| 1 | //----------------------------------------------------------------------------- |
| 2 | // Jonathan Westhues, Mar 2006 |
| 3 | // Edits by Gerhard de Koning Gans, Sep 2007 (##) |
| 4 | // |
| 5 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
| 6 | // at your option, any later version. See the LICENSE.txt file for the text of |
| 7 | // the license. |
| 8 | //----------------------------------------------------------------------------- |
| 9 | // The main application code. This is the first thing called after start.c |
| 10 | // executes. |
| 11 | //----------------------------------------------------------------------------- |
| 12 | |
| 13 | #include "usb_cdc.h" |
| 14 | #include "cmd.h" |
| 15 | |
| 16 | #include "proxmark3.h" |
| 17 | #include "apps.h" |
| 18 | #include "util.h" |
| 19 | #include "printf.h" |
| 20 | #include "string.h" |
| 21 | |
| 22 | #include <stdarg.h> |
| 23 | |
| 24 | #include "legicrf.h" |
| 25 | #include <hitag2.h> |
| 26 | #include "lfsampling.h" |
| 27 | #include "BigBuf.h" |
| 28 | #ifdef WITH_LCD |
| 29 | #include "LCD.h" |
| 30 | #endif |
| 31 | |
| 32 | #define abs(x) ( ((x)<0) ? -(x) : (x) ) |
| 33 | |
| 34 | //============================================================================= |
| 35 | // A buffer where we can queue things up to be sent through the FPGA, for |
| 36 | // any purpose (fake tag, as reader, whatever). We go MSB first, since that |
| 37 | // is the order in which they go out on the wire. |
| 38 | //============================================================================= |
| 39 | |
| 40 | #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits |
| 41 | uint8_t ToSend[TOSEND_BUFFER_SIZE]; |
| 42 | int ToSendMax; |
| 43 | static int ToSendBit; |
| 44 | struct common_area common_area __attribute__((section(".commonarea"))); |
| 45 | |
| 46 | void ToSendReset(void) |
| 47 | { |
| 48 | ToSendMax = -1; |
| 49 | ToSendBit = 8; |
| 50 | } |
| 51 | |
| 52 | void ToSendStuffBit(int b) |
| 53 | { |
| 54 | if(ToSendBit >= 8) { |
| 55 | ToSendMax++; |
| 56 | ToSend[ToSendMax] = 0; |
| 57 | ToSendBit = 0; |
| 58 | } |
| 59 | |
| 60 | if(b) { |
| 61 | ToSend[ToSendMax] |= (1 << (7 - ToSendBit)); |
| 62 | } |
| 63 | |
| 64 | ToSendBit++; |
| 65 | |
| 66 | if(ToSendMax >= sizeof(ToSend)) { |
| 67 | ToSendBit = 0; |
| 68 | DbpString("ToSendStuffBit overflowed!"); |
| 69 | } |
| 70 | } |
| 71 | |
| 72 | //============================================================================= |
| 73 | // Debug print functions, to go out over USB, to the usual PC-side client. |
| 74 | //============================================================================= |
| 75 | |
| 76 | void DbpString(char *str) |
| 77 | { |
| 78 | byte_t len = strlen(str); |
| 79 | cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len); |
| 80 | } |
| 81 | |
| 82 | #if 0 |
| 83 | void DbpIntegers(int x1, int x2, int x3) |
| 84 | { |
| 85 | cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0); |
| 86 | } |
| 87 | #endif |
| 88 | |
| 89 | void Dbprintf(const char *fmt, ...) { |
| 90 | // should probably limit size here; oh well, let's just use a big buffer |
| 91 | char output_string[128]; |
| 92 | va_list ap; |
| 93 | |
| 94 | va_start(ap, fmt); |
| 95 | kvsprintf(fmt, output_string, 10, ap); |
| 96 | va_end(ap); |
| 97 | |
| 98 | DbpString(output_string); |
| 99 | } |
| 100 | |
| 101 | // prints HEX & ASCII |
| 102 | void Dbhexdump(int len, uint8_t *d, bool bAsci) { |
| 103 | int l=0,i; |
| 104 | char ascii[9]; |
| 105 | |
| 106 | while (len>0) { |
| 107 | if (len>8) l=8; |
| 108 | else l=len; |
| 109 | |
| 110 | memcpy(ascii,d,l); |
| 111 | ascii[l]=0; |
| 112 | |
| 113 | // filter safe ascii |
| 114 | for (i=0;i<l;i++) |
| 115 | if (ascii[i]<32 || ascii[i]>126) ascii[i]='.'; |
| 116 | |
| 117 | if (bAsci) { |
| 118 | Dbprintf("%-8s %*D",ascii,l,d," "); |
| 119 | } else { |
| 120 | Dbprintf("%*D",l,d," "); |
| 121 | } |
| 122 | |
| 123 | len-=8; |
| 124 | d+=8; |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | //----------------------------------------------------------------------------- |
| 129 | // Read an ADC channel and block till it completes, then return the result |
| 130 | // in ADC units (0 to 1023). Also a routine to average 32 samples and |
| 131 | // return that. |
| 132 | //----------------------------------------------------------------------------- |
| 133 | static int ReadAdc(int ch) |
| 134 | { |
| 135 | uint32_t d; |
| 136 | |
| 137 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; |
| 138 | AT91C_BASE_ADC->ADC_MR = |
| 139 | ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz |
| 140 | ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us |
| 141 | ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us |
| 142 | |
| 143 | // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value. |
| 144 | // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant |
| 145 | // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged. |
| 146 | // |
| 147 | // The maths are: |
| 148 | // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be |
| 149 | // |
| 150 | // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%) |
| 151 | // |
| 152 | // Note: with the "historic" values in the comments above, the error was 34% !!! |
| 153 | |
| 154 | AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch); |
| 155 | |
| 156 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; |
| 157 | |
| 158 | while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) |
| 159 | ; |
| 160 | d = AT91C_BASE_ADC->ADC_CDR[ch]; |
| 161 | |
| 162 | return d; |
| 163 | } |
| 164 | |
| 165 | int AvgAdc(int ch) // was static - merlok |
| 166 | { |
| 167 | int i; |
| 168 | int a = 0; |
| 169 | |
| 170 | for(i = 0; i < 32; i++) { |
| 171 | a += ReadAdc(ch); |
| 172 | } |
| 173 | |
| 174 | return (a + 15) >> 5; |
| 175 | } |
| 176 | |
| 177 | void MeasureAntennaTuning(void) |
| 178 | { |
| 179 | uint8_t LF_Results[256]; |
| 180 | int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0 |
| 181 | int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV |
| 182 | |
| 183 | LED_B_ON(); |
| 184 | |
| 185 | /* |
| 186 | * Sweeps the useful LF range of the proxmark from |
| 187 | * 46.8kHz (divisor=255) to 600kHz (divisor=19) and |
| 188 | * read the voltage in the antenna, the result left |
| 189 | * in the buffer is a graph which should clearly show |
| 190 | * the resonating frequency of your LF antenna |
| 191 | * ( hopefully around 95 if it is tuned to 125kHz!) |
| 192 | */ |
| 193 | |
| 194 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
| 195 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
| 196 | for (i=255; i>=19; i--) { |
| 197 | WDT_HIT(); |
| 198 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); |
| 199 | SpinDelay(20); |
| 200 | adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10); |
| 201 | if (i==95) vLf125 = adcval; // voltage at 125Khz |
| 202 | if (i==89) vLf134 = adcval; // voltage at 134Khz |
| 203 | |
| 204 | LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes |
| 205 | if(LF_Results[i] > peak) { |
| 206 | peakv = adcval; |
| 207 | peak = LF_Results[i]; |
| 208 | peakf = i; |
| 209 | //ptr = i; |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | for (i=18; i >= 0; i--) LF_Results[i] = 0; |
| 214 | |
| 215 | LED_A_ON(); |
| 216 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. |
| 217 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
| 218 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); |
| 219 | SpinDelay(20); |
| 220 | vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; |
| 221 | |
| 222 | cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256); |
| 223 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 224 | LED_A_OFF(); |
| 225 | LED_B_OFF(); |
| 226 | return; |
| 227 | } |
| 228 | |
| 229 | void MeasureAntennaTuningHf(void) |
| 230 | { |
| 231 | int vHf = 0; // in mV |
| 232 | |
| 233 | DbpString("Measuring HF antenna, press button to exit"); |
| 234 | |
| 235 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. |
| 236 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
| 237 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); |
| 238 | |
| 239 | for (;;) { |
| 240 | SpinDelay(20); |
| 241 | vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; |
| 242 | |
| 243 | Dbprintf("%d mV",vHf); |
| 244 | if (BUTTON_PRESS()) break; |
| 245 | } |
| 246 | DbpString("cancelled"); |
| 247 | |
| 248 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 249 | |
| 250 | } |
| 251 | |
| 252 | |
| 253 | void SimulateTagHfListen(void) |
| 254 | { |
| 255 | // ToDo: historically this used the free buffer, which was 2744 Bytes long. |
| 256 | // There might be a better size to be defined: |
| 257 | #define HF_14B_SNOOP_BUFFER_SIZE 2744 |
| 258 | uint8_t *dest = BigBuf_malloc(HF_14B_SNOOP_BUFFER_SIZE); |
| 259 | uint8_t v = 0; |
| 260 | int i; |
| 261 | int p = 0; |
| 262 | |
| 263 | // We're using this mode just so that I can test it out; the simulated |
| 264 | // tag mode would work just as well and be simpler. |
| 265 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
| 266 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); |
| 267 | |
| 268 | // We need to listen to the high-frequency, peak-detected path. |
| 269 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
| 270 | |
| 271 | FpgaSetupSsc(); |
| 272 | |
| 273 | i = 0; |
| 274 | for(;;) { |
| 275 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
| 276 | AT91C_BASE_SSC->SSC_THR = 0xff; |
| 277 | } |
| 278 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
| 279 | uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
| 280 | |
| 281 | v <<= 1; |
| 282 | if(r & 1) { |
| 283 | v |= 1; |
| 284 | } |
| 285 | p++; |
| 286 | |
| 287 | if(p >= 8) { |
| 288 | dest[i] = v; |
| 289 | v = 0; |
| 290 | p = 0; |
| 291 | i++; |
| 292 | |
| 293 | if(i >= HF_14B_SNOOP_BUFFER_SIZE) { |
| 294 | break; |
| 295 | } |
| 296 | } |
| 297 | } |
| 298 | } |
| 299 | DbpString("simulate tag (now type bitsamples)"); |
| 300 | } |
| 301 | |
| 302 | void ReadMem(int addr) |
| 303 | { |
| 304 | const uint8_t *data = ((uint8_t *)addr); |
| 305 | |
| 306 | Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x", |
| 307 | addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); |
| 308 | } |
| 309 | |
| 310 | /* osimage version information is linked in */ |
| 311 | extern struct version_information version_information; |
| 312 | /* bootrom version information is pointed to from _bootphase1_version_pointer */ |
| 313 | extern char *_bootphase1_version_pointer, _flash_start, _flash_end; |
| 314 | void SendVersion(void) |
| 315 | { |
| 316 | char temp[512]; /* Limited data payload in USB packets */ |
| 317 | DbpString("Prox/RFID mark3 RFID instrument"); |
| 318 | |
| 319 | /* Try to find the bootrom version information. Expect to find a pointer at |
| 320 | * symbol _bootphase1_version_pointer, perform slight sanity checks on the |
| 321 | * pointer, then use it. |
| 322 | */ |
| 323 | char *bootrom_version = *(char**)&_bootphase1_version_pointer; |
| 324 | if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) { |
| 325 | DbpString("bootrom version information appears invalid"); |
| 326 | } else { |
| 327 | FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version); |
| 328 | DbpString(temp); |
| 329 | } |
| 330 | |
| 331 | FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information); |
| 332 | DbpString(temp); |
| 333 | |
| 334 | FpgaGatherVersion(temp, sizeof(temp)); |
| 335 | DbpString(temp); |
| 336 | // Send Chip ID |
| 337 | cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0); |
| 338 | } |
| 339 | |
| 340 | #ifdef WITH_LF |
| 341 | // samy's sniff and repeat routine |
| 342 | void SamyRun() |
| 343 | { |
| 344 | DbpString("Stand-alone mode! No PC necessary."); |
| 345 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
| 346 | |
| 347 | // 3 possible options? no just 2 for now |
| 348 | #define OPTS 2 |
| 349 | |
| 350 | int high[OPTS], low[OPTS]; |
| 351 | |
| 352 | // Oooh pretty -- notify user we're in elite samy mode now |
| 353 | LED(LED_RED, 200); |
| 354 | LED(LED_ORANGE, 200); |
| 355 | LED(LED_GREEN, 200); |
| 356 | LED(LED_ORANGE, 200); |
| 357 | LED(LED_RED, 200); |
| 358 | LED(LED_ORANGE, 200); |
| 359 | LED(LED_GREEN, 200); |
| 360 | LED(LED_ORANGE, 200); |
| 361 | LED(LED_RED, 200); |
| 362 | |
| 363 | int selected = 0; |
| 364 | int playing = 0; |
| 365 | int cardRead = 0; |
| 366 | |
| 367 | // Turn on selected LED |
| 368 | LED(selected + 1, 0); |
| 369 | |
| 370 | for (;;) |
| 371 | { |
| 372 | usb_poll(); |
| 373 | WDT_HIT(); |
| 374 | |
| 375 | // Was our button held down or pressed? |
| 376 | int button_pressed = BUTTON_HELD(1000); |
| 377 | SpinDelay(300); |
| 378 | |
| 379 | // Button was held for a second, begin recording |
| 380 | if (button_pressed > 0 && cardRead == 0) |
| 381 | { |
| 382 | LEDsoff(); |
| 383 | LED(selected + 1, 0); |
| 384 | LED(LED_RED2, 0); |
| 385 | |
| 386 | // record |
| 387 | DbpString("Starting recording"); |
| 388 | |
| 389 | // wait for button to be released |
| 390 | while(BUTTON_PRESS()) |
| 391 | WDT_HIT(); |
| 392 | |
| 393 | /* need this delay to prevent catching some weird data */ |
| 394 | SpinDelay(500); |
| 395 | |
| 396 | CmdHIDdemodFSK(1, &high[selected], &low[selected], 0); |
| 397 | Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]); |
| 398 | |
| 399 | LEDsoff(); |
| 400 | LED(selected + 1, 0); |
| 401 | // Finished recording |
| 402 | |
| 403 | // If we were previously playing, set playing off |
| 404 | // so next button push begins playing what we recorded |
| 405 | playing = 0; |
| 406 | |
| 407 | cardRead = 1; |
| 408 | |
| 409 | } |
| 410 | |
| 411 | else if (button_pressed > 0 && cardRead == 1) |
| 412 | { |
| 413 | LEDsoff(); |
| 414 | LED(selected + 1, 0); |
| 415 | LED(LED_ORANGE, 0); |
| 416 | |
| 417 | // record |
| 418 | Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]); |
| 419 | |
| 420 | // wait for button to be released |
| 421 | while(BUTTON_PRESS()) |
| 422 | WDT_HIT(); |
| 423 | |
| 424 | /* need this delay to prevent catching some weird data */ |
| 425 | SpinDelay(500); |
| 426 | |
| 427 | CopyHIDtoT55x7(high[selected], low[selected], 0, 0); |
| 428 | Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]); |
| 429 | |
| 430 | LEDsoff(); |
| 431 | LED(selected + 1, 0); |
| 432 | // Finished recording |
| 433 | |
| 434 | // If we were previously playing, set playing off |
| 435 | // so next button push begins playing what we recorded |
| 436 | playing = 0; |
| 437 | |
| 438 | cardRead = 0; |
| 439 | |
| 440 | } |
| 441 | |
| 442 | // Change where to record (or begin playing) |
| 443 | else if (button_pressed) |
| 444 | { |
| 445 | // Next option if we were previously playing |
| 446 | if (playing) |
| 447 | selected = (selected + 1) % OPTS; |
| 448 | playing = !playing; |
| 449 | |
| 450 | LEDsoff(); |
| 451 | LED(selected + 1, 0); |
| 452 | |
| 453 | // Begin transmitting |
| 454 | if (playing) |
| 455 | { |
| 456 | LED(LED_GREEN, 0); |
| 457 | DbpString("Playing"); |
| 458 | // wait for button to be released |
| 459 | while(BUTTON_PRESS()) |
| 460 | WDT_HIT(); |
| 461 | Dbprintf("%x %x %x", selected, high[selected], low[selected]); |
| 462 | CmdHIDsimTAG(high[selected], low[selected], 0); |
| 463 | DbpString("Done playing"); |
| 464 | if (BUTTON_HELD(1000) > 0) |
| 465 | { |
| 466 | DbpString("Exiting"); |
| 467 | LEDsoff(); |
| 468 | return; |
| 469 | } |
| 470 | |
| 471 | /* We pressed a button so ignore it here with a delay */ |
| 472 | SpinDelay(300); |
| 473 | |
| 474 | // when done, we're done playing, move to next option |
| 475 | selected = (selected + 1) % OPTS; |
| 476 | playing = !playing; |
| 477 | LEDsoff(); |
| 478 | LED(selected + 1, 0); |
| 479 | } |
| 480 | else |
| 481 | while(BUTTON_PRESS()) |
| 482 | WDT_HIT(); |
| 483 | } |
| 484 | } |
| 485 | } |
| 486 | #endif |
| 487 | |
| 488 | /* |
| 489 | OBJECTIVE |
| 490 | Listen and detect an external reader. Determine the best location |
| 491 | for the antenna. |
| 492 | |
| 493 | INSTRUCTIONS: |
| 494 | Inside the ListenReaderField() function, there is two mode. |
| 495 | By default, when you call the function, you will enter mode 1. |
| 496 | If you press the PM3 button one time, you will enter mode 2. |
| 497 | If you press the PM3 button a second time, you will exit the function. |
| 498 | |
| 499 | DESCRIPTION OF MODE 1: |
| 500 | This mode just listens for an external reader field and lights up green |
| 501 | for HF and/or red for LF. This is the original mode of the detectreader |
| 502 | function. |
| 503 | |
| 504 | DESCRIPTION OF MODE 2: |
| 505 | This mode will visually represent, using the LEDs, the actual strength of the |
| 506 | current compared to the maximum current detected. Basically, once you know |
| 507 | what kind of external reader is present, it will help you spot the best location to place |
| 508 | your antenna. You will probably not get some good results if there is a LF and a HF reader |
| 509 | at the same place! :-) |
| 510 | |
| 511 | LIGHT SCHEME USED: |
| 512 | */ |
| 513 | static const char LIGHT_SCHEME[] = { |
| 514 | 0x0, /* ---- | No field detected */ |
| 515 | 0x1, /* X--- | 14% of maximum current detected */ |
| 516 | 0x2, /* -X-- | 29% of maximum current detected */ |
| 517 | 0x4, /* --X- | 43% of maximum current detected */ |
| 518 | 0x8, /* ---X | 57% of maximum current detected */ |
| 519 | 0xC, /* --XX | 71% of maximum current detected */ |
| 520 | 0xE, /* -XXX | 86% of maximum current detected */ |
| 521 | 0xF, /* XXXX | 100% of maximum current detected */ |
| 522 | }; |
| 523 | static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]); |
| 524 | |
| 525 | void ListenReaderField(int limit) |
| 526 | { |
| 527 | int lf_av, lf_av_new, lf_baseline= 0, lf_max; |
| 528 | int hf_av, hf_av_new, hf_baseline= 0, hf_max; |
| 529 | int mode=1, display_val, display_max, i; |
| 530 | |
| 531 | #define LF_ONLY 1 |
| 532 | #define HF_ONLY 2 |
| 533 | #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE |
| 534 | |
| 535 | |
| 536 | // switch off FPGA - we don't want to measure our own signal |
| 537 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
| 538 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 539 | |
| 540 | LEDsoff(); |
| 541 | |
| 542 | lf_av = lf_max = AvgAdc(ADC_CHAN_LF); |
| 543 | |
| 544 | if(limit != HF_ONLY) { |
| 545 | Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10); |
| 546 | lf_baseline = lf_av; |
| 547 | } |
| 548 | |
| 549 | hf_av = hf_max = AvgAdc(ADC_CHAN_HF); |
| 550 | |
| 551 | if (limit != LF_ONLY) { |
| 552 | Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10); |
| 553 | hf_baseline = hf_av; |
| 554 | } |
| 555 | |
| 556 | for(;;) { |
| 557 | if (BUTTON_PRESS()) { |
| 558 | SpinDelay(500); |
| 559 | switch (mode) { |
| 560 | case 1: |
| 561 | mode=2; |
| 562 | DbpString("Signal Strength Mode"); |
| 563 | break; |
| 564 | case 2: |
| 565 | default: |
| 566 | DbpString("Stopped"); |
| 567 | LEDsoff(); |
| 568 | return; |
| 569 | break; |
| 570 | } |
| 571 | } |
| 572 | WDT_HIT(); |
| 573 | |
| 574 | if (limit != HF_ONLY) { |
| 575 | if(mode == 1) { |
| 576 | if (abs(lf_av - lf_baseline) > REPORT_CHANGE) |
| 577 | LED_D_ON(); |
| 578 | else |
| 579 | LED_D_OFF(); |
| 580 | } |
| 581 | |
| 582 | lf_av_new = AvgAdc(ADC_CHAN_LF); |
| 583 | // see if there's a significant change |
| 584 | if(abs(lf_av - lf_av_new) > REPORT_CHANGE) { |
| 585 | Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10); |
| 586 | lf_av = lf_av_new; |
| 587 | if (lf_av > lf_max) |
| 588 | lf_max = lf_av; |
| 589 | } |
| 590 | } |
| 591 | |
| 592 | if (limit != LF_ONLY) { |
| 593 | if (mode == 1){ |
| 594 | if (abs(hf_av - hf_baseline) > REPORT_CHANGE) |
| 595 | LED_B_ON(); |
| 596 | else |
| 597 | LED_B_OFF(); |
| 598 | } |
| 599 | |
| 600 | hf_av_new = AvgAdc(ADC_CHAN_HF); |
| 601 | // see if there's a significant change |
| 602 | if(abs(hf_av - hf_av_new) > REPORT_CHANGE) { |
| 603 | Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10); |
| 604 | hf_av = hf_av_new; |
| 605 | if (hf_av > hf_max) |
| 606 | hf_max = hf_av; |
| 607 | } |
| 608 | } |
| 609 | |
| 610 | if(mode == 2) { |
| 611 | if (limit == LF_ONLY) { |
| 612 | display_val = lf_av; |
| 613 | display_max = lf_max; |
| 614 | } else if (limit == HF_ONLY) { |
| 615 | display_val = hf_av; |
| 616 | display_max = hf_max; |
| 617 | } else { /* Pick one at random */ |
| 618 | if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) { |
| 619 | display_val = hf_av; |
| 620 | display_max = hf_max; |
| 621 | } else { |
| 622 | display_val = lf_av; |
| 623 | display_max = lf_max; |
| 624 | } |
| 625 | } |
| 626 | for (i=0; i<LIGHT_LEN; i++) { |
| 627 | if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) { |
| 628 | if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF(); |
| 629 | if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF(); |
| 630 | if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF(); |
| 631 | if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF(); |
| 632 | break; |
| 633 | } |
| 634 | } |
| 635 | } |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | void UsbPacketReceived(uint8_t *packet, int len) |
| 640 | { |
| 641 | UsbCommand *c = (UsbCommand *)packet; |
| 642 | |
| 643 | // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]); |
| 644 | |
| 645 | switch(c->cmd) { |
| 646 | #ifdef WITH_LF |
| 647 | case CMD_SET_LF_SAMPLING_CONFIG: |
| 648 | setSamplingConfig((sample_config *) c->d.asBytes); |
| 649 | break; |
| 650 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: |
| 651 | cmd_send(CMD_ACK,SampleLF(c->arg[0]),0,0,0,0); |
| 652 | break; |
| 653 | case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: |
| 654 | ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); |
| 655 | break; |
| 656 | case CMD_LF_SNOOP_RAW_ADC_SAMPLES: |
| 657 | cmd_send(CMD_ACK,SnoopLF(),0,0,0,0); |
| 658 | break; |
| 659 | case CMD_HID_DEMOD_FSK: |
| 660 | CmdHIDdemodFSK(c->arg[0], 0, 0, 1); |
| 661 | break; |
| 662 | case CMD_HID_SIM_TAG: |
| 663 | CmdHIDsimTAG(c->arg[0], c->arg[1], 1); |
| 664 | break; |
| 665 | case CMD_FSK_SIM_TAG: |
| 666 | CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 667 | break; |
| 668 | case CMD_ASK_SIM_TAG: |
| 669 | CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 670 | break; |
| 671 | case CMD_PSK_SIM_TAG: |
| 672 | CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 673 | break; |
| 674 | case CMD_HID_CLONE_TAG: |
| 675 | CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); |
| 676 | break; |
| 677 | case CMD_IO_DEMOD_FSK: |
| 678 | CmdIOdemodFSK(c->arg[0], 0, 0, 1); |
| 679 | break; |
| 680 | case CMD_IO_CLONE_TAG: |
| 681 | CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]); |
| 682 | break; |
| 683 | case CMD_EM410X_DEMOD: |
| 684 | CmdEM410xdemod(c->arg[0], 0, 0, 1); |
| 685 | break; |
| 686 | case CMD_EM410X_WRITE_TAG: |
| 687 | WriteEM410x(c->arg[0], c->arg[1], c->arg[2]); |
| 688 | break; |
| 689 | case CMD_READ_TI_TYPE: |
| 690 | ReadTItag(); |
| 691 | break; |
| 692 | case CMD_WRITE_TI_TYPE: |
| 693 | WriteTItag(c->arg[0],c->arg[1],c->arg[2]); |
| 694 | break; |
| 695 | case CMD_SIMULATE_TAG_125K: |
| 696 | LED_A_ON(); |
| 697 | SimulateTagLowFrequency(c->arg[0], c->arg[1], 1); |
| 698 | LED_A_OFF(); |
| 699 | break; |
| 700 | case CMD_LF_SIMULATE_BIDIR: |
| 701 | SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]); |
| 702 | break; |
| 703 | case CMD_INDALA_CLONE_TAG: |
| 704 | CopyIndala64toT55x7(c->arg[0], c->arg[1]); |
| 705 | break; |
| 706 | case CMD_INDALA_CLONE_TAG_L: |
| 707 | CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]); |
| 708 | break; |
| 709 | case CMD_T55XX_READ_BLOCK: |
| 710 | T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]); |
| 711 | break; |
| 712 | case CMD_T55XX_WRITE_BLOCK: |
| 713 | T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); |
| 714 | break; |
| 715 | case CMD_T55XX_READ_TRACE: |
| 716 | T55xxReadTrace(); |
| 717 | break; |
| 718 | case CMD_PCF7931_READ: |
| 719 | ReadPCF7931(); |
| 720 | cmd_send(CMD_ACK,0,0,0,0,0); |
| 721 | break; |
| 722 | case CMD_EM4X_READ_WORD: |
| 723 | EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]); |
| 724 | break; |
| 725 | case CMD_EM4X_WRITE_WORD: |
| 726 | EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); |
| 727 | break; |
| 728 | #endif |
| 729 | |
| 730 | #ifdef WITH_HITAG |
| 731 | case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type |
| 732 | SnoopHitag(c->arg[0]); |
| 733 | break; |
| 734 | case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content |
| 735 | SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes); |
| 736 | break; |
| 737 | case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function |
| 738 | ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes); |
| 739 | break; |
| 740 | #endif |
| 741 | |
| 742 | #ifdef WITH_ISO15693 |
| 743 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: |
| 744 | AcquireRawAdcSamplesIso15693(); |
| 745 | break; |
| 746 | case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693: |
| 747 | RecordRawAdcSamplesIso15693(); |
| 748 | break; |
| 749 | |
| 750 | case CMD_ISO_15693_COMMAND: |
| 751 | DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); |
| 752 | break; |
| 753 | |
| 754 | case CMD_ISO_15693_FIND_AFI: |
| 755 | BruteforceIso15693Afi(c->arg[0]); |
| 756 | break; |
| 757 | |
| 758 | case CMD_ISO_15693_DEBUG: |
| 759 | SetDebugIso15693(c->arg[0]); |
| 760 | break; |
| 761 | |
| 762 | case CMD_READER_ISO_15693: |
| 763 | ReaderIso15693(c->arg[0]); |
| 764 | break; |
| 765 | case CMD_SIMTAG_ISO_15693: |
| 766 | SimTagIso15693(c->arg[0], c->d.asBytes); |
| 767 | break; |
| 768 | #endif |
| 769 | |
| 770 | #ifdef WITH_LEGICRF |
| 771 | case CMD_SIMULATE_TAG_LEGIC_RF: |
| 772 | LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]); |
| 773 | break; |
| 774 | |
| 775 | case CMD_WRITER_LEGIC_RF: |
| 776 | LegicRfWriter(c->arg[1], c->arg[0]); |
| 777 | break; |
| 778 | |
| 779 | case CMD_READER_LEGIC_RF: |
| 780 | LegicRfReader(c->arg[0], c->arg[1]); |
| 781 | break; |
| 782 | #endif |
| 783 | |
| 784 | #ifdef WITH_ISO14443b |
| 785 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443: |
| 786 | AcquireRawAdcSamplesIso14443(c->arg[0]); |
| 787 | break; |
| 788 | case CMD_READ_SRI512_TAG: |
| 789 | ReadSTMemoryIso14443(0x0F); |
| 790 | break; |
| 791 | case CMD_READ_SRIX4K_TAG: |
| 792 | ReadSTMemoryIso14443(0x7F); |
| 793 | break; |
| 794 | case CMD_SNOOP_ISO_14443: |
| 795 | SnoopIso14443(); |
| 796 | break; |
| 797 | case CMD_SIMULATE_TAG_ISO_14443: |
| 798 | SimulateIso14443Tag(); |
| 799 | break; |
| 800 | case CMD_ISO_14443B_COMMAND: |
| 801 | SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); |
| 802 | break; |
| 803 | #endif |
| 804 | |
| 805 | #ifdef WITH_ISO14443a |
| 806 | case CMD_SNOOP_ISO_14443a: |
| 807 | SnoopIso14443a(c->arg[0]); |
| 808 | break; |
| 809 | case CMD_READER_ISO_14443a: |
| 810 | ReaderIso14443a(c); |
| 811 | break; |
| 812 | case CMD_SIMULATE_TAG_ISO_14443a: |
| 813 | SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID |
| 814 | break; |
| 815 | |
| 816 | case CMD_EPA_PACE_COLLECT_NONCE: |
| 817 | EPA_PACE_Collect_Nonce(c); |
| 818 | break; |
| 819 | |
| 820 | case CMD_READER_MIFARE: |
| 821 | ReaderMifare(c->arg[0]); |
| 822 | break; |
| 823 | case CMD_MIFARE_READBL: |
| 824 | MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 825 | break; |
| 826 | case CMD_MIFAREU_READBL: |
| 827 | MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes); |
| 828 | break; |
| 829 | case CMD_MIFAREUC_AUTH: |
| 830 | MifareUC_Auth(c->arg[0],c->d.asBytes); |
| 831 | break; |
| 832 | case CMD_MIFAREU_READCARD: |
| 833 | MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 834 | break; |
| 835 | case CMD_MIFAREUC_SETPWD: |
| 836 | MifareUSetPwd(c->arg[0], c->d.asBytes); |
| 837 | break; |
| 838 | case CMD_MIFARE_READSC: |
| 839 | MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 840 | break; |
| 841 | case CMD_MIFARE_WRITEBL: |
| 842 | MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 843 | break; |
| 844 | case CMD_MIFAREU_WRITEBL_COMPAT: |
| 845 | MifareUWriteBlock(c->arg[0], c->d.asBytes); |
| 846 | break; |
| 847 | case CMD_MIFAREU_WRITEBL: |
| 848 | MifareUWriteBlock_Special(c->arg[0], c->d.asBytes); |
| 849 | break; |
| 850 | case CMD_MIFARE_NESTED: |
| 851 | MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 852 | break; |
| 853 | case CMD_MIFARE_CHKKEYS: |
| 854 | MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 855 | break; |
| 856 | case CMD_SIMULATE_MIFARE_CARD: |
| 857 | Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 858 | break; |
| 859 | |
| 860 | // emulator |
| 861 | case CMD_MIFARE_SET_DBGMODE: |
| 862 | MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 863 | break; |
| 864 | case CMD_MIFARE_EML_MEMCLR: |
| 865 | MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 866 | break; |
| 867 | case CMD_MIFARE_EML_MEMSET: |
| 868 | MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 869 | break; |
| 870 | case CMD_MIFARE_EML_MEMGET: |
| 871 | MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 872 | break; |
| 873 | case CMD_MIFARE_EML_CARDLOAD: |
| 874 | MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 875 | break; |
| 876 | |
| 877 | // Work with "magic Chinese" card |
| 878 | case CMD_MIFARE_CSETBLOCK: |
| 879 | MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 880 | break; |
| 881 | case CMD_MIFARE_CGETBLOCK: |
| 882 | MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 883 | break; |
| 884 | case CMD_MIFARE_CIDENT: |
| 885 | MifareCIdent(); |
| 886 | break; |
| 887 | |
| 888 | // mifare sniffer |
| 889 | case CMD_MIFARE_SNIFFER: |
| 890 | SniffMifare(c->arg[0]); |
| 891 | break; |
| 892 | |
| 893 | #endif |
| 894 | |
| 895 | #ifdef WITH_ICLASS |
| 896 | // Makes use of ISO14443a FPGA Firmware |
| 897 | case CMD_SNOOP_ICLASS: |
| 898 | SnoopIClass(); |
| 899 | break; |
| 900 | case CMD_SIMULATE_TAG_ICLASS: |
| 901 | SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); |
| 902 | break; |
| 903 | case CMD_READER_ICLASS: |
| 904 | ReaderIClass(c->arg[0]); |
| 905 | break; |
| 906 | case CMD_READER_ICLASS_REPLAY: |
| 907 | ReaderIClass_Replay(c->arg[0], c->d.asBytes); |
| 908 | break; |
| 909 | case CMD_ICLASS_EML_MEMSET: |
| 910 | emlSet(c->d.asBytes,c->arg[0], c->arg[1]); |
| 911 | break; |
| 912 | #endif |
| 913 | |
| 914 | case CMD_SIMULATE_TAG_HF_LISTEN: |
| 915 | SimulateTagHfListen(); |
| 916 | break; |
| 917 | |
| 918 | case CMD_BUFF_CLEAR: |
| 919 | BigBuf_Clear(); |
| 920 | break; |
| 921 | |
| 922 | case CMD_MEASURE_ANTENNA_TUNING: |
| 923 | MeasureAntennaTuning(); |
| 924 | break; |
| 925 | |
| 926 | case CMD_MEASURE_ANTENNA_TUNING_HF: |
| 927 | MeasureAntennaTuningHf(); |
| 928 | break; |
| 929 | |
| 930 | case CMD_LISTEN_READER_FIELD: |
| 931 | ListenReaderField(c->arg[0]); |
| 932 | break; |
| 933 | |
| 934 | case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control |
| 935 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 936 | SpinDelay(200); |
| 937 | LED_D_OFF(); // LED D indicates field ON or OFF |
| 938 | break; |
| 939 | |
| 940 | case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: |
| 941 | |
| 942 | LED_B_ON(); |
| 943 | uint8_t *BigBuf = BigBuf_get_addr(); |
| 944 | for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) { |
| 945 | size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE); |
| 946 | cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len); |
| 947 | } |
| 948 | // Trigger a finish downloading signal with an ACK frame |
| 949 | cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config)); |
| 950 | LED_B_OFF(); |
| 951 | break; |
| 952 | |
| 953 | case CMD_DOWNLOADED_SIM_SAMPLES_125K: { |
| 954 | uint8_t *b = BigBuf_get_addr(); |
| 955 | memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE); |
| 956 | cmd_send(CMD_ACK,0,0,0,0,0); |
| 957 | break; |
| 958 | } |
| 959 | case CMD_READ_MEM: |
| 960 | ReadMem(c->arg[0]); |
| 961 | break; |
| 962 | |
| 963 | case CMD_SET_LF_DIVISOR: |
| 964 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
| 965 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]); |
| 966 | break; |
| 967 | |
| 968 | case CMD_SET_ADC_MUX: |
| 969 | switch(c->arg[0]) { |
| 970 | case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break; |
| 971 | case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break; |
| 972 | case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break; |
| 973 | case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break; |
| 974 | } |
| 975 | break; |
| 976 | |
| 977 | case CMD_VERSION: |
| 978 | SendVersion(); |
| 979 | break; |
| 980 | |
| 981 | #ifdef WITH_LCD |
| 982 | case CMD_LCD_RESET: |
| 983 | LCDReset(); |
| 984 | break; |
| 985 | case CMD_LCD: |
| 986 | LCDSend(c->arg[0]); |
| 987 | break; |
| 988 | #endif |
| 989 | case CMD_SETUP_WRITE: |
| 990 | case CMD_FINISH_WRITE: |
| 991 | case CMD_HARDWARE_RESET: |
| 992 | usb_disable(); |
| 993 | SpinDelay(1000); |
| 994 | SpinDelay(1000); |
| 995 | AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; |
| 996 | for(;;) { |
| 997 | // We're going to reset, and the bootrom will take control. |
| 998 | } |
| 999 | break; |
| 1000 | |
| 1001 | case CMD_START_FLASH: |
| 1002 | if(common_area.flags.bootrom_present) { |
| 1003 | common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE; |
| 1004 | } |
| 1005 | usb_disable(); |
| 1006 | AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; |
| 1007 | for(;;); |
| 1008 | break; |
| 1009 | |
| 1010 | case CMD_DEVICE_INFO: { |
| 1011 | uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS; |
| 1012 | if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT; |
| 1013 | cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0); |
| 1014 | break; |
| 1015 | } |
| 1016 | default: |
| 1017 | Dbprintf("%s: 0x%04x","unknown command:",c->cmd); |
| 1018 | break; |
| 1019 | } |
| 1020 | } |
| 1021 | |
| 1022 | void __attribute__((noreturn)) AppMain(void) |
| 1023 | { |
| 1024 | SpinDelay(100); |
| 1025 | clear_trace(); |
| 1026 | if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) { |
| 1027 | /* Initialize common area */ |
| 1028 | memset(&common_area, 0, sizeof(common_area)); |
| 1029 | common_area.magic = COMMON_AREA_MAGIC; |
| 1030 | common_area.version = 1; |
| 1031 | } |
| 1032 | common_area.flags.osimage_present = 1; |
| 1033 | |
| 1034 | LED_D_OFF(); |
| 1035 | LED_C_OFF(); |
| 1036 | LED_B_OFF(); |
| 1037 | LED_A_OFF(); |
| 1038 | |
| 1039 | // Init USB device |
| 1040 | usb_enable(); |
| 1041 | |
| 1042 | // The FPGA gets its clock from us from PCK0 output, so set that up. |
| 1043 | AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0; |
| 1044 | AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0; |
| 1045 | AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0; |
| 1046 | // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz |
| 1047 | AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | |
| 1048 | AT91C_PMC_PRES_CLK_4; |
| 1049 | AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0; |
| 1050 | |
| 1051 | // Reset SPI |
| 1052 | AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST; |
| 1053 | // Reset SSC |
| 1054 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; |
| 1055 | |
| 1056 | // Load the FPGA image, which we have stored in our flash. |
| 1057 | // (the HF version by default) |
| 1058 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
| 1059 | |
| 1060 | StartTickCount(); |
| 1061 | |
| 1062 | #ifdef WITH_LCD |
| 1063 | LCDInit(); |
| 1064 | #endif |
| 1065 | |
| 1066 | byte_t rx[sizeof(UsbCommand)]; |
| 1067 | size_t rx_len; |
| 1068 | |
| 1069 | for(;;) { |
| 1070 | if (usb_poll()) { |
| 1071 | rx_len = usb_read(rx,sizeof(UsbCommand)); |
| 1072 | if (rx_len) { |
| 1073 | UsbPacketReceived(rx,rx_len); |
| 1074 | } |
| 1075 | } |
| 1076 | WDT_HIT(); |
| 1077 | |
| 1078 | #ifdef WITH_LF |
| 1079 | if (BUTTON_HELD(1000) > 0) |
| 1080 | SamyRun(); |
| 1081 | #endif |
| 1082 | } |
| 1083 | } |