]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Copyright (C) 2014 | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // Low frequency commands | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include <stdlib.h> | |
12 | #include <string.h> | |
13 | #include "lfdemod.h" | |
14 | ||
15 | //by marshmellow | |
16 | //takes 1s and 0s and searches for EM410x format - output EM ID | |
17 | uint64_t Em410xDecode(uint8_t *BitStream, size_t size) | |
18 | { | |
19 | //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future | |
20 | // otherwise could be a void with no arguments | |
21 | //set defaults | |
22 | int high=0, low=128; | |
23 | uint64_t lo=0; //hi=0, | |
24 | ||
25 | uint32_t i = 0; | |
26 | uint32_t initLoopMax = 65; | |
27 | if (initLoopMax>size) initLoopMax=size; | |
28 | ||
29 | for (;i < initLoopMax; ++i) //65 samples should be plenty to find high and low values | |
30 | { | |
31 | if (BitStream[i] > high) | |
32 | high = BitStream[i]; | |
33 | else if (BitStream[i] < low) | |
34 | low = BitStream[i]; | |
35 | } | |
36 | if (((high !=1)||(low !=0))){ //allow only 1s and 0s | |
37 | // PrintAndLog("no data found"); | |
38 | return 0; | |
39 | } | |
40 | uint8_t parityTest=0; | |
41 | // 111111111 bit pattern represent start of frame | |
42 | uint8_t frame_marker_mask[] = {1,1,1,1,1,1,1,1,1}; | |
43 | uint32_t idx = 0; | |
44 | uint32_t ii=0; | |
45 | uint8_t resetCnt = 0; | |
46 | while( (idx + 64) < size) { | |
47 | restart: | |
48 | // search for a start of frame marker | |
49 | if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) | |
50 | { // frame marker found | |
51 | idx+=9;//sizeof(frame_marker_mask); | |
52 | for (i=0; i<10;i++){ | |
53 | for(ii=0; ii<5; ++ii){ | |
54 | parityTest += BitStream[(i*5)+ii+idx]; | |
55 | } | |
56 | if (parityTest== ((parityTest>>1)<<1)){ | |
57 | parityTest=0; | |
58 | for (ii=0; ii<4;++ii){ | |
59 | //hi = (hi<<1)|(lo>>31); | |
60 | lo=(lo<<1LL)|(BitStream[(i*5)+ii+idx]); | |
61 | } | |
62 | //PrintAndLog("DEBUG: EM parity passed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d,lo: %d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1],lo); | |
63 | }else {//parity failed | |
64 | //PrintAndLog("DEBUG: EM parity failed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1]); | |
65 | parityTest=0; | |
66 | idx-=8; | |
67 | if (resetCnt>5)return 0; | |
68 | resetCnt++; | |
69 | goto restart;//continue; | |
70 | } | |
71 | } | |
72 | //skip last 5 bit parity test for simplicity. | |
73 | return lo; | |
74 | }else{ | |
75 | idx++; | |
76 | } | |
77 | } | |
78 | return 0; | |
79 | } | |
80 | ||
81 | //by marshmellow | |
82 | //takes 2 arguments - clock and invert both as integers | |
83 | //attempts to demodulate ask while decoding manchester | |
84 | //prints binary found and saves in graphbuffer for further commands | |
85 | int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert) | |
86 | { | |
87 | int i; | |
88 | int high = 0, low = 128; | |
89 | *clk=DetectASKClock(BinStream, *size, *clk); //clock default | |
90 | ||
91 | if (*clk<8) *clk =64; | |
92 | if (*clk<32) *clk=32; | |
93 | if (*invert != 0 && *invert != 1) *invert=0; | |
94 | uint32_t initLoopMax = 200; | |
95 | if (initLoopMax > *size) initLoopMax=*size; | |
96 | // Detect high and lows | |
97 | for (i = 0; i < initLoopMax; ++i) //200 samples should be enough to find high and low values | |
98 | { | |
99 | if (BinStream[i] > high) | |
100 | high = BinStream[i]; | |
101 | else if (BinStream[i] < low) | |
102 | low = BinStream[i]; | |
103 | } | |
104 | if ((high < 158) ){ //throw away static | |
105 | //PrintAndLog("no data found"); | |
106 | return -2; | |
107 | } | |
108 | //25% fuzz in case highs and lows aren't clipped [marshmellow] | |
109 | high=(int)((high-128)*.75)+128; | |
110 | low= (int)((low-128)*.75)+128; | |
111 | ||
112 | //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); | |
113 | int lastBit = 0; //set first clock check | |
114 | uint32_t bitnum = 0; //output counter | |
115 | int tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave | |
116 | if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely | |
117 | int iii = 0; | |
118 | uint32_t gLen = *size; | |
119 | if (gLen > 3000) gLen=3000; | |
120 | uint8_t errCnt =0; | |
121 | uint32_t bestStart = *size; | |
122 | uint32_t bestErrCnt = (*size/1000); | |
123 | uint32_t maxErr = (*size/1000); | |
124 | //PrintAndLog("DEBUG - lastbit - %d",lastBit); | |
125 | //loop to find first wave that works | |
126 | for (iii=0; iii < gLen; ++iii){ | |
127 | if ((BinStream[iii] >= high) || (BinStream[iii] <= low)){ | |
128 | lastBit=iii-*clk; | |
129 | errCnt=0; | |
130 | //loop through to see if this start location works | |
131 | for (i = iii; i < *size; ++i) { | |
132 | if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){ | |
133 | lastBit+=*clk; | |
134 | } else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){ | |
135 | //low found and we are expecting a bar | |
136 | lastBit+=*clk; | |
137 | } else { | |
138 | //mid value found or no bar supposed to be here | |
139 | if ((i-lastBit)>(*clk+tol)){ | |
140 | //should have hit a high or low based on clock!! | |
141 | ||
142 | //debug | |
143 | //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); | |
144 | ||
145 | errCnt++; | |
146 | lastBit+=*clk;//skip over until hit too many errors | |
147 | if (errCnt>(maxErr)) break; //allow 1 error for every 1000 samples else start over | |
148 | } | |
149 | } | |
150 | if ((i-iii) >(400 * *clk)) break; //got plenty of bits | |
151 | } | |
152 | //we got more than 64 good bits and not all errors | |
153 | if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt<maxErr)) { | |
154 | //possible good read | |
155 | if (errCnt==0){ | |
156 | bestStart=iii; | |
157 | bestErrCnt=errCnt; | |
158 | break; //great read - finish | |
159 | } | |
160 | if (errCnt<bestErrCnt){ //set this as new best run | |
161 | bestErrCnt=errCnt; | |
162 | bestStart = iii; | |
163 | } | |
164 | } | |
165 | } | |
166 | } | |
167 | if (bestErrCnt<maxErr){ | |
168 | //best run is good enough set to best run and set overwrite BinStream | |
169 | iii=bestStart; | |
170 | lastBit = bestStart - *clk; | |
171 | bitnum=0; | |
172 | for (i = iii; i < *size; ++i) { | |
173 | if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){ | |
174 | lastBit += *clk; | |
175 | BinStream[bitnum] = *invert; | |
176 | bitnum++; | |
177 | } else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){ | |
178 | //low found and we are expecting a bar | |
179 | lastBit+=*clk; | |
180 | BinStream[bitnum] = 1-*invert; | |
181 | bitnum++; | |
182 | } else { | |
183 | //mid value found or no bar supposed to be here | |
184 | if ((i-lastBit)>(*clk+tol)){ | |
185 | //should have hit a high or low based on clock!! | |
186 | ||
187 | //debug | |
188 | //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); | |
189 | if (bitnum > 0){ | |
190 | BinStream[bitnum]=77; | |
191 | bitnum++; | |
192 | } | |
193 | ||
194 | lastBit+=*clk;//skip over error | |
195 | } | |
196 | } | |
197 | if (bitnum >=400) break; | |
198 | } | |
199 | *size=bitnum; | |
200 | } else{ | |
201 | *invert=bestStart; | |
202 | *clk=iii; | |
203 | return -1; | |
204 | } | |
205 | return bestErrCnt; | |
206 | } | |
207 | ||
208 | //by marshmellow | |
209 | //take 10 and 01 and manchester decode | |
210 | //run through 2 times and take least errCnt | |
211 | int manrawdecode(uint8_t * BitStream, size_t *size) | |
212 | { | |
213 | int bitnum=0; | |
214 | int errCnt =0; | |
215 | int i=1; | |
216 | int bestErr = 1000; | |
217 | int bestRun = 0; | |
218 | int ii=1; | |
219 | for (ii=1;ii<3;++ii){ | |
220 | i=1; | |
221 | for (i=i+ii;i<*size-2;i+=2){ | |
222 | if(BitStream[i]==1 && (BitStream[i+1]==0)){ | |
223 | } else if((BitStream[i]==0)&& BitStream[i+1]==1){ | |
224 | } else { | |
225 | errCnt++; | |
226 | } | |
227 | if(bitnum>300) break; | |
228 | } | |
229 | if (bestErr>errCnt){ | |
230 | bestErr=errCnt; | |
231 | bestRun=ii; | |
232 | } | |
233 | errCnt=0; | |
234 | } | |
235 | errCnt=bestErr; | |
236 | if (errCnt<20){ | |
237 | ii=bestRun; | |
238 | i=1; | |
239 | for (i=i+ii;i < *size-2;i+=2){ | |
240 | if(BitStream[i] == 1 && (BitStream[i+1] == 0)){ | |
241 | BitStream[bitnum++]=0; | |
242 | } else if((BitStream[i] == 0) && BitStream[i+1] == 1){ | |
243 | BitStream[bitnum++]=1; | |
244 | } else { | |
245 | BitStream[bitnum++]=77; | |
246 | //errCnt++; | |
247 | } | |
248 | if(bitnum>300) break; | |
249 | } | |
250 | *size=bitnum; | |
251 | } | |
252 | return errCnt; | |
253 | } | |
254 | ||
255 | ||
256 | //by marshmellow | |
257 | //take 01 or 10 = 0 and 11 or 00 = 1 | |
258 | int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset) | |
259 | { | |
260 | uint8_t bitnum=0; | |
261 | uint32_t errCnt =0; | |
262 | uint32_t i=1; | |
263 | i=offset; | |
264 | for (;i<*size-2;i+=2){ | |
265 | if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){ | |
266 | BitStream[bitnum++]=1; | |
267 | } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){ | |
268 | BitStream[bitnum++]=0; | |
269 | } else { | |
270 | BitStream[bitnum++]=77; | |
271 | errCnt++; | |
272 | } | |
273 | if(bitnum>250) break; | |
274 | } | |
275 | *size=bitnum; | |
276 | return errCnt; | |
277 | } | |
278 | ||
279 | //by marshmellow | |
280 | //takes 2 arguments - clock and invert both as integers | |
281 | //attempts to demodulate ask only | |
282 | //prints binary found and saves in graphbuffer for further commands | |
283 | int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert) | |
284 | { | |
285 | uint32_t i; | |
286 | // int invert=0; //invert default | |
287 | int high = 0, low = 128; | |
288 | *clk=DetectASKClock(BinStream, *size, *clk); //clock default | |
289 | uint8_t BitStream[502] = {0}; | |
290 | ||
291 | if (*clk<8) *clk =64; | |
292 | if (*clk<32) *clk=32; | |
293 | if (*invert != 0 && *invert != 1) *invert =0; | |
294 | uint32_t initLoopMax = 200; | |
295 | if (initLoopMax>*size) initLoopMax=*size; | |
296 | // Detect high and lows | |
297 | for (i = 0; i < initLoopMax; ++i) //200 samples should be plenty to find high and low values | |
298 | { | |
299 | if (BinStream[i] > high) | |
300 | high = BinStream[i]; | |
301 | else if (BinStream[i] < low) | |
302 | low = BinStream[i]; | |
303 | } | |
304 | if ((high < 158)){ //throw away static | |
305 | // PrintAndLog("no data found"); | |
306 | return -2; | |
307 | } | |
308 | //25% fuzz in case highs and lows aren't clipped [marshmellow] | |
309 | high=(int)((high-128)*.75)+128; | |
310 | low= (int)((low-128)*.75)+128; | |
311 | ||
312 | //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); | |
313 | int lastBit = 0; //set first clock check | |
314 | uint32_t bitnum = 0; //output counter | |
315 | uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave | |
316 | if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely | |
317 | uint32_t iii = 0; | |
318 | uint32_t gLen = *size; | |
319 | if (gLen > 500) gLen=500; | |
320 | uint8_t errCnt =0; | |
321 | uint32_t bestStart = *size; | |
322 | uint32_t bestErrCnt = (*size/1000); | |
323 | uint8_t midBit=0; | |
324 | //PrintAndLog("DEBUG - lastbit - %d",lastBit); | |
325 | //loop to find first wave that works | |
326 | for (iii=0; iii < gLen; ++iii){ | |
327 | if ((BinStream[iii]>=high) || (BinStream[iii]<=low)){ | |
328 | lastBit=iii-*clk; | |
329 | //loop through to see if this start location works | |
330 | for (i = iii; i < *size; ++i) { | |
331 | if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ | |
332 | lastBit+=*clk; | |
333 | BitStream[bitnum] = *invert; | |
334 | bitnum++; | |
335 | midBit=0; | |
336 | } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ | |
337 | //low found and we are expecting a bar | |
338 | lastBit+=*clk; | |
339 | BitStream[bitnum] = 1- *invert; | |
340 | bitnum++; | |
341 | midBit=0; | |
342 | } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ | |
343 | //mid bar? | |
344 | midBit=1; | |
345 | BitStream[bitnum]= 1- *invert; | |
346 | bitnum++; | |
347 | } else if ((BinStream[i]>=high) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ | |
348 | //mid bar? | |
349 | midBit=1; | |
350 | BitStream[bitnum]= *invert; | |
351 | bitnum++; | |
352 | } else if ((i-lastBit)>((*clk/2)+tol) && (midBit==0)){ | |
353 | //no mid bar found | |
354 | midBit=1; | |
355 | BitStream[bitnum]= BitStream[bitnum-1]; | |
356 | bitnum++; | |
357 | } else { | |
358 | //mid value found or no bar supposed to be here | |
359 | ||
360 | if ((i-lastBit)>(*clk+tol)){ | |
361 | //should have hit a high or low based on clock!! | |
362 | //debug | |
363 | //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); | |
364 | if (bitnum > 0){ | |
365 | BitStream[bitnum]=77; | |
366 | bitnum++; | |
367 | } | |
368 | ||
369 | ||
370 | errCnt++; | |
371 | lastBit+=*clk;//skip over until hit too many errors | |
372 | if (errCnt > ((*size/1000))){ //allow 1 error for every 1000 samples else start over | |
373 | errCnt=0; | |
374 | bitnum=0;//start over | |
375 | break; | |
376 | } | |
377 | } | |
378 | } | |
379 | if (bitnum>500) break; | |
380 | } | |
381 | //we got more than 64 good bits and not all errors | |
382 | if ((bitnum > (64+errCnt)) && (errCnt<(*size/1000))) { | |
383 | //possible good read | |
384 | if (errCnt==0) break; //great read - finish | |
385 | if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish | |
386 | if (errCnt<bestErrCnt){ //set this as new best run | |
387 | bestErrCnt=errCnt; | |
388 | bestStart = iii; | |
389 | } | |
390 | } | |
391 | } | |
392 | if (iii>=gLen){ //exhausted test | |
393 | //if there was a ok test go back to that one and re-run the best run (then dump after that run) | |
394 | if (bestErrCnt < (*size/1000)) iii=bestStart; | |
395 | } | |
396 | } | |
397 | if (bitnum>16){ | |
398 | ||
399 | // PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum); | |
400 | //move BitStream back to BinStream | |
401 | // ClearGraph(0); | |
402 | for (i=0; i < bitnum; ++i){ | |
403 | BinStream[i]=BitStream[i]; | |
404 | } | |
405 | *size=bitnum; | |
406 | // RepaintGraphWindow(); | |
407 | //output | |
408 | // if (errCnt>0){ | |
409 | // PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt); | |
410 | // } | |
411 | // PrintAndLog("ASK decoded bitstream:"); | |
412 | // Now output the bitstream to the scrollback by line of 16 bits | |
413 | // printBitStream2(BitStream,bitnum); | |
414 | //int errCnt=0; | |
415 | //errCnt=manrawdemod(BitStream,bitnum); | |
416 | ||
417 | // Em410xDecode(Cmd); | |
418 | } else return -1; | |
419 | return errCnt; | |
420 | } | |
421 | //translate wave to 11111100000 (1 for each short wave 0 for each long wave) | |
422 | size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow) | |
423 | { | |
424 | uint32_t last_transition = 0; | |
425 | uint32_t idx = 1; | |
426 | uint32_t maxVal=0; | |
427 | if (fchigh==0) fchigh=10; | |
428 | if (fclow==0) fclow=8; | |
429 | // we do care about the actual theshold value as sometimes near the center of the | |
430 | // wave we may get static that changes direction of wave for one value | |
431 | // if our value is too low it might affect the read. and if our tag or | |
432 | // antenna is weak a setting too high might not see anything. [marshmellow] | |
433 | if (size<100) return 0; | |
434 | for(idx=1; idx<100; idx++){ | |
435 | if(maxVal<dest[idx]) maxVal = dest[idx]; | |
436 | } | |
437 | // set close to the top of the wave threshold with 25% margin for error | |
438 | // less likely to get a false transition up there. | |
439 | // (but have to be careful not to go too high and miss some short waves) | |
440 | uint8_t threshold_value = (uint8_t)(((maxVal-128)*.75)+128); | |
441 | ||
442 | // sync to first lo-hi transition, and threshold | |
443 | ||
444 | // Need to threshold first sample | |
445 | ||
446 | if(dest[0] < threshold_value) dest[0] = 0; | |
447 | else dest[0] = 1; | |
448 | ||
449 | size_t numBits = 0; | |
450 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) | |
451 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere | |
452 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 | |
453 | for(idx = 1; idx < size; idx++) { | |
454 | // threshold current value | |
455 | ||
456 | if (dest[idx] < threshold_value) dest[idx] = 0; | |
457 | else dest[idx] = 1; | |
458 | ||
459 | // Check for 0->1 transition | |
460 | if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition | |
461 | if ((idx-last_transition)<(fclow-2)){ //0-5 = garbage noise | |
462 | //do nothing with extra garbage | |
463 | } else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves | |
464 | dest[numBits]=1; | |
465 | } else { //9+ = 10 waves | |
466 | dest[numBits]=0; | |
467 | } | |
468 | last_transition = idx; | |
469 | numBits++; | |
470 | } | |
471 | } | |
472 | return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 | |
473 | } | |
474 | ||
475 | uint32_t myround2(float f) | |
476 | { | |
477 | if (f >= 2000) return 2000;//something bad happened | |
478 | return (uint32_t) (f + (float)0.5); | |
479 | } | |
480 | ||
481 | //translate 11111100000 to 10 | |
482 | size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, | |
483 | uint8_t invert, uint8_t fchigh, uint8_t fclow) | |
484 | { | |
485 | uint8_t lastval=dest[0]; | |
486 | uint32_t idx=0; | |
487 | size_t numBits=0; | |
488 | uint32_t n=1; | |
489 | ||
490 | for( idx=1; idx < size; idx++) { | |
491 | ||
492 | if (dest[idx]==lastval) { | |
493 | n++; | |
494 | continue; | |
495 | } | |
496 | //if lastval was 1, we have a 1->0 crossing | |
497 | if ( dest[idx-1]==1 ) { | |
498 | n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow)); | |
499 | //n=(n+1) / h2l_crossing_value; | |
500 | } else {// 0->1 crossing | |
501 | n=myround2((float)(n+1)/((float)(rfLen-2)/(float)fchigh)); //-2 for fudge factor | |
502 | //n=(n+1) / l2h_crossing_value; | |
503 | } | |
504 | if (n == 0) n = 1; | |
505 | ||
506 | if(n < maxConsequtiveBits) //Consecutive | |
507 | { | |
508 | if(invert==0){ //invert bits | |
509 | memset(dest+numBits, dest[idx-1] , n); | |
510 | }else{ | |
511 | memset(dest+numBits, dest[idx-1]^1 , n); | |
512 | } | |
513 | numBits += n; | |
514 | } | |
515 | n=0; | |
516 | lastval=dest[idx]; | |
517 | }//end for | |
518 | return numBits; | |
519 | } | |
520 | //by marshmellow (from holiman's base) | |
521 | // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod) | |
522 | int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow) | |
523 | { | |
524 | // FSK demodulator | |
525 | size = fsk_wave_demod(dest, size, fchigh, fclow); | |
526 | size = aggregate_bits(dest, size, rfLen, 192, invert, fchigh, fclow); | |
527 | return size; | |
528 | } | |
529 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
530 | int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) | |
531 | { | |
532 | ||
533 | size_t idx=0; //, found=0; //size=0, | |
534 | // FSK demodulator | |
535 | size = fskdemod(dest, size,50,0,10,8); | |
536 | ||
537 | // final loop, go over previously decoded manchester data and decode into usable tag ID | |
538 | // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 | |
539 | uint8_t frame_marker_mask[] = {1,1,1,0,0,0}; | |
540 | int numshifts = 0; | |
541 | idx = 0; | |
542 | //one scan | |
543 | while( idx + sizeof(frame_marker_mask) < size) { | |
544 | // search for a start of frame marker | |
545 | if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) | |
546 | { // frame marker found | |
547 | idx+=sizeof(frame_marker_mask); | |
548 | while(dest[idx] != dest[idx+1] && idx < size-2) | |
549 | { | |
550 | // Keep going until next frame marker (or error) | |
551 | // Shift in a bit. Start by shifting high registers | |
552 | *hi2 = (*hi2<<1)|(*hi>>31); | |
553 | *hi = (*hi<<1)|(*lo>>31); | |
554 | //Then, shift in a 0 or one into low | |
555 | if (dest[idx] && !dest[idx+1]) // 1 0 | |
556 | *lo=(*lo<<1)|0; | |
557 | else // 0 1 | |
558 | *lo=(*lo<<1)|1; | |
559 | numshifts++; | |
560 | idx += 2; | |
561 | } | |
562 | // Hopefully, we read a tag and hit upon the next frame marker | |
563 | if(idx + sizeof(frame_marker_mask) < size) | |
564 | { | |
565 | if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) | |
566 | { | |
567 | //good return | |
568 | return idx; | |
569 | } | |
570 | } | |
571 | // reset | |
572 | *hi2 = *hi = *lo = 0; | |
573 | numshifts = 0; | |
574 | }else { | |
575 | idx++; | |
576 | } | |
577 | } | |
578 | return -1; | |
579 | } | |
580 | ||
581 | uint32_t bytebits_to_byte(uint8_t* src, size_t numbits) | |
582 | { | |
583 | uint32_t num = 0; | |
584 | for(int i = 0 ; i < numbits ; i++) | |
585 | { | |
586 | num = (num << 1) | (*src); | |
587 | src++; | |
588 | } | |
589 | return num; | |
590 | } | |
591 | ||
592 | int IOdemodFSK(uint8_t *dest, size_t size) | |
593 | { | |
594 | static const uint8_t THRESHOLD = 140; | |
595 | uint32_t idx=0; | |
596 | //make sure buffer has data | |
597 | if (size < 66) return -1; | |
598 | //test samples are not just noise | |
599 | uint8_t justNoise = 1; | |
600 | for(idx=0;idx< size && justNoise ;idx++){ | |
601 | justNoise = dest[idx] < THRESHOLD; | |
602 | } | |
603 | if(justNoise) return 0; | |
604 | ||
605 | // FSK demodulator | |
606 | size = fskdemod(dest, size, 64, 1, 10, 8); // RF/64 and invert | |
607 | if (size < 65) return -1; //did we get a good demod? | |
608 | //Index map | |
609 | //0 10 20 30 40 50 60 | |
610 | //| | | | | | | | |
611 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
612 | //----------------------------------------------------------------------------- | |
613 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 | |
614 | // | |
615 | //XSF(version)facility:codeone+codetwo | |
616 | //Handle the data | |
617 | uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1}; | |
618 | for( idx=0; idx < (size - 65); idx++) { | |
619 | if ( memcmp(dest + idx, mask, sizeof(mask))==0) { | |
620 | //frame marker found | |
621 | if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){ | |
622 | //confirmed proper separator bits found | |
623 | //return start position | |
624 | return (int) idx; | |
625 | } | |
626 | } | |
627 | } | |
628 | return 0; | |
629 | } | |
630 | ||
631 | // by marshmellow | |
632 | // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping) | |
633 | // maybe somehow adjust peak trimming value based on samples to fix? | |
634 | int DetectASKClock(uint8_t dest[], size_t size, int clock) | |
635 | { | |
636 | int i=0; | |
637 | int peak=0; | |
638 | int low=128; | |
639 | int clk[]={16,32,40,50,64,100,128,256}; | |
640 | int loopCnt = 256; //don't need to loop through entire array... | |
641 | if (size<loopCnt) loopCnt = size; | |
642 | ||
643 | //if we already have a valid clock quit | |
644 | for (;i<8;++i) | |
645 | if (clk[i]==clock) return clock; | |
646 | ||
647 | //get high and low peak | |
648 | for (i=0;i<loopCnt;++i){ | |
649 | if(dest[i]>peak){ | |
650 | peak = dest[i]; | |
651 | } | |
652 | if(dest[i]<low){ | |
653 | low = dest[i]; | |
654 | } | |
655 | } | |
656 | peak=(int)(((peak-128)*.75)+128); | |
657 | low= (int)(((low-128)*.75)+128); | |
658 | int ii; | |
659 | int clkCnt; | |
660 | int tol = 0; | |
661 | int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000}; | |
662 | int errCnt=0; | |
663 | //test each valid clock from smallest to greatest to see which lines up | |
664 | for(clkCnt=0; clkCnt<6;++clkCnt){ | |
665 | if (clk[clkCnt]==32){ | |
666 | tol=1; | |
667 | }else{ | |
668 | tol=0; | |
669 | } | |
670 | bestErr[clkCnt]=1000; | |
671 | //try lining up the peaks by moving starting point (try first 256) | |
672 | for (ii=0; ii<loopCnt; ++ii){ | |
673 | if ((dest[ii]>=peak) || (dest[ii]<=low)){ | |
674 | errCnt=0; | |
675 | // now that we have the first one lined up test rest of wave array | |
676 | for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){ | |
677 | if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ | |
678 | }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ | |
679 | }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ | |
680 | }else{ //error no peak detected | |
681 | errCnt++; | |
682 | } | |
683 | } | |
684 | //if we found no errors this is correct one - return this clock | |
685 | if(errCnt==0) return clk[clkCnt]; | |
686 | //if we found errors see if it is lowest so far and save it as best run | |
687 | if(errCnt<bestErr[clkCnt]) bestErr[clkCnt]=errCnt; | |
688 | } | |
689 | } | |
690 | } | |
691 | int iii=0; | |
692 | int best=0; | |
693 | for (iii=0; iii<7;++iii){ | |
694 | if (bestErr[iii]<bestErr[best]){ | |
695 | // current best bit to error ratio vs new bit to error ratio | |
696 | if (((size/clk[best])/bestErr[best]<(size/clk[iii])/bestErr[iii]) ){ | |
697 | best = iii; | |
698 | } | |
699 | } | |
700 | } | |
701 | return clk[best]; | |
702 | } | |
703 | ||
704 | //by marshmellow | |
705 | //detect psk clock by reading #peaks vs no peaks(or errors) | |
706 | int DetectpskNRZClock(uint8_t dest[], size_t size, int clock) | |
707 | { | |
708 | int i=0; | |
709 | int peak=0; | |
710 | int low=128; | |
711 | int clk[]={16,32,40,50,64,100,128,256}; | |
712 | int loopCnt = 2048; //don't need to loop through entire array... | |
713 | if (size<loopCnt) loopCnt = size; | |
714 | ||
715 | //if we already have a valid clock quit | |
716 | for (;i<8;++i) | |
717 | if (clk[i]==clock) return clock; | |
718 | ||
719 | //get high and low peak | |
720 | for (i=0;i<loopCnt;++i){ | |
721 | if(dest[i]>peak){ | |
722 | peak = dest[i]; | |
723 | } | |
724 | if(dest[i]<low){ | |
725 | low = dest[i]; | |
726 | } | |
727 | } | |
728 | peak=(int)(((peak-128)*.90)+128); | |
729 | low= (int)(((low-128)*.90)+128); | |
730 | //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low); | |
731 | int ii; | |
732 | uint8_t clkCnt; | |
733 | uint8_t tol = 0; | |
734 | int peakcnt=0; | |
735 | int errCnt=0; | |
736 | int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; | |
737 | int peaksdet[]={0,0,0,0,0,0,0,0,0}; | |
738 | //test each valid clock from smallest to greatest to see which lines up | |
739 | for(clkCnt=0; clkCnt<6;++clkCnt){ | |
740 | if (clk[clkCnt]==32){ | |
741 | tol=0; | |
742 | }else{ | |
743 | tol=0; | |
744 | } | |
745 | //try lining up the peaks by moving starting point (try first 256) | |
746 | for (ii=0; ii<loopCnt; ++ii){ | |
747 | if ((dest[ii]>=peak) || (dest[ii]<=low)){ | |
748 | errCnt=0; | |
749 | peakcnt=0; | |
750 | // now that we have the first one lined up test rest of wave array | |
751 | for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){ | |
752 | if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ | |
753 | peakcnt++; | |
754 | }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ | |
755 | peakcnt++; | |
756 | }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ | |
757 | peakcnt++; | |
758 | }else{ //error no peak detected | |
759 | errCnt++; | |
760 | } | |
761 | } | |
762 | if(peakcnt>peaksdet[clkCnt]) { | |
763 | peaksdet[clkCnt]=peakcnt; | |
764 | bestErr[clkCnt]=errCnt; | |
765 | } | |
766 | } | |
767 | } | |
768 | } | |
769 | int iii=0; | |
770 | int best=0; | |
771 | //int ratio2; //debug | |
772 | int ratio; | |
773 | //int bits; | |
774 | for (iii=0; iii<7;++iii){ | |
775 | ratio=1000; | |
776 | //ratio2=1000; //debug | |
777 | //bits=size/clk[iii]; //debug | |
778 | if (peaksdet[iii]>0){ | |
779 | ratio=bestErr[iii]/peaksdet[iii]; | |
780 | if (((bestErr[best]/peaksdet[best])>(ratio)+1)){ | |
781 | best = iii; | |
782 | } | |
783 | //ratio2=bits/peaksdet[iii]; //debug | |
784 | } | |
785 | //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d, ratio: %d, bits: %d, peakbitr: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best],ratio, bits,ratio2); | |
786 | } | |
787 | return clk[best]; | |
788 | } | |
789 | ||
790 | //by marshmellow (attempt to get rid of high immediately after a low) | |
791 | void pskCleanWave(uint8_t *bitStream, size_t size) | |
792 | { | |
793 | int i; | |
794 | int low=128; | |
795 | int high=0; | |
796 | int gap = 4; | |
797 | // int loopMax = 2048; | |
798 | int newLow=0; | |
799 | int newHigh=0; | |
800 | for (i=0; i<size; ++i){ | |
801 | if (bitStream[i]<low) low=bitStream[i]; | |
802 | if (bitStream[i]>high) high=bitStream[i]; | |
803 | } | |
804 | high = (int)(((high-128)*.80)+128); | |
805 | low = (int)(((low-128)*.90)+128); | |
806 | //low = (uint8_t)(((int)(low)-128)*.80)+128; | |
807 | for (i=0; i<size; ++i){ | |
808 | if (newLow==1){ | |
809 | bitStream[i]=low+8; | |
810 | gap--; | |
811 | if (gap==0){ | |
812 | newLow=0; | |
813 | gap=4; | |
814 | } | |
815 | }else if (newHigh==1){ | |
816 | bitStream[i]=high-8; | |
817 | gap--; | |
818 | if (gap==0){ | |
819 | newHigh=0; | |
820 | gap=4; | |
821 | } | |
822 | } | |
823 | if (bitStream[i]<=low) newLow=1; | |
824 | if (bitStream[i]>=high) newHigh=1; | |
825 | } | |
826 | return; | |
827 | } | |
828 | ||
829 | ||
830 | //redesigned by marshmellow adjusted from existing decode functions | |
831 | //indala id decoding - only tested on 26 bit tags, but attempted to make it work for more | |
832 | int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert) | |
833 | { | |
834 | //26 bit 40134 format (don't know other formats) | |
835 | int i; | |
836 | int long_wait; | |
837 | long_wait = 29;//29 leading zeros in format | |
838 | int start; | |
839 | int first = 0; | |
840 | int first2 = 0; | |
841 | int bitCnt = 0; | |
842 | int ii; | |
843 | // Finding the start of a UID | |
844 | for (start = 0; start <= *size - 250; start++) { | |
845 | first = bitStream[start]; | |
846 | for (i = start; i < start + long_wait; i++) { | |
847 | if (bitStream[i] != first) { | |
848 | break; | |
849 | } | |
850 | } | |
851 | if (i == (start + long_wait)) { | |
852 | break; | |
853 | } | |
854 | } | |
855 | if (start == *size - 250 + 1) { | |
856 | // did not find start sequence | |
857 | return -1; | |
858 | } | |
859 | //found start once now test length by finding next one | |
860 | // Inverting signal if needed | |
861 | if (first == 1) { | |
862 | for (i = start; i < *size; i++) { | |
863 | bitStream[i] = !bitStream[i]; | |
864 | } | |
865 | *invert = 1; | |
866 | }else *invert=0; | |
867 | ||
868 | int iii; | |
869 | for (ii=start+29; ii <= *size - 250; ii++) { | |
870 | first2 = bitStream[ii]; | |
871 | for (iii = ii; iii < ii + long_wait; iii++) { | |
872 | if (bitStream[iii] != first2) { | |
873 | break; | |
874 | } | |
875 | } | |
876 | if (iii == (ii + long_wait)) { | |
877 | break; | |
878 | } | |
879 | } | |
880 | if (ii== *size - 250 + 1){ | |
881 | // did not find second start sequence | |
882 | return -2; | |
883 | } | |
884 | bitCnt=ii-start; | |
885 | ||
886 | // Dumping UID | |
887 | i = start; | |
888 | for (ii = 0; ii < bitCnt; ii++) { | |
889 | bitStream[ii] = bitStream[i++]; | |
890 | } | |
891 | *size=bitCnt; | |
892 | return 1; | |
893 | } | |
894 | ||
895 | ||
896 | //by marshmellow - demodulate PSK wave or NRZ wave (both similar enough) | |
897 | //peaks switch bit (high=1 low=0) each clock cycle = 1 bit determined by last peak | |
898 | int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert) | |
899 | { | |
900 | pskCleanWave(dest,*size); | |
901 | int clk2 = DetectpskNRZClock(dest, *size, *clk); | |
902 | *clk=clk2; | |
903 | uint32_t i; | |
904 | uint8_t high=0, low=128; | |
905 | uint32_t gLen = *size; | |
906 | if (gLen > 1280) gLen=1280; | |
907 | // get high | |
908 | for (i=0; i<gLen; ++i){ | |
909 | if (dest[i]>high) high = dest[i]; | |
910 | if (dest[i]<low) low=dest[i]; | |
911 | } | |
912 | //fudge high/low bars by 25% | |
913 | high = (uint8_t)((((int)(high)-128)*.75)+128); | |
914 | low = (uint8_t)((((int)(low)-128)*.80)+128); | |
915 | ||
916 | //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); | |
917 | int lastBit = 0; //set first clock check | |
918 | uint32_t bitnum = 0; //output counter | |
919 | uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave | |
920 | if (*clk==32)tol=2; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely | |
921 | uint32_t iii = 0; | |
922 | uint8_t errCnt =0; | |
923 | uint32_t bestStart = *size; | |
924 | uint32_t maxErr = (*size/1000); | |
925 | uint32_t bestErrCnt = maxErr; | |
926 | //uint8_t midBit=0; | |
927 | uint8_t curBit=0; | |
928 | uint8_t bitHigh=0; | |
929 | uint8_t ignorewin=*clk/8; | |
930 | //PrintAndLog("DEBUG - lastbit - %d",lastBit); | |
931 | //loop to find first wave that works - align to clock | |
932 | for (iii=0; iii < gLen; ++iii){ | |
933 | if ((dest[iii]>=high)||(dest[iii]<=low)){ | |
934 | lastBit=iii-*clk; | |
935 | //loop through to see if this start location works | |
936 | for (i = iii; i < *size; ++i) { | |
937 | //if we found a high bar and we are at a clock bit | |
938 | if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ | |
939 | bitHigh=1; | |
940 | lastBit+=*clk; | |
941 | ignorewin=*clk/8; | |
942 | bitnum++; | |
943 | //else if low bar found and we are at a clock point | |
944 | }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ | |
945 | bitHigh=1; | |
946 | lastBit+=*clk; | |
947 | ignorewin=*clk/8; | |
948 | bitnum++; | |
949 | //else if no bars found | |
950 | }else if(dest[i]<high && dest[i]>low) { | |
951 | if (ignorewin==0){ | |
952 | bitHigh=0; | |
953 | }else ignorewin--; | |
954 | //if we are past a clock point | |
955 | if (i>=lastBit+*clk+tol){ //clock val | |
956 | lastBit+=*clk; | |
957 | bitnum++; | |
958 | } | |
959 | //else if bar found but we are not at a clock bit and we did not just have a clock bit | |
960 | }else if ((dest[i]>=high || dest[i]<=low) && (i<lastBit+*clk-tol || i>lastBit+*clk+tol) && (bitHigh==0)){ | |
961 | //error bar found no clock... | |
962 | errCnt++; | |
963 | } | |
964 | if (bitnum>=1000) break; | |
965 | } | |
966 | //we got more than 64 good bits and not all errors | |
967 | if ((bitnum > (64+errCnt)) && (errCnt<(maxErr))) { | |
968 | //possible good read | |
969 | if (errCnt==0){ | |
970 | bestStart = iii; | |
971 | bestErrCnt=errCnt; | |
972 | break; //great read - finish | |
973 | } | |
974 | if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish | |
975 | if (errCnt<bestErrCnt){ //set this as new best run | |
976 | bestErrCnt=errCnt; | |
977 | bestStart = iii; | |
978 | } | |
979 | } | |
980 | } | |
981 | } | |
982 | if (bestErrCnt<maxErr){ | |
983 | //best run is good enough set to best run and set overwrite BinStream | |
984 | iii=bestStart; | |
985 | lastBit=bestStart-*clk; | |
986 | bitnum=0; | |
987 | for (i = iii; i < *size; ++i) { | |
988 | //if we found a high bar and we are at a clock bit | |
989 | if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ | |
990 | bitHigh=1; | |
991 | lastBit+=*clk; | |
992 | curBit=1-*invert; | |
993 | dest[bitnum]=curBit; | |
994 | ignorewin=*clk/8; | |
995 | bitnum++; | |
996 | //else if low bar found and we are at a clock point | |
997 | }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ | |
998 | bitHigh=1; | |
999 | lastBit+=*clk; | |
1000 | curBit=*invert; | |
1001 | dest[bitnum]=curBit; | |
1002 | ignorewin=*clk/8; | |
1003 | bitnum++; | |
1004 | //else if no bars found | |
1005 | }else if(dest[i]<high && dest[i]>low) { | |
1006 | if (ignorewin==0){ | |
1007 | bitHigh=0; | |
1008 | }else ignorewin--; | |
1009 | //if we are past a clock point | |
1010 | if (i>=lastBit+*clk+tol){ //clock val | |
1011 | lastBit+=*clk; | |
1012 | dest[bitnum]=curBit; | |
1013 | bitnum++; | |
1014 | } | |
1015 | //else if bar found but we are not at a clock bit and we did not just have a clock bit | |
1016 | }else if ((dest[i]>=high || dest[i]<=low) && ((i<lastBit+*clk-tol) || (i>lastBit+*clk+tol)) && (bitHigh==0)){ | |
1017 | //error bar found no clock... | |
1018 | bitHigh=1; | |
1019 | dest[bitnum]=77; | |
1020 | bitnum++; | |
1021 | errCnt++; | |
1022 | } | |
1023 | if (bitnum >=1000) break; | |
1024 | } | |
1025 | *size=bitnum; | |
1026 | } else{ | |
1027 | *size=bitnum; | |
1028 | *clk=bestStart; | |
1029 | return -1; | |
1030 | } | |
1031 | ||
1032 | if (bitnum>16){ | |
1033 | *size=bitnum; | |
1034 | } else return -1; | |
1035 | return errCnt; | |
1036 | } | |
1037 |