]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
3 | // at your option, any later version. See the LICENSE.txt file for the text of | |
4 | // the license. | |
5 | //----------------------------------------------------------------------------- | |
6 | // Miscellaneous routines for low frequency tag operations. | |
7 | // Tags supported here so far are Texas Instruments (TI), HID | |
8 | // Also routines for raw mode reading/simulating of LF waveform | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include "proxmark3.h" | |
12 | #include "apps.h" | |
13 | #include "util.h" | |
14 | #include "hitag2.h" | |
15 | #include "crc16.h" | |
16 | #include "string.h" | |
17 | #include "lfdemod.h" | |
18 | #include "lfsampling.h" | |
19 | #include "usb_cdc.h" | |
20 | ||
21 | ||
22 | /** | |
23 | * Function to do a modulation and then get samples. | |
24 | * @param delay_off | |
25 | * @param period_0 | |
26 | * @param period_1 | |
27 | * @param command | |
28 | */ | |
29 | void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command) | |
30 | { | |
31 | ||
32 | int divisor_used = 95; // 125 KHz | |
33 | // see if 'h' was specified | |
34 | ||
35 | if (command[strlen((char *) command) - 1] == 'h') | |
36 | divisor_used = 88; // 134.8 KHz | |
37 | ||
38 | sample_config sc = { 0,0,1, divisor_used, 0}; | |
39 | setSamplingConfig(&sc); | |
40 | ||
41 | /* Make sure the tag is reset */ | |
42 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
43 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
44 | SpinDelay(2500); | |
45 | ||
46 | LFSetupFPGAForADC(sc.divisor, 1); | |
47 | ||
48 | // And a little more time for the tag to fully power up | |
49 | SpinDelay(2000); | |
50 | ||
51 | // now modulate the reader field | |
52 | while(*command != '\0' && *command != ' ') { | |
53 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
54 | LED_D_OFF(); | |
55 | SpinDelayUs(delay_off); | |
56 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); | |
57 | ||
58 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
59 | LED_D_ON(); | |
60 | if(*(command++) == '0') | |
61 | SpinDelayUs(period_0); | |
62 | else | |
63 | SpinDelayUs(period_1); | |
64 | } | |
65 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
66 | LED_D_OFF(); | |
67 | SpinDelayUs(delay_off); | |
68 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); | |
69 | ||
70 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
71 | ||
72 | // now do the read | |
73 | DoAcquisition_config(false); | |
74 | } | |
75 | ||
76 | ||
77 | ||
78 | /* blank r/w tag data stream | |
79 | ...0000000000000000 01111111 | |
80 | 1010101010101010101010101010101010101010101010101010101010101010 | |
81 | 0011010010100001 | |
82 | 01111111 | |
83 | 101010101010101[0]000... | |
84 | ||
85 | [5555fe852c5555555555555555fe0000] | |
86 | */ | |
87 | void ReadTItag(void) | |
88 | { | |
89 | // some hardcoded initial params | |
90 | // when we read a TI tag we sample the zerocross line at 2Mhz | |
91 | // TI tags modulate a 1 as 16 cycles of 123.2Khz | |
92 | // TI tags modulate a 0 as 16 cycles of 134.2Khz | |
93 | #define FSAMPLE 2000000 | |
94 | #define FREQLO 123200 | |
95 | #define FREQHI 134200 | |
96 | ||
97 | signed char *dest = (signed char *)BigBuf_get_addr(); | |
98 | uint16_t n = BigBuf_max_traceLen(); | |
99 | // 128 bit shift register [shift3:shift2:shift1:shift0] | |
100 | uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; | |
101 | ||
102 | int i, cycles=0, samples=0; | |
103 | // how many sample points fit in 16 cycles of each frequency | |
104 | uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; | |
105 | // when to tell if we're close enough to one freq or another | |
106 | uint32_t threshold = (sampleslo - sampleshi + 1)>>1; | |
107 | ||
108 | // TI tags charge at 134.2Khz | |
109 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
110 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
111 | ||
112 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
113 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
114 | // whether we're modulating the antenna (high) | |
115 | // or listening to the antenna (low) | |
116 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
117 | ||
118 | // get TI tag data into the buffer | |
119 | AcquireTiType(); | |
120 | ||
121 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
122 | ||
123 | for (i=0; i<n-1; i++) { | |
124 | // count cycles by looking for lo to hi zero crossings | |
125 | if ( (dest[i]<0) && (dest[i+1]>0) ) { | |
126 | cycles++; | |
127 | // after 16 cycles, measure the frequency | |
128 | if (cycles>15) { | |
129 | cycles=0; | |
130 | samples=i-samples; // number of samples in these 16 cycles | |
131 | ||
132 | // TI bits are coming to us lsb first so shift them | |
133 | // right through our 128 bit right shift register | |
134 | shift0 = (shift0>>1) | (shift1 << 31); | |
135 | shift1 = (shift1>>1) | (shift2 << 31); | |
136 | shift2 = (shift2>>1) | (shift3 << 31); | |
137 | shift3 >>= 1; | |
138 | ||
139 | // check if the cycles fall close to the number | |
140 | // expected for either the low or high frequency | |
141 | if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { | |
142 | // low frequency represents a 1 | |
143 | shift3 |= (1<<31); | |
144 | } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { | |
145 | // high frequency represents a 0 | |
146 | } else { | |
147 | // probably detected a gay waveform or noise | |
148 | // use this as gaydar or discard shift register and start again | |
149 | shift3 = shift2 = shift1 = shift0 = 0; | |
150 | } | |
151 | samples = i; | |
152 | ||
153 | // for each bit we receive, test if we've detected a valid tag | |
154 | ||
155 | // if we see 17 zeroes followed by 6 ones, we might have a tag | |
156 | // remember the bits are backwards | |
157 | if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { | |
158 | // if start and end bytes match, we have a tag so break out of the loop | |
159 | if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { | |
160 | cycles = 0xF0B; //use this as a flag (ugly but whatever) | |
161 | break; | |
162 | } | |
163 | } | |
164 | } | |
165 | } | |
166 | } | |
167 | ||
168 | // if flag is set we have a tag | |
169 | if (cycles!=0xF0B) { | |
170 | DbpString("Info: No valid tag detected."); | |
171 | } else { | |
172 | // put 64 bit data into shift1 and shift0 | |
173 | shift0 = (shift0>>24) | (shift1 << 8); | |
174 | shift1 = (shift1>>24) | (shift2 << 8); | |
175 | ||
176 | // align 16 bit crc into lower half of shift2 | |
177 | shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; | |
178 | ||
179 | // if r/w tag, check ident match | |
180 | if (shift3 & (1<<15) ) { | |
181 | DbpString("Info: TI tag is rewriteable"); | |
182 | // only 15 bits compare, last bit of ident is not valid | |
183 | if (((shift3 >> 16) ^ shift0) & 0x7fff ) { | |
184 | DbpString("Error: Ident mismatch!"); | |
185 | } else { | |
186 | DbpString("Info: TI tag ident is valid"); | |
187 | } | |
188 | } else { | |
189 | DbpString("Info: TI tag is readonly"); | |
190 | } | |
191 | ||
192 | // WARNING the order of the bytes in which we calc crc below needs checking | |
193 | // i'm 99% sure the crc algorithm is correct, but it may need to eat the | |
194 | // bytes in reverse or something | |
195 | // calculate CRC | |
196 | uint32_t crc=0; | |
197 | ||
198 | crc = update_crc16(crc, (shift0)&0xff); | |
199 | crc = update_crc16(crc, (shift0>>8)&0xff); | |
200 | crc = update_crc16(crc, (shift0>>16)&0xff); | |
201 | crc = update_crc16(crc, (shift0>>24)&0xff); | |
202 | crc = update_crc16(crc, (shift1)&0xff); | |
203 | crc = update_crc16(crc, (shift1>>8)&0xff); | |
204 | crc = update_crc16(crc, (shift1>>16)&0xff); | |
205 | crc = update_crc16(crc, (shift1>>24)&0xff); | |
206 | ||
207 | Dbprintf("Info: Tag data: %x%08x, crc=%x", | |
208 | (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); | |
209 | if (crc != (shift2&0xffff)) { | |
210 | Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); | |
211 | } else { | |
212 | DbpString("Info: CRC is good"); | |
213 | } | |
214 | } | |
215 | } | |
216 | ||
217 | void WriteTIbyte(uint8_t b) | |
218 | { | |
219 | int i = 0; | |
220 | ||
221 | // modulate 8 bits out to the antenna | |
222 | for (i=0; i<8; i++) | |
223 | { | |
224 | if (b&(1<<i)) { | |
225 | // stop modulating antenna | |
226 | LOW(GPIO_SSC_DOUT); | |
227 | SpinDelayUs(1000); | |
228 | // modulate antenna | |
229 | HIGH(GPIO_SSC_DOUT); | |
230 | SpinDelayUs(1000); | |
231 | } else { | |
232 | // stop modulating antenna | |
233 | LOW(GPIO_SSC_DOUT); | |
234 | SpinDelayUs(300); | |
235 | // modulate antenna | |
236 | HIGH(GPIO_SSC_DOUT); | |
237 | SpinDelayUs(1700); | |
238 | } | |
239 | } | |
240 | } | |
241 | ||
242 | void AcquireTiType(void) | |
243 | { | |
244 | int i, j, n; | |
245 | // tag transmission is <20ms, sampling at 2M gives us 40K samples max | |
246 | // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t | |
247 | #define TIBUFLEN 1250 | |
248 | ||
249 | // clear buffer | |
250 | uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr(); | |
251 | memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t)); | |
252 | ||
253 | // Set up the synchronous serial port | |
254 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; | |
255 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; | |
256 | ||
257 | // steal this pin from the SSP and use it to control the modulation | |
258 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
259 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
260 | ||
261 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
262 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; | |
263 | ||
264 | // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long | |
265 | // 48/2 = 24 MHz clock must be divided by 12 | |
266 | AT91C_BASE_SSC->SSC_CMR = 12; | |
267 | ||
268 | AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); | |
269 | AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; | |
270 | AT91C_BASE_SSC->SSC_TCMR = 0; | |
271 | AT91C_BASE_SSC->SSC_TFMR = 0; | |
272 | ||
273 | LED_D_ON(); | |
274 | ||
275 | // modulate antenna | |
276 | HIGH(GPIO_SSC_DOUT); | |
277 | ||
278 | // Charge TI tag for 50ms. | |
279 | SpinDelay(50); | |
280 | ||
281 | // stop modulating antenna and listen | |
282 | LOW(GPIO_SSC_DOUT); | |
283 | ||
284 | LED_D_OFF(); | |
285 | ||
286 | i = 0; | |
287 | for(;;) { | |
288 | if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
289 | BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer | |
290 | i++; if(i >= TIBUFLEN) break; | |
291 | } | |
292 | WDT_HIT(); | |
293 | } | |
294 | ||
295 | // return stolen pin to SSP | |
296 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; | |
297 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; | |
298 | ||
299 | char *dest = (char *)BigBuf_get_addr(); | |
300 | n = TIBUFLEN*32; | |
301 | // unpack buffer | |
302 | for (i=TIBUFLEN-1; i>=0; i--) { | |
303 | for (j=0; j<32; j++) { | |
304 | if(BigBuf[i] & (1 << j)) { | |
305 | dest[--n] = 1; | |
306 | } else { | |
307 | dest[--n] = -1; | |
308 | } | |
309 | } | |
310 | } | |
311 | } | |
312 | ||
313 | // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc | |
314 | // if crc provided, it will be written with the data verbatim (even if bogus) | |
315 | // if not provided a valid crc will be computed from the data and written. | |
316 | void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) | |
317 | { | |
318 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
319 | if(crc == 0) { | |
320 | crc = update_crc16(crc, (idlo)&0xff); | |
321 | crc = update_crc16(crc, (idlo>>8)&0xff); | |
322 | crc = update_crc16(crc, (idlo>>16)&0xff); | |
323 | crc = update_crc16(crc, (idlo>>24)&0xff); | |
324 | crc = update_crc16(crc, (idhi)&0xff); | |
325 | crc = update_crc16(crc, (idhi>>8)&0xff); | |
326 | crc = update_crc16(crc, (idhi>>16)&0xff); | |
327 | crc = update_crc16(crc, (idhi>>24)&0xff); | |
328 | } | |
329 | Dbprintf("Writing to tag: %x%08x, crc=%x", | |
330 | (unsigned int) idhi, (unsigned int) idlo, crc); | |
331 | ||
332 | // TI tags charge at 134.2Khz | |
333 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
334 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
335 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
336 | // whether we're modulating the antenna (high) | |
337 | // or listening to the antenna (low) | |
338 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
339 | LED_A_ON(); | |
340 | ||
341 | // steal this pin from the SSP and use it to control the modulation | |
342 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
343 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
344 | ||
345 | // writing algorithm: | |
346 | // a high bit consists of a field off for 1ms and field on for 1ms | |
347 | // a low bit consists of a field off for 0.3ms and field on for 1.7ms | |
348 | // initiate a charge time of 50ms (field on) then immediately start writing bits | |
349 | // start by writing 0xBB (keyword) and 0xEB (password) | |
350 | // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) | |
351 | // finally end with 0x0300 (write frame) | |
352 | // all data is sent lsb firts | |
353 | // finish with 15ms programming time | |
354 | ||
355 | // modulate antenna | |
356 | HIGH(GPIO_SSC_DOUT); | |
357 | SpinDelay(50); // charge time | |
358 | ||
359 | WriteTIbyte(0xbb); // keyword | |
360 | WriteTIbyte(0xeb); // password | |
361 | WriteTIbyte( (idlo )&0xff ); | |
362 | WriteTIbyte( (idlo>>8 )&0xff ); | |
363 | WriteTIbyte( (idlo>>16)&0xff ); | |
364 | WriteTIbyte( (idlo>>24)&0xff ); | |
365 | WriteTIbyte( (idhi )&0xff ); | |
366 | WriteTIbyte( (idhi>>8 )&0xff ); | |
367 | WriteTIbyte( (idhi>>16)&0xff ); | |
368 | WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo | |
369 | WriteTIbyte( (crc )&0xff ); // crc lo | |
370 | WriteTIbyte( (crc>>8 )&0xff ); // crc hi | |
371 | WriteTIbyte(0x00); // write frame lo | |
372 | WriteTIbyte(0x03); // write frame hi | |
373 | HIGH(GPIO_SSC_DOUT); | |
374 | SpinDelay(50); // programming time | |
375 | ||
376 | LED_A_OFF(); | |
377 | ||
378 | // get TI tag data into the buffer | |
379 | AcquireTiType(); | |
380 | ||
381 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
382 | DbpString("Now use tiread to check"); | |
383 | } | |
384 | ||
385 | void SimulateTagLowFrequency(int period, int gap, int ledcontrol) | |
386 | { | |
387 | int i; | |
388 | uint8_t *tab = BigBuf_get_addr(); | |
389 | ||
390 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
391 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); | |
392 | ||
393 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; | |
394 | ||
395 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
396 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; | |
397 | ||
398 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) | |
399 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) | |
400 | ||
401 | i = 0; | |
402 | for(;;) { | |
403 | //wait until SSC_CLK goes HIGH | |
404 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { | |
405 | if(BUTTON_PRESS() || (usb_poll_validate_length() )) { | |
406 | DbpString("Stopped"); | |
407 | return; | |
408 | } | |
409 | WDT_HIT(); | |
410 | } | |
411 | if (ledcontrol) | |
412 | LED_D_ON(); | |
413 | ||
414 | if(tab[i]) | |
415 | OPEN_COIL(); | |
416 | else | |
417 | SHORT_COIL(); | |
418 | ||
419 | if (ledcontrol) | |
420 | LED_D_OFF(); | |
421 | //wait until SSC_CLK goes LOW | |
422 | while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { | |
423 | if(BUTTON_PRESS()) { | |
424 | DbpString("Stopped"); | |
425 | return; | |
426 | } | |
427 | WDT_HIT(); | |
428 | } | |
429 | ||
430 | i++; | |
431 | if(i == period) { | |
432 | ||
433 | i = 0; | |
434 | if (gap) { | |
435 | SHORT_COIL(); | |
436 | SpinDelayUs(gap); | |
437 | } | |
438 | } | |
439 | } | |
440 | } | |
441 | ||
442 | #define DEBUG_FRAME_CONTENTS 1 | |
443 | void SimulateTagLowFrequencyBidir(int divisor, int t0) | |
444 | { | |
445 | } | |
446 | ||
447 | // compose fc/8 fc/10 waveform (FSK2) | |
448 | static void fc(int c, int *n) | |
449 | { | |
450 | uint8_t *dest = BigBuf_get_addr(); | |
451 | int idx; | |
452 | ||
453 | // for when we want an fc8 pattern every 4 logical bits | |
454 | if(c==0) { | |
455 | dest[((*n)++)]=1; | |
456 | dest[((*n)++)]=1; | |
457 | dest[((*n)++)]=1; | |
458 | dest[((*n)++)]=1; | |
459 | dest[((*n)++)]=0; | |
460 | dest[((*n)++)]=0; | |
461 | dest[((*n)++)]=0; | |
462 | dest[((*n)++)]=0; | |
463 | } | |
464 | ||
465 | // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples | |
466 | if(c==8) { | |
467 | for (idx=0; idx<6; idx++) { | |
468 | dest[((*n)++)]=1; | |
469 | dest[((*n)++)]=1; | |
470 | dest[((*n)++)]=1; | |
471 | dest[((*n)++)]=1; | |
472 | dest[((*n)++)]=0; | |
473 | dest[((*n)++)]=0; | |
474 | dest[((*n)++)]=0; | |
475 | dest[((*n)++)]=0; | |
476 | } | |
477 | } | |
478 | ||
479 | // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples | |
480 | if(c==10) { | |
481 | for (idx=0; idx<5; idx++) { | |
482 | dest[((*n)++)]=1; | |
483 | dest[((*n)++)]=1; | |
484 | dest[((*n)++)]=1; | |
485 | dest[((*n)++)]=1; | |
486 | dest[((*n)++)]=1; | |
487 | dest[((*n)++)]=0; | |
488 | dest[((*n)++)]=0; | |
489 | dest[((*n)++)]=0; | |
490 | dest[((*n)++)]=0; | |
491 | dest[((*n)++)]=0; | |
492 | } | |
493 | } | |
494 | } | |
495 | // compose fc/X fc/Y waveform (FSKx) | |
496 | static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) | |
497 | { | |
498 | uint8_t *dest = BigBuf_get_addr(); | |
499 | uint8_t halfFC = fc/2; | |
500 | uint8_t wavesPerClock = clock/fc; | |
501 | uint8_t mod = clock % fc; //modifier | |
502 | uint8_t modAdj = fc/mod; //how often to apply modifier | |
503 | bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE; | |
504 | // loop through clock - step field clock | |
505 | for (uint8_t idx=0; idx < wavesPerClock; idx++){ | |
506 | // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) | |
507 | memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here | |
508 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); | |
509 | *n += fc; | |
510 | } | |
511 | if (mod>0) (*modCnt)++; | |
512 | if ((mod>0) && modAdjOk){ //fsk2 | |
513 | if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave | |
514 | memset(dest+(*n), 0, fc-halfFC); | |
515 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); | |
516 | *n += fc; | |
517 | } | |
518 | } | |
519 | if (mod>0 && !modAdjOk){ //fsk1 | |
520 | memset(dest+(*n), 0, mod-(mod/2)); | |
521 | memset(dest+(*n)+(mod-(mod/2)), 1, mod/2); | |
522 | *n += mod; | |
523 | } | |
524 | } | |
525 | ||
526 | // prepare a waveform pattern in the buffer based on the ID given then | |
527 | // simulate a HID tag until the button is pressed | |
528 | void CmdHIDsimTAG(int hi, int lo, int ledcontrol) | |
529 | { | |
530 | int n=0, i=0; | |
531 | /* | |
532 | HID tag bitstream format | |
533 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits | |
534 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns | |
535 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns | |
536 | A fc8 is inserted before every 4 bits | |
537 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 | |
538 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) | |
539 | */ | |
540 | ||
541 | if (hi>0xFFF) { | |
542 | DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags"); | |
543 | return; | |
544 | } | |
545 | fc(0,&n); | |
546 | // special start of frame marker containing invalid bit sequences | |
547 | fc(8, &n); fc(8, &n); // invalid | |
548 | fc(8, &n); fc(10, &n); // logical 0 | |
549 | fc(10, &n); fc(10, &n); // invalid | |
550 | fc(8, &n); fc(10, &n); // logical 0 | |
551 | ||
552 | WDT_HIT(); | |
553 | // manchester encode bits 43 to 32 | |
554 | for (i=11; i>=0; i--) { | |
555 | if ((i%4)==3) fc(0,&n); | |
556 | if ((hi>>i)&1) { | |
557 | fc(10, &n); fc(8, &n); // low-high transition | |
558 | } else { | |
559 | fc(8, &n); fc(10, &n); // high-low transition | |
560 | } | |
561 | } | |
562 | ||
563 | WDT_HIT(); | |
564 | // manchester encode bits 31 to 0 | |
565 | for (i=31; i>=0; i--) { | |
566 | if ((i%4)==3) fc(0,&n); | |
567 | if ((lo>>i)&1) { | |
568 | fc(10, &n); fc(8, &n); // low-high transition | |
569 | } else { | |
570 | fc(8, &n); fc(10, &n); // high-low transition | |
571 | } | |
572 | } | |
573 | ||
574 | if (ledcontrol) | |
575 | LED_A_ON(); | |
576 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
577 | ||
578 | if (ledcontrol) | |
579 | LED_A_OFF(); | |
580 | } | |
581 | ||
582 | // prepare a waveform pattern in the buffer based on the ID given then | |
583 | // simulate a FSK tag until the button is pressed | |
584 | // arg1 contains fcHigh and fcLow, arg2 contains invert and clock | |
585 | void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
586 | { | |
587 | int ledcontrol=1; | |
588 | int n=0, i=0; | |
589 | uint8_t fcHigh = arg1 >> 8; | |
590 | uint8_t fcLow = arg1 & 0xFF; | |
591 | uint16_t modCnt = 0; | |
592 | uint8_t clk = arg2 & 0xFF; | |
593 | uint8_t invert = (arg2 >> 8) & 1; | |
594 | ||
595 | for (i=0; i<size; i++){ | |
596 | if (BitStream[i] == invert){ | |
597 | fcAll(fcLow, &n, clk, &modCnt); | |
598 | } else { | |
599 | fcAll(fcHigh, &n, clk, &modCnt); | |
600 | } | |
601 | } | |
602 | Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n); | |
603 | /*Dbprintf("DEBUG: First 32:"); | |
604 | uint8_t *dest = BigBuf_get_addr(); | |
605 | i=0; | |
606 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
607 | i+=16; | |
608 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
609 | */ | |
610 | if (ledcontrol) | |
611 | LED_A_ON(); | |
612 | ||
613 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
614 | ||
615 | if (ledcontrol) | |
616 | LED_A_OFF(); | |
617 | } | |
618 | ||
619 | // compose ask waveform for one bit(ASK) | |
620 | static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester) | |
621 | { | |
622 | uint8_t *dest = BigBuf_get_addr(); | |
623 | uint8_t halfClk = clock/2; | |
624 | // c = current bit 1 or 0 | |
625 | if (manchester==1){ | |
626 | memset(dest+(*n), c, halfClk); | |
627 | memset(dest+(*n) + halfClk, c^1, halfClk); | |
628 | } else { | |
629 | memset(dest+(*n), c, clock); | |
630 | } | |
631 | *n += clock; | |
632 | } | |
633 | ||
634 | static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase) | |
635 | { | |
636 | uint8_t *dest = BigBuf_get_addr(); | |
637 | uint8_t halfClk = clock/2; | |
638 | if (c){ | |
639 | memset(dest+(*n), c ^ 1 ^ *phase, halfClk); | |
640 | memset(dest+(*n) + halfClk, c ^ *phase, halfClk); | |
641 | } else { | |
642 | memset(dest+(*n), c ^ *phase, clock); | |
643 | *phase ^= 1; | |
644 | } | |
645 | ||
646 | } | |
647 | ||
648 | // args clock, ask/man or askraw, invert, transmission separator | |
649 | void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
650 | { | |
651 | int ledcontrol = 1; | |
652 | int n=0, i=0; | |
653 | uint8_t clk = (arg1 >> 8) & 0xFF; | |
654 | uint8_t encoding = arg1 & 0xFF; | |
655 | uint8_t separator = arg2 & 1; | |
656 | uint8_t invert = (arg2 >> 8) & 1; | |
657 | ||
658 | if (encoding==2){ //biphase | |
659 | uint8_t phase=0; | |
660 | for (i=0; i<size; i++){ | |
661 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); | |
662 | } | |
663 | if (BitStream[0]==BitStream[size-1]){ //run a second set inverted to keep phase in check | |
664 | for (i=0; i<size; i++){ | |
665 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); | |
666 | } | |
667 | } | |
668 | } else { // ask/manchester || ask/raw | |
669 | for (i=0; i<size; i++){ | |
670 | askSimBit(BitStream[i]^invert, &n, clk, encoding); | |
671 | } | |
672 | if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase) | |
673 | for (i=0; i<size; i++){ | |
674 | askSimBit(BitStream[i]^invert^1, &n, clk, encoding); | |
675 | } | |
676 | } | |
677 | } | |
678 | ||
679 | if (separator==1) Dbprintf("sorry but separator option not yet available"); | |
680 | ||
681 | Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n); | |
682 | //DEBUG | |
683 | //Dbprintf("First 32:"); | |
684 | //uint8_t *dest = BigBuf_get_addr(); | |
685 | //i=0; | |
686 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
687 | //i+=16; | |
688 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
689 | ||
690 | if (ledcontrol) | |
691 | LED_A_ON(); | |
692 | ||
693 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
694 | ||
695 | if (ledcontrol) | |
696 | LED_A_OFF(); | |
697 | } | |
698 | ||
699 | //carrier can be 2,4 or 8 | |
700 | static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg) | |
701 | { | |
702 | uint8_t *dest = BigBuf_get_addr(); | |
703 | uint8_t halfWave = waveLen/2; | |
704 | //uint8_t idx; | |
705 | int i = 0; | |
706 | if (phaseChg){ | |
707 | // write phase change | |
708 | memset(dest+(*n), *curPhase^1, halfWave); | |
709 | memset(dest+(*n) + halfWave, *curPhase, halfWave); | |
710 | *n += waveLen; | |
711 | *curPhase ^= 1; | |
712 | i += waveLen; | |
713 | } | |
714 | //write each normal clock wave for the clock duration | |
715 | for (; i < clk; i+=waveLen){ | |
716 | memset(dest+(*n), *curPhase, halfWave); | |
717 | memset(dest+(*n) + halfWave, *curPhase^1, halfWave); | |
718 | *n += waveLen; | |
719 | } | |
720 | } | |
721 | ||
722 | // args clock, carrier, invert, | |
723 | void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
724 | { | |
725 | int ledcontrol=1; | |
726 | int n=0, i=0; | |
727 | uint8_t clk = arg1 >> 8; | |
728 | uint8_t carrier = arg1 & 0xFF; | |
729 | uint8_t invert = arg2 & 0xFF; | |
730 | uint8_t curPhase = 0; | |
731 | for (i=0; i<size; i++){ | |
732 | if (BitStream[i] == curPhase){ | |
733 | pskSimBit(carrier, &n, clk, &curPhase, FALSE); | |
734 | } else { | |
735 | pskSimBit(carrier, &n, clk, &curPhase, TRUE); | |
736 | } | |
737 | } | |
738 | Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n); | |
739 | //Dbprintf("DEBUG: First 32:"); | |
740 | //uint8_t *dest = BigBuf_get_addr(); | |
741 | //i=0; | |
742 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
743 | //i+=16; | |
744 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
745 | ||
746 | if (ledcontrol) | |
747 | LED_A_ON(); | |
748 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
749 | ||
750 | if (ledcontrol) | |
751 | LED_A_OFF(); | |
752 | } | |
753 | ||
754 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
755 | void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
756 | { | |
757 | uint8_t *dest = BigBuf_get_addr(); | |
758 | //const size_t sizeOfBigBuff = BigBuf_max_traceLen(); | |
759 | size_t size; | |
760 | uint32_t hi2=0, hi=0, lo=0; | |
761 | int idx=0; | |
762 | // Configure to go in 125Khz listen mode | |
763 | LFSetupFPGAForADC(95, true); | |
764 | ||
765 | while(!BUTTON_PRESS()) { | |
766 | ||
767 | WDT_HIT(); | |
768 | if (ledcontrol) LED_A_ON(); | |
769 | ||
770 | DoAcquisition_default(-1,true); | |
771 | // FSK demodulator | |
772 | //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use | |
773 | size = 50*128*2; //big enough to catch 2 sequences of largest format | |
774 | idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo); | |
775 | ||
776 | if (idx>0 && lo>0 && (size==96 || size==192)){ | |
777 | // go over previously decoded manchester data and decode into usable tag ID | |
778 | if (hi2 != 0){ //extra large HID tags 88/192 bits | |
779 | Dbprintf("TAG ID: %x%08x%08x (%d)", | |
780 | (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
781 | }else { //standard HID tags 44/96 bits | |
782 | //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd | |
783 | uint8_t bitlen = 0; | |
784 | uint32_t fc = 0; | |
785 | uint32_t cardnum = 0; | |
786 | if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used | |
787 | uint32_t lo2=0; | |
788 | lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit | |
789 | uint8_t idx3 = 1; | |
790 | while(lo2 > 1){ //find last bit set to 1 (format len bit) | |
791 | lo2=lo2 >> 1; | |
792 | idx3++; | |
793 | } | |
794 | bitlen = idx3+19; | |
795 | fc =0; | |
796 | cardnum=0; | |
797 | if(bitlen == 26){ | |
798 | cardnum = (lo>>1)&0xFFFF; | |
799 | fc = (lo>>17)&0xFF; | |
800 | } | |
801 | if(bitlen == 37){ | |
802 | cardnum = (lo>>1)&0x7FFFF; | |
803 | fc = ((hi&0xF)<<12)|(lo>>20); | |
804 | } | |
805 | if(bitlen == 34){ | |
806 | cardnum = (lo>>1)&0xFFFF; | |
807 | fc= ((hi&1)<<15)|(lo>>17); | |
808 | } | |
809 | if(bitlen == 35){ | |
810 | cardnum = (lo>>1)&0xFFFFF; | |
811 | fc = ((hi&1)<<11)|(lo>>21); | |
812 | } | |
813 | } | |
814 | else { //if bit 38 is not set then 37 bit format is used | |
815 | bitlen= 37; | |
816 | fc =0; | |
817 | cardnum=0; | |
818 | if(bitlen==37){ | |
819 | cardnum = (lo>>1)&0x7FFFF; | |
820 | fc = ((hi&0xF)<<12)|(lo>>20); | |
821 | } | |
822 | } | |
823 | //Dbprintf("TAG ID: %x%08x (%d)", | |
824 | // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
825 | Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", | |
826 | (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF, | |
827 | (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum); | |
828 | } | |
829 | if (findone){ | |
830 | if (ledcontrol) LED_A_OFF(); | |
831 | *high = hi; | |
832 | *low = lo; | |
833 | return; | |
834 | } | |
835 | // reset | |
836 | } | |
837 | hi2 = hi = lo = idx = 0; | |
838 | WDT_HIT(); | |
839 | } | |
840 | DbpString("Stopped"); | |
841 | if (ledcontrol) LED_A_OFF(); | |
842 | } | |
843 | ||
844 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
845 | void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
846 | { | |
847 | uint8_t *dest = BigBuf_get_addr(); | |
848 | //const size_t sizeOfBigBuff = BigBuf_max_traceLen(); | |
849 | size_t size; | |
850 | int idx=0; | |
851 | // Configure to go in 125Khz listen mode | |
852 | LFSetupFPGAForADC(95, true); | |
853 | ||
854 | while(!BUTTON_PRESS()) { | |
855 | ||
856 | WDT_HIT(); | |
857 | if (ledcontrol) LED_A_ON(); | |
858 | ||
859 | DoAcquisition_default(-1,true); | |
860 | // FSK demodulator | |
861 | //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use | |
862 | size = 50*128*2; //big enough to catch 2 sequences of largest format | |
863 | idx = AWIDdemodFSK(dest, &size); | |
864 | ||
865 | if (idx>0 && size==96){ | |
866 | // Index map | |
867 | // 0 10 20 30 40 50 60 | |
868 | // | | | | | | | | |
869 | // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96 | |
870 | // ----------------------------------------------------------------------------- | |
871 | // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1 | |
872 | // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96 | |
873 | // |---26 bit---| |-----117----||-------------142-------------| | |
874 | // b = format bit len, o = odd parity of last 3 bits | |
875 | // f = facility code, c = card number | |
876 | // w = wiegand parity | |
877 | // (26 bit format shown) | |
878 | ||
879 | //get raw ID before removing parities | |
880 | uint32_t rawLo = bytebits_to_byte(dest+idx+64,32); | |
881 | uint32_t rawHi = bytebits_to_byte(dest+idx+32,32); | |
882 | uint32_t rawHi2 = bytebits_to_byte(dest+idx,32); | |
883 | ||
884 | size = removeParity(dest, idx+8, 4, 1, 88); | |
885 | // ok valid card found! | |
886 | ||
887 | // Index map | |
888 | // 0 10 20 30 40 50 60 | |
889 | // | | | | | | | | |
890 | // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456 | |
891 | // ----------------------------------------------------------------------------- | |
892 | // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000 | |
893 | // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | |
894 | // |26 bit| |-117--| |-----142------| | |
895 | // b = format bit len, o = odd parity of last 3 bits | |
896 | // f = facility code, c = card number | |
897 | // w = wiegand parity | |
898 | // (26 bit format shown) | |
899 | ||
900 | uint32_t fc = 0; | |
901 | uint32_t cardnum = 0; | |
902 | uint32_t code1 = 0; | |
903 | uint32_t code2 = 0; | |
904 | uint8_t fmtLen = bytebits_to_byte(dest,8); | |
905 | if (fmtLen==26){ | |
906 | fc = bytebits_to_byte(dest+9, 8); | |
907 | cardnum = bytebits_to_byte(dest+17, 16); | |
908 | code1 = bytebits_to_byte(dest+8,fmtLen); | |
909 | Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo); | |
910 | } else { | |
911 | cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16); | |
912 | if (fmtLen>32){ | |
913 | code1 = bytebits_to_byte(dest+8,fmtLen-32); | |
914 | code2 = bytebits_to_byte(dest+8+(fmtLen-32),32); | |
915 | Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo); | |
916 | } else{ | |
917 | code1 = bytebits_to_byte(dest+8,fmtLen); | |
918 | Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo); | |
919 | } | |
920 | } | |
921 | if (findone){ | |
922 | if (ledcontrol) LED_A_OFF(); | |
923 | return; | |
924 | } | |
925 | // reset | |
926 | } | |
927 | idx = 0; | |
928 | WDT_HIT(); | |
929 | } | |
930 | DbpString("Stopped"); | |
931 | if (ledcontrol) LED_A_OFF(); | |
932 | } | |
933 | ||
934 | void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol) | |
935 | { | |
936 | uint8_t *dest = BigBuf_get_addr(); | |
937 | ||
938 | size_t size=0, idx=0; | |
939 | int clk=0, invert=0, errCnt=0, maxErr=20; | |
940 | uint32_t hi=0; | |
941 | uint64_t lo=0; | |
942 | // Configure to go in 125Khz listen mode | |
943 | LFSetupFPGAForADC(95, true); | |
944 | ||
945 | while(!BUTTON_PRESS()) { | |
946 | ||
947 | WDT_HIT(); | |
948 | if (ledcontrol) LED_A_ON(); | |
949 | ||
950 | DoAcquisition_default(-1,true); | |
951 | size = BigBuf_max_traceLen(); | |
952 | //askdemod and manchester decode | |
953 | if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format | |
954 | errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1); | |
955 | WDT_HIT(); | |
956 | ||
957 | if (errCnt<0) continue; | |
958 | ||
959 | errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo); | |
960 | if (errCnt){ | |
961 | if (size>64){ | |
962 | Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)", | |
963 | hi, | |
964 | (uint32_t)(lo>>32), | |
965 | (uint32_t)lo, | |
966 | (uint32_t)(lo&0xFFFF), | |
967 | (uint32_t)((lo>>16LL) & 0xFF), | |
968 | (uint32_t)(lo & 0xFFFFFF)); | |
969 | } else { | |
970 | Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", | |
971 | (uint32_t)(lo>>32), | |
972 | (uint32_t)lo, | |
973 | (uint32_t)(lo&0xFFFF), | |
974 | (uint32_t)((lo>>16LL) & 0xFF), | |
975 | (uint32_t)(lo & 0xFFFFFF)); | |
976 | } | |
977 | ||
978 | if (findone){ | |
979 | if (ledcontrol) LED_A_OFF(); | |
980 | *high=lo>>32; | |
981 | *low=lo & 0xFFFFFFFF; | |
982 | return; | |
983 | } | |
984 | } | |
985 | WDT_HIT(); | |
986 | hi = lo = size = idx = 0; | |
987 | clk = invert = errCnt = 0; | |
988 | } | |
989 | DbpString("Stopped"); | |
990 | if (ledcontrol) LED_A_OFF(); | |
991 | } | |
992 | ||
993 | void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
994 | { | |
995 | uint8_t *dest = BigBuf_get_addr(); | |
996 | int idx=0; | |
997 | uint32_t code=0, code2=0; | |
998 | uint8_t version=0; | |
999 | uint8_t facilitycode=0; | |
1000 | uint16_t number=0; | |
1001 | // Configure to go in 125Khz listen mode | |
1002 | LFSetupFPGAForADC(95, true); | |
1003 | ||
1004 | while(!BUTTON_PRESS()) { | |
1005 | WDT_HIT(); | |
1006 | if (ledcontrol) LED_A_ON(); | |
1007 | DoAcquisition_default(-1,true); | |
1008 | //fskdemod and get start index | |
1009 | WDT_HIT(); | |
1010 | idx = IOdemodFSK(dest, BigBuf_max_traceLen()); | |
1011 | if (idx<0) continue; | |
1012 | //valid tag found | |
1013 | ||
1014 | //Index map | |
1015 | //0 10 20 30 40 50 60 | |
1016 | //| | | | | | | | |
1017 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
1018 | //----------------------------------------------------------------------------- | |
1019 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 | |
1020 | // | |
1021 | //XSF(version)facility:codeone+codetwo | |
1022 | //Handle the data | |
1023 | if(findone){ //only print binary if we are doing one | |
1024 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); | |
1025 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); | |
1026 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); | |
1027 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); | |
1028 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); | |
1029 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); | |
1030 | Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); | |
1031 | } | |
1032 | code = bytebits_to_byte(dest+idx,32); | |
1033 | code2 = bytebits_to_byte(dest+idx+32,32); | |
1034 | version = bytebits_to_byte(dest+idx+27,8); //14,4 | |
1035 | facilitycode = bytebits_to_byte(dest+idx+18,8); | |
1036 | number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 | |
1037 | ||
1038 | Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2); | |
1039 | // if we're only looking for one tag | |
1040 | if (findone){ | |
1041 | if (ledcontrol) LED_A_OFF(); | |
1042 | //LED_A_OFF(); | |
1043 | *high=code; | |
1044 | *low=code2; | |
1045 | return; | |
1046 | } | |
1047 | code=code2=0; | |
1048 | version=facilitycode=0; | |
1049 | number=0; | |
1050 | idx=0; | |
1051 | ||
1052 | WDT_HIT(); | |
1053 | } | |
1054 | DbpString("Stopped"); | |
1055 | if (ledcontrol) LED_A_OFF(); | |
1056 | } | |
1057 | ||
1058 | /*------------------------------ | |
1059 | * T5555/T5557/T5567 routines | |
1060 | *------------------------------ | |
1061 | */ | |
1062 | ||
1063 | /* T55x7 configuration register definitions */ | |
1064 | #define T55x7_POR_DELAY 0x00000001 | |
1065 | #define T55x7_ST_TERMINATOR 0x00000008 | |
1066 | #define T55x7_PWD 0x00000010 | |
1067 | #define T55x7_MAXBLOCK_SHIFT 5 | |
1068 | #define T55x7_AOR 0x00000200 | |
1069 | #define T55x7_PSKCF_RF_2 0 | |
1070 | #define T55x7_PSKCF_RF_4 0x00000400 | |
1071 | #define T55x7_PSKCF_RF_8 0x00000800 | |
1072 | #define T55x7_MODULATION_DIRECT 0 | |
1073 | #define T55x7_MODULATION_PSK1 0x00001000 | |
1074 | #define T55x7_MODULATION_PSK2 0x00002000 | |
1075 | #define T55x7_MODULATION_PSK3 0x00003000 | |
1076 | #define T55x7_MODULATION_FSK1 0x00004000 | |
1077 | #define T55x7_MODULATION_FSK2 0x00005000 | |
1078 | #define T55x7_MODULATION_FSK1a 0x00006000 | |
1079 | #define T55x7_MODULATION_FSK2a 0x00007000 | |
1080 | #define T55x7_MODULATION_MANCHESTER 0x00008000 | |
1081 | #define T55x7_MODULATION_BIPHASE 0x00010000 | |
1082 | #define T55x7_BITRATE_RF_8 0 | |
1083 | #define T55x7_BITRATE_RF_16 0x00040000 | |
1084 | #define T55x7_BITRATE_RF_32 0x00080000 | |
1085 | #define T55x7_BITRATE_RF_40 0x000C0000 | |
1086 | #define T55x7_BITRATE_RF_50 0x00100000 | |
1087 | #define T55x7_BITRATE_RF_64 0x00140000 | |
1088 | #define T55x7_BITRATE_RF_100 0x00180000 | |
1089 | #define T55x7_BITRATE_RF_128 0x001C0000 | |
1090 | ||
1091 | /* T5555 (Q5) configuration register definitions */ | |
1092 | #define T5555_ST_TERMINATOR 0x00000001 | |
1093 | #define T5555_MAXBLOCK_SHIFT 0x00000001 | |
1094 | #define T5555_MODULATION_MANCHESTER 0 | |
1095 | #define T5555_MODULATION_PSK1 0x00000010 | |
1096 | #define T5555_MODULATION_PSK2 0x00000020 | |
1097 | #define T5555_MODULATION_PSK3 0x00000030 | |
1098 | #define T5555_MODULATION_FSK1 0x00000040 | |
1099 | #define T5555_MODULATION_FSK2 0x00000050 | |
1100 | #define T5555_MODULATION_BIPHASE 0x00000060 | |
1101 | #define T5555_MODULATION_DIRECT 0x00000070 | |
1102 | #define T5555_INVERT_OUTPUT 0x00000080 | |
1103 | #define T5555_PSK_RF_2 0 | |
1104 | #define T5555_PSK_RF_4 0x00000100 | |
1105 | #define T5555_PSK_RF_8 0x00000200 | |
1106 | #define T5555_USE_PWD 0x00000400 | |
1107 | #define T5555_USE_AOR 0x00000800 | |
1108 | #define T5555_BITRATE_SHIFT 12 | |
1109 | #define T5555_FAST_WRITE 0x00004000 | |
1110 | #define T5555_PAGE_SELECT 0x00008000 | |
1111 | ||
1112 | /* | |
1113 | * Relevant times in microsecond | |
1114 | * To compensate antenna falling times shorten the write times | |
1115 | * and enlarge the gap ones. | |
1116 | */ | |
1117 | #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc) | |
1118 | #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc) | |
1119 | #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc) | |
1120 | #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550 | |
1121 | ||
1122 | #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..) | |
1123 | ||
1124 | // Write one bit to card | |
1125 | void T55xxWriteBit(int bit) | |
1126 | { | |
1127 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1128 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1129 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1130 | if (bit == 0) | |
1131 | SpinDelayUs(WRITE_0); | |
1132 | else | |
1133 | SpinDelayUs(WRITE_1); | |
1134 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1135 | SpinDelayUs(WRITE_GAP); | |
1136 | } | |
1137 | ||
1138 | // Write one card block in page 0, no lock | |
1139 | void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode) | |
1140 | { | |
1141 | uint32_t i = 0; | |
1142 | ||
1143 | // Set up FPGA, 125kHz | |
1144 | // Wait for config.. (192+8190xPOW)x8 == 67ms | |
1145 | LFSetupFPGAForADC(0, true); | |
1146 | ||
1147 | // Now start writting | |
1148 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1149 | SpinDelayUs(START_GAP); | |
1150 | ||
1151 | // Opcode | |
1152 | T55xxWriteBit(1); | |
1153 | T55xxWriteBit(0); //Page 0 | |
1154 | if (PwdMode == 1){ | |
1155 | // Pwd | |
1156 | for (i = 0x80000000; i != 0; i >>= 1) | |
1157 | T55xxWriteBit(Pwd & i); | |
1158 | } | |
1159 | // Lock bit | |
1160 | T55xxWriteBit(0); | |
1161 | ||
1162 | // Data | |
1163 | for (i = 0x80000000; i != 0; i >>= 1) | |
1164 | T55xxWriteBit(Data & i); | |
1165 | ||
1166 | // Block | |
1167 | for (i = 0x04; i != 0; i >>= 1) | |
1168 | T55xxWriteBit(Block & i); | |
1169 | ||
1170 | // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, | |
1171 | // so wait a little more) | |
1172 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1173 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1174 | SpinDelay(20); | |
1175 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1176 | } | |
1177 | ||
1178 | void TurnReadLFOn(){ | |
1179 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1180 | // Give it a bit of time for the resonant antenna to settle. | |
1181 | SpinDelayUs(8*150); | |
1182 | } | |
1183 | ||
1184 | ||
1185 | // Read one card block in page 0 | |
1186 | void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode) | |
1187 | { | |
1188 | uint32_t i = 0; | |
1189 | uint8_t *dest = BigBuf_get_addr(); | |
1190 | uint16_t bufferlength = BigBuf_max_traceLen(); | |
1191 | if ( bufferlength > T55xx_SAMPLES_SIZE ) | |
1192 | bufferlength = T55xx_SAMPLES_SIZE; | |
1193 | ||
1194 | // Clear destination buffer before sending the command | |
1195 | memset(dest, 0x80, bufferlength); | |
1196 | ||
1197 | // Set up FPGA, 125kHz | |
1198 | // Wait for config.. (192+8190xPOW)x8 == 67ms | |
1199 | LFSetupFPGAForADC(0, true); | |
1200 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1201 | SpinDelayUs(START_GAP); | |
1202 | ||
1203 | // Opcode | |
1204 | T55xxWriteBit(1); | |
1205 | T55xxWriteBit(0); //Page 0 | |
1206 | if (PwdMode == 1){ | |
1207 | // Pwd | |
1208 | for (i = 0x80000000; i != 0; i >>= 1) | |
1209 | T55xxWriteBit(Pwd & i); | |
1210 | } | |
1211 | // Lock bit | |
1212 | T55xxWriteBit(0); | |
1213 | // Block | |
1214 | for (i = 0x04; i != 0; i >>= 1) | |
1215 | T55xxWriteBit(Block & i); | |
1216 | ||
1217 | // Turn field on to read the response | |
1218 | TurnReadLFOn(); | |
1219 | // Now do the acquisition | |
1220 | i = 0; | |
1221 | for(;;) { | |
1222 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1223 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1224 | LED_D_ON(); | |
1225 | } | |
1226 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1227 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1228 | i++; | |
1229 | LED_D_OFF(); | |
1230 | if (i >= bufferlength) break; | |
1231 | } | |
1232 | } | |
1233 | ||
1234 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1235 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1236 | LED_D_OFF(); | |
1237 | } | |
1238 | ||
1239 | // Read card traceability data (page 1) | |
1240 | void T55xxReadTrace(void){ | |
1241 | ||
1242 | uint32_t i = 0; | |
1243 | uint8_t *dest = BigBuf_get_addr(); | |
1244 | uint16_t bufferlength = BigBuf_max_traceLen(); | |
1245 | if ( bufferlength > T55xx_SAMPLES_SIZE ) | |
1246 | bufferlength= T55xx_SAMPLES_SIZE; | |
1247 | ||
1248 | // Clear destination buffer before sending the command | |
1249 | memset(dest, 0x80, bufferlength); | |
1250 | ||
1251 | LFSetupFPGAForADC(0, true); | |
1252 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1253 | SpinDelayUs(START_GAP); | |
1254 | ||
1255 | // Opcode | |
1256 | T55xxWriteBit(1); | |
1257 | T55xxWriteBit(1); //Page 1 | |
1258 | ||
1259 | // Turn field on to read the response | |
1260 | TurnReadLFOn(); | |
1261 | ||
1262 | // Now do the acquisition | |
1263 | for(;;) { | |
1264 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1265 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1266 | LED_D_ON(); | |
1267 | } | |
1268 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1269 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1270 | i++; | |
1271 | LED_D_OFF(); | |
1272 | ||
1273 | if (i >= bufferlength) break; | |
1274 | } | |
1275 | } | |
1276 | ||
1277 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1278 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1279 | LED_D_OFF(); | |
1280 | } | |
1281 | ||
1282 | /*-------------- Cloning routines -----------*/ | |
1283 | // Copy HID id to card and setup block 0 config | |
1284 | void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) | |
1285 | { | |
1286 | int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format | |
1287 | int last_block = 0; | |
1288 | ||
1289 | if (longFMT){ | |
1290 | // Ensure no more than 84 bits supplied | |
1291 | if (hi2>0xFFFFF) { | |
1292 | DbpString("Tags can only have 84 bits."); | |
1293 | return; | |
1294 | } | |
1295 | // Build the 6 data blocks for supplied 84bit ID | |
1296 | last_block = 6; | |
1297 | data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) | |
1298 | for (int i=0;i<4;i++) { | |
1299 | if (hi2 & (1<<(19-i))) | |
1300 | data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10 | |
1301 | else | |
1302 | data1 |= (1<<((3-i)*2)); // 0 -> 01 | |
1303 | } | |
1304 | ||
1305 | data2 = 0; | |
1306 | for (int i=0;i<16;i++) { | |
1307 | if (hi2 & (1<<(15-i))) | |
1308 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1309 | else | |
1310 | data2 |= (1<<((15-i)*2)); // 0 -> 01 | |
1311 | } | |
1312 | ||
1313 | data3 = 0; | |
1314 | for (int i=0;i<16;i++) { | |
1315 | if (hi & (1<<(31-i))) | |
1316 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1317 | else | |
1318 | data3 |= (1<<((15-i)*2)); // 0 -> 01 | |
1319 | } | |
1320 | ||
1321 | data4 = 0; | |
1322 | for (int i=0;i<16;i++) { | |
1323 | if (hi & (1<<(15-i))) | |
1324 | data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1325 | else | |
1326 | data4 |= (1<<((15-i)*2)); // 0 -> 01 | |
1327 | } | |
1328 | ||
1329 | data5 = 0; | |
1330 | for (int i=0;i<16;i++) { | |
1331 | if (lo & (1<<(31-i))) | |
1332 | data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1333 | else | |
1334 | data5 |= (1<<((15-i)*2)); // 0 -> 01 | |
1335 | } | |
1336 | ||
1337 | data6 = 0; | |
1338 | for (int i=0;i<16;i++) { | |
1339 | if (lo & (1<<(15-i))) | |
1340 | data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1341 | else | |
1342 | data6 |= (1<<((15-i)*2)); // 0 -> 01 | |
1343 | } | |
1344 | } | |
1345 | else { | |
1346 | // Ensure no more than 44 bits supplied | |
1347 | if (hi>0xFFF) { | |
1348 | DbpString("Tags can only have 44 bits."); | |
1349 | return; | |
1350 | } | |
1351 | ||
1352 | // Build the 3 data blocks for supplied 44bit ID | |
1353 | last_block = 3; | |
1354 | ||
1355 | data1 = 0x1D000000; // load preamble | |
1356 | ||
1357 | for (int i=0;i<12;i++) { | |
1358 | if (hi & (1<<(11-i))) | |
1359 | data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 | |
1360 | else | |
1361 | data1 |= (1<<((11-i)*2)); // 0 -> 01 | |
1362 | } | |
1363 | ||
1364 | data2 = 0; | |
1365 | for (int i=0;i<16;i++) { | |
1366 | if (lo & (1<<(31-i))) | |
1367 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1368 | else | |
1369 | data2 |= (1<<((15-i)*2)); // 0 -> 01 | |
1370 | } | |
1371 | ||
1372 | data3 = 0; | |
1373 | for (int i=0;i<16;i++) { | |
1374 | if (lo & (1<<(15-i))) | |
1375 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1376 | else | |
1377 | data3 |= (1<<((15-i)*2)); // 0 -> 01 | |
1378 | } | |
1379 | } | |
1380 | ||
1381 | LED_D_ON(); | |
1382 | // Program the data blocks for supplied ID | |
1383 | // and the block 0 for HID format | |
1384 | T55xxWriteBlock(data1,1,0,0); | |
1385 | T55xxWriteBlock(data2,2,0,0); | |
1386 | T55xxWriteBlock(data3,3,0,0); | |
1387 | ||
1388 | if (longFMT) { // if long format there are 6 blocks | |
1389 | T55xxWriteBlock(data4,4,0,0); | |
1390 | T55xxWriteBlock(data5,5,0,0); | |
1391 | T55xxWriteBlock(data6,6,0,0); | |
1392 | } | |
1393 | ||
1394 | // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) | |
1395 | T55xxWriteBlock(T55x7_BITRATE_RF_50 | | |
1396 | T55x7_MODULATION_FSK2a | | |
1397 | last_block << T55x7_MAXBLOCK_SHIFT, | |
1398 | 0,0,0); | |
1399 | ||
1400 | LED_D_OFF(); | |
1401 | ||
1402 | DbpString("DONE!"); | |
1403 | } | |
1404 | ||
1405 | void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT) | |
1406 | { | |
1407 | int data1=0, data2=0; //up to six blocks for long format | |
1408 | ||
1409 | data1 = hi; // load preamble | |
1410 | data2 = lo; | |
1411 | ||
1412 | LED_D_ON(); | |
1413 | // Program the data blocks for supplied ID | |
1414 | // and the block 0 for HID format | |
1415 | T55xxWriteBlock(data1,1,0,0); | |
1416 | T55xxWriteBlock(data2,2,0,0); | |
1417 | ||
1418 | //Config Block | |
1419 | T55xxWriteBlock(0x00147040,0,0,0); | |
1420 | LED_D_OFF(); | |
1421 | ||
1422 | DbpString("DONE!"); | |
1423 | } | |
1424 | ||
1425 | // Define 9bit header for EM410x tags | |
1426 | #define EM410X_HEADER 0x1FF | |
1427 | #define EM410X_ID_LENGTH 40 | |
1428 | ||
1429 | void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) | |
1430 | { | |
1431 | int i, id_bit; | |
1432 | uint64_t id = EM410X_HEADER; | |
1433 | uint64_t rev_id = 0; // reversed ID | |
1434 | int c_parity[4]; // column parity | |
1435 | int r_parity = 0; // row parity | |
1436 | uint32_t clock = 0; | |
1437 | ||
1438 | // Reverse ID bits given as parameter (for simpler operations) | |
1439 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1440 | if (i < 32) { | |
1441 | rev_id = (rev_id << 1) | (id_lo & 1); | |
1442 | id_lo >>= 1; | |
1443 | } else { | |
1444 | rev_id = (rev_id << 1) | (id_hi & 1); | |
1445 | id_hi >>= 1; | |
1446 | } | |
1447 | } | |
1448 | ||
1449 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1450 | id_bit = rev_id & 1; | |
1451 | ||
1452 | if (i % 4 == 0) { | |
1453 | // Don't write row parity bit at start of parsing | |
1454 | if (i) | |
1455 | id = (id << 1) | r_parity; | |
1456 | // Start counting parity for new row | |
1457 | r_parity = id_bit; | |
1458 | } else { | |
1459 | // Count row parity | |
1460 | r_parity ^= id_bit; | |
1461 | } | |
1462 | ||
1463 | // First elements in column? | |
1464 | if (i < 4) | |
1465 | // Fill out first elements | |
1466 | c_parity[i] = id_bit; | |
1467 | else | |
1468 | // Count column parity | |
1469 | c_parity[i % 4] ^= id_bit; | |
1470 | ||
1471 | // Insert ID bit | |
1472 | id = (id << 1) | id_bit; | |
1473 | rev_id >>= 1; | |
1474 | } | |
1475 | ||
1476 | // Insert parity bit of last row | |
1477 | id = (id << 1) | r_parity; | |
1478 | ||
1479 | // Fill out column parity at the end of tag | |
1480 | for (i = 0; i < 4; ++i) | |
1481 | id = (id << 1) | c_parity[i]; | |
1482 | ||
1483 | // Add stop bit | |
1484 | id <<= 1; | |
1485 | ||
1486 | Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); | |
1487 | LED_D_ON(); | |
1488 | ||
1489 | // Write EM410x ID | |
1490 | T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0); | |
1491 | T55xxWriteBlock((uint32_t)id, 2, 0, 0); | |
1492 | ||
1493 | // Config for EM410x (RF/64, Manchester, Maxblock=2) | |
1494 | if (card) { | |
1495 | // Clock rate is stored in bits 8-15 of the card value | |
1496 | clock = (card & 0xFF00) >> 8; | |
1497 | Dbprintf("Clock rate: %d", clock); | |
1498 | switch (clock) | |
1499 | { | |
1500 | case 32: | |
1501 | clock = T55x7_BITRATE_RF_32; | |
1502 | break; | |
1503 | case 16: | |
1504 | clock = T55x7_BITRATE_RF_16; | |
1505 | break; | |
1506 | case 0: | |
1507 | // A value of 0 is assumed to be 64 for backwards-compatibility | |
1508 | // Fall through... | |
1509 | case 64: | |
1510 | clock = T55x7_BITRATE_RF_64; | |
1511 | break; | |
1512 | default: | |
1513 | Dbprintf("Invalid clock rate: %d", clock); | |
1514 | return; | |
1515 | } | |
1516 | ||
1517 | // Writing configuration for T55x7 tag | |
1518 | T55xxWriteBlock(clock | | |
1519 | T55x7_MODULATION_MANCHESTER | | |
1520 | 2 << T55x7_MAXBLOCK_SHIFT, | |
1521 | 0, 0, 0); | |
1522 | } | |
1523 | else | |
1524 | // Writing configuration for T5555(Q5) tag | |
1525 | T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | | |
1526 | T5555_MODULATION_MANCHESTER | | |
1527 | 2 << T5555_MAXBLOCK_SHIFT, | |
1528 | 0, 0, 0); | |
1529 | ||
1530 | LED_D_OFF(); | |
1531 | Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", | |
1532 | (uint32_t)(id >> 32), (uint32_t)id); | |
1533 | } | |
1534 | ||
1535 | // Clone Indala 64-bit tag by UID to T55x7 | |
1536 | void CopyIndala64toT55x7(int hi, int lo) | |
1537 | { | |
1538 | ||
1539 | //Program the 2 data blocks for supplied 64bit UID | |
1540 | // and the block 0 for Indala64 format | |
1541 | T55xxWriteBlock(hi,1,0,0); | |
1542 | T55xxWriteBlock(lo,2,0,0); | |
1543 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) | |
1544 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | | |
1545 | T55x7_MODULATION_PSK1 | | |
1546 | 2 << T55x7_MAXBLOCK_SHIFT, | |
1547 | 0, 0, 0); | |
1548 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) | |
1549 | // T5567WriteBlock(0x603E1042,0); | |
1550 | ||
1551 | DbpString("DONE!"); | |
1552 | ||
1553 | } | |
1554 | ||
1555 | void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7) | |
1556 | { | |
1557 | ||
1558 | //Program the 7 data blocks for supplied 224bit UID | |
1559 | // and the block 0 for Indala224 format | |
1560 | T55xxWriteBlock(uid1,1,0,0); | |
1561 | T55xxWriteBlock(uid2,2,0,0); | |
1562 | T55xxWriteBlock(uid3,3,0,0); | |
1563 | T55xxWriteBlock(uid4,4,0,0); | |
1564 | T55xxWriteBlock(uid5,5,0,0); | |
1565 | T55xxWriteBlock(uid6,6,0,0); | |
1566 | T55xxWriteBlock(uid7,7,0,0); | |
1567 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) | |
1568 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | | |
1569 | T55x7_MODULATION_PSK1 | | |
1570 | 7 << T55x7_MAXBLOCK_SHIFT, | |
1571 | 0,0,0); | |
1572 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) | |
1573 | // T5567WriteBlock(0x603E10E2,0); | |
1574 | ||
1575 | DbpString("DONE!"); | |
1576 | ||
1577 | } | |
1578 | ||
1579 | ||
1580 | #define abs(x) ( ((x)<0) ? -(x) : (x) ) | |
1581 | #define max(x,y) ( x<y ? y:x) | |
1582 | ||
1583 | int DemodPCF7931(uint8_t **outBlocks) { | |
1584 | uint8_t BitStream[256]; | |
1585 | uint8_t Blocks[8][16]; | |
1586 | uint8_t *GraphBuffer = BigBuf_get_addr(); | |
1587 | int GraphTraceLen = BigBuf_max_traceLen(); | |
1588 | int i, j, lastval, bitidx, half_switch; | |
1589 | int clock = 64; | |
1590 | int tolerance = clock / 8; | |
1591 | int pmc, block_done; | |
1592 | int lc, warnings = 0; | |
1593 | int num_blocks = 0; | |
1594 | int lmin=128, lmax=128; | |
1595 | uint8_t dir; | |
1596 | ||
1597 | LFSetupFPGAForADC(95, true); | |
1598 | DoAcquisition_default(0, 0); | |
1599 | ||
1600 | ||
1601 | lmin = 64; | |
1602 | lmax = 192; | |
1603 | ||
1604 | i = 2; | |
1605 | ||
1606 | /* Find first local max/min */ | |
1607 | if(GraphBuffer[1] > GraphBuffer[0]) { | |
1608 | while(i < GraphTraceLen) { | |
1609 | if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax) | |
1610 | break; | |
1611 | i++; | |
1612 | } | |
1613 | dir = 0; | |
1614 | } | |
1615 | else { | |
1616 | while(i < GraphTraceLen) { | |
1617 | if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin) | |
1618 | break; | |
1619 | i++; | |
1620 | } | |
1621 | dir = 1; | |
1622 | } | |
1623 | ||
1624 | lastval = i++; | |
1625 | half_switch = 0; | |
1626 | pmc = 0; | |
1627 | block_done = 0; | |
1628 | ||
1629 | for (bitidx = 0; i < GraphTraceLen; i++) | |
1630 | { | |
1631 | if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin)) | |
1632 | { | |
1633 | lc = i - lastval; | |
1634 | lastval = i; | |
1635 | ||
1636 | // Switch depending on lc length: | |
1637 | // Tolerance is 1/8 of clock rate (arbitrary) | |
1638 | if (abs(lc-clock/4) < tolerance) { | |
1639 | // 16T0 | |
1640 | if((i - pmc) == lc) { /* 16T0 was previous one */ | |
1641 | /* It's a PMC ! */ | |
1642 | i += (128+127+16+32+33+16)-1; | |
1643 | lastval = i; | |
1644 | pmc = 0; | |
1645 | block_done = 1; | |
1646 | } | |
1647 | else { | |
1648 | pmc = i; | |
1649 | } | |
1650 | } else if (abs(lc-clock/2) < tolerance) { | |
1651 | // 32TO | |
1652 | if((i - pmc) == lc) { /* 16T0 was previous one */ | |
1653 | /* It's a PMC ! */ | |
1654 | i += (128+127+16+32+33)-1; | |
1655 | lastval = i; | |
1656 | pmc = 0; | |
1657 | block_done = 1; | |
1658 | } | |
1659 | else if(half_switch == 1) { | |
1660 | BitStream[bitidx++] = 0; | |
1661 | half_switch = 0; | |
1662 | } | |
1663 | else | |
1664 | half_switch++; | |
1665 | } else if (abs(lc-clock) < tolerance) { | |
1666 | // 64TO | |
1667 | BitStream[bitidx++] = 1; | |
1668 | } else { | |
1669 | // Error | |
1670 | warnings++; | |
1671 | if (warnings > 10) | |
1672 | { | |
1673 | Dbprintf("Error: too many detection errors, aborting."); | |
1674 | return 0; | |
1675 | } | |
1676 | } | |
1677 | ||
1678 | if(block_done == 1) { | |
1679 | if(bitidx == 128) { | |
1680 | for(j=0; j<16; j++) { | |
1681 | Blocks[num_blocks][j] = 128*BitStream[j*8+7]+ | |
1682 | 64*BitStream[j*8+6]+ | |
1683 | 32*BitStream[j*8+5]+ | |
1684 | 16*BitStream[j*8+4]+ | |
1685 | 8*BitStream[j*8+3]+ | |
1686 | 4*BitStream[j*8+2]+ | |
1687 | 2*BitStream[j*8+1]+ | |
1688 | BitStream[j*8]; | |
1689 | } | |
1690 | num_blocks++; | |
1691 | } | |
1692 | bitidx = 0; | |
1693 | block_done = 0; | |
1694 | half_switch = 0; | |
1695 | } | |
1696 | if(i < GraphTraceLen) | |
1697 | { | |
1698 | if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0; | |
1699 | else dir = 1; | |
1700 | } | |
1701 | } | |
1702 | if(bitidx==255) | |
1703 | bitidx=0; | |
1704 | warnings = 0; | |
1705 | if(num_blocks == 4) break; | |
1706 | } | |
1707 | memcpy(outBlocks, Blocks, 16*num_blocks); | |
1708 | return num_blocks; | |
1709 | } | |
1710 | ||
1711 | int IsBlock0PCF7931(uint8_t *Block) { | |
1712 | // Assume RFU means 0 :) | |
1713 | if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled | |
1714 | return 1; | |
1715 | if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ? | |
1716 | return 1; | |
1717 | return 0; | |
1718 | } | |
1719 | ||
1720 | int IsBlock1PCF7931(uint8_t *Block) { | |
1721 | // Assume RFU means 0 :) | |
1722 | if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0) | |
1723 | if((Block[14] & 0x7f) <= 9 && Block[15] <= 9) | |
1724 | return 1; | |
1725 | ||
1726 | return 0; | |
1727 | } | |
1728 | ||
1729 | #define ALLOC 16 | |
1730 | ||
1731 | void ReadPCF7931() { | |
1732 | uint8_t Blocks[8][17]; | |
1733 | uint8_t tmpBlocks[4][16]; | |
1734 | int i, j, ind, ind2, n; | |
1735 | int num_blocks = 0; | |
1736 | int max_blocks = 8; | |
1737 | int ident = 0; | |
1738 | int error = 0; | |
1739 | int tries = 0; | |
1740 | ||
1741 | memset(Blocks, 0, 8*17*sizeof(uint8_t)); | |
1742 | ||
1743 | do { | |
1744 | memset(tmpBlocks, 0, 4*16*sizeof(uint8_t)); | |
1745 | n = DemodPCF7931((uint8_t**)tmpBlocks); | |
1746 | if(!n) | |
1747 | error++; | |
1748 | if(error==10 && num_blocks == 0) { | |
1749 | Dbprintf("Error, no tag or bad tag"); | |
1750 | return; | |
1751 | } | |
1752 | else if (tries==20 || error==10) { | |
1753 | Dbprintf("Error reading the tag"); | |
1754 | Dbprintf("Here is the partial content"); | |
1755 | goto end; | |
1756 | } | |
1757 | ||
1758 | for(i=0; i<n; i++) | |
1759 | Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", | |
1760 | tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7], | |
1761 | tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]); | |
1762 | if(!ident) { | |
1763 | for(i=0; i<n; i++) { | |
1764 | if(IsBlock0PCF7931(tmpBlocks[i])) { | |
1765 | // Found block 0 ? | |
1766 | if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) { | |
1767 | // Found block 1! | |
1768 | // \o/ | |
1769 | ident = 1; | |
1770 | memcpy(Blocks[0], tmpBlocks[i], 16); | |
1771 | Blocks[0][ALLOC] = 1; | |
1772 | memcpy(Blocks[1], tmpBlocks[i+1], 16); | |
1773 | Blocks[1][ALLOC] = 1; | |
1774 | max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1; | |
1775 | // Debug print | |
1776 | Dbprintf("(dbg) Max blocks: %d", max_blocks); | |
1777 | num_blocks = 2; | |
1778 | // Handle following blocks | |
1779 | for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) { | |
1780 | if(j==n) j=0; | |
1781 | if(j==i) break; | |
1782 | memcpy(Blocks[ind2], tmpBlocks[j], 16); | |
1783 | Blocks[ind2][ALLOC] = 1; | |
1784 | } | |
1785 | break; | |
1786 | } | |
1787 | } | |
1788 | } | |
1789 | } | |
1790 | else { | |
1791 | for(i=0; i<n; i++) { // Look for identical block in known blocks | |
1792 | if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00 | |
1793 | for(j=0; j<max_blocks; j++) { | |
1794 | if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) { | |
1795 | // Found an identical block | |
1796 | for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) { | |
1797 | if(ind2 < 0) | |
1798 | ind2 = max_blocks; | |
1799 | if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found | |
1800 | // Dbprintf("Tmp %d -> Block %d", ind, ind2); | |
1801 | memcpy(Blocks[ind2], tmpBlocks[ind], 16); | |
1802 | Blocks[ind2][ALLOC] = 1; | |
1803 | num_blocks++; | |
1804 | if(num_blocks == max_blocks) goto end; | |
1805 | } | |
1806 | } | |
1807 | for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) { | |
1808 | if(ind2 > max_blocks) | |
1809 | ind2 = 0; | |
1810 | if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found | |
1811 | // Dbprintf("Tmp %d -> Block %d", ind, ind2); | |
1812 | memcpy(Blocks[ind2], tmpBlocks[ind], 16); | |
1813 | Blocks[ind2][ALLOC] = 1; | |
1814 | num_blocks++; | |
1815 | if(num_blocks == max_blocks) goto end; | |
1816 | } | |
1817 | } | |
1818 | } | |
1819 | } | |
1820 | } | |
1821 | } | |
1822 | } | |
1823 | tries++; | |
1824 | if (BUTTON_PRESS()) return; | |
1825 | } while (num_blocks != max_blocks); | |
1826 | end: | |
1827 | Dbprintf("-----------------------------------------"); | |
1828 | Dbprintf("Memory content:"); | |
1829 | Dbprintf("-----------------------------------------"); | |
1830 | for(i=0; i<max_blocks; i++) { | |
1831 | if(Blocks[i][ALLOC]==1) | |
1832 | Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", | |
1833 | Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7], | |
1834 | Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]); | |
1835 | else | |
1836 | Dbprintf("<missing block %d>", i); | |
1837 | } | |
1838 | Dbprintf("-----------------------------------------"); | |
1839 | ||
1840 | return ; | |
1841 | } | |
1842 | ||
1843 | ||
1844 | //----------------------------------- | |
1845 | // EM4469 / EM4305 routines | |
1846 | //----------------------------------- | |
1847 | #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored | |
1848 | #define FWD_CMD_WRITE 0xA | |
1849 | #define FWD_CMD_READ 0x9 | |
1850 | #define FWD_CMD_DISABLE 0x5 | |
1851 | ||
1852 | ||
1853 | uint8_t forwardLink_data[64]; //array of forwarded bits | |
1854 | uint8_t * forward_ptr; //ptr for forward message preparation | |
1855 | uint8_t fwd_bit_sz; //forwardlink bit counter | |
1856 | uint8_t * fwd_write_ptr; //forwardlink bit pointer | |
1857 | ||
1858 | //==================================================================== | |
1859 | // prepares command bits | |
1860 | // see EM4469 spec | |
1861 | //==================================================================== | |
1862 | //-------------------------------------------------------------------- | |
1863 | uint8_t Prepare_Cmd( uint8_t cmd ) { | |
1864 | //-------------------------------------------------------------------- | |
1865 | ||
1866 | *forward_ptr++ = 0; //start bit | |
1867 | *forward_ptr++ = 0; //second pause for 4050 code | |
1868 | ||
1869 | *forward_ptr++ = cmd; | |
1870 | cmd >>= 1; | |
1871 | *forward_ptr++ = cmd; | |
1872 | cmd >>= 1; | |
1873 | *forward_ptr++ = cmd; | |
1874 | cmd >>= 1; | |
1875 | *forward_ptr++ = cmd; | |
1876 | ||
1877 | return 6; //return number of emited bits | |
1878 | } | |
1879 | ||
1880 | //==================================================================== | |
1881 | // prepares address bits | |
1882 | // see EM4469 spec | |
1883 | //==================================================================== | |
1884 | ||
1885 | //-------------------------------------------------------------------- | |
1886 | uint8_t Prepare_Addr( uint8_t addr ) { | |
1887 | //-------------------------------------------------------------------- | |
1888 | ||
1889 | register uint8_t line_parity; | |
1890 | ||
1891 | uint8_t i; | |
1892 | line_parity = 0; | |
1893 | for(i=0;i<6;i++) { | |
1894 | *forward_ptr++ = addr; | |
1895 | line_parity ^= addr; | |
1896 | addr >>= 1; | |
1897 | } | |
1898 | ||
1899 | *forward_ptr++ = (line_parity & 1); | |
1900 | ||
1901 | return 7; //return number of emited bits | |
1902 | } | |
1903 | ||
1904 | //==================================================================== | |
1905 | // prepares data bits intreleaved with parity bits | |
1906 | // see EM4469 spec | |
1907 | //==================================================================== | |
1908 | ||
1909 | //-------------------------------------------------------------------- | |
1910 | uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { | |
1911 | //-------------------------------------------------------------------- | |
1912 | ||
1913 | register uint8_t line_parity; | |
1914 | register uint8_t column_parity; | |
1915 | register uint8_t i, j; | |
1916 | register uint16_t data; | |
1917 | ||
1918 | data = data_low; | |
1919 | column_parity = 0; | |
1920 | ||
1921 | for(i=0; i<4; i++) { | |
1922 | line_parity = 0; | |
1923 | for(j=0; j<8; j++) { | |
1924 | line_parity ^= data; | |
1925 | column_parity ^= (data & 1) << j; | |
1926 | *forward_ptr++ = data; | |
1927 | data >>= 1; | |
1928 | } | |
1929 | *forward_ptr++ = line_parity; | |
1930 | if(i == 1) | |
1931 | data = data_hi; | |
1932 | } | |
1933 | ||
1934 | for(j=0; j<8; j++) { | |
1935 | *forward_ptr++ = column_parity; | |
1936 | column_parity >>= 1; | |
1937 | } | |
1938 | *forward_ptr = 0; | |
1939 | ||
1940 | return 45; //return number of emited bits | |
1941 | } | |
1942 | ||
1943 | //==================================================================== | |
1944 | // Forward Link send function | |
1945 | // Requires: forwarLink_data filled with valid bits (1 bit per byte) | |
1946 | // fwd_bit_count set with number of bits to be sent | |
1947 | //==================================================================== | |
1948 | void SendForward(uint8_t fwd_bit_count) { | |
1949 | ||
1950 | fwd_write_ptr = forwardLink_data; | |
1951 | fwd_bit_sz = fwd_bit_count; | |
1952 | ||
1953 | LED_D_ON(); | |
1954 | ||
1955 | //Field on | |
1956 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1957 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1958 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1959 | ||
1960 | // Give it a bit of time for the resonant antenna to settle. | |
1961 | // And for the tag to fully power up | |
1962 | SpinDelay(150); | |
1963 | ||
1964 | // force 1st mod pulse (start gap must be longer for 4305) | |
1965 | fwd_bit_sz--; //prepare next bit modulation | |
1966 | fwd_write_ptr++; | |
1967 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1968 | SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 | |
1969 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1970 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on | |
1971 | SpinDelayUs(16*8); //16 cycles on (8us each) | |
1972 | ||
1973 | // now start writting | |
1974 | while(fwd_bit_sz-- > 0) { //prepare next bit modulation | |
1975 | if(((*fwd_write_ptr++) & 1) == 1) | |
1976 | SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) | |
1977 | else { | |
1978 | //These timings work for 4469/4269/4305 (with the 55*8 above) | |
1979 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1980 | SpinDelayUs(23*8); //16-4 cycles off (8us each) | |
1981 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1982 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on | |
1983 | SpinDelayUs(9*8); //16 cycles on (8us each) | |
1984 | } | |
1985 | } | |
1986 | } | |
1987 | ||
1988 | void EM4xLogin(uint32_t Password) { | |
1989 | ||
1990 | uint8_t fwd_bit_count; | |
1991 | ||
1992 | forward_ptr = forwardLink_data; | |
1993 | fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); | |
1994 | fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); | |
1995 | ||
1996 | SendForward(fwd_bit_count); | |
1997 | ||
1998 | //Wait for command to complete | |
1999 | SpinDelay(20); | |
2000 | ||
2001 | } | |
2002 | ||
2003 | void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
2004 | ||
2005 | uint8_t fwd_bit_count; | |
2006 | uint8_t *dest = BigBuf_get_addr(); | |
2007 | int m=0, i=0; | |
2008 | ||
2009 | //If password mode do login | |
2010 | if (PwdMode == 1) EM4xLogin(Pwd); | |
2011 | ||
2012 | forward_ptr = forwardLink_data; | |
2013 | fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); | |
2014 | fwd_bit_count += Prepare_Addr( Address ); | |
2015 | ||
2016 | m = BigBuf_max_traceLen(); | |
2017 | // Clear destination buffer before sending the command | |
2018 | memset(dest, 128, m); | |
2019 | // Connect the A/D to the peak-detected low-frequency path. | |
2020 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
2021 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
2022 | FpgaSetupSsc(); | |
2023 | ||
2024 | SendForward(fwd_bit_count); | |
2025 | ||
2026 | // Now do the acquisition | |
2027 | i = 0; | |
2028 | for(;;) { | |
2029 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
2030 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
2031 | } | |
2032 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
2033 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
2034 | i++; | |
2035 | if (i >= m) break; | |
2036 | } | |
2037 | } | |
2038 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
2039 | LED_D_OFF(); | |
2040 | } | |
2041 | ||
2042 | void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
2043 | ||
2044 | uint8_t fwd_bit_count; | |
2045 | ||
2046 | //If password mode do login | |
2047 | if (PwdMode == 1) EM4xLogin(Pwd); | |
2048 | ||
2049 | forward_ptr = forwardLink_data; | |
2050 | fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); | |
2051 | fwd_bit_count += Prepare_Addr( Address ); | |
2052 | fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); | |
2053 | ||
2054 | SendForward(fwd_bit_count); | |
2055 | ||
2056 | //Wait for write to complete | |
2057 | SpinDelay(20); | |
2058 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
2059 | LED_D_OFF(); | |
2060 | } |