]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Jonathan Westhues, split Nov 2006 | |
3 | // Modified by Greg Jones, Jan 2009 | |
4 | // Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011 | |
5 | // Modified by piwi, Oct 2018 | |
6 | // | |
7 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
8 | // at your option, any later version. See the LICENSE.txt file for the text of | |
9 | // the license. | |
10 | //----------------------------------------------------------------------------- | |
11 | // Routines to support ISO 15693. This includes both the reader software and | |
12 | // the `fake tag' modes. | |
13 | //----------------------------------------------------------------------------- | |
14 | ||
15 | // The ISO 15693 describes two transmission modes from reader to tag, and four | |
16 | // transmission modes from tag to reader. As of Oct 2018 this code supports | |
17 | // both reader modes and the high speed variant with one subcarrier from card to reader. | |
18 | // As long as the card fully support ISO 15693 this is no problem, since the | |
19 | // reader chooses both data rates, but some non-standard tags do not. | |
20 | // For card simulation, the code supports both high and low speed modes with one subcarrier. | |
21 | // | |
22 | // VCD (reader) -> VICC (tag) | |
23 | // 1 out of 256: | |
24 | // data rate: 1,66 kbit/s (fc/8192) | |
25 | // used for long range | |
26 | // 1 out of 4: | |
27 | // data rate: 26,48 kbit/s (fc/512) | |
28 | // used for short range, high speed | |
29 | // | |
30 | // VICC (tag) -> VCD (reader) | |
31 | // Modulation: | |
32 | // ASK / one subcarrier (423,75 khz) | |
33 | // FSK / two subcarriers (423,75 khz && 484,28 khz) | |
34 | // Data Rates / Modes: | |
35 | // low ASK: 6,62 kbit/s | |
36 | // low FSK: 6.67 kbit/s | |
37 | // high ASK: 26,48 kbit/s | |
38 | // high FSK: 26,69 kbit/s | |
39 | //----------------------------------------------------------------------------- | |
40 | ||
41 | ||
42 | // Random Remarks: | |
43 | // *) UID is always used "transmission order" (LSB), which is reverse to display order | |
44 | ||
45 | // TODO / BUGS / ISSUES: | |
46 | // *) signal decoding is unable to detect collisions. | |
47 | // *) add anti-collision support for inventory-commands | |
48 | // *) read security status of a block | |
49 | // *) sniffing and simulation do not support two subcarrier modes. | |
50 | // *) remove or refactor code under "deprecated" | |
51 | // *) document all the functions | |
52 | ||
53 | #include "iso15693.h" | |
54 | ||
55 | #include "proxmark3.h" | |
56 | #include "util.h" | |
57 | #include "apps.h" | |
58 | #include "string.h" | |
59 | #include "iso15693tools.h" | |
60 | #include "protocols.h" | |
61 | #include "usb_cdc.h" | |
62 | #include "BigBuf.h" | |
63 | #include "fpgaloader.h" | |
64 | ||
65 | #define arraylen(x) (sizeof(x)/sizeof((x)[0])) | |
66 | ||
67 | // Delays in SSP_CLK ticks. | |
68 | // SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag | |
69 | #define DELAY_READER_TO_ARM 8 | |
70 | #define DELAY_ARM_TO_READER 0 | |
71 | //SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader. All values should be multiples of 16 | |
72 | #define DELAY_ARM_TO_TAG 16 | |
73 | #define DELAY_TAG_TO_ARM 32 | |
74 | //SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when snooping. All values should be multiples of 16 | |
75 | #define DELAY_TAG_TO_ARM_SNOOP 32 | |
76 | #define DELAY_READER_TO_ARM_SNOOP 32 | |
77 | ||
78 | // times in samples @ 212kHz when acting as reader | |
79 | //#define ISO15693_READER_TIMEOUT 80 // 80/212kHz = 378us, nominal t1_max=313,9us | |
80 | #define ISO15693_READER_TIMEOUT 330 // 330/212kHz = 1558us, should be even enough for iClass tags responding to ACTALL | |
81 | #define ISO15693_READER_TIMEOUT_WRITE 4700 // 4700/212kHz = 22ms, nominal 20ms | |
82 | ||
83 | ||
84 | static int DEBUG = 0; | |
85 | ||
86 | ||
87 | /////////////////////////////////////////////////////////////////////// | |
88 | // ISO 15693 Part 2 - Air Interface | |
89 | // This section basically contains transmission and receiving of bits | |
90 | /////////////////////////////////////////////////////////////////////// | |
91 | ||
92 | // buffers | |
93 | #define ISO15693_DMA_BUFFER_SIZE 256 // must be a power of 2 | |
94 | #define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet | |
95 | #define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet | |
96 | ||
97 | ||
98 | // specific LogTrace function for ISO15693: the duration needs to be scaled because otherwise it won't fit into a uint16_t | |
99 | bool LogTrace_ISO15693(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag) { | |
100 | uint32_t duration = timestamp_end - timestamp_start; | |
101 | duration /= 32; | |
102 | timestamp_end = timestamp_start + duration; | |
103 | return LogTrace(btBytes, iLen, timestamp_start, timestamp_end, parity, readerToTag); | |
104 | } | |
105 | ||
106 | ||
107 | // --------------------------- | |
108 | // Signal Processing | |
109 | // --------------------------- | |
110 | ||
111 | // prepare data using "1 out of 4" code for later transmission | |
112 | // resulting data rate is 26.48 kbit/s (fc/512) | |
113 | // cmd ... data | |
114 | // n ... length of data | |
115 | void CodeIso15693AsReader(uint8_t *cmd, int n) { | |
116 | ||
117 | ToSendReset(); | |
118 | ||
119 | // SOF for 1of4 | |
120 | ToSend[++ToSendMax] = 0x84; //10000100 | |
121 | ||
122 | // data | |
123 | for (int i = 0; i < n; i++) { | |
124 | for (int j = 0; j < 8; j += 2) { | |
125 | int these = (cmd[i] >> j) & 0x03; | |
126 | switch(these) { | |
127 | case 0: | |
128 | ToSend[++ToSendMax] = 0x40; //01000000 | |
129 | break; | |
130 | case 1: | |
131 | ToSend[++ToSendMax] = 0x10; //00010000 | |
132 | break; | |
133 | case 2: | |
134 | ToSend[++ToSendMax] = 0x04; //00000100 | |
135 | break; | |
136 | case 3: | |
137 | ToSend[++ToSendMax] = 0x01; //00000001 | |
138 | break; | |
139 | } | |
140 | } | |
141 | } | |
142 | ||
143 | // EOF | |
144 | ToSend[++ToSendMax] = 0x20; //0010 + 0000 padding | |
145 | ||
146 | ToSendMax++; | |
147 | } | |
148 | ||
149 | ||
150 | // Encode EOF only | |
151 | static void CodeIso15693AsReaderEOF() { | |
152 | ToSendReset(); | |
153 | ToSend[++ToSendMax] = 0x20; | |
154 | ToSendMax++; | |
155 | } | |
156 | ||
157 | ||
158 | // encode data using "1 out of 256" scheme | |
159 | // data rate is 1,66 kbit/s (fc/8192) | |
160 | // is designed for more robust communication over longer distances | |
161 | static void CodeIso15693AsReader256(uint8_t *cmd, int n) | |
162 | { | |
163 | ToSendReset(); | |
164 | ||
165 | // SOF for 1of256 | |
166 | ToSend[++ToSendMax] = 0x81; //10000001 | |
167 | ||
168 | // data | |
169 | for(int i = 0; i < n; i++) { | |
170 | for (int j = 0; j <= 255; j++) { | |
171 | if (cmd[i] == j) { | |
172 | ToSendStuffBit(0); | |
173 | ToSendStuffBit(1); | |
174 | } else { | |
175 | ToSendStuffBit(0); | |
176 | ToSendStuffBit(0); | |
177 | } | |
178 | } | |
179 | } | |
180 | ||
181 | // EOF | |
182 | ToSend[++ToSendMax] = 0x20; //0010 + 0000 padding | |
183 | ||
184 | ToSendMax++; | |
185 | } | |
186 | ||
187 | ||
188 | // static uint8_t encode4Bits(const uint8_t b) { | |
189 | // uint8_t c = b & 0xF; | |
190 | // // OTA, the least significant bits first | |
191 | // // The columns are | |
192 | // // 1 - Bit value to send | |
193 | // // 2 - Reversed (big-endian) | |
194 | // // 3 - Manchester Encoded | |
195 | // // 4 - Hex values | |
196 | ||
197 | // switch(c){ | |
198 | // // 1 2 3 4 | |
199 | // case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55 | |
200 | // case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95 | |
201 | // case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65 | |
202 | // case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5 | |
203 | // case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59 | |
204 | // case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99 | |
205 | // case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69 | |
206 | // case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9 | |
207 | // case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56 | |
208 | // case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96 | |
209 | // case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66 | |
210 | // case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6 | |
211 | // case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a | |
212 | // case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a | |
213 | // case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a | |
214 | // default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa | |
215 | ||
216 | // } | |
217 | // } | |
218 | ||
219 | static const uint8_t encode_4bits[16] = { 0xaa, 0x6a, 0x9a, 0x5a, 0xa6, 0x66, 0x96, 0x56, 0xa9, 0x69, 0x99, 0x59, 0xa5, 0x65, 0x95, 0x55 }; | |
220 | ||
221 | void CodeIso15693AsTag(uint8_t *cmd, size_t len) { | |
222 | /* | |
223 | * SOF comprises 3 parts; | |
224 | * * An unmodulated time of 56.64 us | |
225 | * * 24 pulses of 423.75 kHz (fc/32) | |
226 | * * A logic 1, which starts with an unmodulated time of 18.88us | |
227 | * followed by 8 pulses of 423.75kHz (fc/32) | |
228 | * | |
229 | * EOF comprises 3 parts: | |
230 | * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated | |
231 | * time of 18.88us. | |
232 | * - 24 pulses of fc/32 | |
233 | * - An unmodulated time of 56.64 us | |
234 | * | |
235 | * A logic 0 starts with 8 pulses of fc/32 | |
236 | * followed by an unmodulated time of 256/fc (~18,88us). | |
237 | * | |
238 | * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by | |
239 | * 8 pulses of fc/32 (also 18.88us) | |
240 | * | |
241 | * A bit here becomes 8 pulses of fc/32. Therefore: | |
242 | * The SOF can be written as 00011101 = 0x1D | |
243 | * The EOF can be written as 10111000 = 0xb8 | |
244 | * A logic 1 is 01 | |
245 | * A logic 0 is 10 | |
246 | * | |
247 | * */ | |
248 | ||
249 | ToSendReset(); | |
250 | ||
251 | // SOF | |
252 | ToSend[++ToSendMax] = 0x1D; // 00011101 | |
253 | ||
254 | // data | |
255 | for (int i = 0; i < len; i++) { | |
256 | ToSend[++ToSendMax] = encode_4bits[cmd[i] & 0xF]; | |
257 | ToSend[++ToSendMax] = encode_4bits[cmd[i] >> 4]; | |
258 | } | |
259 | ||
260 | // EOF | |
261 | ToSend[++ToSendMax] = 0xB8; // 10111000 | |
262 | ||
263 | ToSendMax++; | |
264 | } | |
265 | ||
266 | ||
267 | // Transmit the command (to the tag) that was placed in cmd[]. | |
268 | void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t *start_time) { | |
269 | ||
270 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_FULL_MOD); | |
271 | ||
272 | if (*start_time < DELAY_ARM_TO_TAG) { | |
273 | *start_time = DELAY_ARM_TO_TAG; | |
274 | } | |
275 | ||
276 | *start_time = (*start_time - DELAY_ARM_TO_TAG) & 0xfffffff0; | |
277 | ||
278 | if (GetCountSspClk() > *start_time) { // we may miss the intended time | |
279 | *start_time = (GetCountSspClk() + 16) & 0xfffffff0; // next possible time | |
280 | } | |
281 | ||
282 | while (GetCountSspClk() < *start_time) | |
283 | /* wait */ ; | |
284 | ||
285 | LED_B_ON(); | |
286 | for (int c = 0; c < len; c++) { | |
287 | uint8_t data = cmd[c]; | |
288 | for (int i = 0; i < 8; i++) { | |
289 | uint16_t send_word = (data & 0x80) ? 0xffff : 0x0000; | |
290 | while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ; | |
291 | AT91C_BASE_SSC->SSC_THR = send_word; | |
292 | while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ; | |
293 | AT91C_BASE_SSC->SSC_THR = send_word; | |
294 | ||
295 | data <<= 1; | |
296 | } | |
297 | WDT_HIT(); | |
298 | } | |
299 | LED_B_OFF(); | |
300 | ||
301 | *start_time = *start_time + DELAY_ARM_TO_TAG; | |
302 | ||
303 | } | |
304 | ||
305 | ||
306 | //----------------------------------------------------------------------------- | |
307 | // Transmit the tag response (to the reader) that was placed in cmd[]. | |
308 | //----------------------------------------------------------------------------- | |
309 | void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time, uint32_t slot_time, bool slow) { | |
310 | // don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk() | |
311 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K); | |
312 | ||
313 | uint32_t modulation_start_time = *start_time - DELAY_ARM_TO_READER + 3 * 8; // no need to transfer the unmodulated start of SOF | |
314 | ||
315 | while (GetCountSspClk() > (modulation_start_time & 0xfffffff8) + 3) { // we will miss the intended time | |
316 | if (slot_time) { | |
317 | modulation_start_time += slot_time; // use next available slot | |
318 | } else { | |
319 | modulation_start_time = (modulation_start_time & 0xfffffff8) + 8; // next possible time | |
320 | } | |
321 | } | |
322 | ||
323 | while (GetCountSspClk() < (modulation_start_time & 0xfffffff8)) | |
324 | /* wait */ ; | |
325 | ||
326 | uint8_t shift_delay = modulation_start_time & 0x00000007; | |
327 | ||
328 | *start_time = modulation_start_time + DELAY_ARM_TO_READER - 3 * 8; | |
329 | ||
330 | LED_C_ON(); | |
331 | uint8_t bits_to_shift = 0x00; | |
332 | uint8_t bits_to_send = 0x00; | |
333 | for (size_t c = 0; c < len; c++) { | |
334 | for (int i = (c==0?4:7); i >= 0; i--) { | |
335 | uint8_t cmd_bits = ((cmd[c] >> i) & 0x01) ? 0xff : 0x00; | |
336 | for (int j = 0; j < (slow?4:1); ) { | |
337 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
338 | bits_to_send = bits_to_shift << (8 - shift_delay) | cmd_bits >> shift_delay; | |
339 | AT91C_BASE_SSC->SSC_THR = bits_to_send; | |
340 | bits_to_shift = cmd_bits; | |
341 | j++; | |
342 | } | |
343 | } | |
344 | } | |
345 | WDT_HIT(); | |
346 | } | |
347 | // send the remaining bits, padded with 0: | |
348 | bits_to_send = bits_to_shift << (8 - shift_delay); | |
349 | for ( ; ; ) { | |
350 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
351 | AT91C_BASE_SSC->SSC_THR = bits_to_send; | |
352 | break; | |
353 | } | |
354 | } | |
355 | LED_C_OFF(); | |
356 | } | |
357 | ||
358 | ||
359 | //============================================================================= | |
360 | // An ISO 15693 decoder for tag responses (one subcarrier only). | |
361 | // Uses cross correlation to identify each bit and EOF. | |
362 | // This function is called 8 times per bit (every 2 subcarrier cycles). | |
363 | // Subcarrier frequency fs is 424kHz, 1/fs = 2,36us, | |
364 | // i.e. function is called every 4,72us | |
365 | // LED handling: | |
366 | // LED C -> ON once we have received the SOF and are expecting the rest. | |
367 | // LED C -> OFF once we have received EOF or are unsynced | |
368 | // | |
369 | // Returns: true if we received a EOF | |
370 | // false if we are still waiting for some more | |
371 | //============================================================================= | |
372 | ||
373 | #define NOISE_THRESHOLD 160 // don't try to correlate noise | |
374 | #define MAX_PREVIOUS_AMPLITUDE (-1 - NOISE_THRESHOLD) | |
375 | ||
376 | typedef struct DecodeTag { | |
377 | enum { | |
378 | STATE_TAG_SOF_LOW, | |
379 | STATE_TAG_SOF_RISING_EDGE, | |
380 | STATE_TAG_SOF_HIGH, | |
381 | STATE_TAG_SOF_HIGH_END, | |
382 | STATE_TAG_RECEIVING_DATA, | |
383 | STATE_TAG_EOF, | |
384 | STATE_TAG_EOF_TAIL | |
385 | } state; | |
386 | int bitCount; | |
387 | int posCount; | |
388 | enum { | |
389 | LOGIC0, | |
390 | LOGIC1, | |
391 | SOF_PART1, | |
392 | SOF_PART2 | |
393 | } lastBit; | |
394 | uint16_t shiftReg; | |
395 | uint16_t max_len; | |
396 | uint8_t *output; | |
397 | int len; | |
398 | int sum1, sum2; | |
399 | int threshold_sof; | |
400 | int threshold_half; | |
401 | uint16_t previous_amplitude; | |
402 | } DecodeTag_t; | |
403 | ||
404 | ||
405 | static int inline __attribute__((always_inline)) Handle15693SamplesFromTag(uint16_t amplitude, DecodeTag_t *DecodeTag) { | |
406 | switch (DecodeTag->state) { | |
407 | case STATE_TAG_SOF_LOW: | |
408 | // waiting for a rising edge | |
409 | if (amplitude > NOISE_THRESHOLD + DecodeTag->previous_amplitude) { | |
410 | if (DecodeTag->posCount > 10) { | |
411 | DecodeTag->threshold_sof = amplitude - DecodeTag->previous_amplitude; // to be divided by 2 | |
412 | DecodeTag->threshold_half = 0; | |
413 | DecodeTag->state = STATE_TAG_SOF_RISING_EDGE; | |
414 | } else { | |
415 | DecodeTag->posCount = 0; | |
416 | } | |
417 | } else { | |
418 | DecodeTag->posCount++; | |
419 | DecodeTag->previous_amplitude = amplitude; | |
420 | } | |
421 | break; | |
422 | ||
423 | case STATE_TAG_SOF_RISING_EDGE: | |
424 | if (amplitude > DecodeTag->threshold_sof + DecodeTag->previous_amplitude) { // edge still rising | |
425 | if (amplitude > DecodeTag->threshold_sof + DecodeTag->threshold_sof) { // steeper edge, take this as time reference | |
426 | DecodeTag->posCount = 1; | |
427 | } else { | |
428 | DecodeTag->posCount = 2; | |
429 | } | |
430 | DecodeTag->threshold_sof = (amplitude - DecodeTag->previous_amplitude) / 2; | |
431 | } else { | |
432 | DecodeTag->posCount = 2; | |
433 | DecodeTag->threshold_sof = DecodeTag->threshold_sof/2; | |
434 | } | |
435 | // DecodeTag->posCount = 2; | |
436 | DecodeTag->state = STATE_TAG_SOF_HIGH; | |
437 | break; | |
438 | ||
439 | case STATE_TAG_SOF_HIGH: | |
440 | // waiting for 10 times high. Take average over the last 8 | |
441 | if (amplitude > DecodeTag->threshold_sof) { | |
442 | DecodeTag->posCount++; | |
443 | if (DecodeTag->posCount > 2) { | |
444 | DecodeTag->threshold_half += amplitude; // keep track of average high value | |
445 | } | |
446 | if (DecodeTag->posCount == 10) { | |
447 | DecodeTag->threshold_half >>= 2; // (4 times 1/2 average) | |
448 | DecodeTag->state = STATE_TAG_SOF_HIGH_END; | |
449 | } | |
450 | } else { // high phase was too short | |
451 | DecodeTag->posCount = 1; | |
452 | DecodeTag->previous_amplitude = amplitude; | |
453 | DecodeTag->state = STATE_TAG_SOF_LOW; | |
454 | } | |
455 | break; | |
456 | ||
457 | case STATE_TAG_SOF_HIGH_END: | |
458 | // check for falling edge | |
459 | if (DecodeTag->posCount == 13 && amplitude < DecodeTag->threshold_sof) { | |
460 | DecodeTag->lastBit = SOF_PART1; // detected 1st part of SOF (12 samples low and 12 samples high) | |
461 | DecodeTag->shiftReg = 0; | |
462 | DecodeTag->bitCount = 0; | |
463 | DecodeTag->len = 0; | |
464 | DecodeTag->sum1 = amplitude; | |
465 | DecodeTag->sum2 = 0; | |
466 | DecodeTag->posCount = 2; | |
467 | DecodeTag->state = STATE_TAG_RECEIVING_DATA; | |
468 | // FpgaDisableTracing(); // DEBUGGING | |
469 | // Dbprintf("amplitude = %d, threshold_sof = %d, threshold_half/4 = %d, previous_amplitude = %d", | |
470 | // amplitude, | |
471 | // DecodeTag->threshold_sof, | |
472 | // DecodeTag->threshold_half/4, | |
473 | // DecodeTag->previous_amplitude); // DEBUGGING | |
474 | LED_C_ON(); | |
475 | } else { | |
476 | DecodeTag->posCount++; | |
477 | if (DecodeTag->posCount > 13) { // high phase too long | |
478 | DecodeTag->posCount = 0; | |
479 | DecodeTag->previous_amplitude = amplitude; | |
480 | DecodeTag->state = STATE_TAG_SOF_LOW; | |
481 | LED_C_OFF(); | |
482 | } | |
483 | } | |
484 | break; | |
485 | ||
486 | case STATE_TAG_RECEIVING_DATA: | |
487 | // FpgaDisableTracing(); // DEBUGGING | |
488 | // Dbprintf("amplitude = %d, threshold_sof = %d, threshold_half/4 = %d, previous_amplitude = %d", | |
489 | // amplitude, | |
490 | // DecodeTag->threshold_sof, | |
491 | // DecodeTag->threshold_half/4, | |
492 | // DecodeTag->previous_amplitude); // DEBUGGING | |
493 | if (DecodeTag->posCount == 1) { | |
494 | DecodeTag->sum1 = 0; | |
495 | DecodeTag->sum2 = 0; | |
496 | } | |
497 | if (DecodeTag->posCount <= 4) { | |
498 | DecodeTag->sum1 += amplitude; | |
499 | } else { | |
500 | DecodeTag->sum2 += amplitude; | |
501 | } | |
502 | if (DecodeTag->posCount == 8) { | |
503 | if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 > DecodeTag->threshold_half) { // modulation in both halves | |
504 | if (DecodeTag->lastBit == LOGIC0) { // this was already part of EOF | |
505 | DecodeTag->state = STATE_TAG_EOF; | |
506 | } else { | |
507 | DecodeTag->posCount = 0; | |
508 | DecodeTag->previous_amplitude = amplitude; | |
509 | DecodeTag->state = STATE_TAG_SOF_LOW; | |
510 | LED_C_OFF(); | |
511 | } | |
512 | } else if (DecodeTag->sum1 < DecodeTag->threshold_half && DecodeTag->sum2 > DecodeTag->threshold_half) { // modulation in second half | |
513 | // logic 1 | |
514 | if (DecodeTag->lastBit == SOF_PART1) { // still part of SOF | |
515 | DecodeTag->lastBit = SOF_PART2; // SOF completed | |
516 | } else { | |
517 | DecodeTag->lastBit = LOGIC1; | |
518 | DecodeTag->shiftReg >>= 1; | |
519 | DecodeTag->shiftReg |= 0x80; | |
520 | DecodeTag->bitCount++; | |
521 | if (DecodeTag->bitCount == 8) { | |
522 | DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg; | |
523 | DecodeTag->len++; | |
524 | // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING | |
525 | if (DecodeTag->len > DecodeTag->max_len) { | |
526 | // buffer overflow, give up | |
527 | LED_C_OFF(); | |
528 | return true; | |
529 | } | |
530 | DecodeTag->bitCount = 0; | |
531 | DecodeTag->shiftReg = 0; | |
532 | } | |
533 | } | |
534 | } else if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // modulation in first half | |
535 | // logic 0 | |
536 | if (DecodeTag->lastBit == SOF_PART1) { // incomplete SOF | |
537 | DecodeTag->posCount = 0; | |
538 | DecodeTag->previous_amplitude = amplitude; | |
539 | DecodeTag->state = STATE_TAG_SOF_LOW; | |
540 | LED_C_OFF(); | |
541 | } else { | |
542 | DecodeTag->lastBit = LOGIC0; | |
543 | DecodeTag->shiftReg >>= 1; | |
544 | DecodeTag->bitCount++; | |
545 | if (DecodeTag->bitCount == 8) { | |
546 | DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg; | |
547 | DecodeTag->len++; | |
548 | // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING | |
549 | if (DecodeTag->len > DecodeTag->max_len) { | |
550 | // buffer overflow, give up | |
551 | DecodeTag->posCount = 0; | |
552 | DecodeTag->previous_amplitude = amplitude; | |
553 | DecodeTag->state = STATE_TAG_SOF_LOW; | |
554 | LED_C_OFF(); | |
555 | } | |
556 | DecodeTag->bitCount = 0; | |
557 | DecodeTag->shiftReg = 0; | |
558 | } | |
559 | } | |
560 | } else { // no modulation | |
561 | if (DecodeTag->lastBit == SOF_PART2) { // only SOF (this is OK for iClass) | |
562 | LED_C_OFF(); | |
563 | return true; | |
564 | } else { | |
565 | DecodeTag->posCount = 0; | |
566 | DecodeTag->state = STATE_TAG_SOF_LOW; | |
567 | LED_C_OFF(); | |
568 | } | |
569 | } | |
570 | DecodeTag->posCount = 0; | |
571 | } | |
572 | DecodeTag->posCount++; | |
573 | break; | |
574 | ||
575 | case STATE_TAG_EOF: | |
576 | if (DecodeTag->posCount == 1) { | |
577 | DecodeTag->sum1 = 0; | |
578 | DecodeTag->sum2 = 0; | |
579 | } | |
580 | if (DecodeTag->posCount <= 4) { | |
581 | DecodeTag->sum1 += amplitude; | |
582 | } else { | |
583 | DecodeTag->sum2 += amplitude; | |
584 | } | |
585 | if (DecodeTag->posCount == 8) { | |
586 | if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // modulation in first half | |
587 | DecodeTag->posCount = 0; | |
588 | DecodeTag->state = STATE_TAG_EOF_TAIL; | |
589 | } else { | |
590 | DecodeTag->posCount = 0; | |
591 | DecodeTag->previous_amplitude = amplitude; | |
592 | DecodeTag->state = STATE_TAG_SOF_LOW; | |
593 | LED_C_OFF(); | |
594 | } | |
595 | } | |
596 | DecodeTag->posCount++; | |
597 | break; | |
598 | ||
599 | case STATE_TAG_EOF_TAIL: | |
600 | if (DecodeTag->posCount == 1) { | |
601 | DecodeTag->sum1 = 0; | |
602 | DecodeTag->sum2 = 0; | |
603 | } | |
604 | if (DecodeTag->posCount <= 4) { | |
605 | DecodeTag->sum1 += amplitude; | |
606 | } else { | |
607 | DecodeTag->sum2 += amplitude; | |
608 | } | |
609 | if (DecodeTag->posCount == 8) { | |
610 | if (DecodeTag->sum1 < DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // no modulation in both halves | |
611 | LED_C_OFF(); | |
612 | return true; | |
613 | } else { | |
614 | DecodeTag->posCount = 0; | |
615 | DecodeTag->previous_amplitude = amplitude; | |
616 | DecodeTag->state = STATE_TAG_SOF_LOW; | |
617 | LED_C_OFF(); | |
618 | } | |
619 | } | |
620 | DecodeTag->posCount++; | |
621 | break; | |
622 | } | |
623 | ||
624 | return false; | |
625 | } | |
626 | ||
627 | ||
628 | static void DecodeTagInit(DecodeTag_t *DecodeTag, uint8_t *data, uint16_t max_len) { | |
629 | DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE; | |
630 | DecodeTag->posCount = 0; | |
631 | DecodeTag->state = STATE_TAG_SOF_LOW; | |
632 | DecodeTag->output = data; | |
633 | DecodeTag->max_len = max_len; | |
634 | } | |
635 | ||
636 | ||
637 | static void DecodeTagReset(DecodeTag_t *DecodeTag) { | |
638 | DecodeTag->posCount = 0; | |
639 | DecodeTag->state = STATE_TAG_SOF_LOW; | |
640 | DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE; | |
641 | } | |
642 | ||
643 | ||
644 | /* | |
645 | * Receive and decode the tag response, also log to tracebuffer | |
646 | */ | |
647 | int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, uint16_t timeout, uint32_t *eof_time) { | |
648 | ||
649 | int samples = 0; | |
650 | int ret = 0; | |
651 | ||
652 | uint16_t dmaBuf[ISO15693_DMA_BUFFER_SIZE]; | |
653 | ||
654 | // the Decoder data structure | |
655 | DecodeTag_t DecodeTag = { 0 }; | |
656 | DecodeTagInit(&DecodeTag, response, max_len); | |
657 | ||
658 | // wait for last transfer to complete | |
659 | while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)); | |
660 | ||
661 | // And put the FPGA in the appropriate mode | |
662 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_424_KHZ | FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE); | |
663 | ||
664 | // Setup and start DMA. | |
665 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER); | |
666 | FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE); | |
667 | uint32_t dma_start_time = 0; | |
668 | uint16_t *upTo = dmaBuf; | |
669 | ||
670 | for(;;) { | |
671 | uint16_t behindBy = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1); | |
672 | ||
673 | if (behindBy == 0) continue; | |
674 | ||
675 | samples++; | |
676 | if (samples == 1) { | |
677 | // DMA has transferred the very first data | |
678 | dma_start_time = GetCountSspClk() & 0xfffffff0; | |
679 | } | |
680 | ||
681 | uint16_t tagdata = *upTo++; | |
682 | ||
683 | if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content. | |
684 | upTo = dmaBuf; // start reading the circular buffer from the beginning | |
685 | if (behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) { | |
686 | Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy); | |
687 | ret = -1; | |
688 | break; | |
689 | } | |
690 | } | |
691 | if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated. | |
692 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and | |
693 | AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers | |
694 | } | |
695 | ||
696 | if (Handle15693SamplesFromTag(tagdata, &DecodeTag)) { | |
697 | *eof_time = dma_start_time + samples*16 - DELAY_TAG_TO_ARM; // end of EOF | |
698 | if (DecodeTag.lastBit == SOF_PART2) { | |
699 | *eof_time -= 8*16; // needed 8 additional samples to confirm single SOF (iCLASS) | |
700 | } | |
701 | if (DecodeTag.len > DecodeTag.max_len) { | |
702 | ret = -2; // buffer overflow | |
703 | } | |
704 | break; | |
705 | } | |
706 | ||
707 | if (samples > timeout && DecodeTag.state < STATE_TAG_RECEIVING_DATA) { | |
708 | ret = -1; // timeout | |
709 | break; | |
710 | } | |
711 | ||
712 | } | |
713 | ||
714 | FpgaDisableSscDma(); | |
715 | ||
716 | if (DEBUG) Dbprintf("samples = %d, ret = %d, Decoder: state = %d, lastBit = %d, len = %d, bitCount = %d, posCount = %d", | |
717 | samples, ret, DecodeTag.state, DecodeTag.lastBit, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount); | |
718 | ||
719 | if (ret < 0) { | |
720 | return ret; | |
721 | } | |
722 | ||
723 | uint32_t sof_time = *eof_time | |
724 | - DecodeTag.len * 8 * 8 * 16 // time for byte transfers | |
725 | - 32 * 16 // time for SOF transfer | |
726 | - (DecodeTag.lastBit != SOF_PART2?32*16:0); // time for EOF transfer | |
727 | ||
728 | if (DEBUG) Dbprintf("timing: sof_time = %d, eof_time = %d", sof_time, *eof_time); | |
729 | ||
730 | LogTrace_ISO15693(DecodeTag.output, DecodeTag.len, sof_time*4, *eof_time*4, NULL, false); | |
731 | ||
732 | return DecodeTag.len; | |
733 | } | |
734 | ||
735 | ||
736 | //============================================================================= | |
737 | // An ISO15693 decoder for reader commands. | |
738 | // | |
739 | // This function is called 4 times per bit (every 2 subcarrier cycles). | |
740 | // Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us | |
741 | // LED handling: | |
742 | // LED B -> ON once we have received the SOF and are expecting the rest. | |
743 | // LED B -> OFF once we have received EOF or are in error state or unsynced | |
744 | // | |
745 | // Returns: true if we received a EOF | |
746 | // false if we are still waiting for some more | |
747 | //============================================================================= | |
748 | ||
749 | typedef struct DecodeReader { | |
750 | enum { | |
751 | STATE_READER_UNSYNCD, | |
752 | STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF, | |
753 | STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF, | |
754 | STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF, | |
755 | STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF, | |
756 | STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4, | |
757 | STATE_READER_RECEIVE_DATA_1_OUT_OF_4, | |
758 | STATE_READER_RECEIVE_DATA_1_OUT_OF_256, | |
759 | STATE_READER_RECEIVE_JAMMING | |
760 | } state; | |
761 | enum { | |
762 | CODING_1_OUT_OF_4, | |
763 | CODING_1_OUT_OF_256 | |
764 | } Coding; | |
765 | uint8_t shiftReg; | |
766 | uint8_t bitCount; | |
767 | int byteCount; | |
768 | int byteCountMax; | |
769 | int posCount; | |
770 | int sum1, sum2; | |
771 | uint8_t *output; | |
772 | uint8_t jam_search_len; | |
773 | uint8_t *jam_search_string; | |
774 | } DecodeReader_t; | |
775 | ||
776 | ||
777 | static void DecodeReaderInit(DecodeReader_t* DecodeReader, uint8_t *data, uint16_t max_len, uint8_t jam_search_len, uint8_t *jam_search_string) { | |
778 | DecodeReader->output = data; | |
779 | DecodeReader->byteCountMax = max_len; | |
780 | DecodeReader->state = STATE_READER_UNSYNCD; | |
781 | DecodeReader->byteCount = 0; | |
782 | DecodeReader->bitCount = 0; | |
783 | DecodeReader->posCount = 1; | |
784 | DecodeReader->shiftReg = 0; | |
785 | DecodeReader->jam_search_len = jam_search_len; | |
786 | DecodeReader->jam_search_string = jam_search_string; | |
787 | } | |
788 | ||
789 | ||
790 | static void DecodeReaderReset(DecodeReader_t* DecodeReader) { | |
791 | DecodeReader->state = STATE_READER_UNSYNCD; | |
792 | } | |
793 | ||
794 | ||
795 | static int inline __attribute__((always_inline)) Handle15693SampleFromReader(bool bit, DecodeReader_t *DecodeReader) { | |
796 | switch (DecodeReader->state) { | |
797 | case STATE_READER_UNSYNCD: | |
798 | // wait for unmodulated carrier | |
799 | if (bit) { | |
800 | DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF; | |
801 | } | |
802 | break; | |
803 | ||
804 | case STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF: | |
805 | if (!bit) { | |
806 | // we went low, so this could be the beginning of a SOF | |
807 | DecodeReader->posCount = 1; | |
808 | DecodeReader->state = STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF; | |
809 | } | |
810 | break; | |
811 | ||
812 | case STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF: | |
813 | DecodeReader->posCount++; | |
814 | if (bit) { // detected rising edge | |
815 | if (DecodeReader->posCount < 4) { // rising edge too early (nominally expected at 5) | |
816 | DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF; | |
817 | } else { // SOF | |
818 | DecodeReader->state = STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF; | |
819 | } | |
820 | } else { | |
821 | if (DecodeReader->posCount > 5) { // stayed low for too long | |
822 | DecodeReaderReset(DecodeReader); | |
823 | } else { | |
824 | // do nothing, keep waiting | |
825 | } | |
826 | } | |
827 | break; | |
828 | ||
829 | case STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF: | |
830 | DecodeReader->posCount++; | |
831 | if (!bit) { // detected a falling edge | |
832 | if (DecodeReader->posCount < 20) { // falling edge too early (nominally expected at 21 earliest) | |
833 | DecodeReaderReset(DecodeReader); | |
834 | } else if (DecodeReader->posCount < 23) { // SOF for 1 out of 4 coding | |
835 | DecodeReader->Coding = CODING_1_OUT_OF_4; | |
836 | DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF; | |
837 | } else if (DecodeReader->posCount < 28) { // falling edge too early (nominally expected at 29 latest) | |
838 | DecodeReaderReset(DecodeReader); | |
839 | } else { // SOF for 1 out of 256 coding | |
840 | DecodeReader->Coding = CODING_1_OUT_OF_256; | |
841 | DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF; | |
842 | } | |
843 | } else { | |
844 | if (DecodeReader->posCount > 29) { // stayed high for too long | |
845 | DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF; | |
846 | } else { | |
847 | // do nothing, keep waiting | |
848 | } | |
849 | } | |
850 | break; | |
851 | ||
852 | case STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF: | |
853 | DecodeReader->posCount++; | |
854 | if (bit) { // detected rising edge | |
855 | if (DecodeReader->Coding == CODING_1_OUT_OF_256) { | |
856 | if (DecodeReader->posCount < 32) { // rising edge too early (nominally expected at 33) | |
857 | DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF; | |
858 | } else { | |
859 | DecodeReader->posCount = 1; | |
860 | DecodeReader->bitCount = 0; | |
861 | DecodeReader->byteCount = 0; | |
862 | DecodeReader->sum1 = 1; | |
863 | DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_256; | |
864 | LED_B_ON(); | |
865 | } | |
866 | } else { // CODING_1_OUT_OF_4 | |
867 | if (DecodeReader->posCount < 24) { // rising edge too early (nominally expected at 25) | |
868 | DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF; | |
869 | } else { | |
870 | DecodeReader->posCount = 1; | |
871 | DecodeReader->state = STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4; | |
872 | } | |
873 | } | |
874 | } else { | |
875 | if (DecodeReader->Coding == CODING_1_OUT_OF_256) { | |
876 | if (DecodeReader->posCount > 34) { // signal stayed low for too long | |
877 | DecodeReaderReset(DecodeReader); | |
878 | } else { | |
879 | // do nothing, keep waiting | |
880 | } | |
881 | } else { // CODING_1_OUT_OF_4 | |
882 | if (DecodeReader->posCount > 26) { // signal stayed low for too long | |
883 | DecodeReaderReset(DecodeReader); | |
884 | } else { | |
885 | // do nothing, keep waiting | |
886 | } | |
887 | } | |
888 | } | |
889 | break; | |
890 | ||
891 | case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4: | |
892 | DecodeReader->posCount++; | |
893 | if (bit) { | |
894 | if (DecodeReader->posCount == 9) { | |
895 | DecodeReader->posCount = 1; | |
896 | DecodeReader->bitCount = 0; | |
897 | DecodeReader->byteCount = 0; | |
898 | DecodeReader->sum1 = 1; | |
899 | DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_4; | |
900 | LED_B_ON(); | |
901 | } else { | |
902 | // do nothing, keep waiting | |
903 | } | |
904 | } else { // unexpected falling edge | |
905 | DecodeReaderReset(DecodeReader); | |
906 | } | |
907 | break; | |
908 | ||
909 | case STATE_READER_RECEIVE_DATA_1_OUT_OF_4: | |
910 | DecodeReader->posCount++; | |
911 | if (DecodeReader->posCount == 1) { | |
912 | DecodeReader->sum1 = bit?1:0; | |
913 | } else if (DecodeReader->posCount <= 4) { | |
914 | if (bit) DecodeReader->sum1++; | |
915 | } else if (DecodeReader->posCount == 5) { | |
916 | DecodeReader->sum2 = bit?1:0; | |
917 | } else { | |
918 | if (bit) DecodeReader->sum2++; | |
919 | } | |
920 | if (DecodeReader->posCount == 8) { | |
921 | DecodeReader->posCount = 0; | |
922 | if (DecodeReader->sum1 <= 1 && DecodeReader->sum2 >= 3) { // EOF | |
923 | LED_B_OFF(); // Finished receiving | |
924 | DecodeReaderReset(DecodeReader); | |
925 | if (DecodeReader->byteCount != 0) { | |
926 | return true; | |
927 | } | |
928 | } else if (DecodeReader->sum1 >= 3 && DecodeReader->sum2 <= 1) { // detected a 2bit position | |
929 | DecodeReader->shiftReg >>= 2; | |
930 | DecodeReader->shiftReg |= (DecodeReader->bitCount << 6); | |
931 | } | |
932 | if (DecodeReader->bitCount == 15) { // we have a full byte | |
933 | DecodeReader->output[DecodeReader->byteCount++] = DecodeReader->shiftReg; | |
934 | if (DecodeReader->byteCount > DecodeReader->byteCountMax) { | |
935 | // buffer overflow, give up | |
936 | LED_B_OFF(); | |
937 | DecodeReaderReset(DecodeReader); | |
938 | } | |
939 | DecodeReader->bitCount = 0; | |
940 | DecodeReader->shiftReg = 0; | |
941 | if (DecodeReader->byteCount == DecodeReader->jam_search_len) { | |
942 | if (!memcmp(DecodeReader->output, DecodeReader->jam_search_string, DecodeReader->jam_search_len)) { | |
943 | LED_D_ON(); | |
944 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_JAM); | |
945 | DecodeReader->state = STATE_READER_RECEIVE_JAMMING; | |
946 | } | |
947 | } | |
948 | } else { | |
949 | DecodeReader->bitCount++; | |
950 | } | |
951 | } | |
952 | break; | |
953 | ||
954 | case STATE_READER_RECEIVE_DATA_1_OUT_OF_256: | |
955 | DecodeReader->posCount++; | |
956 | if (DecodeReader->posCount == 1) { | |
957 | DecodeReader->sum1 = bit?1:0; | |
958 | } else if (DecodeReader->posCount <= 4) { | |
959 | if (bit) DecodeReader->sum1++; | |
960 | } else if (DecodeReader->posCount == 5) { | |
961 | DecodeReader->sum2 = bit?1:0; | |
962 | } else if (bit) { | |
963 | DecodeReader->sum2++; | |
964 | } | |
965 | if (DecodeReader->posCount == 8) { | |
966 | DecodeReader->posCount = 0; | |
967 | if (DecodeReader->sum1 <= 1 && DecodeReader->sum2 >= 3) { // EOF | |
968 | LED_B_OFF(); // Finished receiving | |
969 | DecodeReaderReset(DecodeReader); | |
970 | if (DecodeReader->byteCount != 0) { | |
971 | return true; | |
972 | } | |
973 | } else if (DecodeReader->sum1 >= 3 && DecodeReader->sum2 <= 1) { // detected the bit position | |
974 | DecodeReader->shiftReg = DecodeReader->bitCount; | |
975 | } | |
976 | if (DecodeReader->bitCount == 255) { // we have a full byte | |
977 | DecodeReader->output[DecodeReader->byteCount++] = DecodeReader->shiftReg; | |
978 | if (DecodeReader->byteCount > DecodeReader->byteCountMax) { | |
979 | // buffer overflow, give up | |
980 | LED_B_OFF(); | |
981 | DecodeReaderReset(DecodeReader); | |
982 | } | |
983 | if (DecodeReader->byteCount == DecodeReader->jam_search_len) { | |
984 | if (!memcmp(DecodeReader->output, DecodeReader->jam_search_string, DecodeReader->jam_search_len)) { | |
985 | LED_D_ON(); | |
986 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_JAM); | |
987 | DecodeReader->state = STATE_READER_RECEIVE_JAMMING; | |
988 | } | |
989 | } | |
990 | } | |
991 | DecodeReader->bitCount++; | |
992 | } | |
993 | break; | |
994 | ||
995 | case STATE_READER_RECEIVE_JAMMING: | |
996 | DecodeReader->posCount++; | |
997 | if (DecodeReader->Coding == CODING_1_OUT_OF_4) { | |
998 | if (DecodeReader->posCount == 7*16) { // 7 bits jammed | |
999 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SNOOP_AMPLITUDE); // stop jamming | |
1000 | // FpgaDisableTracing(); | |
1001 | LED_D_OFF(); | |
1002 | } else if (DecodeReader->posCount == 8*16) { | |
1003 | DecodeReader->posCount = 0; | |
1004 | DecodeReader->output[DecodeReader->byteCount++] = 0x00; | |
1005 | DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_4; | |
1006 | } | |
1007 | } else { | |
1008 | if (DecodeReader->posCount == 7*256) { // 7 bits jammend | |
1009 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SNOOP_AMPLITUDE); // stop jamming | |
1010 | LED_D_OFF(); | |
1011 | } else if (DecodeReader->posCount == 8*256) { | |
1012 | DecodeReader->posCount = 0; | |
1013 | DecodeReader->output[DecodeReader->byteCount++] = 0x00; | |
1014 | DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_256; | |
1015 | } | |
1016 | } | |
1017 | break; | |
1018 | ||
1019 | default: | |
1020 | LED_B_OFF(); | |
1021 | DecodeReaderReset(DecodeReader); | |
1022 | break; | |
1023 | } | |
1024 | ||
1025 | return false; | |
1026 | } | |
1027 | ||
1028 | ||
1029 | //----------------------------------------------------------------------------- | |
1030 | // Receive a command (from the reader to us, where we are the simulated tag), | |
1031 | // and store it in the given buffer, up to the given maximum length. Keeps | |
1032 | // spinning, waiting for a well-framed command, until either we get one | |
1033 | // (returns len) or someone presses the pushbutton on the board (returns -1). | |
1034 | // | |
1035 | // Assume that we're called with the SSC (to the FPGA) and ADC path set | |
1036 | // correctly. | |
1037 | //----------------------------------------------------------------------------- | |
1038 | ||
1039 | int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time) { | |
1040 | int samples = 0; | |
1041 | bool gotFrame = false; | |
1042 | uint8_t b; | |
1043 | ||
1044 | uint8_t dmaBuf[ISO15693_DMA_BUFFER_SIZE]; | |
1045 | ||
1046 | // the decoder data structure | |
1047 | DecodeReader_t DecodeReader = {0}; | |
1048 | DecodeReaderInit(&DecodeReader, received, max_len, 0, NULL); | |
1049 | ||
1050 | // wait for last transfer to complete | |
1051 | while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)); | |
1052 | ||
1053 | LED_D_OFF(); | |
1054 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); | |
1055 | ||
1056 | // clear receive register and wait for next transfer | |
1057 | uint32_t temp = AT91C_BASE_SSC->SSC_RHR; | |
1058 | (void) temp; | |
1059 | while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) ; | |
1060 | ||
1061 | uint32_t dma_start_time = GetCountSspClk() & 0xfffffff8; | |
1062 | ||
1063 | // Setup and start DMA. | |
1064 | FpgaSetupSscDma(dmaBuf, ISO15693_DMA_BUFFER_SIZE); | |
1065 | uint8_t *upTo = dmaBuf; | |
1066 | ||
1067 | for (;;) { | |
1068 | uint16_t behindBy = ((uint8_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1); | |
1069 | ||
1070 | if (behindBy == 0) continue; | |
1071 | ||
1072 | b = *upTo++; | |
1073 | if (upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content. | |
1074 | upTo = dmaBuf; // start reading the circular buffer from the beginning | |
1075 | if (behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) { | |
1076 | Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy); | |
1077 | break; | |
1078 | } | |
1079 | } | |
1080 | if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated. | |
1081 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and | |
1082 | AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers | |
1083 | } | |
1084 | ||
1085 | for (int i = 7; i >= 0; i--) { | |
1086 | if (Handle15693SampleFromReader((b >> i) & 0x01, &DecodeReader)) { | |
1087 | *eof_time = dma_start_time + samples - DELAY_READER_TO_ARM; // end of EOF | |
1088 | gotFrame = true; | |
1089 | break; | |
1090 | } | |
1091 | samples++; | |
1092 | } | |
1093 | ||
1094 | if (gotFrame) { | |
1095 | break; | |
1096 | } | |
1097 | ||
1098 | if (BUTTON_PRESS()) { | |
1099 | DecodeReader.byteCount = -1; | |
1100 | break; | |
1101 | } | |
1102 | ||
1103 | WDT_HIT(); | |
1104 | } | |
1105 | ||
1106 | FpgaDisableSscDma(); | |
1107 | ||
1108 | if (DEBUG) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d", | |
1109 | samples, gotFrame, DecodeReader.state, DecodeReader.byteCount, DecodeReader.bitCount, DecodeReader.posCount); | |
1110 | ||
1111 | if (DecodeReader.byteCount > 0) { | |
1112 | uint32_t sof_time = *eof_time | |
1113 | - DecodeReader.byteCount * (DecodeReader.Coding==CODING_1_OUT_OF_4?128:2048) // time for byte transfers | |
1114 | - 32 // time for SOF transfer | |
1115 | - 16; // time for EOF transfer | |
1116 | LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, sof_time*32, *eof_time*32, NULL, true); | |
1117 | } | |
1118 | ||
1119 | return DecodeReader.byteCount; | |
1120 | } | |
1121 | ||
1122 | ||
1123 | // Construct an identify (Inventory) request, which is the first | |
1124 | // thing that you must send to a tag to get a response. | |
1125 | static void BuildIdentifyRequest(uint8_t *cmd) { | |
1126 | uint16_t crc; | |
1127 | // one sub-carrier, inventory, 1 slot, fast rate | |
1128 | cmd[0] = ISO15693_REQ_INVENTORY | ISO15693_REQINV_SLOT1 | ISO15693_REQ_DATARATE_HIGH; | |
1129 | // inventory command code | |
1130 | cmd[1] = 0x01; | |
1131 | // no mask | |
1132 | cmd[2] = 0x00; | |
1133 | //Now the CRC | |
1134 | crc = Iso15693Crc(cmd, 3); | |
1135 | cmd[3] = crc & 0xff; | |
1136 | cmd[4] = crc >> 8; | |
1137 | } | |
1138 | ||
1139 | ||
1140 | //----------------------------------------------------------------------------- | |
1141 | // Start to read an ISO 15693 tag. We send an identify request, then wait | |
1142 | // for the response. The response is not demodulated, just left in the buffer | |
1143 | // so that it can be downloaded to a PC and processed there. | |
1144 | //----------------------------------------------------------------------------- | |
1145 | void AcquireRawAdcSamplesIso15693(void) { | |
1146 | LED_A_ON(); | |
1147 | ||
1148 | uint8_t *dest = BigBuf_get_addr(); | |
1149 | ||
1150 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1151 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER); | |
1152 | LED_D_ON(); | |
1153 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER); | |
1154 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1155 | ||
1156 | uint8_t cmd[5]; | |
1157 | BuildIdentifyRequest(cmd); | |
1158 | CodeIso15693AsReader(cmd, sizeof(cmd)); | |
1159 | ||
1160 | // Give the tags time to energize | |
1161 | SpinDelay(100); | |
1162 | ||
1163 | // Now send the command | |
1164 | uint32_t start_time = 0; | |
1165 | TransmitTo15693Tag(ToSend, ToSendMax, &start_time); | |
1166 | ||
1167 | // wait for last transfer to complete | |
1168 | while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)) ; | |
1169 | ||
1170 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_424_KHZ | FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE); | |
1171 | ||
1172 | for(int c = 0; c < 4000; ) { | |
1173 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1174 | uint16_t r = AT91C_BASE_SSC->SSC_RHR; | |
1175 | dest[c++] = r >> 5; | |
1176 | } | |
1177 | } | |
1178 | ||
1179 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1180 | LEDsoff(); | |
1181 | } | |
1182 | ||
1183 | ||
1184 | void SnoopIso15693(uint8_t jam_search_len, uint8_t *jam_search_string) { | |
1185 | ||
1186 | LED_A_ON(); | |
1187 | ||
1188 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1189 | ||
1190 | clear_trace(); | |
1191 | set_tracing(true); | |
1192 | ||
1193 | // The DMA buffer, used to stream samples from the FPGA | |
1194 | uint16_t dmaBuf[ISO15693_DMA_BUFFER_SIZE]; | |
1195 | ||
1196 | // Count of samples received so far, so that we can include timing | |
1197 | // information in the trace buffer. | |
1198 | int samples = 0; | |
1199 | ||
1200 | DecodeTag_t DecodeTag = {0}; | |
1201 | uint8_t response[ISO15693_MAX_RESPONSE_LENGTH]; | |
1202 | DecodeTagInit(&DecodeTag, response, sizeof(response)); | |
1203 | ||
1204 | DecodeReader_t DecodeReader = {0}; | |
1205 | uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH]; | |
1206 | DecodeReaderInit(&DecodeReader, cmd, sizeof(cmd), jam_search_len, jam_search_string); | |
1207 | ||
1208 | // Print some debug information about the buffer sizes | |
1209 | if (DEBUG) { | |
1210 | Dbprintf("Snooping buffers initialized:"); | |
1211 | Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen()); | |
1212 | Dbprintf(" Reader -> tag: %i bytes", ISO15693_MAX_COMMAND_LENGTH); | |
1213 | Dbprintf(" tag -> Reader: %i bytes", ISO15693_MAX_RESPONSE_LENGTH); | |
1214 | Dbprintf(" DMA: %i bytes", ISO15693_DMA_BUFFER_SIZE * sizeof(uint16_t)); | |
1215 | } | |
1216 | Dbprintf("Snoop started. Press PM3 Button to stop."); | |
1217 | ||
1218 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SNOOP_AMPLITUDE); | |
1219 | LED_D_OFF(); | |
1220 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1221 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER); | |
1222 | StartCountSspClk(); | |
1223 | FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE); | |
1224 | ||
1225 | bool TagIsActive = false; | |
1226 | bool ReaderIsActive = false; | |
1227 | bool ExpectTagAnswer = false; | |
1228 | uint32_t dma_start_time = 0; | |
1229 | uint16_t *upTo = dmaBuf; | |
1230 | ||
1231 | uint16_t max_behindBy = 0; | |
1232 | ||
1233 | // And now we loop, receiving samples. | |
1234 | for(;;) { | |
1235 | uint16_t behindBy = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1); | |
1236 | if (behindBy > max_behindBy) { | |
1237 | max_behindBy = behindBy; | |
1238 | } | |
1239 | ||
1240 | if (behindBy == 0) continue; | |
1241 | ||
1242 | samples++; | |
1243 | if (samples == 1) { | |
1244 | // DMA has transferred the very first data | |
1245 | dma_start_time = GetCountSspClk() & 0xfffffff0; | |
1246 | } | |
1247 | ||
1248 | uint16_t snoopdata = *upTo++; | |
1249 | ||
1250 | if (upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content. | |
1251 | upTo = dmaBuf; // start reading the circular buffer from the beginning | |
1252 | if (behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) { | |
1253 | // FpgaDisableTracing(); | |
1254 | Dbprintf("About to blow circular buffer - aborted! behindBy=%d, samples=%d", behindBy, samples); | |
1255 | break; | |
1256 | } | |
1257 | if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated. | |
1258 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and | |
1259 | AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers | |
1260 | WDT_HIT(); | |
1261 | if (BUTTON_PRESS()) { | |
1262 | DbpString("Snoop stopped."); | |
1263 | break; | |
1264 | } | |
1265 | } | |
1266 | } | |
1267 | ||
1268 | if (!TagIsActive) { // no need to try decoding reader data if the tag is sending | |
1269 | if (Handle15693SampleFromReader(snoopdata & 0x02, &DecodeReader)) { | |
1270 | // FpgaDisableSscDma(); | |
1271 | uint32_t eof_time = dma_start_time + samples*16 + 8 - DELAY_READER_TO_ARM_SNOOP; // end of EOF | |
1272 | if (DecodeReader.byteCount > 0) { | |
1273 | uint32_t sof_time = eof_time | |
1274 | - DecodeReader.byteCount * (DecodeReader.Coding==CODING_1_OUT_OF_4?128*16:2048*16) // time for byte transfers | |
1275 | - 32*16 // time for SOF transfer | |
1276 | - 16*16; // time for EOF transfer | |
1277 | LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, sof_time*4, eof_time*4, NULL, true); | |
1278 | } | |
1279 | /* And ready to receive another command. */ | |
1280 | DecodeReaderReset(&DecodeReader); | |
1281 | /* And also reset the demod code, which might have been */ | |
1282 | /* false-triggered by the commands from the reader. */ | |
1283 | DecodeTagReset(&DecodeTag); | |
1284 | ReaderIsActive = false; | |
1285 | ExpectTagAnswer = true; | |
1286 | // upTo = dmaBuf; | |
1287 | // samples = 0; | |
1288 | // FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE); | |
1289 | // continue; | |
1290 | } else if (Handle15693SampleFromReader(snoopdata & 0x01, &DecodeReader)) { | |
1291 | // FpgaDisableSscDma(); | |
1292 | uint32_t eof_time = dma_start_time + samples*16 + 16 - DELAY_READER_TO_ARM_SNOOP; // end of EOF | |
1293 | if (DecodeReader.byteCount > 0) { | |
1294 | uint32_t sof_time = eof_time | |
1295 | - DecodeReader.byteCount * (DecodeReader.Coding==CODING_1_OUT_OF_4?128*16:2048*16) // time for byte transfers | |
1296 | - 32*16 // time for SOF transfer | |
1297 | - 16*16; // time for EOF transfer | |
1298 | LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, sof_time*4, eof_time*4, NULL, true); | |
1299 | } | |
1300 | /* And ready to receive another command. */ | |
1301 | DecodeReaderReset(&DecodeReader); | |
1302 | /* And also reset the demod code, which might have been */ | |
1303 | /* false-triggered by the commands from the reader. */ | |
1304 | DecodeTagReset(&DecodeTag); | |
1305 | ReaderIsActive = false; | |
1306 | ExpectTagAnswer = true; | |
1307 | // upTo = dmaBuf; | |
1308 | // samples = 0; | |
1309 | // FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE); | |
1310 | // continue; | |
1311 | } else { | |
1312 | ReaderIsActive = (DecodeReader.state >= STATE_READER_RECEIVE_DATA_1_OUT_OF_4); | |
1313 | } | |
1314 | } | |
1315 | ||
1316 | if (!ReaderIsActive && ExpectTagAnswer) { // no need to try decoding tag data if the reader is currently sending or no answer expected yet | |
1317 | if (Handle15693SamplesFromTag(snoopdata >> 2, &DecodeTag)) { | |
1318 | // FpgaDisableSscDma(); | |
1319 | uint32_t eof_time = dma_start_time + samples*16 - DELAY_TAG_TO_ARM_SNOOP; // end of EOF | |
1320 | if (DecodeTag.lastBit == SOF_PART2) { | |
1321 | eof_time -= 8*16; // needed 8 additional samples to confirm single SOF (iCLASS) | |
1322 | } | |
1323 | uint32_t sof_time = eof_time | |
1324 | - DecodeTag.len * 8 * 8 * 16 // time for byte transfers | |
1325 | - 32 * 16 // time for SOF transfer | |
1326 | - (DecodeTag.lastBit != SOF_PART2?32*16:0); // time for EOF transfer | |
1327 | LogTrace_ISO15693(DecodeTag.output, DecodeTag.len, sof_time*4, eof_time*4, NULL, false); | |
1328 | // And ready to receive another response. | |
1329 | DecodeTagReset(&DecodeTag); | |
1330 | DecodeReaderReset(&DecodeReader); | |
1331 | ExpectTagAnswer = false; | |
1332 | TagIsActive = false; | |
1333 | // upTo = dmaBuf; | |
1334 | // samples = 0; | |
1335 | // FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE); | |
1336 | // continue; | |
1337 | } else { | |
1338 | TagIsActive = (DecodeTag.state >= STATE_TAG_RECEIVING_DATA); | |
1339 | } | |
1340 | } | |
1341 | ||
1342 | } | |
1343 | ||
1344 | FpgaDisableSscDma(); | |
1345 | ||
1346 | DbpString("Snoop statistics:"); | |
1347 | Dbprintf(" ExpectTagAnswer: %d, TagIsActive: %d, ReaderIsActive: %d", ExpectTagAnswer, TagIsActive, ReaderIsActive); | |
1348 | Dbprintf(" DecodeTag State: %d", DecodeTag.state); | |
1349 | Dbprintf(" DecodeTag byteCnt: %d", DecodeTag.len); | |
1350 | Dbprintf(" DecodeTag posCount: %d", DecodeTag.posCount); | |
1351 | Dbprintf(" DecodeReader State: %d", DecodeReader.state); | |
1352 | Dbprintf(" DecodeReader byteCnt: %d", DecodeReader.byteCount); | |
1353 | Dbprintf(" DecodeReader posCount: %d", DecodeReader.posCount); | |
1354 | Dbprintf(" Trace length: %d", BigBuf_get_traceLen()); | |
1355 | Dbprintf(" Max behindBy: %d", max_behindBy); | |
1356 | } | |
1357 | ||
1358 | ||
1359 | // Initialize the proxmark as iso15k reader | |
1360 | void Iso15693InitReader() { | |
1361 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1362 | ||
1363 | // Start from off (no field generated) | |
1364 | LED_D_OFF(); | |
1365 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1366 | SpinDelay(10); | |
1367 | ||
1368 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1369 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER); | |
1370 | ||
1371 | // Give the tags time to energize | |
1372 | LED_D_ON(); | |
1373 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER); | |
1374 | SpinDelay(250); | |
1375 | } | |
1376 | ||
1377 | /////////////////////////////////////////////////////////////////////// | |
1378 | // ISO 15693 Part 3 - Air Interface | |
1379 | // This section basically contains transmission and receiving of bits | |
1380 | /////////////////////////////////////////////////////////////////////// | |
1381 | ||
1382 | ||
1383 | // uid is in transmission order (which is reverse of display order) | |
1384 | static void BuildReadBlockRequest(uint8_t *uid, uint8_t blockNumber, uint8_t *cmd) { | |
1385 | uint16_t crc; | |
1386 | // If we set the Option_Flag in this request, the VICC will respond with the security status of the block | |
1387 | // followed by the block data | |
1388 | cmd[0] = ISO15693_REQ_OPTION | ISO15693_REQ_ADDRESS | ISO15693_REQ_DATARATE_HIGH; | |
1389 | // READ BLOCK command code | |
1390 | cmd[1] = ISO15693_READBLOCK; | |
1391 | // UID may be optionally specified here | |
1392 | // 64-bit UID | |
1393 | cmd[2] = uid[0]; | |
1394 | cmd[3] = uid[1]; | |
1395 | cmd[4] = uid[2]; | |
1396 | cmd[5] = uid[3]; | |
1397 | cmd[6] = uid[4]; | |
1398 | cmd[7] = uid[5]; | |
1399 | cmd[8] = uid[6]; | |
1400 | cmd[9] = uid[7]; // 0xe0; // always e0 (not exactly unique) | |
1401 | // Block number to read | |
1402 | cmd[10] = blockNumber; | |
1403 | //Now the CRC | |
1404 | crc = Iso15693Crc(cmd, 11); // the crc needs to be calculated over 11 bytes | |
1405 | cmd[11] = crc & 0xff; | |
1406 | cmd[12] = crc >> 8; | |
1407 | ||
1408 | } | |
1409 | ||
1410 | ||
1411 | // Now the VICC>VCD responses when we are simulating a tag | |
1412 | static void BuildInventoryResponse(uint8_t *uid) { | |
1413 | uint8_t cmd[12]; | |
1414 | ||
1415 | uint16_t crc; | |
1416 | ||
1417 | cmd[0] = 0; // No error, no protocol format extension | |
1418 | cmd[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported | |
1419 | // 64-bit UID | |
1420 | cmd[2] = uid[7]; //0x32; | |
1421 | cmd[3] = uid[6]; //0x4b; | |
1422 | cmd[4] = uid[5]; //0x03; | |
1423 | cmd[5] = uid[4]; //0x01; | |
1424 | cmd[6] = uid[3]; //0x00; | |
1425 | cmd[7] = uid[2]; //0x10; | |
1426 | cmd[8] = uid[1]; //0x05; | |
1427 | cmd[9] = uid[0]; //0xe0; | |
1428 | //Now the CRC | |
1429 | crc = Iso15693Crc(cmd, 10); | |
1430 | cmd[10] = crc & 0xff; | |
1431 | cmd[11] = crc >> 8; | |
1432 | ||
1433 | CodeIso15693AsTag(cmd, sizeof(cmd)); | |
1434 | } | |
1435 | ||
1436 | // Universal Method for sending to and recv bytes from a tag | |
1437 | // init ... should we initialize the reader? | |
1438 | // speed ... 0 low speed, 1 hi speed | |
1439 | // *recv will contain the tag's answer | |
1440 | // return: length of received data, or -1 for timeout | |
1441 | int SendDataTag(uint8_t *send, int sendlen, bool init, bool speed_fast, uint8_t *recv, uint16_t max_recv_len, uint32_t start_time, uint16_t timeout, uint32_t *eof_time) { | |
1442 | ||
1443 | if (init) { | |
1444 | Iso15693InitReader(); | |
1445 | StartCountSspClk(); | |
1446 | } | |
1447 | ||
1448 | int answerLen = 0; | |
1449 | ||
1450 | if (speed_fast) { | |
1451 | // high speed (1 out of 4) | |
1452 | CodeIso15693AsReader(send, sendlen); | |
1453 | } else { | |
1454 | // low speed (1 out of 256) | |
1455 | CodeIso15693AsReader256(send, sendlen); | |
1456 | } | |
1457 | ||
1458 | TransmitTo15693Tag(ToSend, ToSendMax, &start_time); | |
1459 | uint32_t end_time = start_time + 32*(8*ToSendMax-4); // substract the 4 padding bits after EOF | |
1460 | LogTrace_ISO15693(send, sendlen, start_time*4, end_time*4, NULL, true); | |
1461 | ||
1462 | // Now wait for a response | |
1463 | if (recv != NULL) { | |
1464 | answerLen = GetIso15693AnswerFromTag(recv, max_recv_len, timeout, eof_time); | |
1465 | } | |
1466 | ||
1467 | return answerLen; | |
1468 | } | |
1469 | ||
1470 | ||
1471 | int SendDataTagEOF(uint8_t *recv, uint16_t max_recv_len, uint32_t start_time, uint16_t timeout, uint32_t *eof_time) { | |
1472 | ||
1473 | int answerLen = 0; | |
1474 | ||
1475 | CodeIso15693AsReaderEOF(); | |
1476 | ||
1477 | TransmitTo15693Tag(ToSend, ToSendMax, &start_time); | |
1478 | uint32_t end_time = start_time + 32*(8*ToSendMax-4); // substract the 4 padding bits after EOF | |
1479 | LogTrace_ISO15693(NULL, 0, start_time*4, end_time*4, NULL, true); | |
1480 | ||
1481 | // Now wait for a response | |
1482 | if (recv != NULL) { | |
1483 | answerLen = GetIso15693AnswerFromTag(recv, max_recv_len, timeout, eof_time); | |
1484 | } | |
1485 | ||
1486 | return answerLen; | |
1487 | } | |
1488 | ||
1489 | ||
1490 | // -------------------------------------------------------------------- | |
1491 | // Debug Functions | |
1492 | // -------------------------------------------------------------------- | |
1493 | ||
1494 | // Decodes a message from a tag and displays its metadata and content | |
1495 | #define DBD15STATLEN 48 | |
1496 | void DbdecodeIso15693Answer(int len, uint8_t *d) { | |
1497 | char status[DBD15STATLEN+1]={0}; | |
1498 | uint16_t crc; | |
1499 | ||
1500 | if (len > 3) { | |
1501 | if (d[0] & ISO15693_RES_EXT) | |
1502 | strncat(status,"ProtExt ", DBD15STATLEN); | |
1503 | if (d[0] & ISO15693_RES_ERROR) { | |
1504 | // error | |
1505 | strncat(status,"Error ", DBD15STATLEN); | |
1506 | switch (d[1]) { | |
1507 | case 0x01: | |
1508 | strncat(status,"01:notSupp", DBD15STATLEN); | |
1509 | break; | |
1510 | case 0x02: | |
1511 | strncat(status,"02:notRecog", DBD15STATLEN); | |
1512 | break; | |
1513 | case 0x03: | |
1514 | strncat(status,"03:optNotSupp", DBD15STATLEN); | |
1515 | break; | |
1516 | case 0x0f: | |
1517 | strncat(status,"0f:noInfo", DBD15STATLEN); | |
1518 | break; | |
1519 | case 0x10: | |
1520 | strncat(status,"10:doesn'tExist", DBD15STATLEN); | |
1521 | break; | |
1522 | case 0x11: | |
1523 | strncat(status,"11:lockAgain", DBD15STATLEN); | |
1524 | break; | |
1525 | case 0x12: | |
1526 | strncat(status,"12:locked", DBD15STATLEN); | |
1527 | break; | |
1528 | case 0x13: | |
1529 | strncat(status,"13:progErr", DBD15STATLEN); | |
1530 | break; | |
1531 | case 0x14: | |
1532 | strncat(status,"14:lockErr", DBD15STATLEN); | |
1533 | break; | |
1534 | default: | |
1535 | strncat(status,"unknownErr", DBD15STATLEN); | |
1536 | } | |
1537 | strncat(status," ", DBD15STATLEN); | |
1538 | } else { | |
1539 | strncat(status,"NoErr ", DBD15STATLEN); | |
1540 | } | |
1541 | ||
1542 | crc=Iso15693Crc(d,len-2); | |
1543 | if ( (( crc & 0xff ) == d[len-2]) && (( crc >> 8 ) == d[len-1]) ) | |
1544 | strncat(status,"CrcOK",DBD15STATLEN); | |
1545 | else | |
1546 | strncat(status,"CrcFail!",DBD15STATLEN); | |
1547 | ||
1548 | Dbprintf("%s",status); | |
1549 | } | |
1550 | } | |
1551 | ||
1552 | ||
1553 | ||
1554 | /////////////////////////////////////////////////////////////////////// | |
1555 | // Functions called via USB/Client | |
1556 | /////////////////////////////////////////////////////////////////////// | |
1557 | ||
1558 | void SetDebugIso15693(uint32_t debug) { | |
1559 | DEBUG=debug; | |
1560 | Dbprintf("Iso15693 Debug is now %s",DEBUG?"on":"off"); | |
1561 | return; | |
1562 | } | |
1563 | ||
1564 | ||
1565 | //--------------------------------------------------------------------------------------- | |
1566 | // Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector. | |
1567 | // all demodulation performed in arm rather than host. - greg | |
1568 | //--------------------------------------------------------------------------------------- | |
1569 | void ReaderIso15693(uint32_t parameter) { | |
1570 | ||
1571 | LED_A_ON(); | |
1572 | ||
1573 | set_tracing(true); | |
1574 | ||
1575 | uint8_t TagUID[8] = {0x00}; | |
1576 | ||
1577 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1578 | ||
1579 | uint8_t answer[ISO15693_MAX_RESPONSE_LENGTH]; | |
1580 | ||
1581 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1582 | // Setup SSC | |
1583 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER); | |
1584 | ||
1585 | // Start from off (no field generated) | |
1586 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1587 | SpinDelay(200); | |
1588 | ||
1589 | // Give the tags time to energize | |
1590 | LED_D_ON(); | |
1591 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER); | |
1592 | SpinDelay(200); | |
1593 | StartCountSspClk(); | |
1594 | ||
1595 | ||
1596 | // FIRST WE RUN AN INVENTORY TO GET THE TAG UID | |
1597 | // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME | |
1598 | ||
1599 | // Now send the IDENTIFY command | |
1600 | uint8_t cmd[5]; | |
1601 | BuildIdentifyRequest(cmd); | |
1602 | uint32_t start_time = 0; | |
1603 | uint32_t eof_time; | |
1604 | int answerLen = SendDataTag(cmd, sizeof(cmd), true, true, answer, sizeof(answer), start_time, ISO15693_READER_TIMEOUT, &eof_time); | |
1605 | start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER; | |
1606 | ||
1607 | if (answerLen >= 12) { // we should do a better check than this | |
1608 | TagUID[0] = answer[2]; | |
1609 | TagUID[1] = answer[3]; | |
1610 | TagUID[2] = answer[4]; | |
1611 | TagUID[3] = answer[5]; | |
1612 | TagUID[4] = answer[6]; | |
1613 | TagUID[5] = answer[7]; | |
1614 | TagUID[6] = answer[8]; // IC Manufacturer code | |
1615 | TagUID[7] = answer[9]; // always E0 | |
1616 | } | |
1617 | ||
1618 | Dbprintf("%d octets read from IDENTIFY request:", answerLen); | |
1619 | DbdecodeIso15693Answer(answerLen, answer); | |
1620 | Dbhexdump(answerLen, answer, false); | |
1621 | ||
1622 | // UID is reverse | |
1623 | if (answerLen >= 12) | |
1624 | Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX", | |
1625 | TagUID[7],TagUID[6],TagUID[5],TagUID[4], | |
1626 | TagUID[3],TagUID[2],TagUID[1],TagUID[0]); | |
1627 | ||
1628 | // read all pages | |
1629 | if (answerLen >= 12 && DEBUG) { | |
1630 | for (int i = 0; i < 32; i++) { // sanity check, assume max 32 pages | |
1631 | uint8_t cmd[13]; | |
1632 | BuildReadBlockRequest(TagUID, i, cmd); | |
1633 | answerLen = SendDataTag(cmd, sizeof(cmd), false, true, answer, sizeof(answer), start_time, ISO15693_READER_TIMEOUT, &eof_time); | |
1634 | start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER; | |
1635 | if (answerLen > 0) { | |
1636 | Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i, answerLen); | |
1637 | DbdecodeIso15693Answer(answerLen, answer); | |
1638 | Dbhexdump(answerLen, answer, false); | |
1639 | if ( *((uint32_t*) answer) == 0x07160101 ) break; // exit on NoPageErr | |
1640 | } | |
1641 | } | |
1642 | } | |
1643 | ||
1644 | // for the time being, switch field off to protect RDV4 | |
1645 | // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway | |
1646 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1647 | LED_D_OFF(); | |
1648 | ||
1649 | LED_A_OFF(); | |
1650 | } | |
1651 | ||
1652 | ||
1653 | // Simulate an ISO15693 TAG. | |
1654 | // For Inventory command: print command and send Inventory Response with given UID | |
1655 | // TODO: interpret other reader commands and send appropriate response | |
1656 | void SimTagIso15693(uint32_t parameter, uint8_t *uid) { | |
1657 | ||
1658 | LED_A_ON(); | |
1659 | ||
1660 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1661 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1662 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); | |
1663 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR); | |
1664 | ||
1665 | StartCountSspClk(); | |
1666 | ||
1667 | uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH]; | |
1668 | ||
1669 | // Build a suitable response to the reader INVENTORY command | |
1670 | BuildInventoryResponse(uid); | |
1671 | ||
1672 | // Listen to reader | |
1673 | while (!BUTTON_PRESS()) { | |
1674 | uint32_t eof_time = 0, start_time = 0; | |
1675 | int cmd_len = GetIso15693CommandFromReader(cmd, sizeof(cmd), &eof_time); | |
1676 | ||
1677 | if ((cmd_len >= 5) && (cmd[0] & ISO15693_REQ_INVENTORY) && (cmd[1] == ISO15693_INVENTORY)) { // TODO: check more flags | |
1678 | bool slow = !(cmd[0] & ISO15693_REQ_DATARATE_HIGH); | |
1679 | start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM; | |
1680 | TransmitTo15693Reader(ToSend, ToSendMax, &start_time, 0, slow); | |
1681 | } | |
1682 | ||
1683 | Dbprintf("%d bytes read from reader:", cmd_len); | |
1684 | Dbhexdump(cmd_len, cmd, false); | |
1685 | } | |
1686 | ||
1687 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1688 | LED_D_OFF(); | |
1689 | LED_A_OFF(); | |
1690 | } | |
1691 | ||
1692 | ||
1693 | // Since there is no standardized way of reading the AFI out of a tag, we will brute force it | |
1694 | // (some manufactures offer a way to read the AFI, though) | |
1695 | void BruteforceIso15693Afi(uint32_t speed) { | |
1696 | LED_A_ON(); | |
1697 | ||
1698 | uint8_t data[6]; | |
1699 | uint8_t recv[ISO15693_MAX_RESPONSE_LENGTH]; | |
1700 | int datalen = 0, recvlen = 0; | |
1701 | uint32_t eof_time; | |
1702 | ||
1703 | // first without AFI | |
1704 | // Tags should respond without AFI and with AFI=0 even when AFI is active | |
1705 | ||
1706 | data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_SLOT1; | |
1707 | data[1] = ISO15693_INVENTORY; | |
1708 | data[2] = 0; // mask length | |
1709 | datalen = Iso15693AddCrc(data,3); | |
1710 | uint32_t start_time = GetCountSspClk(); | |
1711 | recvlen = SendDataTag(data, datalen, true, speed, recv, sizeof(recv), 0, ISO15693_READER_TIMEOUT, &eof_time); | |
1712 | start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER; | |
1713 | WDT_HIT(); | |
1714 | if (recvlen>=12) { | |
1715 | Dbprintf("NoAFI UID=%s", Iso15693sprintUID(NULL, &recv[2])); | |
1716 | } | |
1717 | ||
1718 | // now with AFI | |
1719 | ||
1720 | data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_AFI | ISO15693_REQINV_SLOT1; | |
1721 | data[1] = ISO15693_INVENTORY; | |
1722 | data[2] = 0; // AFI | |
1723 | data[3] = 0; // mask length | |
1724 | ||
1725 | for (int i = 0; i < 256; i++) { | |
1726 | data[2] = i & 0xFF; | |
1727 | datalen = Iso15693AddCrc(data,4); | |
1728 | recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), start_time, ISO15693_READER_TIMEOUT, &eof_time); | |
1729 | start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER; | |
1730 | WDT_HIT(); | |
1731 | if (recvlen >= 12) { | |
1732 | Dbprintf("AFI=%i UID=%s", i, Iso15693sprintUID(NULL, &recv[2])); | |
1733 | } | |
1734 | } | |
1735 | Dbprintf("AFI Bruteforcing done."); | |
1736 | ||
1737 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1738 | LED_D_OFF(); | |
1739 | LED_A_OFF(); | |
1740 | ||
1741 | } | |
1742 | ||
1743 | // Allows to directly send commands to the tag via the client | |
1744 | void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint8_t data[]) { | |
1745 | ||
1746 | LED_A_ON(); | |
1747 | ||
1748 | int recvlen = 0; | |
1749 | uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH]; | |
1750 | uint32_t eof_time; | |
1751 | ||
1752 | uint16_t timeout; | |
1753 | bool request_answer = false; | |
1754 | ||
1755 | switch (data[1]) { | |
1756 | case ISO15693_WRITEBLOCK: | |
1757 | case ISO15693_LOCKBLOCK: | |
1758 | case ISO15693_WRITE_MULTI_BLOCK: | |
1759 | case ISO15693_WRITE_AFI: | |
1760 | case ISO15693_LOCK_AFI: | |
1761 | case ISO15693_WRITE_DSFID: | |
1762 | case ISO15693_LOCK_DSFID: | |
1763 | timeout = ISO15693_READER_TIMEOUT_WRITE; | |
1764 | request_answer = data[0] & ISO15693_REQ_OPTION; | |
1765 | break; | |
1766 | default: | |
1767 | timeout = ISO15693_READER_TIMEOUT; | |
1768 | } | |
1769 | ||
1770 | if (DEBUG) { | |
1771 | Dbprintf("SEND:"); | |
1772 | Dbhexdump(datalen, data, false); | |
1773 | } | |
1774 | ||
1775 | recvlen = SendDataTag(data, datalen, true, speed, (recv?recvbuf:NULL), sizeof(recvbuf), 0, timeout, &eof_time); | |
1776 | ||
1777 | if (request_answer) { // send a single EOF to get the tag response | |
1778 | recvlen = SendDataTagEOF((recv?recvbuf:NULL), sizeof(recvbuf), 0, ISO15693_READER_TIMEOUT, &eof_time); | |
1779 | } | |
1780 | ||
1781 | // for the time being, switch field off to protect rdv4.0 | |
1782 | // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway | |
1783 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1784 | LED_D_OFF(); | |
1785 | ||
1786 | if (recv) { | |
1787 | if (DEBUG) { | |
1788 | Dbprintf("RECV:"); | |
1789 | if (recvlen > 0) { | |
1790 | Dbhexdump(recvlen, recvbuf, false); | |
1791 | DbdecodeIso15693Answer(recvlen, recvbuf); | |
1792 | } | |
1793 | } | |
1794 | if (recvlen > ISO15693_MAX_RESPONSE_LENGTH) { | |
1795 | recvlen = ISO15693_MAX_RESPONSE_LENGTH; | |
1796 | } | |
1797 | cmd_send(CMD_ACK, recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH); | |
1798 | } | |
1799 | ||
1800 | LED_A_OFF(); | |
1801 | } | |
1802 | ||
1803 | //----------------------------------------------------------------------------- | |
1804 | // Work with "magic Chinese" card. | |
1805 | // | |
1806 | //----------------------------------------------------------------------------- | |
1807 | ||
1808 | // Set the UID on Magic ISO15693 tag (based on Iceman's LUA-script). | |
1809 | void SetTag15693Uid(uint8_t *uid) { | |
1810 | ||
1811 | LED_A_ON(); | |
1812 | ||
1813 | uint8_t cmd[4][9] = { | |
1814 | {ISO15693_REQ_DATARATE_HIGH, ISO15693_WRITEBLOCK, 0x3e, 0x00, 0x00, 0x00, 0x00}, | |
1815 | {ISO15693_REQ_DATARATE_HIGH, ISO15693_WRITEBLOCK, 0x3f, 0x69, 0x96, 0x00, 0x00}, | |
1816 | {ISO15693_REQ_DATARATE_HIGH, ISO15693_WRITEBLOCK, 0x38}, | |
1817 | {ISO15693_REQ_DATARATE_HIGH, ISO15693_WRITEBLOCK, 0x39} | |
1818 | }; | |
1819 | ||
1820 | uint16_t crc; | |
1821 | ||
1822 | int recvlen = 0; | |
1823 | uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH]; | |
1824 | uint32_t eof_time; | |
1825 | ||
1826 | // Command 3 : 022138u8u7u6u5 (where uX = uid byte X) | |
1827 | cmd[2][3] = uid[7]; | |
1828 | cmd[2][4] = uid[6]; | |
1829 | cmd[2][5] = uid[5]; | |
1830 | cmd[2][6] = uid[4]; | |
1831 | ||
1832 | // Command 4 : 022139u4u3u2u1 (where uX = uid byte X) | |
1833 | cmd[3][3] = uid[3]; | |
1834 | cmd[3][4] = uid[2]; | |
1835 | cmd[3][5] = uid[1]; | |
1836 | cmd[3][6] = uid[0]; | |
1837 | ||
1838 | uint32_t start_time = 0; | |
1839 | ||
1840 | for (int i = 0; i < 4; i++) { | |
1841 | // Add the CRC | |
1842 | crc = Iso15693Crc(cmd[i], 7); | |
1843 | cmd[i][7] = crc & 0xff; | |
1844 | cmd[i][8] = crc >> 8; | |
1845 | ||
1846 | recvlen = SendDataTag(cmd[i], sizeof(cmd[i]), i==0?true:false, true, recvbuf, sizeof(recvbuf), start_time, ISO15693_READER_TIMEOUT_WRITE, &eof_time); | |
1847 | start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER; | |
1848 | if (DEBUG) { | |
1849 | Dbprintf("SEND:"); | |
1850 | Dbhexdump(sizeof(cmd[i]), cmd[i], false); | |
1851 | Dbprintf("RECV:"); | |
1852 | if (recvlen > 0) { | |
1853 | Dbhexdump(recvlen, recvbuf, false); | |
1854 | DbdecodeIso15693Answer(recvlen, recvbuf); | |
1855 | } | |
1856 | } | |
1857 | // Note: need to know if we expect an answer from one of the magic commands | |
1858 | // if (recvlen < 0) { | |
1859 | // break; | |
1860 | // } | |
1861 | } | |
1862 | ||
1863 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1864 | LED_D_OFF(); | |
1865 | ||
1866 | cmd_send(CMD_ACK, recvlen, 0, 0, recvbuf, recvlen); | |
1867 | LED_A_OFF(); | |
1868 | } | |
1869 | ||
1870 | ||
1871 | ||
1872 | // -------------------------------------------------------------------- | |
1873 | // -- Misc & deprecated functions | |
1874 | // -------------------------------------------------------------------- | |
1875 | ||
1876 | /* | |
1877 | ||
1878 | // do not use; has a fix UID | |
1879 | static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid) | |
1880 | { | |
1881 | uint8_t cmd[12]; | |
1882 | ||
1883 | uint16_t crc; | |
1884 | // If we set the Option_Flag in this request, the VICC will respond with the security status of the block | |
1885 | // followed by the block data | |
1886 | // one sub-carrier, inventory, 1 slot, fast rate | |
1887 | cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit | |
1888 | // System Information command code | |
1889 | cmd[1] = 0x2B; | |
1890 | // UID may be optionally specified here | |
1891 | // 64-bit UID | |
1892 | cmd[2] = 0x32; | |
1893 | cmd[3]= 0x4b; | |
1894 | cmd[4] = 0x03; | |
1895 | cmd[5] = 0x01; | |
1896 | cmd[6] = 0x00; | |
1897 | cmd[7] = 0x10; | |
1898 | cmd[8] = 0x05; | |
1899 | cmd[9]= 0xe0; // always e0 (not exactly unique) | |
1900 | //Now the CRC | |
1901 | crc = Iso15693Crc(cmd, 10); // the crc needs to be calculated over 2 bytes | |
1902 | cmd[10] = crc & 0xff; | |
1903 | cmd[11] = crc >> 8; | |
1904 | ||
1905 | CodeIso15693AsReader(cmd, sizeof(cmd)); | |
1906 | } | |
1907 | ||
1908 | ||
1909 | // do not use; has a fix UID | |
1910 | static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid) | |
1911 | { | |
1912 | uint8_t cmd[14]; | |
1913 | ||
1914 | uint16_t crc; | |
1915 | // If we set the Option_Flag in this request, the VICC will respond with the security status of the block | |
1916 | // followed by the block data | |
1917 | // one sub-carrier, inventory, 1 slot, fast rate | |
1918 | cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit | |
1919 | // READ Multi BLOCK command code | |
1920 | cmd[1] = 0x23; | |
1921 | // UID may be optionally specified here | |
1922 | // 64-bit UID | |
1923 | cmd[2] = 0x32; | |
1924 | cmd[3]= 0x4b; | |
1925 | cmd[4] = 0x03; | |
1926 | cmd[5] = 0x01; | |
1927 | cmd[6] = 0x00; | |
1928 | cmd[7] = 0x10; | |
1929 | cmd[8] = 0x05; | |
1930 | cmd[9]= 0xe0; // always e0 (not exactly unique) | |
1931 | // First Block number to read | |
1932 | cmd[10] = 0x00; | |
1933 | // Number of Blocks to read | |
1934 | cmd[11] = 0x2f; // read quite a few | |
1935 | //Now the CRC | |
1936 | crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes | |
1937 | cmd[12] = crc & 0xff; | |
1938 | cmd[13] = crc >> 8; | |
1939 | ||
1940 | CodeIso15693AsReader(cmd, sizeof(cmd)); | |
1941 | } | |
1942 | ||
1943 | // do not use; has a fix UID | |
1944 | static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode) | |
1945 | { | |
1946 | uint8_t cmd[14]; | |
1947 | ||
1948 | uint16_t crc; | |
1949 | // If we set the Option_Flag in this request, the VICC will respond with the security status of the block | |
1950 | // followed by the block data | |
1951 | // one sub-carrier, inventory, 1 slot, fast rate | |
1952 | cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit | |
1953 | // READ BLOCK command code | |
1954 | cmd[1] = CmdCode; | |
1955 | // UID may be optionally specified here | |
1956 | // 64-bit UID | |
1957 | cmd[2] = 0x32; | |
1958 | cmd[3]= 0x4b; | |
1959 | cmd[4] = 0x03; | |
1960 | cmd[5] = 0x01; | |
1961 | cmd[6] = 0x00; | |
1962 | cmd[7] = 0x10; | |
1963 | cmd[8] = 0x05; | |
1964 | cmd[9]= 0xe0; // always e0 (not exactly unique) | |
1965 | // Parameter | |
1966 | cmd[10] = 0x00; | |
1967 | cmd[11] = 0x0a; | |
1968 | ||
1969 | // cmd[12] = 0x00; | |
1970 | // cmd[13] = 0x00; //Now the CRC | |
1971 | crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes | |
1972 | cmd[12] = crc & 0xff; | |
1973 | cmd[13] = crc >> 8; | |
1974 | ||
1975 | CodeIso15693AsReader(cmd, sizeof(cmd)); | |
1976 | } | |
1977 | ||
1978 | // do not use; has a fix UID | |
1979 | static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode) | |
1980 | { | |
1981 | uint8_t cmd[14]; | |
1982 | ||
1983 | uint16_t crc; | |
1984 | // If we set the Option_Flag in this request, the VICC will respond with the security status of the block | |
1985 | // followed by the block data | |
1986 | // one sub-carrier, inventory, 1 slot, fast rate | |
1987 | cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit | |
1988 | // READ BLOCK command code | |
1989 | cmd[1] = CmdCode; | |
1990 | // UID may be optionally specified here | |
1991 | // 64-bit UID | |
1992 | cmd[2] = 0x32; | |
1993 | cmd[3]= 0x4b; | |
1994 | cmd[4] = 0x03; | |
1995 | cmd[5] = 0x01; | |
1996 | cmd[6] = 0x00; | |
1997 | cmd[7] = 0x10; | |
1998 | cmd[8] = 0x05; | |
1999 | cmd[9]= 0xe0; // always e0 (not exactly unique) | |
2000 | // Parameter | |
2001 | cmd[10] = 0x05; // for custom codes this must be manufacturer code | |
2002 | cmd[11] = 0x00; | |
2003 | ||
2004 | // cmd[12] = 0x00; | |
2005 | // cmd[13] = 0x00; //Now the CRC | |
2006 | crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes | |
2007 | cmd[12] = crc & 0xff; | |
2008 | cmd[13] = crc >> 8; | |
2009 | ||
2010 | CodeIso15693AsReader(cmd, sizeof(cmd)); | |
2011 | } | |
2012 | ||
2013 | ||
2014 | ||
2015 | ||
2016 | */ | |
2017 | ||
2018 |