antenna (high) |
| 114 | // or listening to the antenna (low) |
| 115 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); |
| 116 | |
| 117 | // get TI tag data into the buffer |
| 118 | AcquireTiType(); |
| 119 | |
| 120 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 121 | |
| 122 | for (i=0; i<n-1; i++) { |
| 123 | // count cycles by looking for lo to hi zero crossings |
| 124 | if ( (dest[i]<0) && (dest[i+1]>0) ) { |
| 125 | cycles++; |
| 126 | // after 16 cycles, measure the frequency |
| 127 | if (cycles>15) { |
| 128 | cycles=0; |
| 129 | samples=i-samples; // number of samples in these 16 cycles |
| 130 | |
| 131 | // TI bits are coming to us lsb first so shift them |
| 132 | // right through our 128 bit right shift register |
| 133 | shift0 = (shift0>>1) | (shift1 << 31); |
| 134 | shift1 = (shift1>>1) | (shift2 << 31); |
| 135 | shift2 = (shift2>>1) | (shift3 << 31); |
| 136 | shift3 >>= 1; |
| 137 | |
| 138 | // check if the cycles fall close to the number |
| 139 | // expected for either the low or high frequency |
| 140 | if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { |
| 141 | // low frequency represents a 1 |
| 142 | shift3 |= (1<<31); |
| 143 | } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { |
| 144 | // high frequency represents a 0 |
| 145 | } else { |
| 146 | // probably detected a gay waveform or noise |
| 147 | // use this as gaydar or discard shift register and start again |
| 148 | shift3 = shift2 = shift1 = shift0 = 0; |
| 149 | } |
| 150 | samples = i; |
| 151 | |
| 152 | // for each bit we receive, test if we've detected a valid tag |
| 153 | |
| 154 | // if we see 17 zeroes followed by 6 ones, we might have a tag |
| 155 | // remember the bits are backwards |
| 156 | if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { |
| 157 | // if start and end bytes match, we have a tag so break out of the loop |
| 158 | if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { |
| 159 | cycles = 0xF0B; //use this as a flag (ugly but whatever) |
| 160 | break; |
| 161 | } |
| 162 | } |
| 163 | } |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | // if flag is set we have a tag |
| 168 | if (cycles!=0xF0B) { |
| 169 | DbpString("Info: No valid tag detected."); |
| 170 | } else { |
| 171 | // put 64 bit data into shift1 and shift0 |
| 172 | shift0 = (shift0>>24) | (shift1 << 8); |
| 173 | shift1 = (shift1>>24) | (shift2 << 8); |
| 174 | |
| 175 | // align 16 bit crc into lower half of shift2 |
| 176 | shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; |
| 177 | |
| 178 | // if r/w tag, check ident match |
| 179 | if (shift3 & (1<<15) ) { |
| 180 | DbpString("Info: TI tag is rewriteable"); |
| 181 | // only 15 bits compare, last bit of ident is not valid |
| 182 | if (((shift3 >> 16) ^ shift0) & 0x7fff ) { |
| 183 | DbpString("Error: Ident mismatch!"); |
| 184 | } else { |
| 185 | DbpString("Info: TI tag ident is valid"); |
| 186 | } |
| 187 | } else { |
| 188 | DbpString("Info: TI tag is readonly"); |
| 189 | } |
| 190 | |
| 191 | // WARNING the order of the bytes in which we calc crc below needs checking |
| 192 | // i'm 99% sure the crc algorithm is correct, but it may need to eat the |
| 193 | // bytes in reverse or something |
| 194 | // calculate CRC |
| 195 | uint32_t crc=0; |
| 196 | |
| 197 | crc = update_crc16(crc, (shift0)&0xff); |
| 198 | crc = update_crc16(crc, (shift0>>8)&0xff); |
| 199 | crc = update_crc16(crc, (shift0>>16)&0xff); |
| 200 | crc = update_crc16(crc, (shift0>>24)&0xff); |
| 201 | crc = update_crc16(crc, (shift1)&0xff); |
| 202 | crc = update_crc16(crc, (shift1>>8)&0xff); |
| 203 | crc = update_crc16(crc, (shift1>>16)&0xff); |
| 204 | crc = update_crc16(crc, (shift1>>24)&0xff); |
| 205 | |
| 206 | Dbprintf("Info: Tag data: %x%08x, crc=%x", |
| 207 | (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); |
| 208 | if (crc != (shift2&0xffff)) { |
| 209 | Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); |
| 210 | } else { |
| 211 | DbpString("Info: CRC is good"); |
| 212 | } |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | |
| 217 | |
| 218 | void WriteTIbyte(uint8_t b) |
| 219 | { |
| 220 | int i = 0; |
| 221 | |
| 222 | // modulate 8 bits out to the antenna |
| 223 | for (i=0; i<8; i++) |
| 224 | { |
| 225 | if (b&(1<<i)) { |
| 226 | // stop modulating antenna |
| 227 | LOW(GPIO_SSC_DOUT); |
| 228 | SpinDelayUs(1000); |
| 229 | // modulate antenna |
| 230 | HIGH(GPIO_SSC_DOUT); |
| 231 | SpinDelayUs(1000); |
| 232 | } else { |
| 233 | // stop modulating antenna |
| 234 | LOW(GPIO_SSC_DOUT); |
| 235 | SpinDelayUs(300); |
| 236 | // modulate antenna |
| 237 | HIGH(GPIO_SSC_DOUT); |
| 238 | SpinDelayUs(1700); |
| 239 | } |
| 240 | } |
| 241 | } |
| 242 | |
| 243 | void AcquireTiType(void) |
| 244 | { |
| 245 | int i, j, n; |
| 246 | // tag transmission is <20ms, sampling at 2M gives us 40K samples max |
| 247 | // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t |
| 248 | #define TIBUFLEN 1250 |
| 249 | |
| 250 | // clear buffer |
| 251 | uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr(); |
| 252 | memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t)); |
| 253 | |
| 254 | // Set up the synchronous serial port |
| 255 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; |
| 256 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; |
| 257 | |
| 258 | // steal this pin from the SSP and use it to control the modulation |
| 259 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; |
| 260 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
| 261 | |
| 262 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; |
| 263 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; |
| 264 | |
| 265 | // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long |
| 266 | // 48/2 = 24 MHz clock must be divided by 12 |
| 267 | AT91C_BASE_SSC->SSC_CMR = 12; |
| 268 | |
| 269 | AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); |
| 270 | AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; |
| 271 | AT91C_BASE_SSC->SSC_TCMR = 0; |
| 272 | AT91C_BASE_SSC->SSC_TFMR = 0; |
| 273 | |
| 274 | LED_D_ON(); |
| 275 | |
| 276 | // modulate antenna |
| 277 | HIGH(GPIO_SSC_DOUT); |
| 278 | |
| 279 | // Charge TI tag for 50ms. |
| 280 | SpinDelay(50); |
| 281 | |
| 282 | // stop modulating antenna and listen |
| 283 | LOW(GPIO_SSC_DOUT); |
| 284 | |
| 285 | LED_D_OFF(); |
| 286 | |
| 287 | i = 0; |
| 288 | for(;;) { |
| 289 | if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { |
| 290 | BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer |
| 291 | i++; if(i >= TIBUFLEN) break; |
| 292 | } |
| 293 | WDT_HIT(); |
| 294 | } |
| 295 | |
| 296 | // return stolen pin to SSP |
| 297 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; |
| 298 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; |
| 299 | |
| 300 | char *dest = (char *)BigBuf_get_addr(); |
| 301 | n = TIBUFLEN*32; |
| 302 | // unpack buffer |
| 303 | for (i=TIBUFLEN-1; i>=0; i--) { |
| 304 | for (j=0; j<32; j++) { |
| 305 | if(BigBuf[i] & (1 << j)) { |
| 306 | dest[--n] = 1; |
| 307 | } else { |
| 308 | dest[--n] = -1; |
| 309 | } |
| 310 | } |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | |
| 315 | |
| 316 | |
| 317 | // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc |
| 318 | // if crc provided, it will be written with the data verbatim (even if bogus) |
| 319 | // if not provided a valid crc will be computed from the data and written. |
| 320 | void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) |
| 321 | { |
| 322 | |
| 323 | |
| 324 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
| 325 | if(crc == 0) { |
| 326 | crc = update_crc16(crc, (idlo)&0xff); |
| 327 | crc = update_crc16(crc, (idlo>>8)&0xff); |
| 328 | crc = update_crc16(crc, (idlo>>16)&0xff); |
| 329 | crc = update_crc16(crc, (idlo>>24)&0xff); |
| 330 | crc = update_crc16(crc, (idhi)&0xff); |
| 331 | crc = update_crc16(crc, (idhi>>8)&0xff); |
| 332 | crc = update_crc16(crc, (idhi>>16)&0xff); |
| 333 | crc = update_crc16(crc, (idhi>>24)&0xff); |
| 334 | } |
| 335 | Dbprintf("Writing to tag: %x%08x, crc=%x", |
| 336 | (unsigned int) idhi, (unsigned int) idlo, crc); |
| 337 | |
| 338 | // TI tags charge at 134.2Khz |
| 339 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz |
| 340 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line |
| 341 | // connects to SSP_DIN and the SSP_DOUT logic level controls |
| 342 | // whether we're modulating the antenna (high) |
| 343 | // or listening to the antenna (low) |
| 344 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); |
| 345 | LED_A_ON(); |
| 346 | |
| 347 | // steal this pin from the SSP and use it to control the modulation |
| 348 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; |
| 349 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
| 350 | |
| 351 | // writing algorithm: |
| 352 | // a high bit consists of a field off for 1ms and field on for 1ms |
| 353 | // a low bit consists of a field off for 0.3ms and field on for 1.7ms |
| 354 | // initiate a charge time of 50ms (field on) then immediately start writing bits |
| 355 | // start by writing 0xBB (keyword) and 0xEB (password) |
| 356 | // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) |
| 357 | // finally end with 0x0300 (write frame) |
| 358 | // all data is sent lsb firts |
| 359 | // finish with 15ms programming time |
| 360 | |
| 361 | // modulate antenna |
| 362 | HIGH(GPIO_SSC_DOUT); |
| 363 | SpinDelay(50); // charge time |
| 364 | |
| 365 | WriteTIbyte(0xbb); // keyword |
| 366 | WriteTIbyte(0xeb); // password |
| 367 | WriteTIbyte( (idlo )&0xff ); |
| 368 | WriteTIbyte( (idlo>>8 )&0xff ); |
| 369 | WriteTIbyte( (idlo>>16)&0xff ); |
| 370 | WriteTIbyte( (idlo>>24)&0xff ); |
| 371 | WriteTIbyte( (idhi )&0xff ); |
| 372 | WriteTIbyte( (idhi>>8 )&0xff ); |
| 373 | WriteTIbyte( (idhi>>16)&0xff ); |
| 374 | WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo |
| 375 | WriteTIbyte( (crc )&0xff ); // crc lo |
| 376 | WriteTIbyte( (crc>>8 )&0xff ); // crc hi |
| 377 | WriteTIbyte(0x00); // write frame lo |
| 378 | WriteTIbyte(0x03); // write frame hi |
| 379 | HIGH(GPIO_SSC_DOUT); |
| 380 | SpinDelay(50); // programming time |
| 381 | |
| 382 | LED_A_OFF(); |
| 383 | |
| 384 | // get TI tag data into the buffer |
| 385 | AcquireTiType(); |
| 386 | |
| 387 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 388 | DbpString("Now use tiread to check"); |
| 389 | } |
| 390 | |
| 391 | void SimulateTagLowFrequency(int period, int gap, int ledcontrol) |
| 392 | { |
| 393 | int i; |
| 394 | uint8_t *tab = BigBuf_get_addr(); |
| 395 | |
| 396 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
| 397 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); |
| 398 | |
| 399 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; |
| 400 | |
| 401 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
| 402 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; |
| 403 | |
| 404 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) |
| 405 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) |
| 406 | |
| 407 | i = 0; |
| 408 | for(;;) { |
| 409 | //wait until SSC_CLK goes HIGH |
| 410 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { |
| 411 | if(BUTTON_PRESS() || (usb_poll_validate_length() )) { |
| 412 | DbpString("Stopped"); |
| 413 | return; |
| 414 | } |
| 415 | WDT_HIT(); |
| 416 | } |
| 417 | if (ledcontrol) |
| 418 | LED_D_ON(); |
| 419 | |
| 420 | if(tab[i]) |
| 421 | OPEN_COIL(); |
| 422 | else |
| 423 | SHORT_COIL(); |
| 424 | |
| 425 | if (ledcontrol) |
| 426 | LED_D_OFF(); |
| 427 | //wait until SSC_CLK goes LOW |
| 428 | while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { |
| 429 | if(BUTTON_PRESS()) { |
| 430 | DbpString("Stopped"); |
| 431 | return; |
| 432 | } |
| 433 | WDT_HIT(); |
| 434 | } |
| 435 | |
| 436 | i++; |
| 437 | if(i == period) { |
| 438 | |
| 439 | i = 0; |
| 440 | if (gap) { |
| 441 | SHORT_COIL(); |
| 442 | SpinDelayUs(gap); |
| 443 | } |
| 444 | } |
| 445 | } |
| 446 | } |
| 447 | |
| 448 | #define DEBUG_FRAME_CONTENTS 1 |
| 449 | void SimulateTagLowFrequencyBidir(int divisor, int t0) |
| 450 | { |
| 451 | } |
| 452 | |
| 453 | // compose fc/8 fc/10 waveform (FSK2) |
| 454 | static void fc(int c, int *n) |
| 455 | { |
| 456 | uint8_t *dest = BigBuf_get_addr(); |
| 457 | int idx; |
| 458 | |
| 459 | // for when we want an fc8 pattern every 4 logical bits |
| 460 | if(c==0) { |
| 461 | dest[((*n)++)]=1; |
| 462 | dest[((*n)++)]=1; |
| 463 | dest[((*n)++)]=1; |
| 464 | dest[((*n)++)]=1; |
| 465 | dest[((*n)++)]=0; |
| 466 | dest[((*n)++)]=0; |
| 467 | dest[((*n)++)]=0; |
| 468 | dest[((*n)++)]=0; |
| 469 | } |
| 470 | |
| 471 | // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples |
| 472 | if(c==8) { |
| 473 | for (idx=0; idx<6; idx++) { |
| 474 | dest[((*n)++)]=1; |
| 475 | dest[((*n)++)]=1; |
| 476 | dest[((*n)++)]=1; |
| 477 | dest[((*n)++)]=1; |
| 478 | dest[((*n)++)]=0; |
| 479 | dest[((*n)++)]=0; |
| 480 | dest[((*n)++)]=0; |
| 481 | dest[((*n)++)]=0; |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples |
| 486 | if(c==10) { |
| 487 | for (idx=0; idx<5; idx++) { |
| 488 | dest[((*n)++)]=1; |
| 489 | dest[((*n)++)]=1; |
| 490 | dest[((*n)++)]=1; |
| 491 | dest[((*n)++)]=1; |
| 492 | dest[((*n)++)]=1; |
| 493 | dest[((*n)++)]=0; |
| 494 | dest[((*n)++)]=0; |
| 495 | dest[((*n)++)]=0; |
| 496 | dest[((*n)++)]=0; |
| 497 | dest[((*n)++)]=0; |
| 498 | } |
| 499 | } |
| 500 | } |
| 501 | // compose fc/X fc/Y waveform (FSKx) |
| 502 | static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) |
| 503 | { |
| 504 | uint8_t *dest = BigBuf_get_addr(); |
| 505 | uint8_t halfFC = fc/2; |
| 506 | uint8_t wavesPerClock = clock/fc; |
| 507 | uint8_t mod = clock % fc; //modifier |
| 508 | uint8_t modAdj = fc/mod; //how often to apply modifier |
| 509 | bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE; |
| 510 | // loop through clock - step field clock |
| 511 | for (uint8_t idx=0; idx < wavesPerClock; idx++){ |
| 512 | // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) |
| 513 | memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here |
| 514 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); |
| 515 | *n += fc; |
| 516 | } |
| 517 | if (mod>0) (*modCnt)++; |
| 518 | if ((mod>0) && modAdjOk){ //fsk2 |
| 519 | if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave |
| 520 | memset(dest+(*n), 0, fc-halfFC); |
| 521 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); |
| 522 | *n += fc; |
| 523 | } |
| 524 | } |
| 525 | if (mod>0 && !modAdjOk){ //fsk1 |
| 526 | memset(dest+(*n), 0, mod-(mod/2)); |
| 527 | memset(dest+(*n)+(mod-(mod/2)), 1, mod/2); |
| 528 | *n += mod; |
| 529 | } |
| 530 | } |
| 531 | |
| 532 | // prepare a waveform pattern in the buffer based on the ID given then |
| 533 | // simulate a HID tag until the button is pressed |
| 534 | void CmdHIDsimTAG(int hi, int lo, int ledcontrol) |
| 535 | { |
| 536 | int n=0, i=0; |
| 537 | /* |
| 538 | HID tag bitstream format |
| 539 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits |
| 540 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns |
| 541 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns |
| 542 | A fc8 is inserted before every 4 bits |
| 543 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 |
| 544 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) |
| 545 | */ |
| 546 | |
| 547 | if (hi>0xFFF) { |
| 548 | DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags"); |
| 549 | return; |
| 550 | } |
| 551 | fc(0,&n); |
| 552 | // special start of frame marker containing invalid bit sequences |
| 553 | fc(8, &n); fc(8, &n); // invalid |
| 554 | fc(8, &n); fc(10, &n); // logical 0 |
| 555 | fc(10, &n); fc(10, &n); // invalid |
| 556 | fc(8, &n); fc(10, &n); // logical 0 |
| 557 | |
| 558 | WDT_HIT(); |
| 559 | // manchester encode bits 43 to 32 |
| 560 | for (i=11; i>=0; i--) { |
| 561 | if ((i%4)==3) fc(0,&n); |
| 562 | if ((hi>>i)&1) { |
| 563 | fc(10, &n); fc(8, &n); // low-high transition |
| 564 | } else { |
| 565 | fc(8, &n); fc(10, &n); // high-low transition |
| 566 | } |
| 567 | } |
| 568 | |
| 569 | WDT_HIT(); |
| 570 | // manchester encode bits 31 to 0 |
| 571 | for (i=31; i>=0; i--) { |
| 572 | if ((i%4)==3) fc(0,&n); |
| 573 | if ((lo>>i)&1) { |
| 574 | fc(10, &n); fc(8, &n); // low-high transition |
| 575 | } else { |
| 576 | fc(8, &n); fc(10, &n); // high-low transition |
| 577 | } |
| 578 | } |
| 579 | |
| 580 | if (ledcontrol) |
| 581 | LED_A_ON(); |
| 582 | SimulateTagLowFrequency(n, 0, ledcontrol); |
| 583 | |
| 584 | if (ledcontrol) |
| 585 | LED_A_OFF(); |
| 586 | } |
| 587 | |
| 588 | // prepare a waveform pattern in the buffer based on the ID given then |
| 589 | // simulate a FSK tag until the button is pressed |
| 590 | // arg1 contains fcHigh and fcLow, arg2 contains invert and clock |
| 591 | void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) |
| 592 | { |
| 593 | int ledcontrol=1; |
| 594 | int n=0, i=0; |
| 595 | uint8_t fcHigh = arg1 >> 8; |
| 596 | uint8_t fcLow = arg1 & 0xFF; |
| 597 | uint16_t modCnt = 0; |
| 598 | uint8_t clk = arg2 & 0xFF; |
| 599 | uint8_t invert = (arg2 >> 8) & 1; |
| 600 | |
| 601 | for (i=0; i<size; i++){ |
| 602 | if (BitStream[i] == invert){ |
| 603 | fcAll(fcLow, &n, clk, &modCnt); |
| 604 | } else { |
| 605 | fcAll(fcHigh, &n, clk, &modCnt); |
| 606 | } |
| 607 | } |
| 608 | Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n); |
| 609 | /*Dbprintf("DEBUG: First 32:"); |
| 610 | uint8_t *dest = BigBuf_get_addr(); |
| 611 | i=0; |
| 612 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
| 613 | i+=16; |
| 614 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
| 615 | */ |
| 616 | if (ledcontrol) |
| 617 | LED_A_ON(); |
| 618 | |
| 619 | SimulateTagLowFrequency(n, 0, ledcontrol); |
| 620 | |
| 621 | if (ledcontrol) |
| 622 | LED_A_OFF(); |
| 623 | } |
| 624 | |
| 625 | // compose ask waveform for one bit(ASK) |
| 626 | static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester) |
| 627 | { |
| 628 | uint8_t *dest = BigBuf_get_addr(); |
| 629 | uint8_t halfClk = clock/2; |
| 630 | // c = current bit 1 or 0 |
| 631 | if (manchester==1){ |
| 632 | memset(dest+(*n), c, halfClk); |
| 633 | memset(dest+(*n) + halfClk, c^1, halfClk); |
| 634 | } else { |
| 635 | memset(dest+(*n), c, clock); |
| 636 | } |
| 637 | *n += clock; |
| 638 | } |
| 639 | |
| 640 | static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase) |
| 641 | { |
| 642 | uint8_t *dest = BigBuf_get_addr(); |
| 643 | uint8_t halfClk = clock/2; |
| 644 | if (c){ |
| 645 | memset(dest+(*n), c ^ 1 ^ *phase, halfClk); |
| 646 | memset(dest+(*n) + halfClk, c ^ *phase, halfClk); |
| 647 | } else { |
| 648 | memset(dest+(*n), c ^ *phase, clock); |
| 649 | *phase ^= 1; |
| 650 | } |
| 651 | |
| 652 | } |
| 653 | |
| 654 | // args clock, ask/man or askraw, invert, transmission separator |
| 655 | void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) |
| 656 | { |
| 657 | int ledcontrol = 1; |
| 658 | int n=0, i=0; |
| 659 | uint8_t clk = (arg1 >> 8) & 0xFF; |
| 660 | uint8_t encoding = arg1 & 0xFF; |
| 661 | uint8_t separator = arg2 & 1; |
| 662 | uint8_t invert = (arg2 >> 8) & 1; |
| 663 | |
| 664 | if (encoding==2){ //biphase |
| 665 | uint8_t phase=0; |
| 666 | for (i=0; i<size; i++){ |
| 667 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); |
| 668 | } |
| 669 | if (BitStream[0]==BitStream[size-1]){ //run a second set inverted to keep phase in check |
| 670 | for (i=0; i<size; i++){ |
| 671 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); |
| 672 | } |
| 673 | } |
| 674 | } else { // ask/manchester || ask/raw |
| 675 | for (i=0; i<size; i++){ |
| 676 | askSimBit(BitStream[i]^invert, &n, clk, encoding); |
| 677 | } |
| 678 | if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase) |
| 679 | for (i=0; i<size; i++){ |
| 680 | askSimBit(BitStream[i]^invert^1, &n, clk, encoding); |
| 681 | } |
| 682 | } |
| 683 | } |
| 684 | |
| 685 | if (separator==1) Dbprintf("sorry but separator option not yet available"); |
| 686 | |
| 687 | Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n); |
| 688 | //DEBUG |
| 689 | //Dbprintf("First 32:"); |
| 690 | //uint8_t *dest = BigBuf_get_addr(); |
| 691 | //i=0; |
| 692 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
| 693 | //i+=16; |
| 694 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
| 695 | |
| 696 | if (ledcontrol) |
| 697 | LED_A_ON(); |
| 698 | |
| 699 | SimulateTagLowFrequency(n, 0, ledcontrol); |
| 700 | |
| 701 | if (ledcontrol) |
| 702 | LED_A_OFF(); |
| 703 | } |
| 704 | |
| 705 | //carrier can be 2,4 or 8 |
| 706 | static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg) |
| 707 | { |
| 708 | uint8_t *dest = BigBuf_get_addr(); |
| 709 | uint8_t halfWave = waveLen/2; |
| 710 | //uint8_t idx; |
| 711 | int i = 0; |
| 712 | if (phaseChg){ |
| 713 | // write phase change |
| 714 | memset(dest+(*n), *curPhase^1, halfWave); |
| 715 | memset(dest+(*n) + halfWave, *curPhase, halfWave); |
| 716 | *n += waveLen; |
| 717 | *curPhase ^= 1; |
| 718 | i += waveLen; |
| 719 | } |
| 720 | //write each normal clock wave for the clock duration |
| 721 | for (; i < clk; i+=waveLen){ |
| 722 | memset(dest+(*n), *curPhase, halfWave); |
| 723 | memset(dest+(*n) + halfWave, *curPhase^1, halfWave); |
| 724 | *n += waveLen; |
| 725 | } |
| 726 | } |
| 727 | |
| 728 | // args clock, carrier, invert, |
| 729 | void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) |
| 730 | { |
| 731 | int ledcontrol=1; |
| 732 | int n=0, i=0; |
| 733 | uint8_t clk = arg1 >> 8; |
| 734 | uint8_t carrier = arg1 & 0xFF; |
| 735 | uint8_t invert = arg2 & 0xFF; |
| 736 | uint8_t curPhase = 0; |
| 737 | for (i=0; i<size; i++){ |
| 738 | if (BitStream[i] == curPhase){ |
| 739 | pskSimBit(carrier, &n, clk, &curPhase, FALSE); |
| 740 | } else { |
| 741 | pskSimBit(carrier, &n, clk, &curPhase, TRUE); |
| 742 | } |
| 743 | } |
| 744 | Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n); |
| 745 | //Dbprintf("DEBUG: First 32:"); |
| 746 | //uint8_t *dest = BigBuf_get_addr(); |
| 747 | //i=0; |
| 748 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
| 749 | //i+=16; |
| 750 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
| 751 | |
| 752 | if (ledcontrol) |
| 753 | LED_A_ON(); |
| 754 | SimulateTagLowFrequency(n, 0, ledcontrol); |
| 755 | |
| 756 | if (ledcontrol) |
| 757 | LED_A_OFF(); |
| 758 | } |
| 759 | |
| 760 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it |
| 761 | void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) |
| 762 | { |
| 763 | uint8_t *dest = BigBuf_get_addr(); |
| 764 | //const size_t sizeOfBigBuff = BigBuf_max_traceLen(); |
| 765 | size_t size; |
| 766 | uint32_t hi2=0, hi=0, lo=0; |
| 767 | int idx=0; |
| 768 | // Configure to go in 125Khz listen mode |
| 769 | LFSetupFPGAForADC(95, true); |
| 770 | |
| 771 | while(!BUTTON_PRESS()) { |
| 772 | |
| 773 | WDT_HIT(); |
| 774 | if (ledcontrol) LED_A_ON(); |
| 775 | |
| 776 | DoAcquisition_default(-1,true); |
| 777 | // FSK demodulator |
| 778 | //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use |
| 779 | size = 50*128*2; //big enough to catch 2 sequences of largest format |
| 780 | idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo); |
| 781 | |
| 782 | if (idx>0 && lo>0 && (size==96 || size==192)){ |
| 783 | // go over previously decoded manchester data and decode into usable tag ID |
| 784 | if (hi2 != 0){ //extra large HID tags 88/192 bits |
| 785 | Dbprintf("TAG ID: %x%08x%08x (%d)", |
| 786 | (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); |
| 787 | }else { //standard HID tags 44/96 bits |
| 788 | //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd |
| 789 | uint8_t bitlen = 0; |
| 790 | uint32_t fc = 0; |
| 791 | uint32_t cardnum = 0; |
| 792 | if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used |
| 793 | uint32_t lo2=0; |
| 794 | lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit |
| 795 | uint8_t idx3 = 1; |
| 796 | while(lo2 > 1){ //find last bit set to 1 (format len bit) |
| 797 | lo2=lo2 >> 1; |
| 798 | idx3++; |
| 799 | } |
| 800 | bitlen = idx3+19; |
| 801 | fc =0; |
| 802 | cardnum=0; |
| 803 | if(bitlen == 26){ |
| 804 | cardnum = (lo>>1)&0xFFFF; |
| 805 | fc = (lo>>17)&0xFF; |
| 806 | } |
| 807 | if(bitlen == 37){ |
| 808 | cardnum = (lo>>1)&0x7FFFF; |
| 809 | fc = ((hi&0xF)<<12)|(lo>>20); |
| 810 | } |
| 811 | if(bitlen == 34){ |
| 812 | cardnum = (lo>>1)&0xFFFF; |
| 813 | fc= ((hi&1)<<15)|(lo>>17); |
| 814 | } |
| 815 | if(bitlen == 35){ |
| 816 | cardnum = (lo>>1)&0xFFFFF; |
| 817 | fc = ((hi&1)<<11)|(lo>>21); |
| 818 | } |
| 819 | } |
| 820 | else { //if bit 38 is not set then 37 bit format is used |
| 821 | bitlen= 37; |
| 822 | fc =0; |
| 823 | cardnum=0; |
| 824 | if(bitlen==37){ |
| 825 | cardnum = (lo>>1)&0x7FFFF; |
| 826 | fc = ((hi&0xF)<<12)|(lo>>20); |
| 827 | } |
| 828 | } |
| 829 | //Dbprintf("TAG ID: %x%08x (%d)", |
| 830 | // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); |
| 831 | Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", |
| 832 | (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF, |
| 833 | (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum); |
| 834 | } |
| 835 | if (findone){ |
| 836 | if (ledcontrol) LED_A_OFF(); |
| 837 | *high = hi; |
| 838 | *low = lo; |
| 839 | return; |
| 840 | } |
| 841 | // reset |
| 842 | } |
| 843 | hi2 = hi = lo = idx = 0; |
| 844 | WDT_HIT(); |
| 845 | } |
| 846 | DbpString("Stopped"); |
| 847 | if (ledcontrol) LED_A_OFF(); |
| 848 | } |
| 849 | |
| 850 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it |
| 851 | void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol) |
| 852 | { |
| 853 | uint8_t *dest = BigBuf_get_addr(); |
| 854 | //const size_t sizeOfBigBuff = BigBuf_max_traceLen(); |
| 855 | size_t size; |
| 856 | int idx=0; |
| 857 | // Configure to go in 125Khz listen mode |
| 858 | LFSetupFPGAForADC(95, true); |
| 859 | |
| 860 | while(!BUTTON_PRESS()) { |
| 861 | |
| 862 | WDT_HIT(); |
| 863 | if (ledcontrol) LED_A_ON(); |
| 864 | |
| 865 | DoAcquisition_default(-1,true); |
| 866 | // FSK demodulator |
| 867 | //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use |
| 868 | size = 50*128*2; //big enough to catch 2 sequences of largest format |
| 869 | idx = AWIDdemodFSK(dest, &size); |
| 870 | |
| 871 | if (idx>0 && size==96){ |
| 872 | // Index map |
| 873 | // 0 10 20 30 40 50 60 |
| 874 | // | | | | | | | |
| 875 | // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96 |
| 876 | // ----------------------------------------------------------------------------- |
| 877 | // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1 |
| 878 | // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96 |
| 879 | // |---26 bit---| |-----117----||-------------142-------------| |
| 880 | // b = format bit len, o = odd parity of last 3 bits |
| 881 | // f = facility code, c = card number |
| 882 | // w = wiegand parity |
| 883 | // (26 bit format shown) |
| 884 | |
| 885 | //get raw ID before removing parities |
| 886 | uint32_t rawLo = bytebits_to_byte(dest+idx+64,32); |
| 887 | uint32_t rawHi = bytebits_to_byte(dest+idx+32,32); |
| 888 | uint32_t rawHi2 = bytebits_to_byte(dest+idx,32); |
| 889 | |
| 890 | size = removeParity(dest, idx+8, 4, 1, 88); |
| 891 | // ok valid card found! |
| 892 | |
| 893 | // Index map |
| 894 | // 0 10 20 30 40 50 60 |
| 895 | // | | | | | | | |
| 896 | // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456 |
| 897 | // ----------------------------------------------------------------------------- |
| 898 | // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000 |
| 899 | // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx |
| 900 | // |26 bit| |-117--| |-----142------| |
| 901 | // b = format bit len, o = odd parity of last 3 bits |
| 902 | // f = facility code, c = card number |
| 903 | // w = wiegand parity |
| 904 | // (26 bit format shown) |
| 905 | |
| 906 | uint32_t fc = 0; |
| 907 | uint32_t cardnum = 0; |
| 908 | uint32_t code1 = 0; |
| 909 | uint32_t code2 = 0; |
| 910 | uint8_t fmtLen = bytebits_to_byte(dest,8); |
| 911 | if (fmtLen==26){ |
| 912 | fc = bytebits_to_byte(dest+9, 8); |
| 913 | cardnum = bytebits_to_byte(dest+17, 16); |
| 914 | code1 = bytebits_to_byte(dest+8,fmtLen); |
| 915 | Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo); |
| 916 | } else { |
| 917 | cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16); |
| 918 | if (fmtLen>32){ |
| 919 | code1 = bytebits_to_byte(dest+8,fmtLen-32); |
| 920 | code2 = bytebits_to_byte(dest+8+(fmtLen-32),32); |
| 921 | Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo); |
| 922 | } else{ |
| 923 | code1 = bytebits_to_byte(dest+8,fmtLen); |
| 924 | Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo); |
| 925 | } |
| 926 | } |
| 927 | if (findone){ |
| 928 | if (ledcontrol) LED_A_OFF(); |
| 929 | return; |
| 930 | } |
| 931 | // reset |
| 932 | } |
| 933 | idx = 0; |
| 934 | WDT_HIT(); |
| 935 | } |
| 936 | DbpString("Stopped"); |
| 937 | if (ledcontrol) LED_A_OFF(); |
| 938 | } |
| 939 | |
| 940 | void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol) |
| 941 | { |
| 942 | uint8_t *dest = BigBuf_get_addr(); |
| 943 | |
| 944 | size_t size=0, idx=0; |
| 945 | int clk=0, invert=0, errCnt=0, maxErr=20; |
| 946 | uint32_t hi=0; |
| 947 | uint64_t lo=0; |
| 948 | // Configure to go in 125Khz listen mode |
| 949 | LFSetupFPGAForADC(95, true); |
| 950 | |
| 951 | while(!BUTTON_PRESS()) { |
| 952 | |
| 953 | WDT_HIT(); |
| 954 | if (ledcontrol) LED_A_ON(); |
| 955 | |
| 956 | DoAcquisition_default(-1,true); |
| 957 | size = BigBuf_max_traceLen(); |
| 958 | //askdemod and manchester decode |
| 959 | if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format |
| 960 | errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1); |
| 961 | WDT_HIT(); |
| 962 | |
| 963 | if (errCnt<0) continue; |
| 964 | |
| 965 | errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo); |
| 966 | if (errCnt){ |
| 967 | if (size>64){ |
| 968 | Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)", |
| 969 | hi, |
| 970 | (uint32_t)(lo>>32), |
| 971 | (uint32_t)lo, |
| 972 | (uint32_t)(lo&0xFFFF), |
| 973 | (uint32_t)((lo>>16LL) & 0xFF), |
| 974 | (uint32_t)(lo & 0xFFFFFF)); |
| 975 | } else { |
| 976 | Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", |
| 977 | (uint32_t)(lo>>32), |
| 978 | (uint32_t)lo, |
| 979 | (uint32_t)(lo&0xFFFF), |
| 980 | (uint32_t)((lo>>16LL) & 0xFF), |
| 981 | (uint32_t)(lo & 0xFFFFFF)); |
| 982 | } |
| 983 | |
| 984 | if (findone){ |
| 985 | if (ledcontrol) LED_A_OFF(); |
| 986 | *high=lo>>32; |
| 987 | *low=lo & 0xFFFFFFFF; |
| 988 | return; |
| 989 | } |
| 990 | } |
| 991 | WDT_HIT(); |
| 992 | hi = lo = size = idx = 0; |
| 993 | clk = invert = errCnt = 0; |
| 994 | } |
| 995 | DbpString("Stopped"); |
| 996 | if (ledcontrol) LED_A_OFF(); |
| 997 | } |
| 998 | |
| 999 | void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) |
| 1000 | { |
| 1001 | uint8_t *dest = BigBuf_get_addr(); |
| 1002 | int idx=0; |
| 1003 | uint32_t code=0, code2=0; |
| 1004 | uint8_t version=0; |
| 1005 | uint8_t facilitycode=0; |
| 1006 | uint16_t number=0; |
| 1007 | // Configure to go in 125Khz listen mode |
| 1008 | LFSetupFPGAForADC(95, true); |
| 1009 | |
| 1010 | while(!BUTTON_PRESS()) { |
| 1011 | WDT_HIT(); |
| 1012 | if (ledcontrol) LED_A_ON(); |
| 1013 | DoAcquisition_default(-1,true); |
| 1014 | //fskdemod and get start index |
| 1015 | WDT_HIT(); |
| 1016 | idx = IOdemodFSK(dest, BigBuf_max_traceLen()); |
| 1017 | if (idx<0) continue; |
| 1018 | //valid tag found |
| 1019 | |
| 1020 | //Index map |
| 1021 | //0 10 20 30 40 50 60 |
| 1022 | //| | | | | | | |
| 1023 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 |
| 1024 | //----------------------------------------------------------------------------- |
| 1025 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 |
| 1026 | // |
| 1027 | //XSF(version)facility:codeone+codetwo |
| 1028 | //Handle the data |
| 1029 | if(findone){ //only print binary if we are doing one |
| 1030 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); |
| 1031 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); |
| 1032 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); |
| 1033 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); |
| 1034 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); |
| 1035 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); |
| 1036 | Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); |
| 1037 | } |
| 1038 | code = bytebits_to_byte(dest+idx,32); |
| 1039 | code2 = bytebits_to_byte(dest+idx+32,32); |
| 1040 | version = bytebits_to_byte(dest+idx+27,8); //14,4 |
| 1041 | facilitycode = bytebits_to_byte(dest+idx+18,8); |
| 1042 | number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 |
| 1043 | |
| 1044 | Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2); |
| 1045 | // if we're only looking for one tag |
| 1046 | if (findone){ |
| 1047 | if (ledcontrol) LED_A_OFF(); |
| 1048 | //LED_A_OFF(); |
| 1049 | *high=code; |
| 1050 | *low=code2; |
| 1051 | return; |
| 1052 | } |
| 1053 | code=code2=0; |
| 1054 | version=facilitycode=0; |
| 1055 | number=0; |
| 1056 | idx=0; |
| 1057 | |
| 1058 | WDT_HIT(); |
| 1059 | } |
| 1060 | DbpString("Stopped"); |
| 1061 | if (ledcontrol) LED_A_OFF(); |
| 1062 | } |
| 1063 | |
| 1064 | /*------------------------------ |
| 1065 | * T5555/T5557/T5567 routines |
| 1066 | *------------------------------ |
| 1067 | */ |
| 1068 | |
| 1069 | /* T55x7 configuration register definitions */ |
| 1070 | #define T55x7_POR_DELAY 0x00000001 |
| 1071 | #define T55x7_ST_TERMINATOR 0x00000008 |
| 1072 | #define T55x7_PWD 0x00000010 |
| 1073 | #define T55x7_MAXBLOCK_SHIFT 5 |
| 1074 | #define T55x7_AOR 0x00000200 |
| 1075 | #define T55x7_PSKCF_RF_2 0 |
| 1076 | #define T55x7_PSKCF_RF_4 0x00000400 |
| 1077 | #define T55x7_PSKCF_RF_8 0x00000800 |
| 1078 | #define T55x7_MODULATION_DIRECT 0 |
| 1079 | #define T55x7_MODULATION_PSK1 0x00001000 |
| 1080 | #define T55x7_MODULATION_PSK2 0x00002000 |
| 1081 | #define T55x7_MODULATION_PSK3 0x00003000 |
| 1082 | #define T55x7_MODULATION_FSK1 0x00004000 |
| 1083 | #define T55x7_MODULATION_FSK2 0x00005000 |
| 1084 | #define T55x7_MODULATION_FSK1a 0x00006000 |
| 1085 | #define T55x7_MODULATION_FSK2a 0x00007000 |
| 1086 | #define T55x7_MODULATION_MANCHESTER 0x00008000 |
| 1087 | #define T55x7_MODULATION_BIPHASE 0x00010000 |
| 1088 | #define T55x7_BITRATE_RF_8 0 |
| 1089 | #define T55x7_BITRATE_RF_16 0x00040000 |
| 1090 | #define T55x7_BITRATE_RF_32 0x00080000 |
| 1091 | #define T55x7_BITRATE_RF_40 0x000C0000 |
| 1092 | #define T55x7_BITRATE_RF_50 0x00100000 |
| 1093 | #define T55x7_BITRATE_RF_64 0x00140000 |
| 1094 | #define T55x7_BITRATE_RF_100 0x00180000 |
| 1095 | #define T55x7_BITRATE_RF_128 0x001C0000 |
| 1096 | |
| 1097 | /* T5555 (Q5) configuration register definitions */ |
| 1098 | #define T5555_ST_TERMINATOR 0x00000001 |
| 1099 | #define T5555_MAXBLOCK_SHIFT 0x00000001 |
| 1100 | #define T5555_MODULATION_MANCHESTER 0 |
| 1101 | #define T5555_MODULATION_PSK1 0x00000010 |
| 1102 | #define T5555_MODULATION_PSK2 0x00000020 |
| 1103 | #define T5555_MODULATION_PSK3 0x00000030 |
| 1104 | #define T5555_MODULATION_FSK1 0x00000040 |
| 1105 | #define T5555_MODULATION_FSK2 0x00000050 |
| 1106 | #define T5555_MODULATION_BIPHASE 0x00000060 |
| 1107 | #define T5555_MODULATION_DIRECT 0x00000070 |
| 1108 | #define T5555_INVERT_OUTPUT 0x00000080 |
| 1109 | #define T5555_PSK_RF_2 0 |
| 1110 | #define T5555_PSK_RF_4 0x00000100 |
| 1111 | #define T5555_PSK_RF_8 0x00000200 |
| 1112 | #define T5555_USE_PWD 0x00000400 |
| 1113 | #define T5555_USE_AOR 0x00000800 |
| 1114 | #define T5555_BITRATE_SHIFT 12 |
| 1115 | #define T5555_FAST_WRITE 0x00004000 |
| 1116 | #define T5555_PAGE_SELECT 0x00008000 |
| 1117 | |
| 1118 | /* |
| 1119 | * Relevant times in microsecond |
| 1120 | * To compensate antenna falling times shorten the write times |
| 1121 | * and enlarge the gap ones. |
| 1122 | */ |
| 1123 | #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc) |
| 1124 | #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc) |
| 1125 | #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc) |
| 1126 | #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550 |
| 1127 | |
| 1128 | #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..) |
| 1129 | |
| 1130 | // Write one bit to card |
| 1131 | void T55xxWriteBit(int bit) |
| 1132 | { |
| 1133 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
| 1134 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
| 1135 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
| 1136 | if (bit == 0) |
| 1137 | SpinDelayUs(WRITE_0); |
| 1138 | else |
| 1139 | SpinDelayUs(WRITE_1); |
| 1140 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 1141 | SpinDelayUs(WRITE_GAP); |
| 1142 | } |
| 1143 | |
| 1144 | // Write one card block in page 0, no lock |
| 1145 | void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode) |
| 1146 | { |
| 1147 | uint32_t i = 0; |
| 1148 | |
| 1149 | // Set up FPGA, 125kHz |
| 1150 | // Wait for config.. (192+8190xPOW)x8 == 67ms |
| 1151 | LFSetupFPGAForADC(0, true); |
| 1152 | |
| 1153 | // Now start writting |
| 1154 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 1155 | SpinDelayUs(START_GAP); |
| 1156 | |
| 1157 | // Opcode |
| 1158 | T55xxWriteBit(1); |
| 1159 | T55xxWriteBit(0); //Page 0 |
| 1160 | if (PwdMode == 1){ |
| 1161 | // Pwd |
| 1162 | for (i = 0x80000000; i != 0; i >>= 1) |
| 1163 | T55xxWriteBit(Pwd & i); |
| 1164 | } |
| 1165 | // Lock bit |
| 1166 | T55xxWriteBit(0); |
| 1167 | |
| 1168 | // Data |
| 1169 | for (i = 0x80000000; i != 0; i >>= 1) |
| 1170 | T55xxWriteBit(Data & i); |
| 1171 | |
| 1172 | // Block |
| 1173 | for (i = 0x04; i != 0; i >>= 1) |
| 1174 | T55xxWriteBit(Block & i); |
| 1175 | |
| 1176 | // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, |
| 1177 | // so wait a little more) |
| 1178 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
| 1179 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
| 1180 | SpinDelay(20); |
| 1181 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 1182 | } |
| 1183 | |
| 1184 | void TurnReadLFOn(){ |
| 1185 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
| 1186 | // Give it a bit of time for the resonant antenna to settle. |
| 1187 | SpinDelayUs(8*150); |
| 1188 | } |
| 1189 | |
| 1190 | |
| 1191 | // Read one card block in page 0 |
| 1192 | void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode) |
| 1193 | { |
| 1194 | uint32_t i = 0; |
| 1195 | uint8_t *dest = BigBuf_get_addr(); |
| 1196 | uint16_t bufferlength = BigBuf_max_traceLen(); |
| 1197 | if ( bufferlength > T55xx_SAMPLES_SIZE ) |
| 1198 | bufferlength = T55xx_SAMPLES_SIZE; |
| 1199 | |
| 1200 | // Clear destination buffer before sending the command |
| 1201 | memset(dest, 0x80, bufferlength); |
| 1202 | |
| 1203 | // Set up FPGA, 125kHz |
| 1204 | // Wait for config.. (192+8190xPOW)x8 == 67ms |
| 1205 | LFSetupFPGAForADC(0, true); |
| 1206 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 1207 | SpinDelayUs(START_GAP); |
| 1208 | |
| 1209 | // Opcode |
| 1210 | T55xxWriteBit(1); |
| 1211 | T55xxWriteBit(0); //Page 0 |
| 1212 | if (PwdMode == 1){ |
| 1213 | // Pwd |
| 1214 | for (i = 0x80000000; i != 0; i >>= 1) |
| 1215 | T55xxWriteBit(Pwd & i); |
| 1216 | } |
| 1217 | // Lock bit |
| 1218 | T55xxWriteBit(0); |
| 1219 | // Block |
| 1220 | for (i = 0x04; i != 0; i >>= 1) |
| 1221 | T55xxWriteBit(Block & i); |
| 1222 | |
| 1223 | // Turn field on to read the response |
| 1224 | TurnReadLFOn(); |
| 1225 | // Now do the acquisition |
| 1226 | i = 0; |
| 1227 | for(;;) { |
| 1228 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { |
| 1229 | AT91C_BASE_SSC->SSC_THR = 0x43; |
| 1230 | LED_D_ON(); |
| 1231 | } |
| 1232 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { |
| 1233 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
| 1234 | i++; |
| 1235 | LED_D_OFF(); |
| 1236 | if (i >= bufferlength) break; |
| 1237 | } |
| 1238 | } |
| 1239 | |
| 1240 | cmd_send(CMD_ACK,0,0,0,0,0); |
| 1241 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
| 1242 | LED_D_OFF(); |
| 1243 | } |
| 1244 | |
| 1245 | // Read card traceability data (page 1) |
| 1246 | void T55xxReadTrace(void){ |
| 1247 | |
| 1248 | uint32_t i = 0; |
| 1249 | uint8_t *dest = BigBuf_get_addr(); |
| 1250 | uint16_t bufferlength = BigBuf_max_traceLen(); |
| 1251 | if ( bufferlength > T55xx_SAMPLES_SIZE ) |
| 1252 | bufferlength= T55xx_SAMPLES_SIZE; |
| 1253 | |
| 1254 | // Clear destination buffer before sending the command |
| 1255 | memset(dest, 0x80, bufferlength); |
| 1256 | |
| 1257 | LFSetupFPGAForADC(0, true); |
| 1258 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 1259 | SpinDelayUs(START_GAP); |
| 1260 | |
| 1261 | // Opcode |
| 1262 | T55xxWriteBit(1); |
| 1263 | T55xxWriteBit(1); //Page 1 |
| 1264 | |
| 1265 | // Turn field on to read the response |
| 1266 | TurnReadLFOn(); |
| 1267 | |
| 1268 | // Now do the acquisition |
| 1269 | for(;;) { |
| 1270 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { |
| 1271 | AT91C_BASE_SSC->SSC_THR = 0x43; |
| 1272 | LED_D_ON(); |
| 1273 | } |
| 1274 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { |
| 1275 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
| 1276 | i++; |
| 1277 | LED_D_OFF(); |
| 1278 | |
| 1279 | if (i >= bufferlength) break; |
| 1280 | } |
| 1281 | } |
| 1282 | |
| 1283 | cmd_send(CMD_ACK,0,0,0,0,0); |
| 1284 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
| 1285 | LED_D_OFF(); |
| 1286 | } |
| 1287 | |
| 1288 | /*-------------- Cloning routines -----------*/ |
| 1289 | // Copy HID id to card and setup block 0 config |
| 1290 | void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) |
| 1291 | { |
| 1292 | int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format |
| 1293 | int last_block = 0; |
| 1294 | |
| 1295 | if (longFMT){ |
| 1296 | // Ensure no more than 84 bits supplied |
| 1297 | if (hi2>0xFFFFF) { |
| 1298 | DbpString("Tags can only have 84 bits."); |
| 1299 | return; |
| 1300 | } |
| 1301 | // Build the 6 data blocks for supplied 84bit ID |
| 1302 | last_block = 6; |
| 1303 | data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) |
| 1304 | for (int i=0;i<4;i++) { |
| 1305 | if (hi2 & (1<<(19-i))) |
| 1306 | data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10 |
| 1307 | else |
| 1308 | data1 |= (1<<((3-i)*2)); // 0 -> 01 |
| 1309 | } |
| 1310 | |
| 1311 | data2 = 0; |
| 1312 | for (int i=0;i<16;i++) { |
| 1313 | if (hi2 & (1<<(15-i))) |
| 1314 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
| 1315 | else |
| 1316 | data2 |= (1<<((15-i)*2)); // 0 -> 01 |
| 1317 | } |
| 1318 | |
| 1319 | data3 = 0; |
| 1320 | for (int i=0;i<16;i++) { |
| 1321 | if (hi & (1<<(31-i))) |
| 1322 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
| 1323 | else |
| 1324 | data3 |= (1<<((15-i)*2)); // 0 -> 01 |
| 1325 | } |
| 1326 | |
| 1327 | data4 = 0; |
| 1328 | for (int i=0;i<16;i++) { |
| 1329 | if (hi & (1<<(15-i))) |
| 1330 | data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
| 1331 | else |
| 1332 | data4 |= (1<<((15-i)*2)); // 0 -> 01 |
| 1333 | } |
| 1334 | |
| 1335 | data5 = 0; |
| 1336 | for (int i=0;i<16;i++) { |
| 1337 | if (lo & (1<<(31-i))) |
| 1338 | data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
| 1339 | else |
| 1340 | data5 |= (1<<((15-i)*2)); // 0 -> 01 |
| 1341 | } |
| 1342 | |
| 1343 | data6 = 0; |
| 1344 | for (int i=0;i<16;i++) { |
| 1345 | if (lo & (1<<(15-i))) |
| 1346 | data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
| 1347 | else |
| 1348 | data6 |= (1<<((15-i)*2)); // 0 -> 01 |
| 1349 | } |
| 1350 | } |
| 1351 | else { |
| 1352 | // Ensure no more than 44 bits supplied |
| 1353 | if (hi>0xFFF) { |
| 1354 | DbpString("Tags can only have 44 bits."); |
| 1355 | return; |
| 1356 | } |
| 1357 | |
| 1358 | // Build the 3 data blocks for supplied 44bit ID |
| 1359 | last_block = 3; |
| 1360 | |
| 1361 | data1 = 0x1D000000; // load preamble |
| 1362 | |
| 1363 | for (int i=0;i<12;i++) { |
| 1364 | if (hi & (1<<(11-i))) |
| 1365 | data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 |
| 1366 | else |
| 1367 | data1 |= (1<<((11-i)*2)); // 0 -> 01 |
| 1368 | } |
| 1369 | |
| 1370 | data2 = 0; |
| 1371 | for (int i=0;i<16;i++) { |
| 1372 | if (lo & (1<<(31-i))) |
| 1373 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
| 1374 | else |
| 1375 | data2 |= (1<<((15-i)*2)); // 0 -> 01 |
| 1376 | } |
| 1377 | |
| 1378 | data3 = 0; |
| 1379 | for (int i=0;i<16;i++) { |
| 1380 | if (lo & (1<<(15-i))) |
| 1381 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
| 1382 | else |
| 1383 | data3 |= (1<<((15-i)*2)); // 0 -> 01 |
| 1384 | } |
| 1385 | } |
| 1386 | |
| 1387 | LED_D_ON(); |
| 1388 | // Program the data blocks for supplied ID |
| 1389 | // and the block 0 for HID format |
| 1390 | T55xxWriteBlock(data1,1,0,0); |
| 1391 | T55xxWriteBlock(data2,2,0,0); |
| 1392 | T55xxWriteBlock(data3,3,0,0); |
| 1393 | |
| 1394 | if (longFMT) { // if long format there are 6 blocks |
| 1395 | T55xxWriteBlock(data4,4,0,0); |
| 1396 | T55xxWriteBlock(data5,5,0,0); |
| 1397 | T55xxWriteBlock(data6,6,0,0); |
| 1398 | } |
| 1399 | |
| 1400 | // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) |
| 1401 | T55xxWriteBlock(T55x7_BITRATE_RF_50 | |
| 1402 | T55x7_MODULATION_FSK2a | |
| 1403 | last_block << T55x7_MAXBLOCK_SHIFT, |
| 1404 | 0,0,0); |
| 1405 | |
| 1406 | LED_D_OFF(); |
| 1407 | |
| 1408 | DbpString("DONE!"); |
| 1409 | } |
| 1410 | |
| 1411 | void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT) |
| 1412 | { |
| 1413 | int data1=0, data2=0; //up to six blocks for long format |
| 1414 | |
| 1415 | data1 = hi; // load preamble |
| 1416 | data2 = lo; |
| 1417 | |
| 1418 | LED_D_ON(); |
| 1419 | // Program the data blocks for supplied ID |
| 1420 | // and the block 0 for HID format |
| 1421 | T55xxWriteBlock(data1,1,0,0); |
| 1422 | T55xxWriteBlock(data2,2,0,0); |
| 1423 | |
| 1424 | //Config Block |
| 1425 | T55xxWriteBlock(0x00147040,0,0,0); |
| 1426 | LED_D_OFF(); |
| 1427 | |
| 1428 | DbpString("DONE!"); |
| 1429 | } |
| 1430 | |
| 1431 | // Define 9bit header for EM410x tags |
| 1432 | #define EM410X_HEADER 0x1FF |
| 1433 | #define EM410X_ID_LENGTH 40 |
| 1434 | |
| 1435 | void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) |
| 1436 | { |
| 1437 | int i, id_bit; |
| 1438 | uint64_t id = EM410X_HEADER; |
| 1439 | uint64_t rev_id = 0; // reversed ID |
| 1440 | int c_parity[4]; // column parity |
| 1441 | int r_parity = 0; // row parity |
| 1442 | uint32_t clock = 0; |
| 1443 | |
| 1444 | // Reverse ID bits given as parameter (for simpler operations) |
| 1445 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { |
| 1446 | if (i < 32) { |
| 1447 | rev_id = (rev_id << 1) | (id_lo & 1); |
| 1448 | id_lo >>= 1; |
| 1449 | } else { |
| 1450 | rev_id = (rev_id << 1) | (id_hi & 1); |
| 1451 | id_hi >>= 1; |
| 1452 | } |
| 1453 | } |
| 1454 | |
| 1455 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { |
| 1456 | id_bit = rev_id & 1; |
| 1457 | |
| 1458 | if (i % 4 == 0) { |
| 1459 | // Don't write row parity bit at start of parsing |
| 1460 | if (i) |
| 1461 | id = (id << 1) | r_parity; |
| 1462 | // Start counting parity for new row |
| 1463 | r_parity = id_bit; |
| 1464 | } else { |
| 1465 | // Count row parity |
| 1466 | r_parity ^= id_bit; |
| 1467 | } |
| 1468 | |
| 1469 | // First elements in column? |
| 1470 | if (i < 4) |
| 1471 | // Fill out first elements |
| 1472 | c_parity[i] = id_bit; |
| 1473 | else |
| 1474 | // Count column parity |
| 1475 | c_parity[i % 4] ^= id_bit; |
| 1476 | |
| 1477 | // Insert ID bit |
| 1478 | id = (id << 1) | id_bit; |
| 1479 | rev_id >>= 1; |
| 1480 | } |
| 1481 | |
| 1482 | // Insert parity bit of last row |
| 1483 | id = (id << 1) | r_parity; |
| 1484 | |
| 1485 | // Fill out column parity at the end of tag |
| 1486 | for (i = 0; i < 4; ++i) |
| 1487 | id = (id << 1) | c_parity[i]; |
| 1488 | |
| 1489 | // Add stop bit |
| 1490 | id <<= 1; |
| 1491 | |
| 1492 | Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); |
| 1493 | LED_D_ON(); |
| 1494 | |
| 1495 | // Write EM410x ID |
| 1496 | T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0); |
| 1497 | T55xxWriteBlock((uint32_t)id, 2, 0, 0); |
| 1498 | |
| 1499 | // Config for EM410x (RF/64, Manchester, Maxblock=2) |
| 1500 | if (card) { |
| 1501 | // Clock rate is stored in bits 8-15 of the card value |
| 1502 | clock = (card & 0xFF00) >> 8; |
| 1503 | Dbprintf("Clock rate: %d", clock); |
| 1504 | switch (clock) |
| 1505 | { |
| 1506 | case 32: |
| 1507 | clock = T55x7_BITRATE_RF_32; |
| 1508 | break; |
| 1509 | case 16: |
| 1510 | clock = T55x7_BITRATE_RF_16; |
| 1511 | break; |
| 1512 | case 0: |
| 1513 | // A value of 0 is assumed to be 64 for backwards-compatibility |
| 1514 | // Fall through... |
| 1515 | case 64: |
| 1516 | clock = T55x7_BITRATE_RF_64; |
| 1517 | break; |
| 1518 | default: |
| 1519 | Dbprintf("Invalid clock rate: %d", clock); |
| 1520 | return; |
| 1521 | } |
| 1522 | |
| 1523 | // Writing configuration for T55x7 tag |
| 1524 | T55xxWriteBlock(clock | |
| 1525 | T55x7_MODULATION_MANCHESTER | |
| 1526 | 2 << T55x7_MAXBLOCK_SHIFT, |
| 1527 | 0, 0, 0); |
| 1528 | } |
| 1529 | else |
| 1530 | // Writing configuration for T5555(Q5) tag |
| 1531 | T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | |
| 1532 | T5555_MODULATION_MANCHESTER | |
| 1533 | 2 << T5555_MAXBLOCK_SHIFT, |
| 1534 | 0, 0, 0); |
| 1535 | |
| 1536 | LED_D_OFF(); |
| 1537 | Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", |
| 1538 | (uint32_t)(id >> 32), (uint32_t)id); |
| 1539 | } |
| 1540 | |
| 1541 | // Clone Indala 64-bit tag by UID to T55x7 |
| 1542 | void CopyIndala64toT55x7(int hi, int lo) |
| 1543 | { |
| 1544 | |
| 1545 | //Program the 2 data blocks for supplied 64bit UID |
| 1546 | // and the block 0 for Indala64 format |
| 1547 | T55xxWriteBlock(hi,1,0,0); |
| 1548 | T55xxWriteBlock(lo,2,0,0); |
| 1549 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) |
| 1550 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | |
| 1551 | T55x7_MODULATION_PSK1 | |
| 1552 | 2 << T55x7_MAXBLOCK_SHIFT, |
| 1553 | 0, 0, 0); |
| 1554 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) |
| 1555 | // T5567WriteBlock(0x603E1042,0); |
| 1556 | |
| 1557 | DbpString("DONE!"); |
| 1558 | |
| 1559 | } |
| 1560 | |
| 1561 | void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7) |
| 1562 | { |
| 1563 | |
| 1564 | //Program the 7 data blocks for supplied 224bit UID |
| 1565 | // and the block 0 for Indala224 format |
| 1566 | T55xxWriteBlock(uid1,1,0,0); |
| 1567 | T55xxWriteBlock(uid2,2,0,0); |
| 1568 | T55xxWriteBlock(uid3,3,0,0); |
| 1569 | T55xxWriteBlock(uid4,4,0,0); |
| 1570 | T55xxWriteBlock(uid5,5,0,0); |
| 1571 | T55xxWriteBlock(uid6,6,0,0); |
| 1572 | T55xxWriteBlock(uid7,7,0,0); |
| 1573 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) |
| 1574 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | |
| 1575 | T55x7_MODULATION_PSK1 | |
| 1576 | 7 << T55x7_MAXBLOCK_SHIFT, |
| 1577 | 0,0,0); |
| 1578 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) |
| 1579 | // T5567WriteBlock(0x603E10E2,0); |
| 1580 | |
| 1581 | DbpString("DONE!"); |
| 1582 | |
| 1583 | } |
| 1584 | |
| 1585 | |
| 1586 | #define abs(x) ( ((x)<0) ? -(x) : (x) ) |
| 1587 | #define max(x,y) ( x<y ? y:x) |
| 1588 | |
| 1589 | int DemodPCF7931(uint8_t **outBlocks) { |
| 1590 | uint8_t BitStream[256]; |
| 1591 | uint8_t Blocks[8][16]; |
| 1592 | uint8_t *GraphBuffer = BigBuf_get_addr(); |
| 1593 | int GraphTraceLen = BigBuf_max_traceLen(); |
| 1594 | int i, j, lastval, bitidx, half_switch; |
| 1595 | int clock = 64; |
| 1596 | int tolerance = clock / 8; |
| 1597 | int pmc, block_done; |
| 1598 | int lc, warnings = 0; |
| 1599 | int num_blocks = 0; |
| 1600 | int lmin=128, lmax=128; |
| 1601 | uint8_t dir; |
| 1602 | |
| 1603 | LFSetupFPGAForADC(95, true); |
| 1604 | DoAcquisition_default(0, 0); |
| 1605 | |
| 1606 | |
| 1607 | lmin = 64; |
| 1608 | lmax = 192; |
| 1609 | |
| 1610 | i = 2; |
| 1611 | |
| 1612 | /* Find first local max/min */ |
| 1613 | if(GraphBuffer[1] > GraphBuffer[0]) { |
| 1614 | while(i < GraphTraceLen) { |
| 1615 | if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax) |
| 1616 | break; |
| 1617 | i++; |
| 1618 | } |
| 1619 | dir = 0; |
| 1620 | } |
| 1621 | else { |
| 1622 | while(i < GraphTraceLen) { |
| 1623 | if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin) |
| 1624 | break; |
| 1625 | i++; |
| 1626 | } |
| 1627 | dir = 1; |
| 1628 | } |
| 1629 | |
| 1630 | lastval = i++; |
| 1631 | half_switch = 0; |
| 1632 | pmc = 0; |
| 1633 | block_done = 0; |
| 1634 | |
| 1635 | for (bitidx = 0; i < GraphTraceLen; i++) |
| 1636 | { |
| 1637 | if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin)) |
| 1638 | { |
| 1639 | lc = i - lastval; |
| 1640 | lastval = i; |
| 1641 | |
| 1642 | // Switch depending on lc length: |
| 1643 | // Tolerance is 1/8 of clock rate (arbitrary) |
| 1644 | if (abs(lc-clock/4) < tolerance) { |
| 1645 | // 16T0 |
| 1646 | if((i - pmc) == lc) { /* 16T0 was previous one */ |
| 1647 | /* It's a PMC ! */ |
| 1648 | i += (128+127+16+32+33+16)-1; |
| 1649 | lastval = i; |
| 1650 | pmc = 0; |
| 1651 | block_done = 1; |
| 1652 | } |
| 1653 | else { |
| 1654 | pmc = i; |
| 1655 | } |
| 1656 | } else if (abs(lc-clock/2) < tolerance) { |
| 1657 | // 32TO |
| 1658 | if((i - pmc) == lc) { /* 16T0 was previous one */ |
| 1659 | /* It's a PMC ! */ |
| 1660 | i += (128+127+16+32+33)-1; |
| 1661 | lastval = i; |
| 1662 | pmc = 0; |
| 1663 | block_done = 1; |
| 1664 | } |
| 1665 | else if(half_switch == 1) { |
| 1666 | BitStream[bitidx++] = 0; |
| 1667 | half_switch = 0; |
| 1668 | } |
| 1669 | else |
| 1670 | half_switch++; |
| 1671 | } else if (abs(lc-clock) < tolerance) { |
| 1672 | // 64TO |
| 1673 | BitStream[bitidx++] = 1; |
| 1674 | } else { |
| 1675 | // Error |
| 1676 | warnings++; |
| 1677 | if (warnings > 10) |
| 1678 | { |
| 1679 | Dbprintf("Error: too many detection errors, aborting."); |
| 1680 | return 0; |
| 1681 | } |
| 1682 | } |
| 1683 | |
| 1684 | if(block_done == 1) { |
| 1685 | if(bitidx == 128) { |
| 1686 | for(j=0; j<16; j++) { |
| 1687 | Blocks[num_blocks][j] = 128*BitStream[j*8+7]+ |
| 1688 | 64*BitStream[j*8+6]+ |
| 1689 | 32*BitStream[j*8+5]+ |
| 1690 | 16*BitStream[j*8+4]+ |
| 1691 | 8*BitStream[j*8+3]+ |
| 1692 | 4*BitStream[j*8+2]+ |
| 1693 | 2*BitStream[j*8+1]+ |
| 1694 | BitStream[j*8]; |
| 1695 | } |
| 1696 | num_blocks++; |
| 1697 | } |
| 1698 | bitidx = 0; |
| 1699 | block_done = 0; |
| 1700 | half_switch = 0; |
| 1701 | } |
| 1702 | if(i < GraphTraceLen) |
| 1703 | { |
| 1704 | if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0; |
| 1705 | else dir = 1; |
| 1706 | } |
| 1707 | } |
| 1708 | if(bitidx==255) |
| 1709 | bitidx=0; |
| 1710 | warnings = 0; |
| 1711 | if(num_blocks == 4) break; |
| 1712 | } |
| 1713 | memcpy(outBlocks, Blocks, 16*num_blocks); |
| 1714 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 1715 | |
| 1716 | return num_blocks; |
| 1717 | } |
| 1718 | |
| 1719 | int IsBlock0PCF7931(uint8_t *Block) { |
| 1720 | // Assume RFU means 0 :) |
| 1721 | if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled |
| 1722 | return 1; |
| 1723 | if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ? |
| 1724 | return 1; |
| 1725 | return 0; |
| 1726 | } |
| 1727 | |
| 1728 | int IsBlock1PCF7931(uint8_t *Block) { |
| 1729 | // Assume RFU means 0 :) |
| 1730 | if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0) |
| 1731 | if((Block[14] & 0x7f) <= 9 && Block[15] <= 9) |
| 1732 | return 1; |
| 1733 | |
| 1734 | return 0; |
| 1735 | } |
| 1736 | |
| 1737 | #define ALLOC 16 |
| 1738 | |
| 1739 | void ReadPCF7931() { |
| 1740 | uint8_t Blocks[8][17]; |
| 1741 | uint8_t tmpBlocks[4][16]; |
| 1742 | int i, j, ind, ind2, n; |
| 1743 | int num_blocks = 0; |
| 1744 | int max_blocks = 8; |
| 1745 | int ident = 0; |
| 1746 | int error = 0; |
| 1747 | int tries = 0; |
| 1748 | |
| 1749 | memset(Blocks, 0, 8*17*sizeof(uint8_t)); |
| 1750 | |
| 1751 | do { |
| 1752 | memset(tmpBlocks, 0, 4*16*sizeof(uint8_t)); |
| 1753 | n = DemodPCF7931((uint8_t**)tmpBlocks); |
| 1754 | if(!n) |
| 1755 | error++; |
| 1756 | if(error==10 && num_blocks == 0) { |
| 1757 | Dbprintf("Error, no tag or bad tag"); |
| 1758 | return; |
| 1759 | } |
| 1760 | else if (tries==20 || error==10) { |
| 1761 | Dbprintf("Error reading the tag"); |
| 1762 | Dbprintf("Here is the partial content"); |
| 1763 | goto end; |
| 1764 | } |
| 1765 | |
| 1766 | for(i=0; i<n; i++) |
| 1767 | Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", |
| 1768 | tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7], |
| 1769 | tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]); |
| 1770 | if(!ident) { |
| 1771 | for(i=0; i<n; i++) { |
| 1772 | if(IsBlock0PCF7931(tmpBlocks[i])) { |
| 1773 | // Found block 0 ? |
| 1774 | if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) { |
| 1775 | // Found block 1! |
| 1776 | // \o/ |
| 1777 | ident = 1; |
| 1778 | memcpy(Blocks[0], tmpBlocks[i], 16); |
| 1779 | Blocks[0][ALLOC] = 1; |
| 1780 | memcpy(Blocks[1], tmpBlocks[i+1], 16); |
| 1781 | Blocks[1][ALLOC] = 1; |
| 1782 | max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1; |
| 1783 | // Debug print |
| 1784 | Dbprintf("(dbg) Max blocks: %d", max_blocks); |
| 1785 | num_blocks = 2; |
| 1786 | // Handle following blocks |
| 1787 | for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) { |
| 1788 | if(j==n) j=0; |
| 1789 | if(j==i) break; |
| 1790 | memcpy(Blocks[ind2], tmpBlocks[j], 16); |
| 1791 | Blocks[ind2][ALLOC] = 1; |
| 1792 | } |
| 1793 | break; |
| 1794 | } |
| 1795 | } |
| 1796 | } |
| 1797 | } |
| 1798 | else { |
| 1799 | for(i=0; i<n; i++) { // Look for identical block in known blocks |
| 1800 | if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00 |
| 1801 | for(j=0; j<max_blocks; j++) { |
| 1802 | if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) { |
| 1803 | // Found an identical block |
| 1804 | for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) { |
| 1805 | if(ind2 < 0) |
| 1806 | ind2 = max_blocks; |
| 1807 | if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found |
| 1808 | // Dbprintf("Tmp %d -> Block %d", ind, ind2); |
| 1809 | memcpy(Blocks[ind2], tmpBlocks[ind], 16); |
| 1810 | Blocks[ind2][ALLOC] = 1; |
| 1811 | num_blocks++; |
| 1812 | if(num_blocks == max_blocks) goto end; |
| 1813 | } |
| 1814 | } |
| 1815 | for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) { |
| 1816 | if(ind2 > max_blocks) |
| 1817 | ind2 = 0; |
| 1818 | if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found |
| 1819 | // Dbprintf("Tmp %d -> Block %d", ind, ind2); |
| 1820 | memcpy(Blocks[ind2], tmpBlocks[ind], 16); |
| 1821 | Blocks[ind2][ALLOC] = 1; |
| 1822 | num_blocks++; |
| 1823 | if(num_blocks == max_blocks) goto end; |
| 1824 | } |
| 1825 | } |
| 1826 | } |
| 1827 | } |
| 1828 | } |
| 1829 | } |
| 1830 | } |
| 1831 | tries++; |
| 1832 | if (BUTTON_PRESS()) return; |
| 1833 | } while (num_blocks != max_blocks); |
| 1834 | end: |
| 1835 | Dbprintf("-----------------------------------------"); |
| 1836 | Dbprintf("Memory content:"); |
| 1837 | Dbprintf("-----------------------------------------"); |
| 1838 | for(i=0; i<max_blocks; i++) { |
| 1839 | if(Blocks[i][ALLOC]==1){ |
| 1840 | Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", |
| 1841 | Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7], |
| 1842 | Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]); |
| 1843 | }else |
| 1844 | Dbprintf("<missing block %d>", i); |
| 1845 | } |
| 1846 | Dbprintf("-----------------------------------------"); |
| 1847 | |
| 1848 | |
| 1849 | return ; |
| 1850 | } |
| 1851 | |
| 1852 | |
| 1853 | //----------------------------------- |
| 1854 | // EM4469 / EM4305 routines |
| 1855 | //----------------------------------- |
| 1856 | #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored |
| 1857 | #define FWD_CMD_WRITE 0xA |
| 1858 | #define FWD_CMD_READ 0x9 |
| 1859 | #define FWD_CMD_DISABLE 0x5 |
| 1860 | |
| 1861 | |
| 1862 | uint8_t forwardLink_data[64]; //array of forwarded bits |
| 1863 | uint8_t * forward_ptr; //ptr for forward message preparation |
| 1864 | uint8_t fwd_bit_sz; //forwardlink bit counter |
| 1865 | uint8_t * fwd_write_ptr; //forwardlink bit pointer |
| 1866 | |
| 1867 | //==================================================================== |
| 1868 | // prepares command bits |
| 1869 | // see EM4469 spec |
| 1870 | //==================================================================== |
| 1871 | //-------------------------------------------------------------------- |
| 1872 | uint8_t Prepare_Cmd( uint8_t cmd ) { |
| 1873 | //-------------------------------------------------------------------- |
| 1874 | |
| 1875 | *forward_ptr++ = 0; //start bit |
| 1876 | *forward_ptr++ = 0; //second pause for 4050 code |
| 1877 | |
| 1878 | *forward_ptr++ = cmd; |
| 1879 | cmd >>= 1; |
| 1880 | *forward_ptr++ = cmd; |
| 1881 | cmd >>= 1; |
| 1882 | *forward_ptr++ = cmd; |
| 1883 | cmd >>= 1; |
| 1884 | *forward_ptr++ = cmd; |
| 1885 | |
| 1886 | return 6; //return number of emited bits |
| 1887 | } |
| 1888 | |
| 1889 | //==================================================================== |
| 1890 | // prepares address bits |
| 1891 | // see EM4469 spec |
| 1892 | //==================================================================== |
| 1893 | |
| 1894 | //-------------------------------------------------------------------- |
| 1895 | uint8_t Prepare_Addr( uint8_t addr ) { |
| 1896 | //-------------------------------------------------------------------- |
| 1897 | |
| 1898 | register uint8_t line_parity; |
| 1899 | |
| 1900 | uint8_t i; |
| 1901 | line_parity = 0; |
| 1902 | for(i=0;i<6;i++) { |
| 1903 | *forward_ptr++ = addr; |
| 1904 | line_parity ^= addr; |
| 1905 | addr >>= 1; |
| 1906 | } |
| 1907 | |
| 1908 | *forward_ptr++ = (line_parity & 1); |
| 1909 | |
| 1910 | return 7; //return number of emited bits |
| 1911 | } |
| 1912 | |
| 1913 | //==================================================================== |
| 1914 | // prepares data bits intreleaved with parity bits |
| 1915 | // see EM4469 spec |
| 1916 | //==================================================================== |
| 1917 | |
| 1918 | //-------------------------------------------------------------------- |
| 1919 | uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { |
| 1920 | //-------------------------------------------------------------------- |
| 1921 | |
| 1922 | register uint8_t line_parity; |
| 1923 | register uint8_t column_parity; |
| 1924 | register uint8_t i, j; |
| 1925 | register uint16_t data; |
| 1926 | |
| 1927 | data = data_low; |
| 1928 | column_parity = 0; |
| 1929 | |
| 1930 | for(i=0; i<4; i++) { |
| 1931 | line_parity = 0; |
| 1932 | for(j=0; j<8; j++) { |
| 1933 | line_parity ^= data; |
| 1934 | column_parity ^= (data & 1) << j; |
| 1935 | *forward_ptr++ = data; |
| 1936 | data >>= 1; |
| 1937 | } |
| 1938 | *forward_ptr++ = line_parity; |
| 1939 | if(i == 1) |
| 1940 | data = data_hi; |
| 1941 | } |
| 1942 | |
| 1943 | for(j=0; j<8; j++) { |
| 1944 | *forward_ptr++ = column_parity; |
| 1945 | column_parity >>= 1; |
| 1946 | } |
| 1947 | *forward_ptr = 0; |
| 1948 | |
| 1949 | return 45; //return number of emited bits |
| 1950 | } |
| 1951 | |
| 1952 | //==================================================================== |
| 1953 | // Forward Link send function |
| 1954 | // Requires: forwarLink_data filled with valid bits (1 bit per byte) |
| 1955 | // fwd_bit_count set with number of bits to be sent |
| 1956 | //==================================================================== |
| 1957 | void SendForward(uint8_t fwd_bit_count) { |
| 1958 | |
| 1959 | fwd_write_ptr = forwardLink_data; |
| 1960 | fwd_bit_sz = fwd_bit_count; |
| 1961 | |
| 1962 | LED_D_ON(); |
| 1963 | |
| 1964 | //Field on |
| 1965 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
| 1966 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
| 1967 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
| 1968 | |
| 1969 | // Give it a bit of time for the resonant antenna to settle. |
| 1970 | // And for the tag to fully power up |
| 1971 | SpinDelay(150); |
| 1972 | |
| 1973 | // force 1st mod pulse (start gap must be longer for 4305) |
| 1974 | fwd_bit_sz--; //prepare next bit modulation |
| 1975 | fwd_write_ptr++; |
| 1976 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
| 1977 | SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 |
| 1978 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
| 1979 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on |
| 1980 | SpinDelayUs(16*8); //16 cycles on (8us each) |
| 1981 | |
| 1982 | // now start writting |
| 1983 | while(fwd_bit_sz-- > 0) { //prepare next bit modulation |
| 1984 | if(((*fwd_write_ptr++) & 1) == 1) |
| 1985 | SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) |
| 1986 | else { |
| 1987 | //These timings work for 4469/4269/4305 (with the 55*8 above) |
| 1988 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
| 1989 | SpinDelayUs(23*8); //16-4 cycles off (8us each) |
| 1990 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
| 1991 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on |
| 1992 | SpinDelayUs(9*8); //16 cycles on (8us each) |
| 1993 | } |
| 1994 | } |
| 1995 | } |
| 1996 | |
| 1997 | void EM4xLogin(uint32_t Password) { |
| 1998 | |
| 1999 | uint8_t fwd_bit_count; |
| 2000 | |
| 2001 | forward_ptr = forwardLink_data; |
| 2002 | fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); |
| 2003 | fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); |
| 2004 | |
| 2005 | SendForward(fwd_bit_count); |
| 2006 | |
| 2007 | //Wait for command to complete |
| 2008 | SpinDelay(20); |
| 2009 | |
| 2010 | } |
| 2011 | |
| 2012 | void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { |
| 2013 | |
| 2014 | uint8_t fwd_bit_count; |
| 2015 | uint8_t *dest = BigBuf_get_addr(); |
| 2016 | int m=0, i=0; |
| 2017 | |
| 2018 | //If password mode do login |
| 2019 | if (PwdMode == 1) EM4xLogin(Pwd); |
| 2020 | |
| 2021 | forward_ptr = forwardLink_data; |
| 2022 | fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); |
| 2023 | fwd_bit_count += Prepare_Addr( Address ); |
| 2024 | |
| 2025 | m = BigBuf_max_traceLen(); |
| 2026 | // Clear destination buffer before sending the command |
| 2027 | memset(dest, 128, m); |
| 2028 | // Connect the A/D to the peak-detected low-frequency path. |
| 2029 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); |
| 2030 | // Now set up the SSC to get the ADC samples that are now streaming at us. |
| 2031 | FpgaSetupSsc(); |
| 2032 | |
| 2033 | SendForward(fwd_bit_count); |
| 2034 | |
| 2035 | // Now do the acquisition |
| 2036 | i = 0; |
| 2037 | for(;;) { |
| 2038 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { |
| 2039 | AT91C_BASE_SSC->SSC_THR = 0x43; |
| 2040 | } |
| 2041 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { |
| 2042 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
| 2043 | i++; |
| 2044 | if (i >= m) break; |
| 2045 | } |
| 2046 | } |
| 2047 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
| 2048 | LED_D_OFF(); |
| 2049 | } |
| 2050 | |
| 2051 | void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { |
| 2052 | |
| 2053 | uint8_t fwd_bit_count; |
| 2054 | |
| 2055 | //If password mode do login |
| 2056 | if (PwdMode == 1) EM4xLogin(Pwd); |
| 2057 | |
| 2058 | forward_ptr = forwardLink_data; |
| 2059 | fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); |
| 2060 | fwd_bit_count += Prepare_Addr( Address ); |
| 2061 | fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); |
| 2062 | |
| 2063 | SendForward(fwd_bit_count); |
| 2064 | |
| 2065 | //Wait for write to complete |
| 2066 | SpinDelay(20); |
| 2067 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
| 2068 | LED_D_OFF(); |
| 2069 | } |
| 2070 | |
| 2071 | |
| 2072 | #define T0_PCF 8 //period for the pcf7931 in us |
| 2073 | |
| 2074 | /* Write on a byte of a PCF7931 tag |
| 2075 | * @param address : address of the block to write |
| 2076 | @param byte : address of the byte to write |
| 2077 | @param data : data to write |
| 2078 | */ |
| 2079 | void WritePCF7931(uint8_t pass1, uint8_t pass2, uint8_t pass3, uint8_t pass4, uint8_t pass5, uint8_t pass6, uint8_t pass7, uint16_t init_delay, int32_t l, int32_t p, uint8_t address, uint8_t byte, uint8_t data) |
| 2080 | { |
| 2081 | |
| 2082 | uint32_t tab[1024]={0}; // data times frame |
| 2083 | uint32_t u = 0; |
| 2084 | uint8_t parity = 0; |
| 2085 | bool comp = 0; |
| 2086 | |
| 2087 | |
| 2088 | //BUILD OF THE DATA FRAME |
| 2089 | |
| 2090 | //alimentation of the tag (time for initializing) |
| 2091 | AddPatternPCF7931(init_delay, 0, 8192/2*T0_PCF, tab); |
| 2092 | |
| 2093 | //PMC |
| 2094 | Dbprintf("Initialization delay : %d us", init_delay); |
| 2095 | AddPatternPCF7931(8192/2*T0_PCF + 319*T0_PCF+70, 3*T0_PCF, 29*T0_PCF, tab); |
| 2096 | |
| 2097 | Dbprintf("Offsets : %d us on the low pulses width, %d us on the low pulses positions", l, p); |
| 2098 | |
| 2099 | //password indication bit |
| 2100 | AddBitPCF7931(1, tab, l, p); |
| 2101 | |
| 2102 | |
| 2103 | //password (on 56 bits) |
| 2104 | Dbprintf("Password (LSB first on each byte) : %02x %02x %02x %02x %02x %02x %02x", pass1,pass2,pass3,pass4,pass5,pass6,pass7); |
| 2105 | AddBytePCF7931(pass1, tab, l, p); |
| 2106 | AddBytePCF7931(pass2, tab, l, p); |
| 2107 | AddBytePCF7931(pass3, tab, l, p); |
| 2108 | AddBytePCF7931(pass4, tab, l, p); |
| 2109 | AddBytePCF7931(pass5, tab, l, p); |
| 2110 | AddBytePCF7931(pass6, tab, l, p); |
| 2111 | AddBytePCF7931(pass7, tab, l, p); |
| 2112 | |
| 2113 | |
| 2114 | //programming mode (0 or 1) |
| 2115 | AddBitPCF7931(0, tab, l, p); |
| 2116 | |
| 2117 | //block adress on 6 bits |
| 2118 | Dbprintf("Block address : %02x", address); |
| 2119 | for (u=0; u<6; u++) |
| 2120 | { |
| 2121 | if (address&(1<<u)) { // bit 1 |
| 2122 | parity++; |
| 2123 | AddBitPCF7931(1, tab, l, p); |
| 2124 | } else{ // bit 0 |
| 2125 | AddBitPCF7931(0, tab, l, p); |
| 2126 | } |
| 2127 | } |
| 2128 | |
| 2129 | //byte address on 4 bits |
| 2130 | Dbprintf("Byte address : %02x", byte); |
| 2131 | for (u=0; u<4; u++) |
| 2132 | { |
| 2133 | if (byte&(1<<u)) { // bit 1 |
| 2134 | parity++; |
| 2135 | AddBitPCF7931(1, tab, l, p); |
| 2136 | } else{ // bit 0 |
| 2137 | AddBitPCF7931(0, tab, l, p); |
| 2138 | } |
| 2139 | } |
| 2140 | |
| 2141 | //data on 8 bits |
| 2142 | Dbprintf("Data : %02x", data); |
| 2143 | for (u=0; u<8; u++) |
| 2144 | { |
| 2145 | if (data&(1<<u)) { // bit 1 |
| 2146 | parity++; |
| 2147 | AddBitPCF7931(1, tab, l, p); |
| 2148 | } else{ //bit 0 |
| 2149 | AddBitPCF7931(0, tab, l, p); |
| 2150 | } |
| 2151 | } |
| 2152 | |
| 2153 | |
| 2154 | //parity bit |
| 2155 | if((parity%2)==0){ |
| 2156 | AddBitPCF7931(0, tab, l, p); //even parity |
| 2157 | }else{ |
| 2158 | AddBitPCF7931(1, tab, l, p);//odd parity |
| 2159 | } |
| 2160 | |
| 2161 | //time access memory |
| 2162 | AddPatternPCF7931(5120+2680, 0, 0, tab); |
| 2163 | |
| 2164 | //conversion of the scale time |
| 2165 | for(u=0;u<500;u++){ |
| 2166 | tab[u]=(tab[u] * 3)/2; |
| 2167 | } |
| 2168 | |
| 2169 | |
| 2170 | //compennsation of the counter reload |
| 2171 | while (!comp){ |
| 2172 | comp = 1; |
| 2173 | for(u=0;tab[u]!=0;u++){ |
| 2174 | if(tab[u] > 0xFFFF){ |
| 2175 | tab[u] -= 0xFFFF; |
| 2176 | comp = 0; |
| 2177 | } |
| 2178 | } |
| 2179 | } |
| 2180 | |
| 2181 | SendCmdPCF7931(tab); |
| 2182 | } |
| 2183 | |
| 2184 | |
| 2185 | |
| 2186 | /* Send a trame to a PCF7931 tags |
| 2187 | * @param tab : array of the data frame |
| 2188 | */ |
| 2189 | |
| 2190 | void SendCmdPCF7931(uint32_t * tab){ |
| 2191 | uint16_t u=0; |
| 2192 | uint16_t tempo=0; |
| 2193 | |
| 2194 | Dbprintf("SENDING DATA FRAME..."); |
| 2195 | |
| 2196 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
| 2197 | |
| 2198 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
| 2199 | |
| 2200 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU ); |
| 2201 | |
| 2202 | LED_A_ON(); |
| 2203 | |
| 2204 | // steal this pin from the SSP and use it to control the modulation |
| 2205 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; |
| 2206 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
| 2207 | |
| 2208 | //initialization of the timer |
| 2209 | AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14); |
| 2210 | AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE; |
| 2211 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable |
| 2212 | AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; //clock at 48/32 MHz |
| 2213 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN; |
| 2214 | AT91C_BASE_TCB->TCB_BCR = 1; |
| 2215 | |
| 2216 | |
| 2217 | tempo = AT91C_BASE_TC0->TC_CV; |
| 2218 | for(u=0;tab[u]!= 0;u+=3){ |
| 2219 | |
| 2220 | |
| 2221 | // modulate antenna |
| 2222 | HIGH(GPIO_SSC_DOUT); |
| 2223 | while(tempo != tab[u]){ |
| 2224 | tempo = AT91C_BASE_TC0->TC_CV; |
| 2225 | } |
| 2226 | |
| 2227 | // stop modulating antenna |
| 2228 | LOW(GPIO_SSC_DOUT); |
| 2229 | while(tempo != tab[u+1]){ |
| 2230 | tempo = AT91C_BASE_TC0->TC_CV; |
| 2231 | } |
| 2232 | |
| 2233 | |
| 2234 | // modulate antenna |
| 2235 | HIGH(GPIO_SSC_DOUT); |
| 2236 | while(tempo != tab[u+2]){ |
| 2237 | tempo = AT91C_BASE_TC0->TC_CV; |
| 2238 | } |
| 2239 | |
| 2240 | |
| 2241 | } |
| 2242 | |
| 2243 | LED_A_OFF(); |
| 2244 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 2245 | SpinDelay(200); |
| 2246 | |
| 2247 | |
| 2248 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable |
| 2249 | DbpString("FINISH !"); |
| 2250 | DbpString("(Could be usefull to send the same trame many times)"); |
| 2251 | LED(0xFFFF, 1000); |
| 2252 | } |
| 2253 | |
| 2254 | |
| 2255 | /* Add a byte for building the data frame of PCF7931 tags |
| 2256 | * @param b : byte to add |
| 2257 | * @param tab : array of the data frame |
| 2258 | * @param l : offset on low pulse width |
| 2259 | * @param p : offset on low pulse positioning |
| 2260 | */ |
| 2261 | |
| 2262 | bool AddBytePCF7931(uint8_t byte, uint32_t * tab, int32_t l, int32_t p){ |
| 2263 | |
| 2264 | uint32_t u; |
| 2265 | for (u=0; u<8; u++) |
| 2266 | { |
| 2267 | if (byte&(1<<u)) { //bit à 1 |
| 2268 | if(AddBitPCF7931(1, tab, l, p)==1)return 1; |
| 2269 | } else { //bit à 0 |
| 2270 | if(AddBitPCF7931(0, tab, l, p)==1)return 1; |
| 2271 | } |
| 2272 | } |
| 2273 | |
| 2274 | return 0; |
| 2275 | } |
| 2276 | |
| 2277 | /* Add a bits for building the data frame of PCF7931 tags |
| 2278 | * @param b : bit to add |
| 2279 | * @param tab : array of the data frame |
| 2280 | * @param l : offset on low pulse width |
| 2281 | * @param p : offset on low pulse positioning |
| 2282 | */ |
| 2283 | bool AddBitPCF7931(bool b, uint32_t * tab, int32_t l, int32_t p){ |
| 2284 | uint8_t u = 0; |
| 2285 | |
| 2286 | for(u=0;tab[u]!=0;u+=3){} //we put the cursor at the last value of the array |
| 2287 | |
| 2288 | |
| 2289 | if(b==1){ //add a bit 1 |
| 2290 | if(u==0) tab[u] = 34*T0_PCF+p; |
| 2291 | else tab[u] = 34*T0_PCF+tab[u-1]+p; |
| 2292 | |
| 2293 | tab[u+1] = 6*T0_PCF+tab[u]+l; |
| 2294 | tab[u+2] = 88*T0_PCF+tab[u+1]-l-p; |
| 2295 | return 0; |
| 2296 | }else{ //add a bit 0 |
| 2297 | |
| 2298 | if(u==0) tab[u] = 98*T0_PCF+p; |
| 2299 | else tab[u] = 98*T0_PCF+tab[u-1]+p; |
| 2300 | |
| 2301 | tab[u+1] = 6*T0_PCF+tab[u]+l; |
| 2302 | tab[u+2] = 24*T0_PCF+tab[u+1]-l-p; |
| 2303 | return 0; |
| 2304 | } |
| 2305 | |
| 2306 | |
| 2307 | return 1; |
| 2308 | } |
| 2309 | |
| 2310 | /* Add a custom pattern in the data frame |
| 2311 | * @param a : delay of the first high pulse |
| 2312 | * @param b : delay of the low pulse |
| 2313 | * @param c : delay of the last high pulse |
| 2314 | * @param tab : array of the data frame |
| 2315 | */ |
| 2316 | bool AddPatternPCF7931(uint32_t a, uint32_t b, uint32_t c, uint32_t * tab){ |
| 2317 | uint32_t u = 0; |
| 2318 | for(u=0;tab[u]!=0;u+=3){} //we put the cursor at the last value of the array |
| 2319 | |
| 2320 | if(u==0) tab[u] = a; |
| 2321 | else tab[u] = a + tab[u-1]; |
| 2322 | |
| 2323 | tab[u+1] = b+tab[u]; |
| 2324 | tab[u+2] = c+tab[u+1]; |
| 2325 | |
| 2326 | return 0; |
| 2327 | } |