]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Copyright (C) 2010 iZsh <izsh at fail0verflow.com> | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // Low frequency EM4x commands | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include "cmdlfem4x.h" | |
12 | ||
13 | uint64_t g_em410xid = 0; | |
14 | ||
15 | static int CmdHelp(const char *Cmd); | |
16 | ||
17 | int usage_lf_em410x_sim(void) { | |
18 | PrintAndLog("Simulating EM410x tag"); | |
19 | PrintAndLog(""); | |
20 | PrintAndLog("Usage: lf em 410xsim [h] <uid> <clock>"); | |
21 | PrintAndLog("Options:"); | |
22 | PrintAndLog(" h - this help"); | |
23 | PrintAndLog(" uid - uid (10 HEX symbols)"); | |
24 | PrintAndLog(" clock - clock (32|64) (optional)"); | |
25 | PrintAndLog("samples:"); | |
26 | PrintAndLog(" lf em 410xsim 0F0368568B"); | |
27 | PrintAndLog(" lf em 410xsim 0F0368568B 32"); | |
28 | return 0; | |
29 | } | |
30 | ||
31 | int CmdEMdemodASK(const char *Cmd) | |
32 | { | |
33 | char cmdp = param_getchar(Cmd, 0); | |
34 | uint8_t findone = (cmdp == '1') ? 1 : 0; | |
35 | UsbCommand c = {CMD_EM410X_DEMOD, {findone, 0, 0}}; | |
36 | SendCommand(&c); | |
37 | return 0; | |
38 | } | |
39 | ||
40 | /* Read the ID of an EM410x tag. | |
41 | * Format: | |
42 | * 1111 1111 1 <-- standard non-repeatable header | |
43 | * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID | |
44 | * .... | |
45 | * CCCC <-- each bit here is parity for the 10 bits above in corresponding column | |
46 | * 0 <-- stop bit, end of tag | |
47 | */ | |
48 | int CmdEM410xRead(const char *Cmd) | |
49 | { | |
50 | uint32_t hi = 0; | |
51 | uint64_t lo = 0; | |
52 | ||
53 | if(!AskEm410xDemod("", &hi, &lo, false)) return 0; | |
54 | ||
55 | printEM410x(hi, lo); | |
56 | g_em410xid = lo; | |
57 | return 1; | |
58 | } | |
59 | ||
60 | // emulate an EM410X tag | |
61 | int CmdEM410xSim(const char *Cmd) | |
62 | { | |
63 | int i, n, j, binary[4], parity[4]; | |
64 | uint8_t uid[5] = {0x00}; | |
65 | ||
66 | char cmdp = param_getchar(Cmd, 0); | |
67 | if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim(); | |
68 | ||
69 | /* clock is 64 in EM410x tags */ | |
70 | uint8_t clock = 64; | |
71 | ||
72 | if (param_gethex(Cmd, 0, uid, 10)) { | |
73 | PrintAndLog("UID must include 10 HEX symbols"); | |
74 | return 0; | |
75 | } | |
76 | ||
77 | param_getdec(Cmd, 1, &clock); | |
78 | ||
79 | PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock); | |
80 | PrintAndLog("Press pm3-button to about simulation"); | |
81 | ||
82 | /* clear our graph */ | |
83 | ClearGraph(0); | |
84 | ||
85 | /* write 9 start bits */ | |
86 | for (i = 0; i < 9; i++) | |
87 | AppendGraph(0, clock, 1); | |
88 | ||
89 | /* for each hex char */ | |
90 | parity[0] = parity[1] = parity[2] = parity[3] = 0; | |
91 | for (i = 0; i < 10; i++) | |
92 | { | |
93 | /* read each hex char */ | |
94 | sscanf(&Cmd[i], "%1x", &n); | |
95 | for (j = 3; j >= 0; j--, n/= 2) | |
96 | binary[j] = n % 2; | |
97 | ||
98 | /* append each bit */ | |
99 | AppendGraph(0, clock, binary[0]); | |
100 | AppendGraph(0, clock, binary[1]); | |
101 | AppendGraph(0, clock, binary[2]); | |
102 | AppendGraph(0, clock, binary[3]); | |
103 | ||
104 | /* append parity bit */ | |
105 | AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]); | |
106 | ||
107 | /* keep track of column parity */ | |
108 | parity[0] ^= binary[0]; | |
109 | parity[1] ^= binary[1]; | |
110 | parity[2] ^= binary[2]; | |
111 | parity[3] ^= binary[3]; | |
112 | } | |
113 | ||
114 | /* parity columns */ | |
115 | AppendGraph(0, clock, parity[0]); | |
116 | AppendGraph(0, clock, parity[1]); | |
117 | AppendGraph(0, clock, parity[2]); | |
118 | AppendGraph(0, clock, parity[3]); | |
119 | ||
120 | /* stop bit */ | |
121 | AppendGraph(1, clock, 0); | |
122 | ||
123 | CmdLFSim("0"); //240 start_gap. | |
124 | return 0; | |
125 | } | |
126 | ||
127 | /* Function is equivalent of lf read + data samples + em410xread | |
128 | * looped until an EM410x tag is detected | |
129 | * | |
130 | * Why is CmdSamples("16000")? | |
131 | * TBD: Auto-grow sample size based on detected sample rate. IE: If the | |
132 | * rate gets lower, then grow the number of samples | |
133 | * Changed by martin, 4000 x 4 = 16000, | |
134 | * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235 | |
135 | */ | |
136 | int CmdEM410xWatch(const char *Cmd) { | |
137 | do { | |
138 | if (ukbhit()) { | |
139 | printf("\naborted via keyboard!\n"); | |
140 | break; | |
141 | } | |
142 | CmdLFRead("s"); | |
143 | getSamples("6144",true); | |
144 | } while (!CmdEM410xRead("")); | |
145 | return 0; | |
146 | } | |
147 | ||
148 | //currently only supports manchester modulations | |
149 | // todo: helptext | |
150 | int CmdEM410xWatchnSpoof(const char *Cmd) | |
151 | { | |
152 | // loops if the captured ID was in XL-format. | |
153 | CmdEM410xWatch(Cmd); | |
154 | PrintAndLog("# Replaying captured ID: %" PRIu64 , g_em410xid); | |
155 | CmdLFaskSim(""); | |
156 | return 0; | |
157 | } | |
158 | ||
159 | int CmdEM410xWrite(const char *Cmd) | |
160 | { | |
161 | uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value | |
162 | int card = 0xFF; // invalid card value | |
163 | uint32_t clock = 0; // invalid clock value | |
164 | ||
165 | sscanf(Cmd, "%" PRIx64 " %d %d", &id, &card, &clock); | |
166 | ||
167 | // Check ID | |
168 | if (id == 0xFFFFFFFFFFFFFFFF) { | |
169 | PrintAndLog("Error! ID is required.\n"); | |
170 | return 0; | |
171 | } | |
172 | if (id >= 0x10000000000) { | |
173 | PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n"); | |
174 | return 0; | |
175 | } | |
176 | ||
177 | // Check Card | |
178 | if (card == 0xFF) { | |
179 | PrintAndLog("Error! Card type required.\n"); | |
180 | return 0; | |
181 | } | |
182 | if (card < 0) { | |
183 | PrintAndLog("Error! Bad card type selected.\n"); | |
184 | return 0; | |
185 | } | |
186 | ||
187 | // Check Clock | |
188 | // Default: 64 | |
189 | if (clock == 0) | |
190 | clock = 64; | |
191 | ||
192 | // Allowed clock rates: 16, 32, 40 and 64 | |
193 | if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) { | |
194 | PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock); | |
195 | return 0; | |
196 | } | |
197 | ||
198 | if (card == 1) { | |
199 | PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock); | |
200 | // NOTE: We really should pass the clock in as a separate argument, but to | |
201 | // provide for backwards-compatibility for older firmware, and to avoid | |
202 | // having to add another argument to CMD_EM410X_WRITE_TAG, we just store | |
203 | // the clock rate in bits 8-15 of the card value | |
204 | card = (card & 0xFF) | ((clock << 8) & 0xFF00); | |
205 | } else if (card == 0) { | |
206 | PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock); | |
207 | card = (card & 0xFF) | ((clock << 8) & 0xFF00); | |
208 | } else { | |
209 | PrintAndLog("Error! Bad card type selected.\n"); | |
210 | return 0; | |
211 | } | |
212 | ||
213 | UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}}; | |
214 | SendCommand(&c); | |
215 | return 0; | |
216 | } | |
217 | ||
218 | bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType) | |
219 | { | |
220 | if (rows*cols>size) return FALSE; | |
221 | uint8_t colP=0; | |
222 | //assume last col is a parity and do not test | |
223 | for (uint8_t colNum = 0; colNum < cols-1; colNum++) { | |
224 | for (uint8_t rowNum = 0; rowNum < rows; rowNum++) { | |
225 | colP ^= BitStream[(rowNum*cols)+colNum]; | |
226 | } | |
227 | if (colP != pType) return FALSE; | |
228 | } | |
229 | return TRUE; | |
230 | } | |
231 | ||
232 | bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType) | |
233 | { | |
234 | if (rows*cols>size) return FALSE; | |
235 | uint8_t rowP=0; | |
236 | //assume last row is a parity row and do not test | |
237 | for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) { | |
238 | for (uint8_t colNum = 0; colNum < cols; colNum++) { | |
239 | rowP ^= BitStream[(rowNum*cols)+colNum]; | |
240 | } | |
241 | if (rowP != pType) return FALSE; | |
242 | } | |
243 | return TRUE; | |
244 | } | |
245 | ||
246 | // EM word parity test. | |
247 | // 9*5 = 45 bits in total | |
248 | // 012345678|r1 | |
249 | // 012345678|r2 | |
250 | // 012345678|r3 | |
251 | // 012345678|r4 | |
252 | // ------------ | |
253 | //c012345678| 0 | |
254 | // |- must be zero | |
255 | ||
256 | bool EMwordparitytest(uint8_t *bits){ | |
257 | ||
258 | // last row/col parity must be 0 | |
259 | if (bits[44] != 0 ) return FALSE; | |
260 | ||
261 | // col parity check | |
262 | uint8_t c1 = bytebits_to_byte(bits, 8) ^ bytebits_to_byte(bits+9, 8) ^ bytebits_to_byte(bits+18, 8) ^ bytebits_to_byte(bits+27, 8); | |
263 | uint8_t c2 = bytebits_to_byte(bits+36, 8); | |
264 | if ( c1 != c2 ) return FALSE; | |
265 | ||
266 | // row parity check | |
267 | uint8_t rowP = 0; | |
268 | for ( uint8_t i = 0; i < 36; ++i ) { | |
269 | ||
270 | rowP ^= bits[i]; | |
271 | if ( i>0 && (i % 9) == 0) { | |
272 | ||
273 | if ( rowP != EVEN ) | |
274 | return FALSE; | |
275 | ||
276 | rowP = 0; | |
277 | } | |
278 | } | |
279 | // all checks ok. | |
280 | return TRUE; | |
281 | } | |
282 | ||
283 | ||
284 | //////////////// 4050 / 4450 commands | |
285 | int usage_lf_em4x50_dump(void) { | |
286 | PrintAndLog("Dump EM4x50/EM4x69. Tag must be on antenna. "); | |
287 | PrintAndLog(""); | |
288 | PrintAndLog("Usage: lf em 4x50dump [h] <pwd>"); | |
289 | PrintAndLog("Options:"); | |
290 | PrintAndLog(" h - this help"); | |
291 | PrintAndLog(" pwd - password (hex) (optional)"); | |
292 | PrintAndLog("samples:"); | |
293 | PrintAndLog(" lf em 4x50dump"); | |
294 | PrintAndLog(" lf em 4x50dump 11223344"); | |
295 | return 0; | |
296 | } | |
297 | int usage_lf_em4x50_read(void) { | |
298 | PrintAndLog("Read EM 4x50/EM4x69. Tag must be on antenna. "); | |
299 | PrintAndLog(""); | |
300 | PrintAndLog("Usage: lf em 4x50read [h] <address> <pwd>"); | |
301 | PrintAndLog("Options:"); | |
302 | PrintAndLog(" h - this help"); | |
303 | PrintAndLog(" address - memory address to read. (0-15)"); | |
304 | PrintAndLog(" pwd - password (hex) (optional)"); | |
305 | PrintAndLog("samples:"); | |
306 | PrintAndLog(" lf em 4x50read 1"); | |
307 | PrintAndLog(" lf em 4x50read 1 11223344"); | |
308 | return 0; | |
309 | } | |
310 | int usage_lf_em4x50_write(void) { | |
311 | PrintAndLog("Write EM 4x50/4x69. Tag must be on antenna. "); | |
312 | PrintAndLog(""); | |
313 | PrintAndLog("Usage: lf em 4x50write [h] <address> <data> <pwd>"); | |
314 | PrintAndLog("Options:"); | |
315 | PrintAndLog(" h - this help"); | |
316 | PrintAndLog(" address - memory address to write to. (0-15)"); | |
317 | PrintAndLog(" data - data to write (hex)"); | |
318 | PrintAndLog(" pwd - password (hex) (optional)"); | |
319 | PrintAndLog("samples:"); | |
320 | PrintAndLog(" lf em 4x50write 1 deadc0de"); | |
321 | PrintAndLog(" lf em 4x50write 1 deadc0de 11223344"); | |
322 | return 0; | |
323 | } | |
324 | ||
325 | uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest) | |
326 | { | |
327 | if (size<45) return 0; | |
328 | ||
329 | uint32_t code = bytebits_to_byte(BitStream,8); | |
330 | code = code<<8 | bytebits_to_byte(BitStream+9,8); | |
331 | code = code<<8 | bytebits_to_byte(BitStream+18,8); | |
332 | code = code<<8 | bytebits_to_byte(BitStream+27,8); | |
333 | ||
334 | if (verbose || g_debugMode){ | |
335 | for (uint8_t i = 0; i<5; i++){ | |
336 | if (i == 4) PrintAndLog(""); //parity byte spacer | |
337 | PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x", | |
338 | BitStream[i*9], | |
339 | BitStream[i*9+1], | |
340 | BitStream[i*9+2], | |
341 | BitStream[i*9+3], | |
342 | BitStream[i*9+4], | |
343 | BitStream[i*9+5], | |
344 | BitStream[i*9+6], | |
345 | BitStream[i*9+7], | |
346 | BitStream[i*9+8], | |
347 | bytebits_to_byte(BitStream+i*9,8) | |
348 | ); | |
349 | } | |
350 | if (pTest) | |
351 | PrintAndLog("Parity Passed"); | |
352 | else | |
353 | PrintAndLog("Parity Failed"); | |
354 | } | |
355 | return code; | |
356 | } | |
357 | ||
358 | ||
359 | /* Read the transmitted data of an EM4x50 tag from the graphbuffer | |
360 | * Format: | |
361 | * | |
362 | * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity | |
363 | * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity | |
364 | * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity | |
365 | * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity | |
366 | * CCCCCCCC <- column parity bits | |
367 | * 0 <- stop bit | |
368 | * LW <- Listen Window | |
369 | * | |
370 | * This pattern repeats for every block of data being transmitted. | |
371 | * Transmission starts with two Listen Windows (LW - a modulated | |
372 | * pattern of 320 cycles each (32/32/128/64/64)). | |
373 | * | |
374 | * Note that this data may or may not be the UID. It is whatever data | |
375 | * is stored in the blocks defined in the control word First and Last | |
376 | * Word Read values. UID is stored in block 32. | |
377 | */ | |
378 | //completed by Marshmellow | |
379 | int EM4x50Read(const char *Cmd, bool verbose) { | |
380 | uint8_t fndClk[] = {8,16,32,40,50,64,128}; | |
381 | int clk = 0; | |
382 | int invert = 0; | |
383 | int tol = 0; | |
384 | int i, j, startblock, skip, block, start, end, low, high, minClk; | |
385 | bool complete = false; | |
386 | int tmpbuff[MAX_GRAPH_TRACE_LEN / 64]; | |
387 | uint32_t Code[6]; | |
388 | char tmp[6]; | |
389 | char tmp2[20]; | |
390 | int phaseoff; | |
391 | high = low = 0; | |
392 | memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64); | |
393 | ||
394 | // get user entry if any | |
395 | sscanf(Cmd, "%i %i", &clk, &invert); | |
396 | ||
397 | // save GraphBuffer - to restore it later | |
398 | save_restoreGB(1); | |
399 | ||
400 | // first get high and low values | |
401 | for (i = 0; i < GraphTraceLen; i++) { | |
402 | if (GraphBuffer[i] > high) | |
403 | high = GraphBuffer[i]; | |
404 | else if (GraphBuffer[i] < low) | |
405 | low = GraphBuffer[i]; | |
406 | } | |
407 | ||
408 | i = 0; | |
409 | j = 0; | |
410 | minClk = 255; | |
411 | // get to first full low to prime loop and skip incomplete first pulse | |
412 | while ((GraphBuffer[i] < high) && (i < GraphTraceLen)) | |
413 | ++i; | |
414 | while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) | |
415 | ++i; | |
416 | skip = i; | |
417 | ||
418 | // populate tmpbuff buffer with pulse lengths | |
419 | while (i < GraphTraceLen) { | |
420 | // measure from low to low | |
421 | while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) | |
422 | ++i; | |
423 | start= i; | |
424 | while ((GraphBuffer[i] < high) && (i < GraphTraceLen)) | |
425 | ++i; | |
426 | while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) | |
427 | ++i; | |
428 | if (j>=(MAX_GRAPH_TRACE_LEN/64)) { | |
429 | break; | |
430 | } | |
431 | tmpbuff[j++]= i - start; | |
432 | if (i-start < minClk && i < GraphTraceLen) { | |
433 | minClk = i - start; | |
434 | } | |
435 | } | |
436 | // set clock | |
437 | if (!clk) { | |
438 | for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { | |
439 | tol = fndClk[clkCnt]/8; | |
440 | if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) { | |
441 | clk=fndClk[clkCnt]; | |
442 | break; | |
443 | } | |
444 | } | |
445 | if (!clk) { | |
446 | if (verbose || g_debugMode) PrintAndLog("ERROR: EM4x50 - didn't find a clock"); | |
447 | return 0; | |
448 | } | |
449 | } else tol = clk/8; | |
450 | ||
451 | // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2) | |
452 | start = -1; | |
453 | for (i= 0; i < j - 4 ; ++i) { | |
454 | skip += tmpbuff[i]; | |
455 | if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks | |
456 | if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks | |
457 | if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks | |
458 | if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following | |
459 | { | |
460 | start= i + 4; | |
461 | break; | |
462 | } | |
463 | } | |
464 | startblock = i + 4; | |
465 | ||
466 | // skip over the remainder of LW | |
467 | skip += tmpbuff[i+1] + tmpbuff[i+2] + clk; | |
468 | if (tmpbuff[i+3]>clk) | |
469 | phaseoff = tmpbuff[i+3]-clk; | |
470 | else | |
471 | phaseoff = 0; | |
472 | // now do it again to find the end | |
473 | end = skip; | |
474 | for (i += 3; i < j - 4 ; ++i) { | |
475 | end += tmpbuff[i]; | |
476 | if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks | |
477 | if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks | |
478 | if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks | |
479 | if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following | |
480 | { | |
481 | complete= true; | |
482 | break; | |
483 | } | |
484 | } | |
485 | end = i; | |
486 | // report back | |
487 | if (verbose || g_debugMode) { | |
488 | if (start >= 0) { | |
489 | PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)"); | |
490 | } else { | |
491 | PrintAndLog("No data found!, clock tried:%d",clk); | |
492 | PrintAndLog("Try again with more samples."); | |
493 | PrintAndLog(" or after a 'data askedge' command to clean up the read"); | |
494 | return 0; | |
495 | } | |
496 | } else if (start < 0) return 0; | |
497 | start = skip; | |
498 | snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47); | |
499 | // get rid of leading crap | |
500 | snprintf(tmp, sizeof(tmp), "%i", skip); | |
501 | CmdLtrim(tmp); | |
502 | bool pTest; | |
503 | bool AllPTest = true; | |
504 | // now work through remaining buffer printing out data blocks | |
505 | block = 0; | |
506 | i = startblock; | |
507 | while (block < 6) { | |
508 | if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block); | |
509 | skip = phaseoff; | |
510 | ||
511 | // look for LW before start of next block | |
512 | for ( ; i < j - 4 ; ++i) { | |
513 | skip += tmpbuff[i]; | |
514 | if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) | |
515 | if (tmpbuff[i+1] >= clk-tol) | |
516 | break; | |
517 | } | |
518 | if (i >= j-4) break; //next LW not found | |
519 | skip += clk; | |
520 | if (tmpbuff[i+1]>clk) | |
521 | phaseoff = tmpbuff[i+1]-clk; | |
522 | else | |
523 | phaseoff = 0; | |
524 | i += 2; | |
525 | if (ASKDemod(tmp2, false, false, 1) < 1) { | |
526 | save_restoreGB(0); | |
527 | return 0; | |
528 | } | |
529 | //set DemodBufferLen to just one block | |
530 | DemodBufferLen = skip/clk; | |
531 | //test parities | |
532 | pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0); | |
533 | pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0); | |
534 | AllPTest &= pTest; | |
535 | //get output | |
536 | Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest); | |
537 | if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk); | |
538 | //skip to start of next block | |
539 | snprintf(tmp,sizeof(tmp),"%i",skip); | |
540 | CmdLtrim(tmp); | |
541 | block++; | |
542 | if (i >= end) break; //in case chip doesn't output 6 blocks | |
543 | } | |
544 | //print full code: | |
545 | if (verbose || g_debugMode || AllPTest){ | |
546 | if (!complete) { | |
547 | PrintAndLog("*** Warning!"); | |
548 | PrintAndLog("Partial data - no end found!"); | |
549 | PrintAndLog("Try again with more samples."); | |
550 | } | |
551 | PrintAndLog("Found data at sample: %i - using clock: %i", start, clk); | |
552 | end = block; | |
553 | for (block=0; block < end; block++){ | |
554 | PrintAndLog("Block %d: %08x",block,Code[block]); | |
555 | } | |
556 | if (AllPTest) { | |
557 | PrintAndLog("Parities Passed"); | |
558 | } else { | |
559 | PrintAndLog("Parities Failed"); | |
560 | PrintAndLog("Try cleaning the read samples with 'data askedge'"); | |
561 | } | |
562 | } | |
563 | ||
564 | //restore GraphBuffer | |
565 | save_restoreGB(0); | |
566 | return (int)AllPTest; | |
567 | } | |
568 | ||
569 | int CmdEM4x50Read(const char *Cmd) { | |
570 | uint8_t ctmp = param_getchar(Cmd, 0); | |
571 | if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_read(); | |
572 | return EM4x50Read(Cmd, true); | |
573 | } | |
574 | int CmdEM4x50Write(const char *Cmd){ | |
575 | uint8_t ctmp = param_getchar(Cmd, 0); | |
576 | if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_write(); | |
577 | PrintAndLog("no implemented yet"); | |
578 | return 0; | |
579 | } | |
580 | int CmdEM4x50Dump(const char *Cmd){ | |
581 | uint8_t ctmp = param_getchar(Cmd, 0); | |
582 | if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_dump(); | |
583 | PrintAndLog("no implemented yet"); | |
584 | return 0; | |
585 | } | |
586 | ||
587 | #define EM_PREAMBLE_LEN 6 | |
588 | // download samples from device and copy to Graphbuffer | |
589 | bool downloadSamplesEM(){ | |
590 | ||
591 | // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples) | |
592 | uint8_t got[6000]; | |
593 | GetFromBigBuf(got, sizeof(got), 0); | |
594 | if ( !WaitForResponseTimeout(CMD_ACK, NULL, 2500) ) { | |
595 | PrintAndLog("command execution time out"); | |
596 | return FALSE; | |
597 | } | |
598 | setGraphBuf(got, sizeof(got)); | |
599 | return TRUE; | |
600 | } | |
601 | ||
602 | // em_demod | |
603 | bool doPreambleSearch(size_t *startIdx){ | |
604 | ||
605 | // sanity check | |
606 | if ( DemodBufferLen < EM_PREAMBLE_LEN) { | |
607 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 demodbuffer too small"); | |
608 | return FALSE; | |
609 | } | |
610 | ||
611 | // set size to 20 to only test first 14 positions for the preamble | |
612 | size_t size = (20 > DemodBufferLen) ? DemodBufferLen : 20; | |
613 | *startIdx = 0; | |
614 | // skip first two 0 bits as they might have been missed in the demod | |
615 | uint8_t preamble[EM_PREAMBLE_LEN] = {0,0,1,0,1,0}; | |
616 | ||
617 | if ( !preambleSearchEx(DemodBuffer, preamble, EM_PREAMBLE_LEN, &size, startIdx, TRUE)) { | |
618 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", *startIdx); | |
619 | return FALSE; | |
620 | } | |
621 | return TRUE; | |
622 | } | |
623 | ||
624 | bool detectFSK(){ | |
625 | // detect fsk clock | |
626 | if (!GetFskClock("", FALSE, FALSE)) { | |
627 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK clock failed"); | |
628 | return FALSE; | |
629 | } | |
630 | // demod | |
631 | int ans = FSKrawDemod("0 0", FALSE); | |
632 | if (!ans) { | |
633 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK Demod failed"); | |
634 | return FALSE; | |
635 | } | |
636 | return TRUE; | |
637 | } | |
638 | // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... ) | |
639 | bool detectPSK(){ | |
640 | int ans = GetPskClock("", FALSE, FALSE); | |
641 | if (ans <= 0) { | |
642 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK clock failed"); | |
643 | return FALSE; | |
644 | } | |
645 | //demod | |
646 | //try psk1 -- 0 0 6 (six errors?!?) | |
647 | ans = PSKDemod("0 0 6", FALSE); | |
648 | if (!ans) { | |
649 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 Demod failed"); | |
650 | ||
651 | //try psk1 inverted | |
652 | ans = PSKDemod("0 1 6", FALSE); | |
653 | if (!ans) { | |
654 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 inverted Demod failed"); | |
655 | return FALSE; | |
656 | } | |
657 | } | |
658 | // either PSK1 or PSK1 inverted is ok from here. | |
659 | // lets check PSK2 later. | |
660 | return TRUE; | |
661 | } | |
662 | // try manchester - NOTE: ST only applies to T55x7 tags. | |
663 | bool detectASK_MAN(){ | |
664 | bool stcheck = FALSE; | |
665 | int ans = ASKDemod_ext("0 0 0", FALSE, FALSE, 1, &stcheck); | |
666 | if (!ans) { | |
667 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/Manchester Demod failed"); | |
668 | return FALSE; | |
669 | } | |
670 | return TRUE; | |
671 | } | |
672 | bool detectASK_BI(){ | |
673 | int ans = ASKbiphaseDemod("0 0 1", FALSE); | |
674 | if (!ans) { | |
675 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase normal demod failed"); | |
676 | ||
677 | ans = ASKbiphaseDemod("0 1 1", FALSE); | |
678 | if (!ans) { | |
679 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase inverted demod failed"); | |
680 | return FALSE; | |
681 | } | |
682 | } | |
683 | return TRUE; | |
684 | } | |
685 | ||
686 | // param: idx - start index in demoded data. | |
687 | bool setDemodBufferEM(uint32_t *word, size_t idx){ | |
688 | ||
689 | //test for even parity bits. | |
690 | uint8_t parity[45] = {0}; | |
691 | memcpy( parity, DemodBuffer, 45); | |
692 | if (!EMwordparitytest(parity) ){ | |
693 | PrintAndLog("DEBUG: Error - EM Parity tests failed"); | |
694 | return FALSE; | |
695 | } | |
696 | ||
697 | // test for even parity bits and remove them. (leave out the end row of parities so 36 bits) | |
698 | if (!removeParity(DemodBuffer, idx + EM_PREAMBLE_LEN, 9, 0, 36)) { | |
699 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM, failed removing parity"); | |
700 | return FALSE; | |
701 | } | |
702 | setDemodBuf(DemodBuffer, 32, 0); | |
703 | *word = bytebits_to_byteLSBF(DemodBuffer, 32); | |
704 | return TRUE; | |
705 | } | |
706 | ||
707 | // FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE | |
708 | // should cover 90% of known used configs | |
709 | // the rest will need to be manually demoded for now... | |
710 | bool demodEM4x05resp(uint32_t *word) { | |
711 | size_t idx = 0; | |
712 | *word = 0; | |
713 | if (detectASK_MAN() && doPreambleSearch( &idx )) | |
714 | return setDemodBufferEM(word, idx); | |
715 | ||
716 | if (detectASK_BI() && doPreambleSearch( &idx )) | |
717 | return setDemodBufferEM(word, idx); | |
718 | ||
719 | if (detectFSK() && doPreambleSearch( &idx )) | |
720 | return setDemodBufferEM(word, idx); | |
721 | ||
722 | if (detectPSK()) { | |
723 | if (doPreambleSearch( &idx )) | |
724 | return setDemodBufferEM(word, idx); | |
725 | ||
726 | psk1TOpsk2(DemodBuffer, DemodBufferLen); | |
727 | if (doPreambleSearch( &idx )) | |
728 | return setDemodBufferEM(word, idx); | |
729 | } | |
730 | return FALSE; | |
731 | } | |
732 | ||
733 | //////////////// 4205 / 4305 commands | |
734 | int usage_lf_em4x05_dump(void) { | |
735 | PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. "); | |
736 | PrintAndLog(""); | |
737 | PrintAndLog("Usage: lf em 4x05dump [h] <pwd>"); | |
738 | PrintAndLog("Options:"); | |
739 | PrintAndLog(" h - this help"); | |
740 | PrintAndLog(" pwd - password (hex) (optional)"); | |
741 | PrintAndLog("samples:"); | |
742 | PrintAndLog(" lf em 4x05dump"); | |
743 | PrintAndLog(" lf em 4x05dump 11223344"); | |
744 | return 0; | |
745 | } | |
746 | int usage_lf_em4x05_read(void) { | |
747 | PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. "); | |
748 | PrintAndLog(""); | |
749 | PrintAndLog("Usage: lf em 4x05read [h] <address> <pwd>"); | |
750 | PrintAndLog("Options:"); | |
751 | PrintAndLog(" h - this help"); | |
752 | PrintAndLog(" address - memory address to read. (0-15)"); | |
753 | PrintAndLog(" pwd - password (hex) (optional)"); | |
754 | PrintAndLog("samples:"); | |
755 | PrintAndLog(" lf em 4x05read 1"); | |
756 | PrintAndLog(" lf em 4x05read 1 11223344"); | |
757 | return 0; | |
758 | } | |
759 | int usage_lf_em4x05_write(void) { | |
760 | PrintAndLog("Write EM4x05/4x69. Tag must be on antenna. "); | |
761 | PrintAndLog(""); | |
762 | PrintAndLog("Usage: lf em 4x05write [h] <address> <data> <pwd>"); | |
763 | PrintAndLog("Options:"); | |
764 | PrintAndLog(" h - this help"); | |
765 | PrintAndLog(" address - memory address to write to. (0-15)"); | |
766 | PrintAndLog(" data - data to write (hex)"); | |
767 | PrintAndLog(" pwd - password (hex) (optional)"); | |
768 | PrintAndLog("samples:"); | |
769 | PrintAndLog(" lf em 4x05write 1 deadc0de"); | |
770 | PrintAndLog(" lf em 4x05write 1 deadc0de 11223344"); | |
771 | return 0; | |
772 | } | |
773 | int usage_lf_em4x05_info(void) { | |
774 | PrintAndLog("Tag information EM4205/4305/4469//4569 tags. Tag must be on antenna."); | |
775 | PrintAndLog(""); | |
776 | PrintAndLog("Usage: lf em 4x05info [h] <pwd>"); | |
777 | PrintAndLog("Options:"); | |
778 | PrintAndLog(" h - this help"); | |
779 | PrintAndLog(" pwd - password (hex) (optional)"); | |
780 | PrintAndLog("samples:"); | |
781 | PrintAndLog(" lf em 4x05info"); | |
782 | PrintAndLog(" lf em 4x05info deadc0de"); | |
783 | return 0; | |
784 | } | |
785 | ||
786 | int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *word) { | |
787 | UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}}; | |
788 | clearCommandBuffer(); | |
789 | SendCommand(&c); | |
790 | UsbCommand resp; | |
791 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){ | |
792 | PrintAndLog("Command timed out"); | |
793 | return -1; | |
794 | } | |
795 | if ( !downloadSamplesEM() ) { | |
796 | return -1; | |
797 | } | |
798 | int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000; | |
799 | if (graphJustNoise(GraphBuffer, testLen)) { | |
800 | PrintAndLog("no tag found"); | |
801 | return -1; | |
802 | } | |
803 | return demodEM4x05resp(word); | |
804 | } | |
805 | ||
806 | int CmdEM4x05Dump(const char *Cmd) { | |
807 | uint8_t addr = 0; | |
808 | uint32_t pwd = 0; | |
809 | bool usePwd = false; | |
810 | uint8_t ctmp = param_getchar(Cmd, 0); | |
811 | if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_dump(); | |
812 | ||
813 | // for now use default input of 1 as invalid (unlikely 1 will be a valid password...) | |
814 | pwd = param_get32ex(Cmd, 0, 1, 16); | |
815 | ||
816 | if ( pwd != 1 ) | |
817 | usePwd = true; | |
818 | ||
819 | int success = 1; | |
820 | uint32_t word = 0; | |
821 | PrintAndLog("Addr | data | ascii"); | |
822 | PrintAndLog("-----+--------+------"); | |
823 | for (; addr < 16; addr++) { | |
824 | ||
825 | if (addr == 2) { | |
826 | if (usePwd) { | |
827 | PrintAndLog(" %02u | %08X", addr, pwd, word ); | |
828 | } else { | |
829 | PrintAndLog(" 02 | cannot read"); | |
830 | } | |
831 | } else { | |
832 | success &= EM4x05ReadWord_ext(addr, pwd, usePwd, &word); | |
833 | } | |
834 | } | |
835 | ||
836 | return success; | |
837 | } | |
838 | ||
839 | int CmdEM4x05Read(const char *Cmd) { | |
840 | uint8_t addr; | |
841 | uint32_t pwd; | |
842 | bool usePwd = false; | |
843 | uint8_t ctmp = param_getchar(Cmd, 0); | |
844 | if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_read(); | |
845 | ||
846 | addr = param_get8ex(Cmd, 0, 50, 10); | |
847 | pwd = param_get32ex(Cmd, 1, 1, 16); | |
848 | ||
849 | if (addr > 15) { | |
850 | PrintAndLog("Address must be between 0 and 15"); | |
851 | return 1; | |
852 | } | |
853 | if ( pwd == 1 ) { | |
854 | PrintAndLog("Reading address %02u", addr); | |
855 | } | |
856 | else { | |
857 | usePwd = true; | |
858 | PrintAndLog("Reading address %02u | password %08X", addr, pwd); | |
859 | } | |
860 | ||
861 | uint32_t word = 0; | |
862 | int isOk = EM4x05ReadWord_ext(addr, pwd, usePwd, &word); | |
863 | if (isOk) | |
864 | PrintAndLog("Address %02d | %08X - %s", addr, word, (addr > 13) ? "Lock" : ""); | |
865 | else | |
866 | PrintAndLog("Read Address %02d | failed",addr); | |
867 | return isOk; | |
868 | } | |
869 | ||
870 | int CmdEM4x05Write(const char *Cmd) { | |
871 | uint8_t ctmp = param_getchar(Cmd, 0); | |
872 | if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_write(); | |
873 | ||
874 | bool usePwd = false; | |
875 | uint8_t addr = 50; // default to invalid address | |
876 | uint32_t data = 0; // default to blank data | |
877 | uint32_t pwd = 1; // default to blank password | |
878 | ||
879 | addr = param_get8ex(Cmd, 0, 50, 10); | |
880 | data = param_get32ex(Cmd, 1, 0, 16); | |
881 | pwd = param_get32ex(Cmd, 2, 1, 16); | |
882 | ||
883 | if ( addr > 15 ) { | |
884 | PrintAndLog("Address must be between 0 and 15"); | |
885 | return 1; | |
886 | } | |
887 | if ( pwd == 1 ) | |
888 | PrintAndLog("Writing address %d data %08X", addr, data); | |
889 | else { | |
890 | usePwd = true; | |
891 | PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd); | |
892 | } | |
893 | ||
894 | uint16_t flag = (addr << 8 ) | usePwd; | |
895 | ||
896 | UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}}; | |
897 | clearCommandBuffer(); | |
898 | SendCommand(&c); | |
899 | UsbCommand resp; | |
900 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){ | |
901 | PrintAndLog("Error occurred, device did not respond during write operation."); | |
902 | return -1; | |
903 | } | |
904 | ||
905 | if (!downloadSamplesEM()) | |
906 | return -1; | |
907 | ||
908 | //need 0 bits demoded (after preamble) to verify write cmd | |
909 | uint32_t dummy = 0; | |
910 | int isOk = demodEM4x05resp(&dummy); | |
911 | if (isOk) | |
912 | PrintAndLog("Write Verified"); | |
913 | else | |
914 | PrintAndLog("Write could not be verified"); | |
915 | return isOk; | |
916 | } | |
917 | ||
918 | void printEM4x05config(uint32_t wordData) { | |
919 | uint16_t datarate = (((wordData & 0x3F)+1)*2); | |
920 | uint8_t encoder = ((wordData >> 6) & 0xF); | |
921 | char enc[14]; | |
922 | memset(enc,0,sizeof(enc)); | |
923 | ||
924 | uint8_t PSKcf = (wordData >> 10) & 0x3; | |
925 | char cf[10]; | |
926 | memset(cf,0,sizeof(cf)); | |
927 | uint8_t delay = (wordData >> 12) & 0x3; | |
928 | char cdelay[33]; | |
929 | memset(cdelay,0,sizeof(cdelay)); | |
930 | uint8_t LWR = (wordData >> 14) & 0xF; //last word read | |
931 | ||
932 | switch (encoder) { | |
933 | case 0: snprintf(enc,sizeof(enc),"NRZ"); break; | |
934 | case 1: snprintf(enc,sizeof(enc),"Manchester"); break; | |
935 | case 2: snprintf(enc,sizeof(enc),"Biphase"); break; | |
936 | case 3: snprintf(enc,sizeof(enc),"Miller"); break; | |
937 | case 4: snprintf(enc,sizeof(enc),"PSK1"); break; | |
938 | case 5: snprintf(enc,sizeof(enc),"PSK2"); break; | |
939 | case 6: snprintf(enc,sizeof(enc),"PSK3"); break; | |
940 | case 7: snprintf(enc,sizeof(enc),"Unknown"); break; | |
941 | case 8: snprintf(enc,sizeof(enc),"FSK1"); break; | |
942 | case 9: snprintf(enc,sizeof(enc),"FSK2"); break; | |
943 | default: snprintf(enc,sizeof(enc),"Unknown"); break; | |
944 | } | |
945 | ||
946 | switch (PSKcf) { | |
947 | case 0: snprintf(cf,sizeof(cf),"RF/2"); break; | |
948 | case 1: snprintf(cf,sizeof(cf),"RF/8"); break; | |
949 | case 2: snprintf(cf,sizeof(cf),"RF/4"); break; | |
950 | case 3: snprintf(cf,sizeof(cf),"unknown"); break; | |
951 | } | |
952 | ||
953 | switch (delay) { | |
954 | case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break; | |
955 | case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break; | |
956 | case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break; | |
957 | case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break; | |
958 | } | |
959 | PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData); | |
960 | PrintAndLog("Config Breakdown:", wordData); | |
961 | PrintAndLog(" Data Rate: %02u | RF/%u", wordData & 0x3F, datarate); | |
962 | PrintAndLog(" Encoder: %u | %s", encoder, enc); | |
963 | PrintAndLog(" PSK CF: %u | %s", PSKcf, cf); | |
964 | PrintAndLog(" Delay: %u | %s", delay, cdelay); | |
965 | PrintAndLog(" LastWordR: %02u | Address of last word for default read", LWR); | |
966 | PrintAndLog(" ReadLogin: %u | Read Login is %s", (wordData & 0x40000)>>18, (wordData & 0x40000) ? "Required" : "Not Required"); | |
967 | PrintAndLog(" ReadHKL: %u | Read Housekeeping Words Login is %s", (wordData & 0x80000)>>19, (wordData & 0x80000) ? "Required" : "Not Required"); | |
968 | PrintAndLog("WriteLogin: %u | Write Login is %s", (wordData & 0x100000)>>20, (wordData & 0x100000) ? "Required" : "Not Required"); | |
969 | PrintAndLog(" WriteHKL: %u | Write Housekeeping Words Login is %s", (wordData & 0x200000)>>21, (wordData & 0x200000) ? "Required" : "Not Required"); | |
970 | PrintAndLog(" R.A.W.: %u | Read After Write is %s", (wordData & 0x400000)>>22, (wordData & 0x400000) ? "On" : "Off"); | |
971 | PrintAndLog(" Disable: %u | Disable Command is %s", (wordData & 0x800000)>>23, (wordData & 0x800000) ? "Accepted" : "Not Accepted"); | |
972 | PrintAndLog(" R.T.F.: %u | Reader Talk First is %s", (wordData & 0x1000000)>>24, (wordData & 0x1000000) ? "Enabled" : "Disabled"); | |
973 | PrintAndLog(" Pigeon: %u | Pigeon Mode is %s\n", (wordData & 0x4000000)>>26, (wordData & 0x4000000) ? "Enabled" : "Disabled"); | |
974 | } | |
975 | ||
976 | void printEM4x05info(uint32_t block0, uint32_t serial) { | |
977 | ||
978 | uint8_t chipType = (block0 >> 1) & 0xF; | |
979 | uint8_t cap = (block0 >> 5) & 3; | |
980 | uint16_t custCode = (block0 >> 9) & 0x3FF; | |
981 | ||
982 | switch (chipType) { | |
983 | case 9: PrintAndLog("\n Chip Type: %u | EM4305", chipType); break; | |
984 | case 8: PrintAndLog("\n Chip Type: %u | EM4205", chipType); break; | |
985 | case 4: PrintAndLog(" Chip Type: %u | Unknown", chipType); break; | |
986 | case 2: PrintAndLog(" Chip Type: %u | EM4469", chipType); break; | |
987 | //add more here when known | |
988 | default: PrintAndLog(" Chip Type: %u Unknown", chipType); break; | |
989 | } | |
990 | ||
991 | switch (cap) { | |
992 | case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break; | |
993 | case 2: PrintAndLog(" Cap Type: %u | %spF",cap, (chipType==2)? "75":"210"); break; | |
994 | case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break; | |
995 | case 0: PrintAndLog(" Cap Type: %u | no resonant capacitor",cap); break; | |
996 | default: PrintAndLog(" Cap Type: %u | unknown",cap); break; | |
997 | } | |
998 | ||
999 | PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown"); | |
1000 | if (serial != 0) | |
1001 | PrintAndLog("\n Serial #: %08X\n", serial); | |
1002 | } | |
1003 | ||
1004 | void printEM4x05ProtectionBits(uint32_t word) { | |
1005 | for (uint8_t i = 0; i < 15; i++) { | |
1006 | PrintAndLog(" Word: %02u | %s", i, (((1 << i) & word ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked"); | |
1007 | if (i==14) | |
1008 | PrintAndLog(" Word: %02u | %s", i+1, (((1 << i) & word ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked"); | |
1009 | } | |
1010 | } | |
1011 | ||
1012 | //quick test for EM4x05/EM4x69 tag | |
1013 | bool EM4x05IsBlock0(uint32_t *word) { | |
1014 | return EM4x05ReadWord_ext(0, 0, FALSE, word); | |
1015 | } | |
1016 | ||
1017 | int CmdEM4x05Info(const char *Cmd) { | |
1018 | #define EM_SERIAL_BLOCK 1 | |
1019 | #define EM_CONFIG_BLOCK 4 | |
1020 | #define EM_PROT1_BLOCK 14 | |
1021 | #define EM_PROT2_BLOCK 15 | |
1022 | uint32_t pwd; | |
1023 | uint32_t word = 0, block0 = 0, serial = 0; | |
1024 | bool usePwd = false; | |
1025 | uint8_t ctmp = param_getchar(Cmd, 0); | |
1026 | if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_info(); | |
1027 | ||
1028 | // for now use default input of 1 as invalid (unlikely 1 will be a valid password...) | |
1029 | pwd = param_get32ex(Cmd, 0, 1, 16); | |
1030 | ||
1031 | if ( pwd != 1 ) | |
1032 | usePwd = true; | |
1033 | ||
1034 | // read word 0 (chip info) | |
1035 | // block 0 can be read even without a password. | |
1036 | if ( !EM4x05IsBlock0(&block0) ) | |
1037 | return -1; | |
1038 | ||
1039 | // read word 1 (serial #) doesn't need pwd | |
1040 | // continue if failed, .. non blocking fail. | |
1041 | EM4x05ReadWord_ext(EM_SERIAL_BLOCK, 0, false, &serial); | |
1042 | printEM4x05info(block0, serial); | |
1043 | ||
1044 | // read word 4 (config block) | |
1045 | // needs password if one is set | |
1046 | if ( EM4x05ReadWord_ext(EM_CONFIG_BLOCK, pwd, usePwd, &word) != 1 ) | |
1047 | return 0; | |
1048 | ||
1049 | printEM4x05config(word); | |
1050 | ||
1051 | // read word 14 and 15 to see which is being used for the protection bits | |
1052 | if ( EM4x05ReadWord_ext(EM_PROT1_BLOCK, pwd, usePwd, &word) != 1 ) { | |
1053 | return 0; | |
1054 | } | |
1055 | // if status bit says this is not the used protection word | |
1056 | if (!(word & 0x8000)) { | |
1057 | if ( EM4x05ReadWord_ext(EM_PROT2_BLOCK, pwd, usePwd, &word) != 1 ) | |
1058 | return 0; | |
1059 | } | |
1060 | //something went wrong | |
1061 | if (!(word & 0x8000)) return 0; | |
1062 | printEM4x05ProtectionBits(word); | |
1063 | return 1; | |
1064 | } | |
1065 | ||
1066 | static command_t CommandTable[] = { | |
1067 | {"help", CmdHelp, 1, "This help"}, | |
1068 | {"410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"}, | |
1069 | {"410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag in GraphBuffer"}, | |
1070 | {"410xsim", CmdEM410xSim, 0, "simulate EM410x tag"}, | |
1071 | {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"}, | |
1072 | {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" }, | |
1073 | {"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"}, | |
1074 | {"4x05dump", CmdEM4x05Dump, 0, "dump EM4205/4305 tag"}, | |
1075 | {"4x05info", CmdEM4x05Info, 0, "tag information EM4x05/EM4x69"}, | |
1076 | {"4x05read", CmdEM4x05Read, 0, "read word data from EM4205/4305"}, | |
1077 | {"4x05write", CmdEM4x05Write, 0, "write word data to EM4205/4305"}, | |
1078 | {"4x50read", CmdEM4x50Read, 0, "read word data from EM4x50"}, | |
1079 | {"4x50write", CmdEM4x50Write, 0, "write word data to EM4x50"}, | |
1080 | {"4x50dump", CmdEM4x50Dump, 0, "dump EM4x50 tag"}, | |
1081 | {NULL, NULL, 0, NULL} | |
1082 | }; | |
1083 | ||
1084 | int CmdLFEM4X(const char *Cmd) { | |
1085 | clearCommandBuffer(); | |
1086 | CmdsParse(CommandTable, Cmd); | |
1087 | return 0; | |
1088 | } | |
1089 | ||
1090 | int CmdHelp(const char *Cmd) { | |
1091 | CmdsHelp(CommandTable); | |
1092 | return 0; | |
1093 | } |