]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
3 | // at your option, any later version. See the LICENSE.txt file for the text of | |
4 | // the license. | |
5 | //----------------------------------------------------------------------------- | |
6 | // Miscellaneous routines for low frequency tag operations. | |
7 | // Tags supported here so far are Texas Instruments (TI), HID | |
8 | // Also routines for raw mode reading/simulating of LF waveform | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include "proxmark3.h" | |
12 | #include "apps.h" | |
13 | #include "util.h" | |
14 | #include "hitag2.h" | |
15 | #include "crc16.h" | |
16 | #include "string.h" | |
17 | #include "lfdemod.h" | |
18 | #include "lfsampling.h" | |
19 | ||
20 | ||
21 | /** | |
22 | * Function to do a modulation and then get samples. | |
23 | * @param delay_off | |
24 | * @param period_0 | |
25 | * @param period_1 | |
26 | * @param command | |
27 | */ | |
28 | void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command) | |
29 | { | |
30 | ||
31 | int divisor_used = 95; // 125 KHz | |
32 | // see if 'h' was specified | |
33 | ||
34 | if (command[strlen((char *) command) - 1] == 'h') | |
35 | divisor_used = 88; // 134.8 KHz | |
36 | ||
37 | sample_config sc = { 0,0,1, divisor_used, 0}; | |
38 | setSamplingConfig(&sc); | |
39 | ||
40 | /* Make sure the tag is reset */ | |
41 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
42 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
43 | SpinDelay(2500); | |
44 | ||
45 | LFSetupFPGAForADC(sc.divisor, 1); | |
46 | ||
47 | // And a little more time for the tag to fully power up | |
48 | SpinDelay(2000); | |
49 | ||
50 | // now modulate the reader field | |
51 | while(*command != '\0' && *command != ' ') { | |
52 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
53 | LED_D_OFF(); | |
54 | SpinDelayUs(delay_off); | |
55 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); | |
56 | ||
57 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
58 | LED_D_ON(); | |
59 | if(*(command++) == '0') | |
60 | SpinDelayUs(period_0); | |
61 | else | |
62 | SpinDelayUs(period_1); | |
63 | } | |
64 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
65 | LED_D_OFF(); | |
66 | SpinDelayUs(delay_off); | |
67 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); | |
68 | ||
69 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
70 | ||
71 | // now do the read | |
72 | DoAcquisition_config(false); | |
73 | } | |
74 | ||
75 | ||
76 | ||
77 | /* blank r/w tag data stream | |
78 | ...0000000000000000 01111111 | |
79 | 1010101010101010101010101010101010101010101010101010101010101010 | |
80 | 0011010010100001 | |
81 | 01111111 | |
82 | 101010101010101[0]000... | |
83 | ||
84 | [5555fe852c5555555555555555fe0000] | |
85 | */ | |
86 | void ReadTItag(void) | |
87 | { | |
88 | // some hardcoded initial params | |
89 | // when we read a TI tag we sample the zerocross line at 2Mhz | |
90 | // TI tags modulate a 1 as 16 cycles of 123.2Khz | |
91 | // TI tags modulate a 0 as 16 cycles of 134.2Khz | |
92 | #define FSAMPLE 2000000 | |
93 | #define FREQLO 123200 | |
94 | #define FREQHI 134200 | |
95 | ||
96 | signed char *dest = (signed char *)BigBuf_get_addr(); | |
97 | uint16_t n = BigBuf_max_traceLen(); | |
98 | // 128 bit shift register [shift3:shift2:shift1:shift0] | |
99 | uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; | |
100 | ||
101 | int i, cycles=0, samples=0; | |
102 | // how many sample points fit in 16 cycles of each frequency | |
103 | uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; | |
104 | // when to tell if we're close enough to one freq or another | |
105 | uint32_t threshold = (sampleslo - sampleshi + 1)>>1; | |
106 | ||
107 | // TI tags charge at 134.2Khz | |
108 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
109 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
110 | ||
111 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
112 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
113 | // whether we're modulating the antenna (high) | |
114 | // or listening to the antenna (low) | |
115 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
116 | ||
117 | // get TI tag data into the buffer | |
118 | AcquireTiType(); | |
119 | ||
120 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
121 | ||
122 | for (i=0; i<n-1; i++) { | |
123 | // count cycles by looking for lo to hi zero crossings | |
124 | if ( (dest[i]<0) && (dest[i+1]>0) ) { | |
125 | cycles++; | |
126 | // after 16 cycles, measure the frequency | |
127 | if (cycles>15) { | |
128 | cycles=0; | |
129 | samples=i-samples; // number of samples in these 16 cycles | |
130 | ||
131 | // TI bits are coming to us lsb first so shift them | |
132 | // right through our 128 bit right shift register | |
133 | shift0 = (shift0>>1) | (shift1 << 31); | |
134 | shift1 = (shift1>>1) | (shift2 << 31); | |
135 | shift2 = (shift2>>1) | (shift3 << 31); | |
136 | shift3 >>= 1; | |
137 | ||
138 | // check if the cycles fall close to the number | |
139 | // expected for either the low or high frequency | |
140 | if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { | |
141 | // low frequency represents a 1 | |
142 | shift3 |= (1<<31); | |
143 | } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { | |
144 | // high frequency represents a 0 | |
145 | } else { | |
146 | // probably detected a gay waveform or noise | |
147 | // use this as gaydar or discard shift register and start again | |
148 | shift3 = shift2 = shift1 = shift0 = 0; | |
149 | } | |
150 | samples = i; | |
151 | ||
152 | // for each bit we receive, test if we've detected a valid tag | |
153 | ||
154 | // if we see 17 zeroes followed by 6 ones, we might have a tag | |
155 | // remember the bits are backwards | |
156 | if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { | |
157 | // if start and end bytes match, we have a tag so break out of the loop | |
158 | if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { | |
159 | cycles = 0xF0B; //use this as a flag (ugly but whatever) | |
160 | break; | |
161 | } | |
162 | } | |
163 | } | |
164 | } | |
165 | } | |
166 | ||
167 | // if flag is set we have a tag | |
168 | if (cycles!=0xF0B) { | |
169 | DbpString("Info: No valid tag detected."); | |
170 | } else { | |
171 | // put 64 bit data into shift1 and shift0 | |
172 | shift0 = (shift0>>24) | (shift1 << 8); | |
173 | shift1 = (shift1>>24) | (shift2 << 8); | |
174 | ||
175 | // align 16 bit crc into lower half of shift2 | |
176 | shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; | |
177 | ||
178 | // if r/w tag, check ident match | |
179 | if (shift3 & (1<<15) ) { | |
180 | DbpString("Info: TI tag is rewriteable"); | |
181 | // only 15 bits compare, last bit of ident is not valid | |
182 | if (((shift3 >> 16) ^ shift0) & 0x7fff ) { | |
183 | DbpString("Error: Ident mismatch!"); | |
184 | } else { | |
185 | DbpString("Info: TI tag ident is valid"); | |
186 | } | |
187 | } else { | |
188 | DbpString("Info: TI tag is readonly"); | |
189 | } | |
190 | ||
191 | // WARNING the order of the bytes in which we calc crc below needs checking | |
192 | // i'm 99% sure the crc algorithm is correct, but it may need to eat the | |
193 | // bytes in reverse or something | |
194 | // calculate CRC | |
195 | uint32_t crc=0; | |
196 | ||
197 | crc = update_crc16(crc, (shift0)&0xff); | |
198 | crc = update_crc16(crc, (shift0>>8)&0xff); | |
199 | crc = update_crc16(crc, (shift0>>16)&0xff); | |
200 | crc = update_crc16(crc, (shift0>>24)&0xff); | |
201 | crc = update_crc16(crc, (shift1)&0xff); | |
202 | crc = update_crc16(crc, (shift1>>8)&0xff); | |
203 | crc = update_crc16(crc, (shift1>>16)&0xff); | |
204 | crc = update_crc16(crc, (shift1>>24)&0xff); | |
205 | ||
206 | Dbprintf("Info: Tag data: %x%08x, crc=%x", | |
207 | (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); | |
208 | if (crc != (shift2&0xffff)) { | |
209 | Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); | |
210 | } else { | |
211 | DbpString("Info: CRC is good"); | |
212 | } | |
213 | } | |
214 | } | |
215 | ||
216 | void WriteTIbyte(uint8_t b) | |
217 | { | |
218 | int i = 0; | |
219 | ||
220 | // modulate 8 bits out to the antenna | |
221 | for (i=0; i<8; i++) | |
222 | { | |
223 | if (b&(1<<i)) { | |
224 | // stop modulating antenna | |
225 | LOW(GPIO_SSC_DOUT); | |
226 | SpinDelayUs(1000); | |
227 | // modulate antenna | |
228 | HIGH(GPIO_SSC_DOUT); | |
229 | SpinDelayUs(1000); | |
230 | } else { | |
231 | // stop modulating antenna | |
232 | LOW(GPIO_SSC_DOUT); | |
233 | SpinDelayUs(300); | |
234 | // modulate antenna | |
235 | HIGH(GPIO_SSC_DOUT); | |
236 | SpinDelayUs(1700); | |
237 | } | |
238 | } | |
239 | } | |
240 | ||
241 | void AcquireTiType(void) | |
242 | { | |
243 | int i, j, n; | |
244 | // tag transmission is <20ms, sampling at 2M gives us 40K samples max | |
245 | // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t | |
246 | #define TIBUFLEN 1250 | |
247 | ||
248 | // clear buffer | |
249 | uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr(); | |
250 | memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t)); | |
251 | ||
252 | // Set up the synchronous serial port | |
253 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; | |
254 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; | |
255 | ||
256 | // steal this pin from the SSP and use it to control the modulation | |
257 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
258 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
259 | ||
260 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
261 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; | |
262 | ||
263 | // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long | |
264 | // 48/2 = 24 MHz clock must be divided by 12 | |
265 | AT91C_BASE_SSC->SSC_CMR = 12; | |
266 | ||
267 | AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); | |
268 | AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; | |
269 | AT91C_BASE_SSC->SSC_TCMR = 0; | |
270 | AT91C_BASE_SSC->SSC_TFMR = 0; | |
271 | ||
272 | LED_D_ON(); | |
273 | ||
274 | // modulate antenna | |
275 | HIGH(GPIO_SSC_DOUT); | |
276 | ||
277 | // Charge TI tag for 50ms. | |
278 | SpinDelay(50); | |
279 | ||
280 | // stop modulating antenna and listen | |
281 | LOW(GPIO_SSC_DOUT); | |
282 | ||
283 | LED_D_OFF(); | |
284 | ||
285 | i = 0; | |
286 | for(;;) { | |
287 | if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
288 | BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer | |
289 | i++; if(i >= TIBUFLEN) break; | |
290 | } | |
291 | WDT_HIT(); | |
292 | } | |
293 | ||
294 | // return stolen pin to SSP | |
295 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; | |
296 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; | |
297 | ||
298 | char *dest = (char *)BigBuf_get_addr(); | |
299 | n = TIBUFLEN*32; | |
300 | // unpack buffer | |
301 | for (i=TIBUFLEN-1; i>=0; i--) { | |
302 | for (j=0; j<32; j++) { | |
303 | if(BigBuf[i] & (1 << j)) { | |
304 | dest[--n] = 1; | |
305 | } else { | |
306 | dest[--n] = -1; | |
307 | } | |
308 | } | |
309 | } | |
310 | } | |
311 | ||
312 | // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc | |
313 | // if crc provided, it will be written with the data verbatim (even if bogus) | |
314 | // if not provided a valid crc will be computed from the data and written. | |
315 | void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) | |
316 | { | |
317 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
318 | if(crc == 0) { | |
319 | crc = update_crc16(crc, (idlo)&0xff); | |
320 | crc = update_crc16(crc, (idlo>>8)&0xff); | |
321 | crc = update_crc16(crc, (idlo>>16)&0xff); | |
322 | crc = update_crc16(crc, (idlo>>24)&0xff); | |
323 | crc = update_crc16(crc, (idhi)&0xff); | |
324 | crc = update_crc16(crc, (idhi>>8)&0xff); | |
325 | crc = update_crc16(crc, (idhi>>16)&0xff); | |
326 | crc = update_crc16(crc, (idhi>>24)&0xff); | |
327 | } | |
328 | Dbprintf("Writing to tag: %x%08x, crc=%x", | |
329 | (unsigned int) idhi, (unsigned int) idlo, crc); | |
330 | ||
331 | // TI tags charge at 134.2Khz | |
332 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
333 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
334 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
335 | // whether we're modulating the antenna (high) | |
336 | // or listening to the antenna (low) | |
337 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
338 | LED_A_ON(); | |
339 | ||
340 | // steal this pin from the SSP and use it to control the modulation | |
341 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
342 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
343 | ||
344 | // writing algorithm: | |
345 | // a high bit consists of a field off for 1ms and field on for 1ms | |
346 | // a low bit consists of a field off for 0.3ms and field on for 1.7ms | |
347 | // initiate a charge time of 50ms (field on) then immediately start writing bits | |
348 | // start by writing 0xBB (keyword) and 0xEB (password) | |
349 | // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) | |
350 | // finally end with 0x0300 (write frame) | |
351 | // all data is sent lsb firts | |
352 | // finish with 15ms programming time | |
353 | ||
354 | // modulate antenna | |
355 | HIGH(GPIO_SSC_DOUT); | |
356 | SpinDelay(50); // charge time | |
357 | ||
358 | WriteTIbyte(0xbb); // keyword | |
359 | WriteTIbyte(0xeb); // password | |
360 | WriteTIbyte( (idlo )&0xff ); | |
361 | WriteTIbyte( (idlo>>8 )&0xff ); | |
362 | WriteTIbyte( (idlo>>16)&0xff ); | |
363 | WriteTIbyte( (idlo>>24)&0xff ); | |
364 | WriteTIbyte( (idhi )&0xff ); | |
365 | WriteTIbyte( (idhi>>8 )&0xff ); | |
366 | WriteTIbyte( (idhi>>16)&0xff ); | |
367 | WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo | |
368 | WriteTIbyte( (crc )&0xff ); // crc lo | |
369 | WriteTIbyte( (crc>>8 )&0xff ); // crc hi | |
370 | WriteTIbyte(0x00); // write frame lo | |
371 | WriteTIbyte(0x03); // write frame hi | |
372 | HIGH(GPIO_SSC_DOUT); | |
373 | SpinDelay(50); // programming time | |
374 | ||
375 | LED_A_OFF(); | |
376 | ||
377 | // get TI tag data into the buffer | |
378 | AcquireTiType(); | |
379 | ||
380 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
381 | DbpString("Now use tiread to check"); | |
382 | } | |
383 | ||
384 | void SimulateTagLowFrequency(int period, int gap, int ledcontrol) | |
385 | { | |
386 | int i; | |
387 | uint8_t *tab = BigBuf_get_addr(); | |
388 | ||
389 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
390 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); | |
391 | ||
392 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; | |
393 | ||
394 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
395 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; | |
396 | ||
397 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) | |
398 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) | |
399 | ||
400 | i = 0; | |
401 | for(;;) { | |
402 | //wait until SSC_CLK goes HIGH | |
403 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { | |
404 | if(BUTTON_PRESS()) { | |
405 | DbpString("Stopped"); | |
406 | return; | |
407 | } | |
408 | WDT_HIT(); | |
409 | } | |
410 | if (ledcontrol) | |
411 | LED_D_ON(); | |
412 | ||
413 | if(tab[i]) | |
414 | OPEN_COIL(); | |
415 | else | |
416 | SHORT_COIL(); | |
417 | ||
418 | if (ledcontrol) | |
419 | LED_D_OFF(); | |
420 | //wait until SSC_CLK goes LOW | |
421 | while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { | |
422 | if(BUTTON_PRESS()) { | |
423 | DbpString("Stopped"); | |
424 | return; | |
425 | } | |
426 | WDT_HIT(); | |
427 | } | |
428 | ||
429 | i++; | |
430 | if(i == period) { | |
431 | ||
432 | i = 0; | |
433 | if (gap) { | |
434 | SHORT_COIL(); | |
435 | SpinDelayUs(gap); | |
436 | } | |
437 | } | |
438 | } | |
439 | } | |
440 | ||
441 | #define DEBUG_FRAME_CONTENTS 1 | |
442 | void SimulateTagLowFrequencyBidir(int divisor, int t0) | |
443 | { | |
444 | } | |
445 | ||
446 | // compose fc/8 fc/10 waveform (FSK2) | |
447 | static void fc(int c, int *n) | |
448 | { | |
449 | uint8_t *dest = BigBuf_get_addr(); | |
450 | int idx; | |
451 | ||
452 | // for when we want an fc8 pattern every 4 logical bits | |
453 | if(c==0) { | |
454 | dest[((*n)++)]=1; | |
455 | dest[((*n)++)]=1; | |
456 | dest[((*n)++)]=1; | |
457 | dest[((*n)++)]=1; | |
458 | dest[((*n)++)]=0; | |
459 | dest[((*n)++)]=0; | |
460 | dest[((*n)++)]=0; | |
461 | dest[((*n)++)]=0; | |
462 | } | |
463 | ||
464 | // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples | |
465 | if(c==8) { | |
466 | for (idx=0; idx<6; idx++) { | |
467 | dest[((*n)++)]=1; | |
468 | dest[((*n)++)]=1; | |
469 | dest[((*n)++)]=1; | |
470 | dest[((*n)++)]=1; | |
471 | dest[((*n)++)]=0; | |
472 | dest[((*n)++)]=0; | |
473 | dest[((*n)++)]=0; | |
474 | dest[((*n)++)]=0; | |
475 | } | |
476 | } | |
477 | ||
478 | // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples | |
479 | if(c==10) { | |
480 | for (idx=0; idx<5; idx++) { | |
481 | dest[((*n)++)]=1; | |
482 | dest[((*n)++)]=1; | |
483 | dest[((*n)++)]=1; | |
484 | dest[((*n)++)]=1; | |
485 | dest[((*n)++)]=1; | |
486 | dest[((*n)++)]=0; | |
487 | dest[((*n)++)]=0; | |
488 | dest[((*n)++)]=0; | |
489 | dest[((*n)++)]=0; | |
490 | dest[((*n)++)]=0; | |
491 | } | |
492 | } | |
493 | } | |
494 | // compose fc/X fc/Y waveform (FSKx) | |
495 | static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) | |
496 | { | |
497 | uint8_t *dest = BigBuf_get_addr(); | |
498 | uint8_t halfFC = fc/2; | |
499 | uint8_t wavesPerClock = clock/fc; | |
500 | uint8_t mod = clock % fc; //modifier | |
501 | uint8_t modAdj = fc/mod; //how often to apply modifier | |
502 | bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE; | |
503 | // loop through clock - step field clock | |
504 | for (uint8_t idx=0; idx < wavesPerClock; idx++){ | |
505 | // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) | |
506 | memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here | |
507 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); | |
508 | *n += fc; | |
509 | } | |
510 | if (mod>0) (*modCnt)++; | |
511 | if ((mod>0) && modAdjOk){ //fsk2 | |
512 | if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave | |
513 | memset(dest+(*n), 0, fc-halfFC); | |
514 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); | |
515 | *n += fc; | |
516 | } | |
517 | } | |
518 | if (mod>0 && !modAdjOk){ //fsk1 | |
519 | memset(dest+(*n), 0, mod-(mod/2)); | |
520 | memset(dest+(*n)+(mod-(mod/2)), 1, mod/2); | |
521 | *n += mod; | |
522 | } | |
523 | } | |
524 | ||
525 | // prepare a waveform pattern in the buffer based on the ID given then | |
526 | // simulate a HID tag until the button is pressed | |
527 | void CmdHIDsimTAG(int hi, int lo, int ledcontrol) | |
528 | { | |
529 | int n=0, i=0; | |
530 | /* | |
531 | HID tag bitstream format | |
532 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits | |
533 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns | |
534 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns | |
535 | A fc8 is inserted before every 4 bits | |
536 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 | |
537 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) | |
538 | */ | |
539 | ||
540 | if (hi>0xFFF) { | |
541 | DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags"); | |
542 | return; | |
543 | } | |
544 | fc(0,&n); | |
545 | // special start of frame marker containing invalid bit sequences | |
546 | fc(8, &n); fc(8, &n); // invalid | |
547 | fc(8, &n); fc(10, &n); // logical 0 | |
548 | fc(10, &n); fc(10, &n); // invalid | |
549 | fc(8, &n); fc(10, &n); // logical 0 | |
550 | ||
551 | WDT_HIT(); | |
552 | // manchester encode bits 43 to 32 | |
553 | for (i=11; i>=0; i--) { | |
554 | if ((i%4)==3) fc(0,&n); | |
555 | if ((hi>>i)&1) { | |
556 | fc(10, &n); fc(8, &n); // low-high transition | |
557 | } else { | |
558 | fc(8, &n); fc(10, &n); // high-low transition | |
559 | } | |
560 | } | |
561 | ||
562 | WDT_HIT(); | |
563 | // manchester encode bits 31 to 0 | |
564 | for (i=31; i>=0; i--) { | |
565 | if ((i%4)==3) fc(0,&n); | |
566 | if ((lo>>i)&1) { | |
567 | fc(10, &n); fc(8, &n); // low-high transition | |
568 | } else { | |
569 | fc(8, &n); fc(10, &n); // high-low transition | |
570 | } | |
571 | } | |
572 | ||
573 | if (ledcontrol) | |
574 | LED_A_ON(); | |
575 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
576 | ||
577 | if (ledcontrol) | |
578 | LED_A_OFF(); | |
579 | } | |
580 | ||
581 | // prepare a waveform pattern in the buffer based on the ID given then | |
582 | // simulate a FSK tag until the button is pressed | |
583 | // arg1 contains fcHigh and fcLow, arg2 contains invert and clock | |
584 | void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
585 | { | |
586 | int ledcontrol=1; | |
587 | int n=0, i=0; | |
588 | uint8_t fcHigh = arg1 >> 8; | |
589 | uint8_t fcLow = arg1 & 0xFF; | |
590 | uint16_t modCnt = 0; | |
591 | uint8_t clk = arg2 & 0xFF; | |
592 | uint8_t invert = (arg2 >> 8) & 1; | |
593 | ||
594 | for (i=0; i<size; i++){ | |
595 | if (BitStream[i] == invert){ | |
596 | fcAll(fcLow, &n, clk, &modCnt); | |
597 | } else { | |
598 | fcAll(fcHigh, &n, clk, &modCnt); | |
599 | } | |
600 | } | |
601 | Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n); | |
602 | /*Dbprintf("DEBUG: First 32:"); | |
603 | uint8_t *dest = BigBuf_get_addr(); | |
604 | i=0; | |
605 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
606 | i+=16; | |
607 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
608 | */ | |
609 | if (ledcontrol) | |
610 | LED_A_ON(); | |
611 | ||
612 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
613 | ||
614 | if (ledcontrol) | |
615 | LED_A_OFF(); | |
616 | } | |
617 | ||
618 | // compose ask waveform for one bit(ASK) | |
619 | static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester) | |
620 | { | |
621 | uint8_t *dest = BigBuf_get_addr(); | |
622 | uint8_t halfClk = clock/2; | |
623 | // c = current bit 1 or 0 | |
624 | if (manchester){ | |
625 | memset(dest+(*n), c, halfClk); | |
626 | memset(dest+(*n) + halfClk, c^1, halfClk); | |
627 | } else { | |
628 | memset(dest+(*n), c, clock); | |
629 | } | |
630 | *n += clock; | |
631 | } | |
632 | ||
633 | // args clock, ask/man or askraw, invert, transmission separator | |
634 | void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
635 | { | |
636 | int ledcontrol = 1; | |
637 | int n=0, i=0; | |
638 | uint8_t clk = (arg1 >> 8) & 0xFF; | |
639 | uint8_t manchester = arg1 & 1; | |
640 | uint8_t separator = arg2 & 1; | |
641 | uint8_t invert = (arg2 >> 8) & 1; | |
642 | for (i=0; i<size; i++){ | |
643 | askSimBit(BitStream[i]^invert, &n, clk, manchester); | |
644 | } | |
645 | if (manchester==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase) | |
646 | for (i=0; i<size; i++){ | |
647 | askSimBit(BitStream[i]^invert^1, &n, clk, manchester); | |
648 | } | |
649 | } | |
650 | if (separator==1) Dbprintf("sorry but separator option not yet available"); | |
651 | ||
652 | Dbprintf("Simulating with clk: %d, invert: %d, manchester: %d, separator: %d, n: %d",clk, invert, manchester, separator, n); | |
653 | //DEBUG | |
654 | //Dbprintf("First 32:"); | |
655 | //uint8_t *dest = BigBuf_get_addr(); | |
656 | //i=0; | |
657 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
658 | //i+=16; | |
659 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
660 | ||
661 | if (ledcontrol) | |
662 | LED_A_ON(); | |
663 | ||
664 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
665 | ||
666 | if (ledcontrol) | |
667 | LED_A_OFF(); | |
668 | } | |
669 | ||
670 | //carrier can be 2,4 or 8 | |
671 | static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg) | |
672 | { | |
673 | uint8_t *dest = BigBuf_get_addr(); | |
674 | uint8_t halfWave = waveLen/2; | |
675 | //uint8_t idx; | |
676 | int i = 0; | |
677 | if (phaseChg){ | |
678 | // write phase change | |
679 | memset(dest+(*n), *curPhase^1, halfWave); | |
680 | memset(dest+(*n) + halfWave, *curPhase, halfWave); | |
681 | *n += waveLen; | |
682 | *curPhase ^= 1; | |
683 | i += waveLen; | |
684 | } | |
685 | //write each normal clock wave for the clock duration | |
686 | for (; i < clk; i+=waveLen){ | |
687 | memset(dest+(*n), *curPhase, halfWave); | |
688 | memset(dest+(*n) + halfWave, *curPhase^1, halfWave); | |
689 | *n += waveLen; | |
690 | } | |
691 | } | |
692 | ||
693 | // args clock, carrier, invert, | |
694 | void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
695 | { | |
696 | int ledcontrol=1; | |
697 | int n=0, i=0; | |
698 | uint8_t clk = arg1 >> 8; | |
699 | uint8_t carrier = arg1 & 0xFF; | |
700 | uint8_t invert = arg2 & 0xFF; | |
701 | uint8_t curPhase = 0; | |
702 | for (i=0; i<size; i++){ | |
703 | if (BitStream[i] == curPhase){ | |
704 | pskSimBit(carrier, &n, clk, &curPhase, FALSE); | |
705 | } else { | |
706 | pskSimBit(carrier, &n, clk, &curPhase, TRUE); | |
707 | } | |
708 | } | |
709 | Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n); | |
710 | //Dbprintf("DEBUG: First 32:"); | |
711 | //uint8_t *dest = BigBuf_get_addr(); | |
712 | //i=0; | |
713 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
714 | //i+=16; | |
715 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
716 | ||
717 | if (ledcontrol) | |
718 | LED_A_ON(); | |
719 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
720 | ||
721 | if (ledcontrol) | |
722 | LED_A_OFF(); | |
723 | } | |
724 | ||
725 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
726 | void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
727 | { | |
728 | uint8_t *dest = BigBuf_get_addr(); | |
729 | const size_t sizeOfBigBuff = BigBuf_max_traceLen(); | |
730 | size_t size = 0; | |
731 | uint32_t hi2=0, hi=0, lo=0; | |
732 | int idx=0; | |
733 | // Configure to go in 125Khz listen mode | |
734 | LFSetupFPGAForADC(95, true); | |
735 | ||
736 | while(!BUTTON_PRESS()) { | |
737 | ||
738 | WDT_HIT(); | |
739 | if (ledcontrol) LED_A_ON(); | |
740 | ||
741 | DoAcquisition_default(-1,true); | |
742 | // FSK demodulator | |
743 | size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use | |
744 | idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo); | |
745 | ||
746 | if (idx>0 && lo>0){ | |
747 | // final loop, go over previously decoded manchester data and decode into usable tag ID | |
748 | // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 | |
749 | if (hi2 != 0){ //extra large HID tags | |
750 | Dbprintf("TAG ID: %x%08x%08x (%d)", | |
751 | (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
752 | }else { //standard HID tags <38 bits | |
753 | //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd | |
754 | uint8_t bitlen = 0; | |
755 | uint32_t fc = 0; | |
756 | uint32_t cardnum = 0; | |
757 | if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used | |
758 | uint32_t lo2=0; | |
759 | lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit | |
760 | uint8_t idx3 = 1; | |
761 | while(lo2 > 1){ //find last bit set to 1 (format len bit) | |
762 | lo2=lo2 >> 1; | |
763 | idx3++; | |
764 | } | |
765 | bitlen = idx3+19; | |
766 | fc =0; | |
767 | cardnum=0; | |
768 | if(bitlen == 26){ | |
769 | cardnum = (lo>>1)&0xFFFF; | |
770 | fc = (lo>>17)&0xFF; | |
771 | } | |
772 | if(bitlen == 37){ | |
773 | cardnum = (lo>>1)&0x7FFFF; | |
774 | fc = ((hi&0xF)<<12)|(lo>>20); | |
775 | } | |
776 | if(bitlen == 34){ | |
777 | cardnum = (lo>>1)&0xFFFF; | |
778 | fc= ((hi&1)<<15)|(lo>>17); | |
779 | } | |
780 | if(bitlen == 35){ | |
781 | cardnum = (lo>>1)&0xFFFFF; | |
782 | fc = ((hi&1)<<11)|(lo>>21); | |
783 | } | |
784 | } | |
785 | else { //if bit 38 is not set then 37 bit format is used | |
786 | bitlen= 37; | |
787 | fc =0; | |
788 | cardnum=0; | |
789 | if(bitlen==37){ | |
790 | cardnum = (lo>>1)&0x7FFFF; | |
791 | fc = ((hi&0xF)<<12)|(lo>>20); | |
792 | } | |
793 | } | |
794 | //Dbprintf("TAG ID: %x%08x (%d)", | |
795 | // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
796 | Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", | |
797 | (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF, | |
798 | (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum); | |
799 | } | |
800 | if (findone){ | |
801 | if (ledcontrol) LED_A_OFF(); | |
802 | *high = hi; | |
803 | *low = lo; | |
804 | return; | |
805 | } | |
806 | // reset | |
807 | hi2 = hi = lo = 0; | |
808 | } | |
809 | WDT_HIT(); | |
810 | } | |
811 | DbpString("Stopped"); | |
812 | if (ledcontrol) LED_A_OFF(); | |
813 | } | |
814 | ||
815 | void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol) | |
816 | { | |
817 | uint8_t *dest = BigBuf_get_addr(); | |
818 | ||
819 | size_t size=0, idx=0; | |
820 | int clk=0, invert=0, errCnt=0, maxErr=20; | |
821 | uint64_t lo=0; | |
822 | // Configure to go in 125Khz listen mode | |
823 | LFSetupFPGAForADC(95, true); | |
824 | ||
825 | while(!BUTTON_PRESS()) { | |
826 | ||
827 | WDT_HIT(); | |
828 | if (ledcontrol) LED_A_ON(); | |
829 | ||
830 | DoAcquisition_default(-1,true); | |
831 | size = BigBuf_max_traceLen(); | |
832 | //Dbprintf("DEBUG: Buffer got"); | |
833 | //askdemod and manchester decode | |
834 | errCnt = askmandemod(dest, &size, &clk, &invert, maxErr); | |
835 | //Dbprintf("DEBUG: ASK Got"); | |
836 | WDT_HIT(); | |
837 | ||
838 | if (errCnt>=0){ | |
839 | lo = Em410xDecode(dest, &size, &idx); | |
840 | //Dbprintf("DEBUG: EM GOT"); | |
841 | if (lo>0){ | |
842 | Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", | |
843 | (uint32_t)(lo>>32), | |
844 | (uint32_t)lo, | |
845 | (uint32_t)(lo&0xFFFF), | |
846 | (uint32_t)((lo>>16LL) & 0xFF), | |
847 | (uint32_t)(lo & 0xFFFFFF)); | |
848 | } | |
849 | if (findone){ | |
850 | if (ledcontrol) LED_A_OFF(); | |
851 | *high=lo>>32; | |
852 | *low=lo & 0xFFFFFFFF; | |
853 | return; | |
854 | } | |
855 | } else{ | |
856 | //Dbprintf("DEBUG: No Tag"); | |
857 | } | |
858 | WDT_HIT(); | |
859 | lo = 0; | |
860 | clk=0; | |
861 | invert=0; | |
862 | errCnt=0; | |
863 | size=0; | |
864 | } | |
865 | DbpString("Stopped"); | |
866 | if (ledcontrol) LED_A_OFF(); | |
867 | } | |
868 | ||
869 | void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
870 | { | |
871 | uint8_t *dest = BigBuf_get_addr(); | |
872 | int idx=0; | |
873 | uint32_t code=0, code2=0; | |
874 | uint8_t version=0; | |
875 | uint8_t facilitycode=0; | |
876 | uint16_t number=0; | |
877 | // Configure to go in 125Khz listen mode | |
878 | LFSetupFPGAForADC(95, true); | |
879 | ||
880 | while(!BUTTON_PRESS()) { | |
881 | WDT_HIT(); | |
882 | if (ledcontrol) LED_A_ON(); | |
883 | DoAcquisition_default(-1,true); | |
884 | //fskdemod and get start index | |
885 | WDT_HIT(); | |
886 | idx = IOdemodFSK(dest, BigBuf_max_traceLen()); | |
887 | if (idx>0){ | |
888 | //valid tag found | |
889 | ||
890 | //Index map | |
891 | //0 10 20 30 40 50 60 | |
892 | //| | | | | | | | |
893 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
894 | //----------------------------------------------------------------------------- | |
895 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 | |
896 | // | |
897 | //XSF(version)facility:codeone+codetwo | |
898 | //Handle the data | |
899 | if(findone){ //only print binary if we are doing one | |
900 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); | |
901 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); | |
902 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); | |
903 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); | |
904 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); | |
905 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); | |
906 | Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); | |
907 | } | |
908 | code = bytebits_to_byte(dest+idx,32); | |
909 | code2 = bytebits_to_byte(dest+idx+32,32); | |
910 | version = bytebits_to_byte(dest+idx+27,8); //14,4 | |
911 | facilitycode = bytebits_to_byte(dest+idx+18,8) ; | |
912 | number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 | |
913 | ||
914 | Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2); | |
915 | // if we're only looking for one tag | |
916 | if (findone){ | |
917 | if (ledcontrol) LED_A_OFF(); | |
918 | //LED_A_OFF(); | |
919 | *high=code; | |
920 | *low=code2; | |
921 | return; | |
922 | } | |
923 | code=code2=0; | |
924 | version=facilitycode=0; | |
925 | number=0; | |
926 | idx=0; | |
927 | } | |
928 | WDT_HIT(); | |
929 | } | |
930 | DbpString("Stopped"); | |
931 | if (ledcontrol) LED_A_OFF(); | |
932 | } | |
933 | ||
934 | /*------------------------------ | |
935 | * T5555/T5557/T5567 routines | |
936 | *------------------------------ | |
937 | */ | |
938 | ||
939 | /* T55x7 configuration register definitions */ | |
940 | #define T55x7_POR_DELAY 0x00000001 | |
941 | #define T55x7_ST_TERMINATOR 0x00000008 | |
942 | #define T55x7_PWD 0x00000010 | |
943 | #define T55x7_MAXBLOCK_SHIFT 5 | |
944 | #define T55x7_AOR 0x00000200 | |
945 | #define T55x7_PSKCF_RF_2 0 | |
946 | #define T55x7_PSKCF_RF_4 0x00000400 | |
947 | #define T55x7_PSKCF_RF_8 0x00000800 | |
948 | #define T55x7_MODULATION_DIRECT 0 | |
949 | #define T55x7_MODULATION_PSK1 0x00001000 | |
950 | #define T55x7_MODULATION_PSK2 0x00002000 | |
951 | #define T55x7_MODULATION_PSK3 0x00003000 | |
952 | #define T55x7_MODULATION_FSK1 0x00004000 | |
953 | #define T55x7_MODULATION_FSK2 0x00005000 | |
954 | #define T55x7_MODULATION_FSK1a 0x00006000 | |
955 | #define T55x7_MODULATION_FSK2a 0x00007000 | |
956 | #define T55x7_MODULATION_MANCHESTER 0x00008000 | |
957 | #define T55x7_MODULATION_BIPHASE 0x00010000 | |
958 | #define T55x7_BITRATE_RF_8 0 | |
959 | #define T55x7_BITRATE_RF_16 0x00040000 | |
960 | #define T55x7_BITRATE_RF_32 0x00080000 | |
961 | #define T55x7_BITRATE_RF_40 0x000C0000 | |
962 | #define T55x7_BITRATE_RF_50 0x00100000 | |
963 | #define T55x7_BITRATE_RF_64 0x00140000 | |
964 | #define T55x7_BITRATE_RF_100 0x00180000 | |
965 | #define T55x7_BITRATE_RF_128 0x001C0000 | |
966 | ||
967 | /* T5555 (Q5) configuration register definitions */ | |
968 | #define T5555_ST_TERMINATOR 0x00000001 | |
969 | #define T5555_MAXBLOCK_SHIFT 0x00000001 | |
970 | #define T5555_MODULATION_MANCHESTER 0 | |
971 | #define T5555_MODULATION_PSK1 0x00000010 | |
972 | #define T5555_MODULATION_PSK2 0x00000020 | |
973 | #define T5555_MODULATION_PSK3 0x00000030 | |
974 | #define T5555_MODULATION_FSK1 0x00000040 | |
975 | #define T5555_MODULATION_FSK2 0x00000050 | |
976 | #define T5555_MODULATION_BIPHASE 0x00000060 | |
977 | #define T5555_MODULATION_DIRECT 0x00000070 | |
978 | #define T5555_INVERT_OUTPUT 0x00000080 | |
979 | #define T5555_PSK_RF_2 0 | |
980 | #define T5555_PSK_RF_4 0x00000100 | |
981 | #define T5555_PSK_RF_8 0x00000200 | |
982 | #define T5555_USE_PWD 0x00000400 | |
983 | #define T5555_USE_AOR 0x00000800 | |
984 | #define T5555_BITRATE_SHIFT 12 | |
985 | #define T5555_FAST_WRITE 0x00004000 | |
986 | #define T5555_PAGE_SELECT 0x00008000 | |
987 | ||
988 | /* | |
989 | * Relevant times in microsecond | |
990 | * To compensate antenna falling times shorten the write times | |
991 | * and enlarge the gap ones. | |
992 | */ | |
993 | #define START_GAP 250 | |
994 | #define WRITE_GAP 160 | |
995 | #define WRITE_0 144 // 192 | |
996 | #define WRITE_1 400 // 432 for T55x7; 448 for E5550 | |
997 | ||
998 | // Write one bit to card | |
999 | void T55xxWriteBit(int bit) | |
1000 | { | |
1001 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1002 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1003 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1004 | if (bit == 0) | |
1005 | SpinDelayUs(WRITE_0); | |
1006 | else | |
1007 | SpinDelayUs(WRITE_1); | |
1008 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1009 | SpinDelayUs(WRITE_GAP); | |
1010 | } | |
1011 | ||
1012 | // Write one card block in page 0, no lock | |
1013 | void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode) | |
1014 | { | |
1015 | //unsigned int i; //enio adjustment 12/10/14 | |
1016 | uint32_t i; | |
1017 | ||
1018 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1019 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1020 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1021 | ||
1022 | // Give it a bit of time for the resonant antenna to settle. | |
1023 | // And for the tag to fully power up | |
1024 | SpinDelay(150); | |
1025 | ||
1026 | // Now start writting | |
1027 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1028 | SpinDelayUs(START_GAP); | |
1029 | ||
1030 | // Opcode | |
1031 | T55xxWriteBit(1); | |
1032 | T55xxWriteBit(0); //Page 0 | |
1033 | if (PwdMode == 1){ | |
1034 | // Pwd | |
1035 | for (i = 0x80000000; i != 0; i >>= 1) | |
1036 | T55xxWriteBit(Pwd & i); | |
1037 | } | |
1038 | // Lock bit | |
1039 | T55xxWriteBit(0); | |
1040 | ||
1041 | // Data | |
1042 | for (i = 0x80000000; i != 0; i >>= 1) | |
1043 | T55xxWriteBit(Data & i); | |
1044 | ||
1045 | // Block | |
1046 | for (i = 0x04; i != 0; i >>= 1) | |
1047 | T55xxWriteBit(Block & i); | |
1048 | ||
1049 | // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, | |
1050 | // so wait a little more) | |
1051 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1052 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1053 | SpinDelay(20); | |
1054 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1055 | } | |
1056 | ||
1057 | // Read one card block in page 0 | |
1058 | void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode) | |
1059 | { | |
1060 | uint8_t *dest = BigBuf_get_addr(); | |
1061 | //int m=0, i=0; //enio adjustment 12/10/14 | |
1062 | uint32_t m=0, i=0; | |
1063 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1064 | m = BigBuf_max_traceLen(); | |
1065 | // Clear destination buffer before sending the command | |
1066 | memset(dest, 128, m); | |
1067 | // Connect the A/D to the peak-detected low-frequency path. | |
1068 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1069 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
1070 | FpgaSetupSsc(); | |
1071 | ||
1072 | LED_D_ON(); | |
1073 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1074 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1075 | ||
1076 | // Give it a bit of time for the resonant antenna to settle. | |
1077 | // And for the tag to fully power up | |
1078 | SpinDelay(150); | |
1079 | ||
1080 | // Now start writting | |
1081 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1082 | SpinDelayUs(START_GAP); | |
1083 | ||
1084 | // Opcode | |
1085 | T55xxWriteBit(1); | |
1086 | T55xxWriteBit(0); //Page 0 | |
1087 | if (PwdMode == 1){ | |
1088 | // Pwd | |
1089 | for (i = 0x80000000; i != 0; i >>= 1) | |
1090 | T55xxWriteBit(Pwd & i); | |
1091 | } | |
1092 | // Lock bit | |
1093 | T55xxWriteBit(0); | |
1094 | // Block | |
1095 | for (i = 0x04; i != 0; i >>= 1) | |
1096 | T55xxWriteBit(Block & i); | |
1097 | ||
1098 | // Turn field on to read the response | |
1099 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1100 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1101 | ||
1102 | // Now do the acquisition | |
1103 | i = 0; | |
1104 | for(;;) { | |
1105 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1106 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1107 | } | |
1108 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1109 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1110 | // we don't care about actual value, only if it's more or less than a | |
1111 | // threshold essentially we capture zero crossings for later analysis | |
1112 | // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; | |
1113 | i++; | |
1114 | if (i >= m) break; | |
1115 | } | |
1116 | } | |
1117 | ||
1118 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1119 | LED_D_OFF(); | |
1120 | DbpString("DONE!"); | |
1121 | } | |
1122 | ||
1123 | // Read card traceability data (page 1) | |
1124 | void T55xxReadTrace(void){ | |
1125 | uint8_t *dest = BigBuf_get_addr(); | |
1126 | int m=0, i=0; | |
1127 | ||
1128 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1129 | m = BigBuf_max_traceLen(); | |
1130 | // Clear destination buffer before sending the command | |
1131 | memset(dest, 128, m); | |
1132 | // Connect the A/D to the peak-detected low-frequency path. | |
1133 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1134 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
1135 | FpgaSetupSsc(); | |
1136 | ||
1137 | LED_D_ON(); | |
1138 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1139 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1140 | ||
1141 | // Give it a bit of time for the resonant antenna to settle. | |
1142 | // And for the tag to fully power up | |
1143 | SpinDelay(150); | |
1144 | ||
1145 | // Now start writting | |
1146 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1147 | SpinDelayUs(START_GAP); | |
1148 | ||
1149 | // Opcode | |
1150 | T55xxWriteBit(1); | |
1151 | T55xxWriteBit(1); //Page 1 | |
1152 | ||
1153 | // Turn field on to read the response | |
1154 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1155 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1156 | ||
1157 | // Now do the acquisition | |
1158 | i = 0; | |
1159 | for(;;) { | |
1160 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1161 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1162 | } | |
1163 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1164 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1165 | i++; | |
1166 | if (i >= m) break; | |
1167 | } | |
1168 | } | |
1169 | ||
1170 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1171 | LED_D_OFF(); | |
1172 | DbpString("DONE!"); | |
1173 | } | |
1174 | ||
1175 | /*-------------- Cloning routines -----------*/ | |
1176 | // Copy HID id to card and setup block 0 config | |
1177 | void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) | |
1178 | { | |
1179 | int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format | |
1180 | int last_block = 0; | |
1181 | ||
1182 | if (longFMT){ | |
1183 | // Ensure no more than 84 bits supplied | |
1184 | if (hi2>0xFFFFF) { | |
1185 | DbpString("Tags can only have 84 bits."); | |
1186 | return; | |
1187 | } | |
1188 | // Build the 6 data blocks for supplied 84bit ID | |
1189 | last_block = 6; | |
1190 | data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) | |
1191 | for (int i=0;i<4;i++) { | |
1192 | if (hi2 & (1<<(19-i))) | |
1193 | data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10 | |
1194 | else | |
1195 | data1 |= (1<<((3-i)*2)); // 0 -> 01 | |
1196 | } | |
1197 | ||
1198 | data2 = 0; | |
1199 | for (int i=0;i<16;i++) { | |
1200 | if (hi2 & (1<<(15-i))) | |
1201 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1202 | else | |
1203 | data2 |= (1<<((15-i)*2)); // 0 -> 01 | |
1204 | } | |
1205 | ||
1206 | data3 = 0; | |
1207 | for (int i=0;i<16;i++) { | |
1208 | if (hi & (1<<(31-i))) | |
1209 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1210 | else | |
1211 | data3 |= (1<<((15-i)*2)); // 0 -> 01 | |
1212 | } | |
1213 | ||
1214 | data4 = 0; | |
1215 | for (int i=0;i<16;i++) { | |
1216 | if (hi & (1<<(15-i))) | |
1217 | data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1218 | else | |
1219 | data4 |= (1<<((15-i)*2)); // 0 -> 01 | |
1220 | } | |
1221 | ||
1222 | data5 = 0; | |
1223 | for (int i=0;i<16;i++) { | |
1224 | if (lo & (1<<(31-i))) | |
1225 | data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1226 | else | |
1227 | data5 |= (1<<((15-i)*2)); // 0 -> 01 | |
1228 | } | |
1229 | ||
1230 | data6 = 0; | |
1231 | for (int i=0;i<16;i++) { | |
1232 | if (lo & (1<<(15-i))) | |
1233 | data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1234 | else | |
1235 | data6 |= (1<<((15-i)*2)); // 0 -> 01 | |
1236 | } | |
1237 | } | |
1238 | else { | |
1239 | // Ensure no more than 44 bits supplied | |
1240 | if (hi>0xFFF) { | |
1241 | DbpString("Tags can only have 44 bits."); | |
1242 | return; | |
1243 | } | |
1244 | ||
1245 | // Build the 3 data blocks for supplied 44bit ID | |
1246 | last_block = 3; | |
1247 | ||
1248 | data1 = 0x1D000000; // load preamble | |
1249 | ||
1250 | for (int i=0;i<12;i++) { | |
1251 | if (hi & (1<<(11-i))) | |
1252 | data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 | |
1253 | else | |
1254 | data1 |= (1<<((11-i)*2)); // 0 -> 01 | |
1255 | } | |
1256 | ||
1257 | data2 = 0; | |
1258 | for (int i=0;i<16;i++) { | |
1259 | if (lo & (1<<(31-i))) | |
1260 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1261 | else | |
1262 | data2 |= (1<<((15-i)*2)); // 0 -> 01 | |
1263 | } | |
1264 | ||
1265 | data3 = 0; | |
1266 | for (int i=0;i<16;i++) { | |
1267 | if (lo & (1<<(15-i))) | |
1268 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1269 | else | |
1270 | data3 |= (1<<((15-i)*2)); // 0 -> 01 | |
1271 | } | |
1272 | } | |
1273 | ||
1274 | LED_D_ON(); | |
1275 | // Program the data blocks for supplied ID | |
1276 | // and the block 0 for HID format | |
1277 | T55xxWriteBlock(data1,1,0,0); | |
1278 | T55xxWriteBlock(data2,2,0,0); | |
1279 | T55xxWriteBlock(data3,3,0,0); | |
1280 | ||
1281 | if (longFMT) { // if long format there are 6 blocks | |
1282 | T55xxWriteBlock(data4,4,0,0); | |
1283 | T55xxWriteBlock(data5,5,0,0); | |
1284 | T55xxWriteBlock(data6,6,0,0); | |
1285 | } | |
1286 | ||
1287 | // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) | |
1288 | T55xxWriteBlock(T55x7_BITRATE_RF_50 | | |
1289 | T55x7_MODULATION_FSK2a | | |
1290 | last_block << T55x7_MAXBLOCK_SHIFT, | |
1291 | 0,0,0); | |
1292 | ||
1293 | LED_D_OFF(); | |
1294 | ||
1295 | DbpString("DONE!"); | |
1296 | } | |
1297 | ||
1298 | void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT) | |
1299 | { | |
1300 | int data1=0, data2=0; //up to six blocks for long format | |
1301 | ||
1302 | data1 = hi; // load preamble | |
1303 | data2 = lo; | |
1304 | ||
1305 | LED_D_ON(); | |
1306 | // Program the data blocks for supplied ID | |
1307 | // and the block 0 for HID format | |
1308 | T55xxWriteBlock(data1,1,0,0); | |
1309 | T55xxWriteBlock(data2,2,0,0); | |
1310 | ||
1311 | //Config Block | |
1312 | T55xxWriteBlock(0x00147040,0,0,0); | |
1313 | LED_D_OFF(); | |
1314 | ||
1315 | DbpString("DONE!"); | |
1316 | } | |
1317 | ||
1318 | // Define 9bit header for EM410x tags | |
1319 | #define EM410X_HEADER 0x1FF | |
1320 | #define EM410X_ID_LENGTH 40 | |
1321 | ||
1322 | void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) | |
1323 | { | |
1324 | int i, id_bit; | |
1325 | uint64_t id = EM410X_HEADER; | |
1326 | uint64_t rev_id = 0; // reversed ID | |
1327 | int c_parity[4]; // column parity | |
1328 | int r_parity = 0; // row parity | |
1329 | uint32_t clock = 0; | |
1330 | ||
1331 | // Reverse ID bits given as parameter (for simpler operations) | |
1332 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1333 | if (i < 32) { | |
1334 | rev_id = (rev_id << 1) | (id_lo & 1); | |
1335 | id_lo >>= 1; | |
1336 | } else { | |
1337 | rev_id = (rev_id << 1) | (id_hi & 1); | |
1338 | id_hi >>= 1; | |
1339 | } | |
1340 | } | |
1341 | ||
1342 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1343 | id_bit = rev_id & 1; | |
1344 | ||
1345 | if (i % 4 == 0) { | |
1346 | // Don't write row parity bit at start of parsing | |
1347 | if (i) | |
1348 | id = (id << 1) | r_parity; | |
1349 | // Start counting parity for new row | |
1350 | r_parity = id_bit; | |
1351 | } else { | |
1352 | // Count row parity | |
1353 | r_parity ^= id_bit; | |
1354 | } | |
1355 | ||
1356 | // First elements in column? | |
1357 | if (i < 4) | |
1358 | // Fill out first elements | |
1359 | c_parity[i] = id_bit; | |
1360 | else | |
1361 | // Count column parity | |
1362 | c_parity[i % 4] ^= id_bit; | |
1363 | ||
1364 | // Insert ID bit | |
1365 | id = (id << 1) | id_bit; | |
1366 | rev_id >>= 1; | |
1367 | } | |
1368 | ||
1369 | // Insert parity bit of last row | |
1370 | id = (id << 1) | r_parity; | |
1371 | ||
1372 | // Fill out column parity at the end of tag | |
1373 | for (i = 0; i < 4; ++i) | |
1374 | id = (id << 1) | c_parity[i]; | |
1375 | ||
1376 | // Add stop bit | |
1377 | id <<= 1; | |
1378 | ||
1379 | Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); | |
1380 | LED_D_ON(); | |
1381 | ||
1382 | // Write EM410x ID | |
1383 | T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0); | |
1384 | T55xxWriteBlock((uint32_t)id, 2, 0, 0); | |
1385 | ||
1386 | // Config for EM410x (RF/64, Manchester, Maxblock=2) | |
1387 | if (card) { | |
1388 | // Clock rate is stored in bits 8-15 of the card value | |
1389 | clock = (card & 0xFF00) >> 8; | |
1390 | Dbprintf("Clock rate: %d", clock); | |
1391 | switch (clock) | |
1392 | { | |
1393 | case 32: | |
1394 | clock = T55x7_BITRATE_RF_32; | |
1395 | break; | |
1396 | case 16: | |
1397 | clock = T55x7_BITRATE_RF_16; | |
1398 | break; | |
1399 | case 0: | |
1400 | // A value of 0 is assumed to be 64 for backwards-compatibility | |
1401 | // Fall through... | |
1402 | case 64: | |
1403 | clock = T55x7_BITRATE_RF_64; | |
1404 | break; | |
1405 | default: | |
1406 | Dbprintf("Invalid clock rate: %d", clock); | |
1407 | return; | |
1408 | } | |
1409 | ||
1410 | // Writing configuration for T55x7 tag | |
1411 | T55xxWriteBlock(clock | | |
1412 | T55x7_MODULATION_MANCHESTER | | |
1413 | 2 << T55x7_MAXBLOCK_SHIFT, | |
1414 | 0, 0, 0); | |
1415 | } | |
1416 | else | |
1417 | // Writing configuration for T5555(Q5) tag | |
1418 | T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | | |
1419 | T5555_MODULATION_MANCHESTER | | |
1420 | 2 << T5555_MAXBLOCK_SHIFT, | |
1421 | 0, 0, 0); | |
1422 | ||
1423 | LED_D_OFF(); | |
1424 | Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", | |
1425 | (uint32_t)(id >> 32), (uint32_t)id); | |
1426 | } | |
1427 | ||
1428 | // Clone Indala 64-bit tag by UID to T55x7 | |
1429 | void CopyIndala64toT55x7(int hi, int lo) | |
1430 | { | |
1431 | ||
1432 | //Program the 2 data blocks for supplied 64bit UID | |
1433 | // and the block 0 for Indala64 format | |
1434 | T55xxWriteBlock(hi,1,0,0); | |
1435 | T55xxWriteBlock(lo,2,0,0); | |
1436 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) | |
1437 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | | |
1438 | T55x7_MODULATION_PSK1 | | |
1439 | 2 << T55x7_MAXBLOCK_SHIFT, | |
1440 | 0, 0, 0); | |
1441 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) | |
1442 | // T5567WriteBlock(0x603E1042,0); | |
1443 | ||
1444 | DbpString("DONE!"); | |
1445 | ||
1446 | } | |
1447 | ||
1448 | void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7) | |
1449 | { | |
1450 | ||
1451 | //Program the 7 data blocks for supplied 224bit UID | |
1452 | // and the block 0 for Indala224 format | |
1453 | T55xxWriteBlock(uid1,1,0,0); | |
1454 | T55xxWriteBlock(uid2,2,0,0); | |
1455 | T55xxWriteBlock(uid3,3,0,0); | |
1456 | T55xxWriteBlock(uid4,4,0,0); | |
1457 | T55xxWriteBlock(uid5,5,0,0); | |
1458 | T55xxWriteBlock(uid6,6,0,0); | |
1459 | T55xxWriteBlock(uid7,7,0,0); | |
1460 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) | |
1461 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | | |
1462 | T55x7_MODULATION_PSK1 | | |
1463 | 7 << T55x7_MAXBLOCK_SHIFT, | |
1464 | 0,0,0); | |
1465 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) | |
1466 | // T5567WriteBlock(0x603E10E2,0); | |
1467 | ||
1468 | DbpString("DONE!"); | |
1469 | ||
1470 | } | |
1471 | ||
1472 | ||
1473 | #define abs(x) ( ((x)<0) ? -(x) : (x) ) | |
1474 | #define max(x,y) ( x<y ? y:x) | |
1475 | ||
1476 | int DemodPCF7931(uint8_t **outBlocks) { | |
1477 | uint8_t BitStream[256]; | |
1478 | uint8_t Blocks[8][16]; | |
1479 | uint8_t *GraphBuffer = BigBuf_get_addr(); | |
1480 | int GraphTraceLen = BigBuf_max_traceLen(); | |
1481 | int i, j, lastval, bitidx, half_switch; | |
1482 | int clock = 64; | |
1483 | int tolerance = clock / 8; | |
1484 | int pmc, block_done; | |
1485 | int lc, warnings = 0; | |
1486 | int num_blocks = 0; | |
1487 | int lmin=128, lmax=128; | |
1488 | uint8_t dir; | |
1489 | ||
1490 | LFSetupFPGAForADC(95, true); | |
1491 | DoAcquisition_default(0, 0); | |
1492 | ||
1493 | ||
1494 | lmin = 64; | |
1495 | lmax = 192; | |
1496 | ||
1497 | i = 2; | |
1498 | ||
1499 | /* Find first local max/min */ | |
1500 | if(GraphBuffer[1] > GraphBuffer[0]) { | |
1501 | while(i < GraphTraceLen) { | |
1502 | if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax) | |
1503 | break; | |
1504 | i++; | |
1505 | } | |
1506 | dir = 0; | |
1507 | } | |
1508 | else { | |
1509 | while(i < GraphTraceLen) { | |
1510 | if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin) | |
1511 | break; | |
1512 | i++; | |
1513 | } | |
1514 | dir = 1; | |
1515 | } | |
1516 | ||
1517 | lastval = i++; | |
1518 | half_switch = 0; | |
1519 | pmc = 0; | |
1520 | block_done = 0; | |
1521 | ||
1522 | for (bitidx = 0; i < GraphTraceLen; i++) | |
1523 | { | |
1524 | if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin)) | |
1525 | { | |
1526 | lc = i - lastval; | |
1527 | lastval = i; | |
1528 | ||
1529 | // Switch depending on lc length: | |
1530 | // Tolerance is 1/8 of clock rate (arbitrary) | |
1531 | if (abs(lc-clock/4) < tolerance) { | |
1532 | // 16T0 | |
1533 | if((i - pmc) == lc) { /* 16T0 was previous one */ | |
1534 | /* It's a PMC ! */ | |
1535 | i += (128+127+16+32+33+16)-1; | |
1536 | lastval = i; | |
1537 | pmc = 0; | |
1538 | block_done = 1; | |
1539 | } | |
1540 | else { | |
1541 | pmc = i; | |
1542 | } | |
1543 | } else if (abs(lc-clock/2) < tolerance) { | |
1544 | // 32TO | |
1545 | if((i - pmc) == lc) { /* 16T0 was previous one */ | |
1546 | /* It's a PMC ! */ | |
1547 | i += (128+127+16+32+33)-1; | |
1548 | lastval = i; | |
1549 | pmc = 0; | |
1550 | block_done = 1; | |
1551 | } | |
1552 | else if(half_switch == 1) { | |
1553 | BitStream[bitidx++] = 0; | |
1554 | half_switch = 0; | |
1555 | } | |
1556 | else | |
1557 | half_switch++; | |
1558 | } else if (abs(lc-clock) < tolerance) { | |
1559 | // 64TO | |
1560 | BitStream[bitidx++] = 1; | |
1561 | } else { | |
1562 | // Error | |
1563 | warnings++; | |
1564 | if (warnings > 10) | |
1565 | { | |
1566 | Dbprintf("Error: too many detection errors, aborting."); | |
1567 | return 0; | |
1568 | } | |
1569 | } | |
1570 | ||
1571 | if(block_done == 1) { | |
1572 | if(bitidx == 128) { | |
1573 | for(j=0; j<16; j++) { | |
1574 | Blocks[num_blocks][j] = 128*BitStream[j*8+7]+ | |
1575 | 64*BitStream[j*8+6]+ | |
1576 | 32*BitStream[j*8+5]+ | |
1577 | 16*BitStream[j*8+4]+ | |
1578 | 8*BitStream[j*8+3]+ | |
1579 | 4*BitStream[j*8+2]+ | |
1580 | 2*BitStream[j*8+1]+ | |
1581 | BitStream[j*8]; | |
1582 | } | |
1583 | num_blocks++; | |
1584 | } | |
1585 | bitidx = 0; | |
1586 | block_done = 0; | |
1587 | half_switch = 0; | |
1588 | } | |
1589 | if(i < GraphTraceLen) | |
1590 | { | |
1591 | if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0; | |
1592 | else dir = 1; | |
1593 | } | |
1594 | } | |
1595 | if(bitidx==255) | |
1596 | bitidx=0; | |
1597 | warnings = 0; | |
1598 | if(num_blocks == 4) break; | |
1599 | } | |
1600 | memcpy(outBlocks, Blocks, 16*num_blocks); | |
1601 | return num_blocks; | |
1602 | } | |
1603 | ||
1604 | int IsBlock0PCF7931(uint8_t *Block) { | |
1605 | // Assume RFU means 0 :) | |
1606 | if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled | |
1607 | return 1; | |
1608 | if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ? | |
1609 | return 1; | |
1610 | return 0; | |
1611 | } | |
1612 | ||
1613 | int IsBlock1PCF7931(uint8_t *Block) { | |
1614 | // Assume RFU means 0 :) | |
1615 | if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0) | |
1616 | if((Block[14] & 0x7f) <= 9 && Block[15] <= 9) | |
1617 | return 1; | |
1618 | ||
1619 | return 0; | |
1620 | } | |
1621 | ||
1622 | #define ALLOC 16 | |
1623 | ||
1624 | void ReadPCF7931() { | |
1625 | uint8_t Blocks[8][17]; | |
1626 | uint8_t tmpBlocks[4][16]; | |
1627 | int i, j, ind, ind2, n; | |
1628 | int num_blocks = 0; | |
1629 | int max_blocks = 8; | |
1630 | int ident = 0; | |
1631 | int error = 0; | |
1632 | int tries = 0; | |
1633 | ||
1634 | memset(Blocks, 0, 8*17*sizeof(uint8_t)); | |
1635 | ||
1636 | do { | |
1637 | memset(tmpBlocks, 0, 4*16*sizeof(uint8_t)); | |
1638 | n = DemodPCF7931((uint8_t**)tmpBlocks); | |
1639 | if(!n) | |
1640 | error++; | |
1641 | if(error==10 && num_blocks == 0) { | |
1642 | Dbprintf("Error, no tag or bad tag"); | |
1643 | return; | |
1644 | } | |
1645 | else if (tries==20 || error==10) { | |
1646 | Dbprintf("Error reading the tag"); | |
1647 | Dbprintf("Here is the partial content"); | |
1648 | goto end; | |
1649 | } | |
1650 | ||
1651 | for(i=0; i<n; i++) | |
1652 | Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", | |
1653 | tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7], | |
1654 | tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]); | |
1655 | if(!ident) { | |
1656 | for(i=0; i<n; i++) { | |
1657 | if(IsBlock0PCF7931(tmpBlocks[i])) { | |
1658 | // Found block 0 ? | |
1659 | if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) { | |
1660 | // Found block 1! | |
1661 | // \o/ | |
1662 | ident = 1; | |
1663 | memcpy(Blocks[0], tmpBlocks[i], 16); | |
1664 | Blocks[0][ALLOC] = 1; | |
1665 | memcpy(Blocks[1], tmpBlocks[i+1], 16); | |
1666 | Blocks[1][ALLOC] = 1; | |
1667 | max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1; | |
1668 | // Debug print | |
1669 | Dbprintf("(dbg) Max blocks: %d", max_blocks); | |
1670 | num_blocks = 2; | |
1671 | // Handle following blocks | |
1672 | for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) { | |
1673 | if(j==n) j=0; | |
1674 | if(j==i) break; | |
1675 | memcpy(Blocks[ind2], tmpBlocks[j], 16); | |
1676 | Blocks[ind2][ALLOC] = 1; | |
1677 | } | |
1678 | break; | |
1679 | } | |
1680 | } | |
1681 | } | |
1682 | } | |
1683 | else { | |
1684 | for(i=0; i<n; i++) { // Look for identical block in known blocks | |
1685 | if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00 | |
1686 | for(j=0; j<max_blocks; j++) { | |
1687 | if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) { | |
1688 | // Found an identical block | |
1689 | for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) { | |
1690 | if(ind2 < 0) | |
1691 | ind2 = max_blocks; | |
1692 | if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found | |
1693 | // Dbprintf("Tmp %d -> Block %d", ind, ind2); | |
1694 | memcpy(Blocks[ind2], tmpBlocks[ind], 16); | |
1695 | Blocks[ind2][ALLOC] = 1; | |
1696 | num_blocks++; | |
1697 | if(num_blocks == max_blocks) goto end; | |
1698 | } | |
1699 | } | |
1700 | for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) { | |
1701 | if(ind2 > max_blocks) | |
1702 | ind2 = 0; | |
1703 | if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found | |
1704 | // Dbprintf("Tmp %d -> Block %d", ind, ind2); | |
1705 | memcpy(Blocks[ind2], tmpBlocks[ind], 16); | |
1706 | Blocks[ind2][ALLOC] = 1; | |
1707 | num_blocks++; | |
1708 | if(num_blocks == max_blocks) goto end; | |
1709 | } | |
1710 | } | |
1711 | } | |
1712 | } | |
1713 | } | |
1714 | } | |
1715 | } | |
1716 | tries++; | |
1717 | if (BUTTON_PRESS()) return; | |
1718 | } while (num_blocks != max_blocks); | |
1719 | end: | |
1720 | Dbprintf("-----------------------------------------"); | |
1721 | Dbprintf("Memory content:"); | |
1722 | Dbprintf("-----------------------------------------"); | |
1723 | for(i=0; i<max_blocks; i++) { | |
1724 | if(Blocks[i][ALLOC]==1) | |
1725 | Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", | |
1726 | Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7], | |
1727 | Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]); | |
1728 | else | |
1729 | Dbprintf("<missing block %d>", i); | |
1730 | } | |
1731 | Dbprintf("-----------------------------------------"); | |
1732 | ||
1733 | return ; | |
1734 | } | |
1735 | ||
1736 | ||
1737 | //----------------------------------- | |
1738 | // EM4469 / EM4305 routines | |
1739 | //----------------------------------- | |
1740 | #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored | |
1741 | #define FWD_CMD_WRITE 0xA | |
1742 | #define FWD_CMD_READ 0x9 | |
1743 | #define FWD_CMD_DISABLE 0x5 | |
1744 | ||
1745 | ||
1746 | uint8_t forwardLink_data[64]; //array of forwarded bits | |
1747 | uint8_t * forward_ptr; //ptr for forward message preparation | |
1748 | uint8_t fwd_bit_sz; //forwardlink bit counter | |
1749 | uint8_t * fwd_write_ptr; //forwardlink bit pointer | |
1750 | ||
1751 | //==================================================================== | |
1752 | // prepares command bits | |
1753 | // see EM4469 spec | |
1754 | //==================================================================== | |
1755 | //-------------------------------------------------------------------- | |
1756 | uint8_t Prepare_Cmd( uint8_t cmd ) { | |
1757 | //-------------------------------------------------------------------- | |
1758 | ||
1759 | *forward_ptr++ = 0; //start bit | |
1760 | *forward_ptr++ = 0; //second pause for 4050 code | |
1761 | ||
1762 | *forward_ptr++ = cmd; | |
1763 | cmd >>= 1; | |
1764 | *forward_ptr++ = cmd; | |
1765 | cmd >>= 1; | |
1766 | *forward_ptr++ = cmd; | |
1767 | cmd >>= 1; | |
1768 | *forward_ptr++ = cmd; | |
1769 | ||
1770 | return 6; //return number of emited bits | |
1771 | } | |
1772 | ||
1773 | //==================================================================== | |
1774 | // prepares address bits | |
1775 | // see EM4469 spec | |
1776 | //==================================================================== | |
1777 | ||
1778 | //-------------------------------------------------------------------- | |
1779 | uint8_t Prepare_Addr( uint8_t addr ) { | |
1780 | //-------------------------------------------------------------------- | |
1781 | ||
1782 | register uint8_t line_parity; | |
1783 | ||
1784 | uint8_t i; | |
1785 | line_parity = 0; | |
1786 | for(i=0;i<6;i++) { | |
1787 | *forward_ptr++ = addr; | |
1788 | line_parity ^= addr; | |
1789 | addr >>= 1; | |
1790 | } | |
1791 | ||
1792 | *forward_ptr++ = (line_parity & 1); | |
1793 | ||
1794 | return 7; //return number of emited bits | |
1795 | } | |
1796 | ||
1797 | //==================================================================== | |
1798 | // prepares data bits intreleaved with parity bits | |
1799 | // see EM4469 spec | |
1800 | //==================================================================== | |
1801 | ||
1802 | //-------------------------------------------------------------------- | |
1803 | uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { | |
1804 | //-------------------------------------------------------------------- | |
1805 | ||
1806 | register uint8_t line_parity; | |
1807 | register uint8_t column_parity; | |
1808 | register uint8_t i, j; | |
1809 | register uint16_t data; | |
1810 | ||
1811 | data = data_low; | |
1812 | column_parity = 0; | |
1813 | ||
1814 | for(i=0; i<4; i++) { | |
1815 | line_parity = 0; | |
1816 | for(j=0; j<8; j++) { | |
1817 | line_parity ^= data; | |
1818 | column_parity ^= (data & 1) << j; | |
1819 | *forward_ptr++ = data; | |
1820 | data >>= 1; | |
1821 | } | |
1822 | *forward_ptr++ = line_parity; | |
1823 | if(i == 1) | |
1824 | data = data_hi; | |
1825 | } | |
1826 | ||
1827 | for(j=0; j<8; j++) { | |
1828 | *forward_ptr++ = column_parity; | |
1829 | column_parity >>= 1; | |
1830 | } | |
1831 | *forward_ptr = 0; | |
1832 | ||
1833 | return 45; //return number of emited bits | |
1834 | } | |
1835 | ||
1836 | //==================================================================== | |
1837 | // Forward Link send function | |
1838 | // Requires: forwarLink_data filled with valid bits (1 bit per byte) | |
1839 | // fwd_bit_count set with number of bits to be sent | |
1840 | //==================================================================== | |
1841 | void SendForward(uint8_t fwd_bit_count) { | |
1842 | ||
1843 | fwd_write_ptr = forwardLink_data; | |
1844 | fwd_bit_sz = fwd_bit_count; | |
1845 | ||
1846 | LED_D_ON(); | |
1847 | ||
1848 | //Field on | |
1849 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1850 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1851 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1852 | ||
1853 | // Give it a bit of time for the resonant antenna to settle. | |
1854 | // And for the tag to fully power up | |
1855 | SpinDelay(150); | |
1856 | ||
1857 | // force 1st mod pulse (start gap must be longer for 4305) | |
1858 | fwd_bit_sz--; //prepare next bit modulation | |
1859 | fwd_write_ptr++; | |
1860 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1861 | SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 | |
1862 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1863 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on | |
1864 | SpinDelayUs(16*8); //16 cycles on (8us each) | |
1865 | ||
1866 | // now start writting | |
1867 | while(fwd_bit_sz-- > 0) { //prepare next bit modulation | |
1868 | if(((*fwd_write_ptr++) & 1) == 1) | |
1869 | SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) | |
1870 | else { | |
1871 | //These timings work for 4469/4269/4305 (with the 55*8 above) | |
1872 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1873 | SpinDelayUs(23*8); //16-4 cycles off (8us each) | |
1874 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1875 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on | |
1876 | SpinDelayUs(9*8); //16 cycles on (8us each) | |
1877 | } | |
1878 | } | |
1879 | } | |
1880 | ||
1881 | void EM4xLogin(uint32_t Password) { | |
1882 | ||
1883 | uint8_t fwd_bit_count; | |
1884 | ||
1885 | forward_ptr = forwardLink_data; | |
1886 | fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); | |
1887 | fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); | |
1888 | ||
1889 | SendForward(fwd_bit_count); | |
1890 | ||
1891 | //Wait for command to complete | |
1892 | SpinDelay(20); | |
1893 | ||
1894 | } | |
1895 | ||
1896 | void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
1897 | ||
1898 | uint8_t fwd_bit_count; | |
1899 | uint8_t *dest = BigBuf_get_addr(); | |
1900 | int m=0, i=0; | |
1901 | ||
1902 | //If password mode do login | |
1903 | if (PwdMode == 1) EM4xLogin(Pwd); | |
1904 | ||
1905 | forward_ptr = forwardLink_data; | |
1906 | fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); | |
1907 | fwd_bit_count += Prepare_Addr( Address ); | |
1908 | ||
1909 | m = BigBuf_max_traceLen(); | |
1910 | // Clear destination buffer before sending the command | |
1911 | memset(dest, 128, m); | |
1912 | // Connect the A/D to the peak-detected low-frequency path. | |
1913 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1914 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
1915 | FpgaSetupSsc(); | |
1916 | ||
1917 | SendForward(fwd_bit_count); | |
1918 | ||
1919 | // Now do the acquisition | |
1920 | i = 0; | |
1921 | for(;;) { | |
1922 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1923 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1924 | } | |
1925 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1926 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1927 | i++; | |
1928 | if (i >= m) break; | |
1929 | } | |
1930 | } | |
1931 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1932 | LED_D_OFF(); | |
1933 | } | |
1934 | ||
1935 | void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
1936 | ||
1937 | uint8_t fwd_bit_count; | |
1938 | ||
1939 | //If password mode do login | |
1940 | if (PwdMode == 1) EM4xLogin(Pwd); | |
1941 | ||
1942 | forward_ptr = forwardLink_data; | |
1943 | fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); | |
1944 | fwd_bit_count += Prepare_Addr( Address ); | |
1945 | fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); | |
1946 | ||
1947 | SendForward(fwd_bit_count); | |
1948 | ||
1949 | //Wait for write to complete | |
1950 | SpinDelay(20); | |
1951 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1952 | LED_D_OFF(); | |
1953 | } |