]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Jonathan Westhues, Mar 2006 | |
3 | // Edits by Gerhard de Koning Gans, Sep 2007 (##) | |
4 | // | |
5 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
6 | // at your option, any later version. See the LICENSE.txt file for the text of | |
7 | // the license. | |
8 | //----------------------------------------------------------------------------- | |
9 | // The main application code. This is the first thing called after start.c | |
10 | // executes. | |
11 | //----------------------------------------------------------------------------- | |
12 | ||
13 | #include <stdarg.h> | |
14 | ||
15 | #include "usb_cdc.h" | |
16 | #include "proxmark3.h" | |
17 | #include "apps.h" | |
18 | #include "fpga.h" | |
19 | #include "util.h" | |
20 | #include "printf.h" | |
21 | #include "string.h" | |
22 | #include "legicrf.h" | |
23 | #include "legicrfsim.h" | |
24 | #include "hitag2.h" | |
25 | #include "hitagS.h" | |
26 | #include "iclass.h" | |
27 | #include "iso14443b.h" | |
28 | #include "iso15693.h" | |
29 | #include "lfsampling.h" | |
30 | #include "BigBuf.h" | |
31 | #include "mifarecmd.h" | |
32 | #include "mifareutil.h" | |
33 | #include "mifaresim.h" | |
34 | #include "pcf7931.h" | |
35 | #include "i2c.h" | |
36 | #include "hfsnoop.h" | |
37 | #include "fpgaloader.h" | |
38 | #ifdef WITH_LCD | |
39 | #include "LCD.h" | |
40 | #endif | |
41 | ||
42 | static uint32_t hw_capabilities; | |
43 | ||
44 | // Craig Young - 14a stand-alone code | |
45 | #ifdef WITH_ISO14443a | |
46 | #include "iso14443a.h" | |
47 | #endif | |
48 | ||
49 | //============================================================================= | |
50 | // A buffer where we can queue things up to be sent through the FPGA, for | |
51 | // any purpose (fake tag, as reader, whatever). We go MSB first, since that | |
52 | // is the order in which they go out on the wire. | |
53 | //============================================================================= | |
54 | ||
55 | #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits | |
56 | uint8_t ToSend[TOSEND_BUFFER_SIZE]; | |
57 | int ToSendMax; | |
58 | static int ToSendBit; | |
59 | struct common_area common_area __attribute__((section(".commonarea"))); | |
60 | ||
61 | void ToSendReset(void) { | |
62 | ToSendMax = -1; | |
63 | ToSendBit = 8; | |
64 | } | |
65 | ||
66 | void ToSendStuffBit(int b) { | |
67 | if (ToSendBit >= 8) { | |
68 | ToSendMax++; | |
69 | ToSend[ToSendMax] = 0; | |
70 | ToSendBit = 0; | |
71 | } | |
72 | ||
73 | if (b) { | |
74 | ToSend[ToSendMax] |= (1 << (7 - ToSendBit)); | |
75 | } | |
76 | ||
77 | ToSendBit++; | |
78 | ||
79 | if (ToSendMax >= sizeof(ToSend)) { | |
80 | ToSendBit = 0; | |
81 | DbpString("ToSendStuffBit overflowed!"); | |
82 | } | |
83 | } | |
84 | ||
85 | //============================================================================= | |
86 | // Debug print functions, to go out over USB, to the usual PC-side client. | |
87 | //============================================================================= | |
88 | ||
89 | void DbpString(char *str) { | |
90 | uint8_t len = strlen(str); | |
91 | cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(uint8_t*)str,len); | |
92 | } | |
93 | ||
94 | void Dbprintf(const char *fmt, ...) { | |
95 | // should probably limit size here; oh well, let's just use a big buffer | |
96 | char output_string[128]; | |
97 | va_list ap; | |
98 | ||
99 | va_start(ap, fmt); | |
100 | kvsprintf(fmt, output_string, 10, ap); | |
101 | va_end(ap); | |
102 | ||
103 | DbpString(output_string); | |
104 | } | |
105 | ||
106 | // prints HEX & ASCII | |
107 | void Dbhexdump(int len, uint8_t *d, bool bAsci) { | |
108 | int l=0,i; | |
109 | char ascii[9]; | |
110 | ||
111 | while (len>0) { | |
112 | if (len>8) l=8; | |
113 | else l=len; | |
114 | ||
115 | memcpy(ascii,d,l); | |
116 | ascii[l]=0; | |
117 | ||
118 | // filter safe ascii | |
119 | for (i = 0; i < l; i++) | |
120 | if (ascii[i]<32 || ascii[i]>126) ascii[i] = '.'; | |
121 | ||
122 | if (bAsci) { | |
123 | Dbprintf("%-8s %*D",ascii, l, d, " "); | |
124 | } else { | |
125 | Dbprintf("%*D", l, d, " "); | |
126 | } | |
127 | ||
128 | len -= 8; | |
129 | d += 8; | |
130 | } | |
131 | } | |
132 | ||
133 | //----------------------------------------------------------------------------- | |
134 | // Read an ADC channel and block till it completes, then return the result | |
135 | // in ADC units (0 to 1023). Also a routine to average 32 samples and | |
136 | // return that. | |
137 | //----------------------------------------------------------------------------- | |
138 | static int ReadAdc(int ch) { | |
139 | // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value. | |
140 | // AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant | |
141 | // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged. | |
142 | // | |
143 | // The maths are: | |
144 | // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be | |
145 | // | |
146 | // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%) | |
147 | ||
148 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; | |
149 | AT91C_BASE_ADC->ADC_MR = | |
150 | ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz | |
151 | ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us | |
152 | ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us | |
153 | ||
154 | AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch); | |
155 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
156 | ||
157 | while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) {}; | |
158 | ||
159 | return AT91C_BASE_ADC->ADC_CDR[ch] & 0x3ff; | |
160 | } | |
161 | ||
162 | int AvgAdc(int ch) { // was static - merlok{ | |
163 | int i; | |
164 | int a = 0; | |
165 | ||
166 | for(i = 0; i < 32; i++) { | |
167 | a += ReadAdc(ch); | |
168 | } | |
169 | ||
170 | return (a + 15) >> 5; | |
171 | } | |
172 | ||
173 | static int AvgAdc_Voltage_HF(void) { | |
174 | int AvgAdc_Voltage_Low, AvgAdc_Voltage_High; | |
175 | ||
176 | AvgAdc_Voltage_Low= (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10; | |
177 | // if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only) | |
178 | if (AvgAdc_Voltage_Low > MAX_ADC_HF_VOLTAGE_LOW - 300) { | |
179 | AvgAdc_Voltage_High = (MAX_ADC_HF_VOLTAGE_HIGH * AvgAdc(ADC_CHAN_HF_HIGH)) >> 10; | |
180 | if (AvgAdc_Voltage_High >= AvgAdc_Voltage_Low) { | |
181 | return AvgAdc_Voltage_High; | |
182 | } | |
183 | } | |
184 | return AvgAdc_Voltage_Low; | |
185 | } | |
186 | ||
187 | static int AvgAdc_Voltage_LF(void) { | |
188 | return (MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10; | |
189 | } | |
190 | ||
191 | void MeasureAntennaTuningLfOnly(int *vLf125, int *vLf134, int *peakf, int *peakv, uint8_t LF_Results[]) { | |
192 | int i, adcval = 0, peak = 0; | |
193 | ||
194 | /* | |
195 | * Sweeps the useful LF range of the proxmark from | |
196 | * 46.8kHz (divisor=255) to 600kHz (divisor=19) and | |
197 | * read the voltage in the antenna, the result left | |
198 | * in the buffer is a graph which should clearly show | |
199 | * the resonating frequency of your LF antenna | |
200 | * ( hopefully around 95 if it is tuned to 125kHz!) | |
201 | */ | |
202 | ||
203 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
204 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
205 | SpinDelay(50); | |
206 | ||
207 | for (i = 255; i >= 19; i--) { | |
208 | WDT_HIT(); | |
209 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); | |
210 | SpinDelay(20); | |
211 | adcval = AvgAdc_Voltage_LF(); | |
212 | if (i == 95) *vLf125 = adcval; // voltage at 125Khz | |
213 | if (i == 89) *vLf134 = adcval; // voltage at 134Khz | |
214 | ||
215 | LF_Results[i] = adcval >> 9; // scale int to fit in byte for graphing purposes | |
216 | if (LF_Results[i] > peak) { | |
217 | *peakv = adcval; | |
218 | peak = LF_Results[i]; | |
219 | *peakf = i; | |
220 | //ptr = i; | |
221 | } | |
222 | } | |
223 | ||
224 | for (i = 18; i >= 0; i--) LF_Results[i] = 0; | |
225 | ||
226 | return; | |
227 | } | |
228 | ||
229 | void MeasureAntennaTuningHfOnly(int *vHf) { | |
230 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. | |
231 | LED_A_ON(); | |
232 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
233 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER); | |
234 | SpinDelay(20); | |
235 | *vHf = AvgAdc_Voltage_HF(); | |
236 | LED_A_OFF(); | |
237 | return; | |
238 | } | |
239 | ||
240 | void MeasureAntennaTuning(int mode) { | |
241 | uint8_t LF_Results[256] = {0}; | |
242 | int peakv = 0, peakf = 0; | |
243 | int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV | |
244 | ||
245 | LED_B_ON(); | |
246 | ||
247 | if (((mode & FLAG_TUNE_ALL) == FLAG_TUNE_ALL) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF)) { | |
248 | // Reverse "standard" order if HF already loaded, to avoid unnecessary swap. | |
249 | MeasureAntennaTuningHfOnly(&vHf); | |
250 | MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results); | |
251 | } else { | |
252 | if (mode & FLAG_TUNE_LF) { | |
253 | MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results); | |
254 | } | |
255 | if (mode & FLAG_TUNE_HF) { | |
256 | MeasureAntennaTuningHfOnly(&vHf); | |
257 | } | |
258 | } | |
259 | ||
260 | cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125>>1 | (vLf134>>1<<16), vHf, peakf | (peakv>>1<<16), LF_Results, 256); | |
261 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
262 | LED_B_OFF(); | |
263 | return; | |
264 | } | |
265 | ||
266 | void MeasureAntennaTuningHf(void) { | |
267 | int vHf = 0; // in mV | |
268 | ||
269 | DbpString("Measuring HF antenna, press button to exit"); | |
270 | ||
271 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. | |
272 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
273 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER); | |
274 | ||
275 | for (;;) { | |
276 | SpinDelay(500); | |
277 | vHf = AvgAdc_Voltage_HF(); | |
278 | ||
279 | Dbprintf("%d mV",vHf); | |
280 | if (BUTTON_PRESS()) break; | |
281 | } | |
282 | DbpString("cancelled"); | |
283 | ||
284 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
285 | ||
286 | } | |
287 | ||
288 | ||
289 | void ReadMem(int addr) { | |
290 | const uint8_t *data = ((uint8_t *)addr); | |
291 | ||
292 | Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x", | |
293 | addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); | |
294 | } | |
295 | ||
296 | /* osimage version information is linked in */ | |
297 | extern struct version_information version_information; | |
298 | /* bootrom version information is pointed to from _bootphase1_version_pointer */ | |
299 | extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__; | |
300 | ||
301 | ||
302 | void set_hw_capabilities(void) { | |
303 | if (I2C_is_available()) { | |
304 | hw_capabilities |= HAS_SMARTCARD_SLOT; | |
305 | } | |
306 | ||
307 | if (false) { // TODO: implement a test | |
308 | hw_capabilities |= HAS_EXTRA_FLASH_MEM; | |
309 | } | |
310 | } | |
311 | ||
312 | ||
313 | void SendVersion(void) { | |
314 | set_hw_capabilities(); | |
315 | ||
316 | char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */ | |
317 | char VersionString[USB_CMD_DATA_SIZE] = { '\0' }; | |
318 | ||
319 | /* Try to find the bootrom version information. Expect to find a pointer at | |
320 | * symbol _bootphase1_version_pointer, perform slight sanity checks on the | |
321 | * pointer, then use it. | |
322 | */ | |
323 | char *bootrom_version = *(char**)&_bootphase1_version_pointer; | |
324 | if (bootrom_version < &_flash_start || bootrom_version >= &_flash_end) { | |
325 | strcat(VersionString, "bootrom version information appears invalid\n"); | |
326 | } else { | |
327 | FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version); | |
328 | strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); | |
329 | } | |
330 | ||
331 | FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information); | |
332 | strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); | |
333 | ||
334 | for (int i = 0; i < fpga_bitstream_num; i++) { | |
335 | strncat(VersionString, fpga_version_information[i], sizeof(VersionString) - strlen(VersionString) - 1); | |
336 | strncat(VersionString, "\n", sizeof(VersionString) - strlen(VersionString) - 1); | |
337 | } | |
338 | ||
339 | // test availability of SmartCard slot | |
340 | if (I2C_is_available()) { | |
341 | strncat(VersionString, "SmartCard Slot: available\n", sizeof(VersionString) - strlen(VersionString) - 1); | |
342 | } else { | |
343 | strncat(VersionString, "SmartCard Slot: not available\n", sizeof(VersionString) - strlen(VersionString) - 1); | |
344 | } | |
345 | ||
346 | // Send Chip ID and used flash memory | |
347 | uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start; | |
348 | uint32_t compressed_data_section_size = common_area.arg1; | |
349 | cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, hw_capabilities, VersionString, strlen(VersionString)); | |
350 | } | |
351 | ||
352 | // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time. | |
353 | // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included. | |
354 | void printUSBSpeed(void) { | |
355 | Dbprintf("USB Speed:"); | |
356 | Dbprintf(" Sending USB packets to client..."); | |
357 | ||
358 | #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds | |
359 | uint8_t *test_data = BigBuf_get_addr(); | |
360 | uint32_t end_time; | |
361 | ||
362 | uint32_t start_time = end_time = GetTickCount(); | |
363 | uint32_t bytes_transferred = 0; | |
364 | ||
365 | LED_B_ON(); | |
366 | while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) { | |
367 | cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE); | |
368 | end_time = GetTickCount(); | |
369 | bytes_transferred += USB_CMD_DATA_SIZE; | |
370 | } | |
371 | LED_B_OFF(); | |
372 | ||
373 | Dbprintf(" Time elapsed: %dms", end_time - start_time); | |
374 | Dbprintf(" Bytes transferred: %d", bytes_transferred); | |
375 | Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s", | |
376 | 1000 * bytes_transferred / (end_time - start_time)); | |
377 | ||
378 | } | |
379 | ||
380 | /** | |
381 | * Prints runtime information about the PM3. | |
382 | **/ | |
383 | void SendStatus(void) { | |
384 | BigBuf_print_status(); | |
385 | Fpga_print_status(); | |
386 | #ifdef WITH_SMARTCARD | |
387 | I2C_print_status(); | |
388 | #endif | |
389 | printConfig(); //LF Sampling config | |
390 | printUSBSpeed(); | |
391 | Dbprintf("Various"); | |
392 | Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL); | |
393 | Dbprintf(" ToSendMax..........%d", ToSendMax); | |
394 | Dbprintf(" ToSendBit..........%d", ToSendBit); | |
395 | ||
396 | cmd_send(CMD_ACK,1,0,0,0,0); | |
397 | } | |
398 | ||
399 | #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone) | |
400 | ||
401 | #define OPTS 2 | |
402 | ||
403 | void StandAloneMode() { | |
404 | DbpString("Stand-alone mode! No PC necessary."); | |
405 | // Oooh pretty -- notify user we're in elite samy mode now | |
406 | LED(LED_RED, 200); | |
407 | LED(LED_ORANGE, 200); | |
408 | LED(LED_GREEN, 200); | |
409 | LED(LED_ORANGE, 200); | |
410 | LED(LED_RED, 200); | |
411 | LED(LED_ORANGE, 200); | |
412 | LED(LED_GREEN, 200); | |
413 | LED(LED_ORANGE, 200); | |
414 | LED(LED_RED, 200); | |
415 | } | |
416 | ||
417 | #endif | |
418 | ||
419 | ||
420 | ||
421 | #ifdef WITH_ISO14443a_StandAlone | |
422 | void StandAloneMode14a() { | |
423 | StandAloneMode(); | |
424 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
425 | ||
426 | int selected = 0; | |
427 | bool playing = false, GotoRecord = false, GotoClone = false; | |
428 | bool cardRead[OPTS] = {false}; | |
429 | uint8_t readUID[10] = {0}; | |
430 | uint32_t uid_1st[OPTS]={0}; | |
431 | uint32_t uid_2nd[OPTS]={0}; | |
432 | uint32_t uid_tmp1 = 0; | |
433 | uint32_t uid_tmp2 = 0; | |
434 | iso14a_card_select_t hi14a_card[OPTS]; | |
435 | ||
436 | LED(selected + 1, 0); | |
437 | ||
438 | for (;;) { | |
439 | usb_poll(); | |
440 | WDT_HIT(); | |
441 | SpinDelay(300); | |
442 | ||
443 | if (GotoRecord || !cardRead[selected]) { | |
444 | GotoRecord = false; | |
445 | LEDsoff(); | |
446 | LED(selected + 1, 0); | |
447 | LED(LED_RED2, 0); | |
448 | ||
449 | // record | |
450 | Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected); | |
451 | /* need this delay to prevent catching some weird data */ | |
452 | SpinDelay(500); | |
453 | /* Code for reading from 14a tag */ | |
454 | uint8_t uid[10] ={0}; | |
455 | uint32_t cuid; | |
456 | iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); | |
457 | ||
458 | for ( ; ; ) { | |
459 | WDT_HIT(); | |
460 | if (BUTTON_PRESS()) { | |
461 | if (cardRead[selected]) { | |
462 | Dbprintf("Button press detected -- replaying card in bank[%d]", selected); | |
463 | break; | |
464 | } else if (cardRead[(selected+1)%OPTS]) { | |
465 | Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS); | |
466 | selected = (selected+1)%OPTS; | |
467 | break; | |
468 | } else { | |
469 | Dbprintf("Button press detected but no stored tag to play. (Ignoring button)"); | |
470 | SpinDelay(300); | |
471 | } | |
472 | } | |
473 | if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0, true)) | |
474 | continue; | |
475 | else { | |
476 | Dbprintf("Read UID:"); Dbhexdump(10,uid,0); | |
477 | memcpy(readUID,uid,10*sizeof(uint8_t)); | |
478 | uint8_t *dst = (uint8_t *)&uid_tmp1; | |
479 | // Set UID byte order | |
480 | for (int i = 0; i < 4; i++) | |
481 | dst[i] = uid[3-i]; | |
482 | dst = (uint8_t *)&uid_tmp2; | |
483 | for (int i = 0; i < 4; i++) | |
484 | dst[i] = uid[7-i]; | |
485 | if (uid_1st[(selected+1) % OPTS] == uid_tmp1 && uid_2nd[(selected+1) % OPTS] == uid_tmp2) { | |
486 | Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping."); | |
487 | } else { | |
488 | if (uid_tmp2) { | |
489 | Dbprintf("Bank[%d] received a 7-byte UID", selected); | |
490 | uid_1st[selected] = (uid_tmp1)>>8; | |
491 | uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8); | |
492 | } else { | |
493 | Dbprintf("Bank[%d] received a 4-byte UID", selected); | |
494 | uid_1st[selected] = uid_tmp1; | |
495 | uid_2nd[selected] = uid_tmp2; | |
496 | } | |
497 | break; | |
498 | } | |
499 | } | |
500 | } | |
501 | Dbprintf("ATQA = %02X%02X", hi14a_card[selected].atqa[0], hi14a_card[selected].atqa[1]); | |
502 | Dbprintf("SAK = %02X", hi14a_card[selected].sak); | |
503 | LEDsoff(); | |
504 | LED(LED_GREEN, 200); | |
505 | LED(LED_ORANGE, 200); | |
506 | LED(LED_GREEN, 200); | |
507 | LED(LED_ORANGE, 200); | |
508 | ||
509 | LEDsoff(); | |
510 | LED(selected + 1, 0); | |
511 | ||
512 | // Next state is replay: | |
513 | playing = true; | |
514 | ||
515 | cardRead[selected] = true; | |
516 | } else if (GotoClone) { /* MF Classic UID clone */ | |
517 | GotoClone=false; | |
518 | LEDsoff(); | |
519 | LED(selected + 1, 0); | |
520 | LED(LED_ORANGE, 250); | |
521 | ||
522 | ||
523 | // record | |
524 | Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]); | |
525 | ||
526 | // wait for button to be released | |
527 | while(BUTTON_PRESS()) { | |
528 | // Delay cloning until card is in place | |
529 | WDT_HIT(); | |
530 | } | |
531 | Dbprintf("Starting clone. [Bank: %u]", selected); | |
532 | // need this delay to prevent catching some weird data | |
533 | SpinDelay(500); | |
534 | // Begin clone function here: | |
535 | /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards: | |
536 | UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}}; | |
537 | memcpy(c.d.asBytes, data, 16); | |
538 | SendCommand(&c); | |
539 | ||
540 | Block read is similar: | |
541 | UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}}; | |
542 | We need to imitate that call with blockNo 0 to set a uid. | |
543 | ||
544 | The get and set commands are handled in this file: | |
545 | // Work with "magic Chinese" card | |
546 | case CMD_MIFARE_CSETBLOCK: | |
547 | MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
548 | break; | |
549 | case CMD_MIFARE_CGETBLOCK: | |
550 | MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
551 | break; | |
552 | ||
553 | mfCSetUID provides example logic for UID set workflow: | |
554 | -Read block0 from card in field with MifareCGetBlock() | |
555 | -Configure new values without replacing reserved bytes | |
556 | memcpy(block0, uid, 4); // Copy UID bytes from byte array | |
557 | // Mifare UID BCC | |
558 | block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5 | |
559 | Bytes 5-7 are reserved SAK and ATQA for mifare classic | |
560 | -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it | |
561 | */ | |
562 | uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0}; | |
563 | // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo | |
564 | MifareCGetBlock(0x3F, 1, 0, oldBlock0); | |
565 | if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) { | |
566 | Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected); | |
567 | playing = true; | |
568 | } else { | |
569 | Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0], oldBlock0[1], oldBlock0[2], oldBlock0[3]); | |
570 | memcpy(newBlock0, oldBlock0, 16); | |
571 | // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic) | |
572 | ||
573 | newBlock0[0] = uid_1st[selected] >> 24; | |
574 | newBlock0[1] = 0xFF & (uid_1st[selected] >> 16); | |
575 | newBlock0[2] = 0xFF & (uid_1st[selected] >> 8); | |
576 | newBlock0[3] = 0xFF & (uid_1st[selected]); | |
577 | newBlock0[4] = newBlock0[0] ^ newBlock0[1] ^ newBlock0[2] ^ newBlock0[3]; | |
578 | // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain | |
579 | MifareCSetBlock(0, 0xFF, 0, newBlock0); | |
580 | MifareCGetBlock(0x3F, 1, 0, testBlock0); | |
581 | if (memcmp(testBlock0, newBlock0, 16) == 0) { | |
582 | DbpString("Cloned successfull!"); | |
583 | cardRead[selected] = false; // Only if the card was cloned successfully should we clear it | |
584 | playing = false; | |
585 | GotoRecord = true; | |
586 | selected = (selected+1) % OPTS; | |
587 | } else { | |
588 | Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected); | |
589 | playing = true; | |
590 | } | |
591 | } | |
592 | LEDsoff(); | |
593 | LED(selected + 1, 0); | |
594 | ||
595 | } else if (playing) { | |
596 | // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected]) | |
597 | // Change where to record (or begin playing) | |
598 | LEDsoff(); | |
599 | LED(selected + 1, 0); | |
600 | ||
601 | // Begin transmitting | |
602 | LED(LED_GREEN, 0); | |
603 | DbpString("Playing"); | |
604 | for ( ; ; ) { | |
605 | WDT_HIT(); | |
606 | int button_action = BUTTON_HELD(1000); | |
607 | if (button_action == 0) { // No button action, proceed with sim | |
608 | uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break | |
609 | Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected], uid_2nd[selected], selected); | |
610 | if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) { | |
611 | DbpString("Mifare Classic"); | |
612 | SimulateIso14443aTag(1, uid_1st[selected], uid_2nd[selected], data); // Mifare Classic | |
613 | } else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) { | |
614 | DbpString("Mifare Ultralight"); | |
615 | SimulateIso14443aTag(2, uid_1st[selected], uid_2nd[selected], data); // Mifare Ultralight | |
616 | } else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) { | |
617 | DbpString("Mifare DESFire"); | |
618 | SimulateIso14443aTag(3, uid_1st[selected], uid_2nd[selected], data); // Mifare DESFire | |
619 | } else { | |
620 | Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation"); | |
621 | SimulateIso14443aTag(1, uid_1st[selected], uid_2nd[selected], data); | |
622 | } | |
623 | } else if (button_action == BUTTON_SINGLE_CLICK) { | |
624 | selected = (selected + 1) % OPTS; | |
625 | Dbprintf("Done playing. Switching to record mode on bank %d",selected); | |
626 | GotoRecord = true; | |
627 | break; | |
628 | } else if (button_action == BUTTON_HOLD) { | |
629 | Dbprintf("Playtime over. Begin cloning..."); | |
630 | GotoClone = true; | |
631 | break; | |
632 | } | |
633 | WDT_HIT(); | |
634 | } | |
635 | ||
636 | /* We pressed a button so ignore it here with a delay */ | |
637 | SpinDelay(300); | |
638 | LEDsoff(); | |
639 | LED(selected + 1, 0); | |
640 | } | |
641 | } | |
642 | } | |
643 | ||
644 | #elif WITH_LF_StandAlone | |
645 | ||
646 | // samy's sniff and repeat routine | |
647 | void SamyRun() { | |
648 | StandAloneMode(); | |
649 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
650 | ||
651 | int tops[OPTS], high[OPTS], low[OPTS]; | |
652 | int selected = 0; | |
653 | int playing = 0; | |
654 | int cardRead = 0; | |
655 | ||
656 | // Turn on selected LED | |
657 | LED(selected + 1, 0); | |
658 | ||
659 | for (;;) { | |
660 | usb_poll(); | |
661 | WDT_HIT(); | |
662 | ||
663 | // Was our button held down or pressed? | |
664 | int button_pressed = BUTTON_HELD(1000); | |
665 | SpinDelay(300); | |
666 | ||
667 | // Button was held for a second, begin recording | |
668 | if (button_pressed > 0 && cardRead == 0) { | |
669 | LEDsoff(); | |
670 | LED(selected + 1, 0); | |
671 | LED(LED_RED2, 0); | |
672 | ||
673 | // record | |
674 | DbpString("Starting recording"); | |
675 | ||
676 | // wait for button to be released | |
677 | while(BUTTON_PRESS()) | |
678 | WDT_HIT(); | |
679 | ||
680 | /* need this delay to prevent catching some weird data */ | |
681 | SpinDelay(500); | |
682 | ||
683 | CmdHIDdemodFSK(1, &tops[selected], &high[selected], &low[selected], 0); | |
684 | if (tops[selected] > 0) | |
685 | Dbprintf("Recorded %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]); | |
686 | else | |
687 | Dbprintf("Recorded %x %x%08x", selected, high[selected], low[selected]); | |
688 | ||
689 | LEDsoff(); | |
690 | LED(selected + 1, 0); | |
691 | // Finished recording | |
692 | ||
693 | // If we were previously playing, set playing off | |
694 | // so next button push begins playing what we recorded | |
695 | playing = 0; | |
696 | ||
697 | cardRead = 1; | |
698 | ||
699 | } else if (button_pressed > 0 && cardRead == 1) { | |
700 | LEDsoff(); | |
701 | LED(selected + 1, 0); | |
702 | LED(LED_ORANGE, 0); | |
703 | ||
704 | // record | |
705 | if (tops[selected] > 0) | |
706 | Dbprintf("Cloning %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]); | |
707 | else | |
708 | Dbprintf("Cloning %x %x%08x", selected, high[selected], low[selected]); | |
709 | ||
710 | // wait for button to be released | |
711 | while(BUTTON_PRESS()) | |
712 | WDT_HIT(); | |
713 | ||
714 | /* need this delay to prevent catching some weird data */ | |
715 | SpinDelay(500); | |
716 | ||
717 | CopyHIDtoT55x7(tops[selected] & 0x000FFFFF, high[selected], low[selected], (tops[selected] != 0 && ((high[selected]& 0xFFFFFFC0) != 0)), 0x1D); | |
718 | if (tops[selected] > 0) | |
719 | Dbprintf("Cloned %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]); | |
720 | else | |
721 | Dbprintf("Cloned %x %x%08x", selected, high[selected], low[selected]); | |
722 | ||
723 | LEDsoff(); | |
724 | LED(selected + 1, 0); | |
725 | // Finished recording | |
726 | ||
727 | // If we were previously playing, set playing off | |
728 | // so next button push begins playing what we recorded | |
729 | playing = 0; | |
730 | ||
731 | cardRead = 0; | |
732 | ||
733 | } else if (button_pressed) { | |
734 | ||
735 | // Change where to record (or begin playing) | |
736 | // Next option if we were previously playing | |
737 | if (playing) | |
738 | selected = (selected + 1) % OPTS; | |
739 | playing = !playing; | |
740 | ||
741 | LEDsoff(); | |
742 | LED(selected + 1, 0); | |
743 | ||
744 | // Begin transmitting | |
745 | if (playing) { | |
746 | LED(LED_GREEN, 0); | |
747 | DbpString("Playing"); | |
748 | // wait for button to be released | |
749 | while(BUTTON_PRESS()) | |
750 | WDT_HIT(); | |
751 | if (tops[selected] > 0) | |
752 | Dbprintf("%x %x%08x%08x", selected, tops[selected], high[selected], low[selected]); | |
753 | else | |
754 | Dbprintf("%x %x%08x", selected, high[selected], low[selected]); | |
755 | ||
756 | CmdHIDsimTAG(tops[selected], high[selected], low[selected], 0); | |
757 | DbpString("Done playing"); | |
758 | if (BUTTON_HELD(1000) > 0) { | |
759 | DbpString("Exiting"); | |
760 | LEDsoff(); | |
761 | return; | |
762 | } | |
763 | ||
764 | /* We pressed a button so ignore it here with a delay */ | |
765 | SpinDelay(300); | |
766 | ||
767 | // when done, we're done playing, move to next option | |
768 | selected = (selected + 1) % OPTS; | |
769 | playing = !playing; | |
770 | LEDsoff(); | |
771 | LED(selected + 1, 0); | |
772 | } else | |
773 | while(BUTTON_PRESS()) | |
774 | WDT_HIT(); | |
775 | } | |
776 | } | |
777 | } | |
778 | ||
779 | #endif | |
780 | ||
781 | /* | |
782 | OBJECTIVE | |
783 | Listen and detect an external reader. Determine the best location | |
784 | for the antenna. | |
785 | ||
786 | INSTRUCTIONS: | |
787 | Inside the ListenReaderField() function, there is two mode. | |
788 | By default, when you call the function, you will enter mode 1. | |
789 | If you press the PM3 button one time, you will enter mode 2. | |
790 | If you press the PM3 button a second time, you will exit the function. | |
791 | ||
792 | DESCRIPTION OF MODE 1: | |
793 | This mode just listens for an external reader field and lights up green | |
794 | for HF and/or red for LF. This is the original mode of the detectreader | |
795 | function. | |
796 | ||
797 | DESCRIPTION OF MODE 2: | |
798 | This mode will visually represent, using the LEDs, the actual strength of the | |
799 | current compared to the maximum current detected. Basically, once you know | |
800 | what kind of external reader is present, it will help you spot the best location to place | |
801 | your antenna. You will probably not get some good results if there is a LF and a HF reader | |
802 | at the same place! :-) | |
803 | ||
804 | LIGHT SCHEME USED: | |
805 | */ | |
806 | static const char LIGHT_SCHEME[] = { | |
807 | 0x0, /* ---- | No field detected */ | |
808 | 0x1, /* X--- | 14% of maximum current detected */ | |
809 | 0x2, /* -X-- | 29% of maximum current detected */ | |
810 | 0x4, /* --X- | 43% of maximum current detected */ | |
811 | 0x8, /* ---X | 57% of maximum current detected */ | |
812 | 0xC, /* --XX | 71% of maximum current detected */ | |
813 | 0xE, /* -XXX | 86% of maximum current detected */ | |
814 | 0xF, /* XXXX | 100% of maximum current detected */ | |
815 | }; | |
816 | ||
817 | static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]); | |
818 | ||
819 | void ListenReaderField(int limit) { | |
820 | int lf_av, lf_av_new=0, lf_baseline= 0, lf_max; | |
821 | int hf_av, hf_av_new=0, hf_baseline= 0, hf_max; | |
822 | int mode=1, display_val, display_max, i; | |
823 | ||
824 | #define LF_ONLY 1 | |
825 | #define HF_ONLY 2 | |
826 | #define REPORT_CHANGE_PERCENT 5 // report new values only if they have changed at least by REPORT_CHANGE_PERCENT | |
827 | #define MIN_HF_FIELD 300 // in mode 1 signal HF field greater than MIN_HF_FIELD above baseline | |
828 | #define MIN_LF_FIELD 1200 // in mode 1 signal LF field greater than MIN_LF_FIELD above baseline | |
829 | ||
830 | ||
831 | // switch off FPGA - we don't want to measure our own signal | |
832 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
833 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
834 | ||
835 | LEDsoff(); | |
836 | ||
837 | lf_av = lf_max = AvgAdc_Voltage_LF(); | |
838 | ||
839 | if (limit != HF_ONLY) { | |
840 | Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av); | |
841 | lf_baseline = lf_av; | |
842 | } | |
843 | ||
844 | hf_av = hf_max = AvgAdc_Voltage_HF(); | |
845 | ||
846 | if (limit != LF_ONLY) { | |
847 | Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av); | |
848 | hf_baseline = hf_av; | |
849 | } | |
850 | ||
851 | for(;;) { | |
852 | SpinDelay(500); | |
853 | if (BUTTON_PRESS()) { | |
854 | switch (mode) { | |
855 | case 1: | |
856 | mode=2; | |
857 | DbpString("Signal Strength Mode"); | |
858 | break; | |
859 | case 2: | |
860 | default: | |
861 | DbpString("Stopped"); | |
862 | LEDsoff(); | |
863 | return; | |
864 | break; | |
865 | } | |
866 | while (BUTTON_PRESS()) | |
867 | /* wait */; | |
868 | } | |
869 | WDT_HIT(); | |
870 | ||
871 | if (limit != HF_ONLY) { | |
872 | if(mode == 1) { | |
873 | if (lf_av - lf_baseline > MIN_LF_FIELD) | |
874 | LED_D_ON(); | |
875 | else | |
876 | LED_D_OFF(); | |
877 | } | |
878 | ||
879 | lf_av_new = AvgAdc_Voltage_LF(); | |
880 | // see if there's a significant change | |
881 | if (ABS((lf_av - lf_av_new) * 100 / (lf_av?lf_av:1)) > REPORT_CHANGE_PERCENT) { | |
882 | Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new); | |
883 | lf_av = lf_av_new; | |
884 | if (lf_av > lf_max) | |
885 | lf_max = lf_av; | |
886 | } | |
887 | } | |
888 | ||
889 | if (limit != LF_ONLY) { | |
890 | if (mode == 1){ | |
891 | if (hf_av - hf_baseline > MIN_HF_FIELD) | |
892 | LED_B_ON(); | |
893 | else | |
894 | LED_B_OFF(); | |
895 | } | |
896 | ||
897 | hf_av_new = AvgAdc_Voltage_HF(); | |
898 | ||
899 | // see if there's a significant change | |
900 | if (ABS((hf_av - hf_av_new) * 100 / (hf_av?hf_av:1)) > REPORT_CHANGE_PERCENT) { | |
901 | Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new); | |
902 | hf_av = hf_av_new; | |
903 | if (hf_av > hf_max) | |
904 | hf_max = hf_av; | |
905 | } | |
906 | } | |
907 | ||
908 | if (mode == 2) { | |
909 | if (limit == LF_ONLY) { | |
910 | display_val = lf_av; | |
911 | display_max = lf_max; | |
912 | } else if (limit == HF_ONLY) { | |
913 | display_val = hf_av; | |
914 | display_max = hf_max; | |
915 | } else { /* Pick one at random */ | |
916 | if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) { | |
917 | display_val = hf_av; | |
918 | display_max = hf_max; | |
919 | } else { | |
920 | display_val = lf_av; | |
921 | display_max = lf_max; | |
922 | } | |
923 | } | |
924 | for (i = 0; i < LIGHT_LEN; i++) { | |
925 | if (display_val >= (display_max / LIGHT_LEN * i) && display_val <= (display_max / LIGHT_LEN * (i+1))) { | |
926 | if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF(); | |
927 | if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF(); | |
928 | if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF(); | |
929 | if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF(); | |
930 | break; | |
931 | } | |
932 | } | |
933 | } | |
934 | } | |
935 | } | |
936 | ||
937 | ||
938 | void UsbPacketReceived(UsbCommand *c) { | |
939 | ||
940 | // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]); | |
941 | ||
942 | switch(c->cmd) { | |
943 | #ifdef WITH_LF | |
944 | case CMD_SET_LF_SAMPLING_CONFIG: | |
945 | setSamplingConfig(c->d.asBytes); | |
946 | break; | |
947 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
948 | cmd_send(CMD_ACK,SampleLF(c->arg[0], c->arg[1]),0,0,0,0); | |
949 | break; | |
950 | case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
951 | ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); | |
952 | break; | |
953 | case CMD_LF_SNOOP_RAW_ADC_SAMPLES: | |
954 | cmd_send(CMD_ACK,SnoopLF(),0,0,0,0); | |
955 | break; | |
956 | case CMD_HID_DEMOD_FSK: | |
957 | CmdHIDdemodFSK(c->arg[0], 0, 0, 0, 1); | |
958 | break; | |
959 | case CMD_HID_SIM_TAG: | |
960 | CmdHIDsimTAG(c->arg[0], c->arg[1], c->arg[2], 1); | |
961 | break; | |
962 | case CMD_FSK_SIM_TAG: | |
963 | CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
964 | break; | |
965 | case CMD_ASK_SIM_TAG: | |
966 | CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
967 | break; | |
968 | case CMD_PSK_SIM_TAG: | |
969 | CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
970 | break; | |
971 | case CMD_HID_CLONE_TAG: | |
972 | CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x1D); | |
973 | break; | |
974 | case CMD_PARADOX_CLONE_TAG: | |
975 | // Paradox cards are the same as HID, with a different preamble, so we can reuse the same function | |
976 | CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x0F); | |
977 | break; | |
978 | case CMD_IO_DEMOD_FSK: | |
979 | CmdIOdemodFSK(c->arg[0], 0, 0, 1); | |
980 | break; | |
981 | case CMD_IO_CLONE_TAG: | |
982 | CopyIOtoT55x7(c->arg[0], c->arg[1]); | |
983 | break; | |
984 | case CMD_EM410X_DEMOD: | |
985 | CmdEM410xdemod(c->arg[0], 0, 0, 1); | |
986 | break; | |
987 | case CMD_EM410X_WRITE_TAG: | |
988 | WriteEM410x(c->arg[0], c->arg[1], c->arg[2]); | |
989 | break; | |
990 | case CMD_READ_TI_TYPE: | |
991 | ReadTItag(); | |
992 | break; | |
993 | case CMD_WRITE_TI_TYPE: | |
994 | WriteTItag(c->arg[0],c->arg[1],c->arg[2]); | |
995 | break; | |
996 | case CMD_SIMULATE_TAG_125K: | |
997 | LED_A_ON(); | |
998 | SimulateTagLowFrequency(c->arg[0], c->arg[1], 1); | |
999 | LED_A_OFF(); | |
1000 | break; | |
1001 | case CMD_LF_SIMULATE_BIDIR: | |
1002 | SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]); | |
1003 | break; | |
1004 | case CMD_INDALA_CLONE_TAG: | |
1005 | CopyIndala64toT55x7(c->arg[0], c->arg[1]); | |
1006 | break; | |
1007 | case CMD_INDALA_CLONE_TAG_L: | |
1008 | CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]); | |
1009 | break; | |
1010 | case CMD_T55XX_READ_BLOCK: | |
1011 | T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]); | |
1012 | break; | |
1013 | case CMD_T55XX_WRITE_BLOCK: | |
1014 | T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); | |
1015 | break; | |
1016 | case CMD_T55XX_WAKEUP: | |
1017 | T55xxWakeUp(c->arg[0]); | |
1018 | break; | |
1019 | case CMD_T55XX_RESET_READ: | |
1020 | T55xxResetRead(); | |
1021 | break; | |
1022 | case CMD_PCF7931_READ: | |
1023 | ReadPCF7931(); | |
1024 | break; | |
1025 | case CMD_PCF7931_WRITE: | |
1026 | WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]); | |
1027 | break; | |
1028 | case CMD_PCF7931_BRUTEFORCE: | |
1029 | BruteForcePCF7931(c->arg[0], (c->arg[1] & 0xFF), c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128); | |
1030 | break; | |
1031 | case CMD_EM4X_READ_WORD: | |
1032 | EM4xReadWord(c->arg[0], c->arg[1],c->arg[2]); | |
1033 | break; | |
1034 | case CMD_EM4X_WRITE_WORD: | |
1035 | EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2]); | |
1036 | break; | |
1037 | case CMD_EM4X_PROTECT: | |
1038 | EM4xProtect(c->arg[0], c->arg[1], c->arg[2]); | |
1039 | break; | |
1040 | case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation | |
1041 | CmdAWIDdemodFSK(c->arg[0], 0, 0, 1); | |
1042 | break; | |
1043 | case CMD_VIKING_CLONE_TAG: | |
1044 | CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]); | |
1045 | break; | |
1046 | case CMD_COTAG: | |
1047 | Cotag(c->arg[0]); | |
1048 | break; | |
1049 | #endif | |
1050 | ||
1051 | #ifdef WITH_HITAG | |
1052 | case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type | |
1053 | SnoopHitag(c->arg[0]); | |
1054 | break; | |
1055 | case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content | |
1056 | SimulateHitagTag((bool)c->arg[0], (uint8_t*)c->d.asBytes); | |
1057 | break; | |
1058 | case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function | |
1059 | ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes); | |
1060 | break; | |
1061 | case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content | |
1062 | SimulateHitagSTag((bool)c->arg[0],(uint8_t*)c->d.asBytes); | |
1063 | break; | |
1064 | case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file | |
1065 | check_challenges_cmd((bool)c->arg[0], (uint8_t*)c->d.asBytes, (uint8_t)c->arg[1]); | |
1066 | break; | |
1067 | case CMD_READ_HITAG_S://Reader for only Hitag S tags, args = key or challenge | |
1068 | ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], false); | |
1069 | break; | |
1070 | case CMD_READ_HITAG_S_BLK: | |
1071 | ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], true); | |
1072 | break; | |
1073 | case CMD_WR_HITAG_S://writer for Hitag tags args=data to write,page and key or challenge | |
1074 | if ((hitag_function)c->arg[0] < 10) { | |
1075 | WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]); | |
1076 | } | |
1077 | else if ((hitag_function)c->arg[0] >= 10) { | |
1078 | WriterHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes, c->arg[2]); | |
1079 | } | |
1080 | break; | |
1081 | #endif | |
1082 | ||
1083 | #ifdef WITH_ISO15693 | |
1084 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: | |
1085 | AcquireRawAdcSamplesIso15693(); | |
1086 | break; | |
1087 | ||
1088 | case CMD_SNOOP_ISO_15693: | |
1089 | SnoopIso15693(0, NULL); | |
1090 | break; | |
1091 | ||
1092 | case CMD_ISO_15693_COMMAND: | |
1093 | DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); | |
1094 | break; | |
1095 | ||
1096 | case CMD_ISO_15693_FIND_AFI: | |
1097 | BruteforceIso15693Afi(c->arg[0]); | |
1098 | break; | |
1099 | ||
1100 | case CMD_ISO_15693_DEBUG: | |
1101 | SetDebugIso15693(c->arg[0]); | |
1102 | break; | |
1103 | ||
1104 | case CMD_READER_ISO_15693: | |
1105 | ReaderIso15693(c->arg[0]); | |
1106 | break; | |
1107 | ||
1108 | case CMD_SIMTAG_ISO_15693: | |
1109 | SimTagIso15693(c->arg[0], c->d.asBytes); | |
1110 | break; | |
1111 | ||
1112 | case CMD_CSETUID_ISO_15693: | |
1113 | SetTag15693Uid(c->d.asBytes); | |
1114 | break; | |
1115 | #endif | |
1116 | ||
1117 | #ifdef WITH_LEGICRF | |
1118 | case CMD_SIMULATE_TAG_LEGIC_RF: | |
1119 | LegicRfSimulate(c->arg[0]); | |
1120 | break; | |
1121 | ||
1122 | case CMD_WRITER_LEGIC_RF: | |
1123 | LegicRfWriter(c->arg[1], c->arg[0]); | |
1124 | break; | |
1125 | ||
1126 | case CMD_READER_LEGIC_RF: | |
1127 | LegicRfReader(c->arg[0], c->arg[1]); | |
1128 | break; | |
1129 | #endif | |
1130 | ||
1131 | #ifdef WITH_ISO14443b | |
1132 | case CMD_READ_SRI512_TAG: | |
1133 | ReadSTMemoryIso14443b(0x0F); | |
1134 | break; | |
1135 | case CMD_READ_SRIX4K_TAG: | |
1136 | ReadSTMemoryIso14443b(0x7F); | |
1137 | break; | |
1138 | case CMD_SNOOP_ISO_14443B: | |
1139 | SnoopIso14443b(); | |
1140 | break; | |
1141 | case CMD_SIMULATE_TAG_ISO_14443B: | |
1142 | SimulateIso14443bTag(); | |
1143 | break; | |
1144 | case CMD_ISO_14443B_COMMAND: | |
1145 | SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); | |
1146 | break; | |
1147 | #endif | |
1148 | ||
1149 | #ifdef WITH_ISO14443a | |
1150 | case CMD_SNOOP_ISO_14443a: | |
1151 | SnoopIso14443a(c->arg[0]); | |
1152 | break; | |
1153 | case CMD_READER_ISO_14443a: | |
1154 | ReaderIso14443a(c); | |
1155 | break; | |
1156 | case CMD_SIMULATE_TAG_ISO_14443a: | |
1157 | SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID | |
1158 | break; | |
1159 | ||
1160 | case CMD_EPA_PACE_COLLECT_NONCE: | |
1161 | EPA_PACE_Collect_Nonce(c); | |
1162 | break; | |
1163 | case CMD_EPA_PACE_REPLAY: | |
1164 | EPA_PACE_Replay(c); | |
1165 | break; | |
1166 | ||
1167 | case CMD_READER_MIFARE: | |
1168 | ReaderMifare(c->arg[0]); | |
1169 | break; | |
1170 | case CMD_MIFARE_READBL: | |
1171 | MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1172 | break; | |
1173 | case CMD_MIFAREU_READBL: | |
1174 | MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes); | |
1175 | break; | |
1176 | case CMD_MIFAREUC_AUTH: | |
1177 | MifareUC_Auth(c->arg[0],c->d.asBytes); | |
1178 | break; | |
1179 | case CMD_MIFAREU_READCARD: | |
1180 | MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1181 | break; | |
1182 | case CMD_MIFAREUC_SETPWD: | |
1183 | MifareUSetPwd(c->arg[0], c->d.asBytes); | |
1184 | break; | |
1185 | case CMD_MIFARE_READSC: | |
1186 | MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1187 | break; | |
1188 | case CMD_MIFARE_WRITEBL: | |
1189 | MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1190 | break; | |
1191 | case CMD_MIFARE_PERSONALIZE_UID: | |
1192 | MifarePersonalizeUID(c->arg[0], c->arg[1], c->d.asBytes); | |
1193 | break; | |
1194 | //case CMD_MIFAREU_WRITEBL_COMPAT: | |
1195 | //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes); | |
1196 | //break; | |
1197 | case CMD_MIFAREU_WRITEBL: | |
1198 | MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes); | |
1199 | break; | |
1200 | case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES: | |
1201 | MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1202 | break; | |
1203 | case CMD_MIFARE_NESTED: | |
1204 | MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1205 | break; | |
1206 | case CMD_MIFARE_CHKKEYS: | |
1207 | MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1208 | break; | |
1209 | case CMD_SIMULATE_MIFARE_CARD: | |
1210 | MifareSim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1211 | break; | |
1212 | ||
1213 | // emulator | |
1214 | case CMD_MIFARE_SET_DBGMODE: | |
1215 | MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1216 | break; | |
1217 | case CMD_MIFARE_EML_MEMCLR: | |
1218 | MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1219 | break; | |
1220 | case CMD_MIFARE_EML_MEMSET: | |
1221 | MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1222 | break; | |
1223 | case CMD_MIFARE_EML_MEMGET: | |
1224 | MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1225 | break; | |
1226 | case CMD_MIFARE_EML_CARDLOAD: | |
1227 | MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1228 | break; | |
1229 | ||
1230 | // Work with "magic Chinese" card | |
1231 | case CMD_MIFARE_CWIPE: | |
1232 | MifareCWipe(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1233 | break; | |
1234 | case CMD_MIFARE_CSETBLOCK: | |
1235 | MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1236 | break; | |
1237 | case CMD_MIFARE_CGETBLOCK: | |
1238 | MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1239 | break; | |
1240 | case CMD_MIFARE_CIDENT: | |
1241 | MifareCIdent(); | |
1242 | break; | |
1243 | ||
1244 | // mifare sniffer | |
1245 | case CMD_MIFARE_SNIFFER: | |
1246 | SniffMifare(c->arg[0]); | |
1247 | break; | |
1248 | ||
1249 | #endif | |
1250 | ||
1251 | #ifdef WITH_ICLASS | |
1252 | // Makes use of ISO14443a FPGA Firmware | |
1253 | case CMD_SNOOP_ICLASS: | |
1254 | SnoopIClass(c->arg[0], c->d.asBytes); | |
1255 | break; | |
1256 | case CMD_SIMULATE_TAG_ICLASS: | |
1257 | SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1258 | break; | |
1259 | case CMD_READER_ICLASS: | |
1260 | ReaderIClass(c->arg[0]); | |
1261 | break; | |
1262 | case CMD_ICLASS_EML_MEMSET: | |
1263 | emlSet(c->d.asBytes,c->arg[0], c->arg[1]); | |
1264 | break; | |
1265 | case CMD_ICLASS_WRITEBLOCK: | |
1266 | iClass_WriteBlock(c->arg[0], c->d.asBytes); | |
1267 | break; | |
1268 | case CMD_ICLASS_READBLOCK: | |
1269 | iClass_ReadBlk(c->arg[0]); | |
1270 | break; | |
1271 | case CMD_ICLASS_CHECK: | |
1272 | iClass_Check(c->d.asBytes); | |
1273 | break; | |
1274 | case CMD_ICLASS_READCHECK: | |
1275 | iClass_Readcheck(c->arg[0], c->arg[1]); | |
1276 | break; | |
1277 | case CMD_ICLASS_DUMP: | |
1278 | iClass_Dump(c->arg[0], c->arg[1]); | |
1279 | break; | |
1280 | case CMD_ICLASS_CLONE: | |
1281 | iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes); | |
1282 | break; | |
1283 | #endif | |
1284 | ||
1285 | #ifdef WITH_HFSNOOP | |
1286 | case CMD_HF_SNIFFER: | |
1287 | HfSnoop(c->arg[0], c->arg[1]); | |
1288 | break; | |
1289 | case CMD_HF_PLOT: | |
1290 | HfPlot(); | |
1291 | break; | |
1292 | #endif | |
1293 | ||
1294 | #ifdef WITH_SMARTCARD | |
1295 | case CMD_SMART_ATR: { | |
1296 | SmartCardAtr(); | |
1297 | break; | |
1298 | } | |
1299 | case CMD_SMART_SETCLOCK:{ | |
1300 | SmartCardSetClock(c->arg[0]); | |
1301 | break; | |
1302 | } | |
1303 | case CMD_SMART_RAW: { | |
1304 | SmartCardRaw(c->arg[0], c->arg[1], c->d.asBytes); | |
1305 | break; | |
1306 | } | |
1307 | case CMD_SMART_UPLOAD: { | |
1308 | // upload file from client | |
1309 | uint8_t *mem = BigBuf_get_addr(); | |
1310 | memcpy( mem + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE); | |
1311 | cmd_send(CMD_ACK,1,0,0,0,0); | |
1312 | break; | |
1313 | } | |
1314 | case CMD_SMART_UPGRADE: { | |
1315 | SmartCardUpgrade(c->arg[0]); | |
1316 | break; | |
1317 | } | |
1318 | #endif | |
1319 | ||
1320 | case CMD_BUFF_CLEAR: | |
1321 | BigBuf_Clear(); | |
1322 | break; | |
1323 | ||
1324 | case CMD_MEASURE_ANTENNA_TUNING: | |
1325 | MeasureAntennaTuning(c->arg[0]); | |
1326 | break; | |
1327 | ||
1328 | case CMD_MEASURE_ANTENNA_TUNING_HF: | |
1329 | MeasureAntennaTuningHf(); | |
1330 | break; | |
1331 | ||
1332 | case CMD_LISTEN_READER_FIELD: | |
1333 | ListenReaderField(c->arg[0]); | |
1334 | break; | |
1335 | ||
1336 | case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control | |
1337 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1338 | SpinDelay(200); | |
1339 | LED_D_OFF(); // LED D indicates field ON or OFF | |
1340 | break; | |
1341 | ||
1342 | case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: | |
1343 | LED_B_ON(); | |
1344 | uint8_t *BigBuf = BigBuf_get_addr(); | |
1345 | for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) { | |
1346 | size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE); | |
1347 | cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len); | |
1348 | } | |
1349 | // Trigger a finish downloading signal with an ACK frame | |
1350 | cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config)); | |
1351 | LED_B_OFF(); | |
1352 | break; | |
1353 | ||
1354 | case CMD_DOWNLOADED_SIM_SAMPLES_125K: { | |
1355 | // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before. | |
1356 | // to be able to use this one for uploading data to device | |
1357 | // arg1 = 0 upload for LF usage | |
1358 | // 1 upload for HF usage | |
1359 | if (c->arg[1] == 0) | |
1360 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1361 | else | |
1362 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1363 | ||
1364 | uint8_t *b = BigBuf_get_addr(); | |
1365 | memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE); | |
1366 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1367 | break; | |
1368 | } | |
1369 | case CMD_READ_MEM: | |
1370 | ReadMem(c->arg[0]); | |
1371 | break; | |
1372 | ||
1373 | case CMD_SET_LF_DIVISOR: | |
1374 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1375 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]); | |
1376 | break; | |
1377 | ||
1378 | case CMD_SET_ADC_MUX: | |
1379 | switch(c->arg[0]) { | |
1380 | case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break; | |
1381 | case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break; | |
1382 | case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break; | |
1383 | case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break; | |
1384 | } | |
1385 | break; | |
1386 | ||
1387 | case CMD_VERSION: | |
1388 | SendVersion(); | |
1389 | break; | |
1390 | case CMD_STATUS: | |
1391 | SendStatus(); | |
1392 | break; | |
1393 | case CMD_PING: | |
1394 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1395 | break; | |
1396 | #ifdef WITH_LCD | |
1397 | case CMD_LCD_RESET: | |
1398 | LCDReset(); | |
1399 | break; | |
1400 | case CMD_LCD: | |
1401 | LCDSend(c->arg[0]); | |
1402 | break; | |
1403 | #endif | |
1404 | case CMD_SETUP_WRITE: | |
1405 | case CMD_FINISH_WRITE: | |
1406 | case CMD_HARDWARE_RESET: | |
1407 | usb_disable(); | |
1408 | SpinDelay(1000); | |
1409 | SpinDelay(1000); | |
1410 | AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; | |
1411 | for(;;) { | |
1412 | // We're going to reset, and the bootrom will take control. | |
1413 | } | |
1414 | break; | |
1415 | ||
1416 | case CMD_START_FLASH: | |
1417 | if(common_area.flags.bootrom_present) { | |
1418 | common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE; | |
1419 | } | |
1420 | usb_disable(); | |
1421 | AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; | |
1422 | for(;;); | |
1423 | break; | |
1424 | ||
1425 | case CMD_DEVICE_INFO: { | |
1426 | uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS; | |
1427 | if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT; | |
1428 | cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0); | |
1429 | break; | |
1430 | } | |
1431 | default: | |
1432 | Dbprintf("%s: 0x%04x","unknown command:",c->cmd); | |
1433 | break; | |
1434 | } | |
1435 | } | |
1436 | ||
1437 | ||
1438 | void __attribute__((noreturn)) AppMain(void) { | |
1439 | ||
1440 | SpinDelay(100); | |
1441 | clear_trace(); | |
1442 | if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) { | |
1443 | /* Initialize common area */ | |
1444 | memset(&common_area, 0, sizeof(common_area)); | |
1445 | common_area.magic = COMMON_AREA_MAGIC; | |
1446 | common_area.version = 1; | |
1447 | } | |
1448 | common_area.flags.osimage_present = 1; | |
1449 | ||
1450 | LEDsoff(); | |
1451 | ||
1452 | // Init USB device | |
1453 | usb_enable(); | |
1454 | ||
1455 | // The FPGA gets its clock from us from PCK0 output, so set that up. | |
1456 | AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0; | |
1457 | AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0; | |
1458 | AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0; | |
1459 | // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz | |
1460 | AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | | |
1461 | AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0 | |
1462 | AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0; | |
1463 | ||
1464 | // Reset SPI | |
1465 | AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST; | |
1466 | // Reset SSC | |
1467 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
1468 | ||
1469 | // Load the FPGA image, which we have stored in our flash. | |
1470 | // (the HF version by default) | |
1471 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1472 | ||
1473 | StartTickCount(); | |
1474 | ||
1475 | #ifdef WITH_LCD | |
1476 | LCDInit(); | |
1477 | #endif | |
1478 | ||
1479 | UsbCommand rx; | |
1480 | ||
1481 | for(;;) { | |
1482 | if (cmd_receive(&rx)) { | |
1483 | UsbPacketReceived(&rx); | |
1484 | } | |
1485 | ||
1486 | WDT_HIT(); | |
1487 | if (usb_poll() && (rx_len = usb_read(rx, sizeof(rx)))) { | |
1488 | UsbPacketReceived(rx, rx_len); | |
1489 | } else { | |
1490 | #if defined(WITH_LF_StandAlone) && !defined(WITH_ISO14443a_StandAlone) | |
1491 | if (BUTTON_HELD(1000) > 0) | |
1492 | SamyRun(); | |
1493 | #endif | |
1494 | #if defined(WITH_ISO14443a) && defined(WITH_ISO14443a_StandAlone) | |
1495 | if (BUTTON_HELD(1000) > 0) | |
1496 | StandAloneMode14a(); | |
1497 | #endif | |
1498 | } | |
1499 | } | |
1500 | } |