]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Gerhard de Koning Gans - May 2008 | |
3 | // Hagen Fritsch - June 2010 | |
4 | // Gerhard de Koning Gans - May 2011 | |
5 | // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation | |
6 | // | |
7 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
8 | // at your option, any later version. See the LICENSE.txt file for the text of | |
9 | // the license. | |
10 | //----------------------------------------------------------------------------- | |
11 | // Routines to support iClass. | |
12 | //----------------------------------------------------------------------------- | |
13 | // Based on ISO14443a implementation. Still in experimental phase. | |
14 | // Contribution made during a security research at Radboud University Nijmegen | |
15 | // | |
16 | // Please feel free to contribute and extend iClass support!! | |
17 | //----------------------------------------------------------------------------- | |
18 | // | |
19 | // FIX: | |
20 | // ==== | |
21 | // We still have sometimes a demodulation error when snooping iClass communication. | |
22 | // The resulting trace of a read-block-03 command may look something like this: | |
23 | // | |
24 | // + 22279: : 0c 03 e8 01 | |
25 | // | |
26 | // ...with an incorrect answer... | |
27 | // | |
28 | // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc | |
29 | // | |
30 | // We still left the error signalling bytes in the traces like 0xbb | |
31 | // | |
32 | // A correct trace should look like this: | |
33 | // | |
34 | // + 21112: : 0c 03 e8 01 | |
35 | // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5 | |
36 | // | |
37 | //----------------------------------------------------------------------------- | |
38 | ||
39 | #include "proxmark3.h" | |
40 | #include "apps.h" | |
41 | #include "util.h" | |
42 | #include "string.h" | |
43 | #include "common.h" | |
44 | #include "cmd.h" | |
45 | // Needed for CRC in emulation mode; | |
46 | // same construction as in ISO 14443; | |
47 | // different initial value (CRC_ICLASS) | |
48 | #include "iso14443crc.h" | |
49 | #include "iso15693tools.h" | |
50 | ||
51 | static int timeout = 4096; | |
52 | ||
53 | ||
54 | static int SendIClassAnswer(uint8_t *resp, int respLen, int delay); | |
55 | ||
56 | //----------------------------------------------------------------------------- | |
57 | // The software UART that receives commands from the reader, and its state | |
58 | // variables. | |
59 | //----------------------------------------------------------------------------- | |
60 | static struct { | |
61 | enum { | |
62 | STATE_UNSYNCD, | |
63 | STATE_START_OF_COMMUNICATION, | |
64 | STATE_RECEIVING | |
65 | } state; | |
66 | uint16_t shiftReg; | |
67 | int bitCnt; | |
68 | int byteCnt; | |
69 | int byteCntMax; | |
70 | int posCnt; | |
71 | int nOutOfCnt; | |
72 | int OutOfCnt; | |
73 | int syncBit; | |
74 | int parityBits; | |
75 | int samples; | |
76 | int highCnt; | |
77 | int swapper; | |
78 | int counter; | |
79 | int bitBuffer; | |
80 | int dropPosition; | |
81 | uint8_t *output; | |
82 | } Uart; | |
83 | ||
84 | static RAMFUNC int OutOfNDecoding(int bit) | |
85 | { | |
86 | //int error = 0; | |
87 | int bitright; | |
88 | ||
89 | if(!Uart.bitBuffer) { | |
90 | Uart.bitBuffer = bit ^ 0xFF0; | |
91 | return FALSE; | |
92 | } | |
93 | else { | |
94 | Uart.bitBuffer <<= 4; | |
95 | Uart.bitBuffer ^= bit; | |
96 | } | |
97 | ||
98 | /*if(Uart.swapper) { | |
99 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; | |
100 | Uart.byteCnt++; | |
101 | Uart.swapper = 0; | |
102 | if(Uart.byteCnt > 15) { return TRUE; } | |
103 | } | |
104 | else { | |
105 | Uart.swapper = 1; | |
106 | }*/ | |
107 | ||
108 | if(Uart.state != STATE_UNSYNCD) { | |
109 | Uart.posCnt++; | |
110 | ||
111 | if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { | |
112 | bit = 0x00; | |
113 | } | |
114 | else { | |
115 | bit = 0x01; | |
116 | } | |
117 | if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { | |
118 | bitright = 0x00; | |
119 | } | |
120 | else { | |
121 | bitright = 0x01; | |
122 | } | |
123 | if(bit != bitright) { bit = bitright; } | |
124 | ||
125 | ||
126 | // So, now we only have to deal with *bit*, lets see... | |
127 | if(Uart.posCnt == 1) { | |
128 | // measurement first half bitperiod | |
129 | if(!bit) { | |
130 | // Drop in first half means that we are either seeing | |
131 | // an SOF or an EOF. | |
132 | ||
133 | if(Uart.nOutOfCnt == 1) { | |
134 | // End of Communication | |
135 | Uart.state = STATE_UNSYNCD; | |
136 | Uart.highCnt = 0; | |
137 | if(Uart.byteCnt == 0) { | |
138 | // Its not straightforward to show single EOFs | |
139 | // So just leave it and do not return TRUE | |
140 | Uart.output[Uart.byteCnt] = 0xf0; | |
141 | Uart.byteCnt++; | |
142 | ||
143 | // Calculate the parity bit for the client... | |
144 | Uart.parityBits = 1; | |
145 | } | |
146 | else { | |
147 | return TRUE; | |
148 | } | |
149 | } | |
150 | else if(Uart.state != STATE_START_OF_COMMUNICATION) { | |
151 | // When not part of SOF or EOF, it is an error | |
152 | Uart.state = STATE_UNSYNCD; | |
153 | Uart.highCnt = 0; | |
154 | //error = 4; | |
155 | } | |
156 | } | |
157 | } | |
158 | else { | |
159 | // measurement second half bitperiod | |
160 | // Count the bitslot we are in... (ISO 15693) | |
161 | Uart.nOutOfCnt++; | |
162 | ||
163 | if(!bit) { | |
164 | if(Uart.dropPosition) { | |
165 | if(Uart.state == STATE_START_OF_COMMUNICATION) { | |
166 | //error = 1; | |
167 | } | |
168 | else { | |
169 | //error = 7; | |
170 | } | |
171 | // It is an error if we already have seen a drop in current frame | |
172 | Uart.state = STATE_UNSYNCD; | |
173 | Uart.highCnt = 0; | |
174 | } | |
175 | else { | |
176 | Uart.dropPosition = Uart.nOutOfCnt; | |
177 | } | |
178 | } | |
179 | ||
180 | Uart.posCnt = 0; | |
181 | ||
182 | ||
183 | if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) { | |
184 | Uart.nOutOfCnt = 0; | |
185 | ||
186 | if(Uart.state == STATE_START_OF_COMMUNICATION) { | |
187 | if(Uart.dropPosition == 4) { | |
188 | Uart.state = STATE_RECEIVING; | |
189 | Uart.OutOfCnt = 256; | |
190 | } | |
191 | else if(Uart.dropPosition == 3) { | |
192 | Uart.state = STATE_RECEIVING; | |
193 | Uart.OutOfCnt = 4; | |
194 | //Uart.output[Uart.byteCnt] = 0xdd; | |
195 | //Uart.byteCnt++; | |
196 | } | |
197 | else { | |
198 | Uart.state = STATE_UNSYNCD; | |
199 | Uart.highCnt = 0; | |
200 | } | |
201 | Uart.dropPosition = 0; | |
202 | } | |
203 | else { | |
204 | // RECEIVING DATA | |
205 | // 1 out of 4 | |
206 | if(!Uart.dropPosition) { | |
207 | Uart.state = STATE_UNSYNCD; | |
208 | Uart.highCnt = 0; | |
209 | //error = 9; | |
210 | } | |
211 | else { | |
212 | Uart.shiftReg >>= 2; | |
213 | ||
214 | // Swap bit order | |
215 | Uart.dropPosition--; | |
216 | //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; } | |
217 | //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; } | |
218 | ||
219 | Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6); | |
220 | Uart.bitCnt += 2; | |
221 | Uart.dropPosition = 0; | |
222 | ||
223 | if(Uart.bitCnt == 8) { | |
224 | Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); | |
225 | Uart.byteCnt++; | |
226 | ||
227 | // Calculate the parity bit for the client... | |
228 | Uart.parityBits <<= 1; | |
229 | Uart.parityBits ^= OddByteParity[(Uart.shiftReg & 0xff)]; | |
230 | ||
231 | Uart.bitCnt = 0; | |
232 | Uart.shiftReg = 0; | |
233 | } | |
234 | } | |
235 | } | |
236 | } | |
237 | else if(Uart.nOutOfCnt == Uart.OutOfCnt) { | |
238 | // RECEIVING DATA | |
239 | // 1 out of 256 | |
240 | if(!Uart.dropPosition) { | |
241 | Uart.state = STATE_UNSYNCD; | |
242 | Uart.highCnt = 0; | |
243 | //error = 3; | |
244 | } | |
245 | else { | |
246 | Uart.dropPosition--; | |
247 | Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff); | |
248 | Uart.byteCnt++; | |
249 | ||
250 | // Calculate the parity bit for the client... | |
251 | Uart.parityBits <<= 1; | |
252 | Uart.parityBits ^= OddByteParity[(Uart.dropPosition & 0xff)]; | |
253 | ||
254 | Uart.bitCnt = 0; | |
255 | Uart.shiftReg = 0; | |
256 | Uart.nOutOfCnt = 0; | |
257 | Uart.dropPosition = 0; | |
258 | } | |
259 | } | |
260 | ||
261 | /*if(error) { | |
262 | Uart.output[Uart.byteCnt] = 0xAA; | |
263 | Uart.byteCnt++; | |
264 | Uart.output[Uart.byteCnt] = error & 0xFF; | |
265 | Uart.byteCnt++; | |
266 | Uart.output[Uart.byteCnt] = 0xAA; | |
267 | Uart.byteCnt++; | |
268 | Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; | |
269 | Uart.byteCnt++; | |
270 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; | |
271 | Uart.byteCnt++; | |
272 | Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; | |
273 | Uart.byteCnt++; | |
274 | Uart.output[Uart.byteCnt] = 0xAA; | |
275 | Uart.byteCnt++; | |
276 | return TRUE; | |
277 | }*/ | |
278 | } | |
279 | ||
280 | } | |
281 | else { | |
282 | bit = Uart.bitBuffer & 0xf0; | |
283 | bit >>= 4; | |
284 | bit ^= 0x0F; // drops become 1s ;-) | |
285 | if(bit) { | |
286 | // should have been high or at least (4 * 128) / fc | |
287 | // according to ISO this should be at least (9 * 128 + 20) / fc | |
288 | if(Uart.highCnt == 8) { | |
289 | // we went low, so this could be start of communication | |
290 | // it turns out to be safer to choose a less significant | |
291 | // syncbit... so we check whether the neighbour also represents the drop | |
292 | Uart.posCnt = 1; // apparently we are busy with our first half bit period | |
293 | Uart.syncBit = bit & 8; | |
294 | Uart.samples = 3; | |
295 | if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } | |
296 | else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } | |
297 | if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } | |
298 | else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } | |
299 | if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; | |
300 | if(Uart.syncBit && (Uart.bitBuffer & 8)) { | |
301 | Uart.syncBit = 8; | |
302 | ||
303 | // the first half bit period is expected in next sample | |
304 | Uart.posCnt = 0; | |
305 | Uart.samples = 3; | |
306 | } | |
307 | } | |
308 | else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } | |
309 | ||
310 | Uart.syncBit <<= 4; | |
311 | Uart.state = STATE_START_OF_COMMUNICATION; | |
312 | Uart.bitCnt = 0; | |
313 | Uart.byteCnt = 0; | |
314 | Uart.parityBits = 0; | |
315 | Uart.nOutOfCnt = 0; | |
316 | Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256 | |
317 | Uart.dropPosition = 0; | |
318 | Uart.shiftReg = 0; | |
319 | //error = 0; | |
320 | } | |
321 | else { | |
322 | Uart.highCnt = 0; | |
323 | } | |
324 | } | |
325 | else { | |
326 | if(Uart.highCnt < 8) { | |
327 | Uart.highCnt++; | |
328 | } | |
329 | } | |
330 | } | |
331 | ||
332 | return FALSE; | |
333 | } | |
334 | ||
335 | //============================================================================= | |
336 | // Manchester | |
337 | //============================================================================= | |
338 | ||
339 | static struct { | |
340 | enum { | |
341 | DEMOD_UNSYNCD, | |
342 | DEMOD_START_OF_COMMUNICATION, | |
343 | DEMOD_START_OF_COMMUNICATION2, | |
344 | DEMOD_START_OF_COMMUNICATION3, | |
345 | DEMOD_SOF_COMPLETE, | |
346 | DEMOD_MANCHESTER_D, | |
347 | DEMOD_MANCHESTER_E, | |
348 | DEMOD_END_OF_COMMUNICATION, | |
349 | DEMOD_END_OF_COMMUNICATION2, | |
350 | DEMOD_MANCHESTER_F, | |
351 | DEMOD_ERROR_WAIT | |
352 | } state; | |
353 | int bitCount; | |
354 | int posCount; | |
355 | int syncBit; | |
356 | int parityBits; | |
357 | uint16_t shiftReg; | |
358 | int buffer; | |
359 | int buffer2; | |
360 | int buffer3; | |
361 | int buff; | |
362 | int samples; | |
363 | int len; | |
364 | enum { | |
365 | SUB_NONE, | |
366 | SUB_FIRST_HALF, | |
367 | SUB_SECOND_HALF, | |
368 | SUB_BOTH | |
369 | } sub; | |
370 | uint8_t *output; | |
371 | } Demod; | |
372 | ||
373 | static RAMFUNC int ManchesterDecoding(int v) | |
374 | { | |
375 | int bit; | |
376 | int modulation; | |
377 | int error = 0; | |
378 | ||
379 | bit = Demod.buffer; | |
380 | Demod.buffer = Demod.buffer2; | |
381 | Demod.buffer2 = Demod.buffer3; | |
382 | Demod.buffer3 = v; | |
383 | ||
384 | if(Demod.buff < 3) { | |
385 | Demod.buff++; | |
386 | return FALSE; | |
387 | } | |
388 | ||
389 | if(Demod.state==DEMOD_UNSYNCD) { | |
390 | Demod.output[Demod.len] = 0xfa; | |
391 | Demod.syncBit = 0; | |
392 | //Demod.samples = 0; | |
393 | Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part | |
394 | ||
395 | if(bit & 0x08) { | |
396 | Demod.syncBit = 0x08; | |
397 | } | |
398 | ||
399 | if(bit & 0x04) { | |
400 | if(Demod.syncBit) { | |
401 | bit <<= 4; | |
402 | } | |
403 | Demod.syncBit = 0x04; | |
404 | } | |
405 | ||
406 | if(bit & 0x02) { | |
407 | if(Demod.syncBit) { | |
408 | bit <<= 2; | |
409 | } | |
410 | Demod.syncBit = 0x02; | |
411 | } | |
412 | ||
413 | if(bit & 0x01 && Demod.syncBit) { | |
414 | Demod.syncBit = 0x01; | |
415 | } | |
416 | ||
417 | if(Demod.syncBit) { | |
418 | Demod.len = 0; | |
419 | Demod.state = DEMOD_START_OF_COMMUNICATION; | |
420 | Demod.sub = SUB_FIRST_HALF; | |
421 | Demod.bitCount = 0; | |
422 | Demod.shiftReg = 0; | |
423 | Demod.parityBits = 0; | |
424 | Demod.samples = 0; | |
425 | if(Demod.posCount) { | |
426 | //if(trigger) LED_A_OFF(); // Not useful in this case... | |
427 | switch(Demod.syncBit) { | |
428 | case 0x08: Demod.samples = 3; break; | |
429 | case 0x04: Demod.samples = 2; break; | |
430 | case 0x02: Demod.samples = 1; break; | |
431 | case 0x01: Demod.samples = 0; break; | |
432 | } | |
433 | // SOF must be long burst... otherwise stay unsynced!!! | |
434 | if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) { | |
435 | Demod.state = DEMOD_UNSYNCD; | |
436 | } | |
437 | } | |
438 | else { | |
439 | // SOF must be long burst... otherwise stay unsynced!!! | |
440 | if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) { | |
441 | Demod.state = DEMOD_UNSYNCD; | |
442 | error = 0x88; | |
443 | } | |
444 | ||
445 | } | |
446 | error = 0; | |
447 | ||
448 | } | |
449 | } | |
450 | else { | |
451 | modulation = bit & Demod.syncBit; | |
452 | modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; | |
453 | //modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; | |
454 | ||
455 | Demod.samples += 4; | |
456 | ||
457 | if(Demod.posCount==0) { | |
458 | Demod.posCount = 1; | |
459 | if(modulation) { | |
460 | Demod.sub = SUB_FIRST_HALF; | |
461 | } | |
462 | else { | |
463 | Demod.sub = SUB_NONE; | |
464 | } | |
465 | } | |
466 | else { | |
467 | Demod.posCount = 0; | |
468 | /*(modulation && (Demod.sub == SUB_FIRST_HALF)) { | |
469 | if(Demod.state!=DEMOD_ERROR_WAIT) { | |
470 | Demod.state = DEMOD_ERROR_WAIT; | |
471 | Demod.output[Demod.len] = 0xaa; | |
472 | error = 0x01; | |
473 | } | |
474 | }*/ | |
475 | //else if(modulation) { | |
476 | if(modulation) { | |
477 | if(Demod.sub == SUB_FIRST_HALF) { | |
478 | Demod.sub = SUB_BOTH; | |
479 | } | |
480 | else { | |
481 | Demod.sub = SUB_SECOND_HALF; | |
482 | } | |
483 | } | |
484 | else if(Demod.sub == SUB_NONE) { | |
485 | if(Demod.state == DEMOD_SOF_COMPLETE) { | |
486 | Demod.output[Demod.len] = 0x0f; | |
487 | Demod.len++; | |
488 | Demod.parityBits <<= 1; | |
489 | Demod.parityBits ^= OddByteParity[0x0f]; | |
490 | Demod.state = DEMOD_UNSYNCD; | |
491 | // error = 0x0f; | |
492 | return TRUE; | |
493 | } | |
494 | else { | |
495 | Demod.state = DEMOD_ERROR_WAIT; | |
496 | error = 0x33; | |
497 | } | |
498 | /*if(Demod.state!=DEMOD_ERROR_WAIT) { | |
499 | Demod.state = DEMOD_ERROR_WAIT; | |
500 | Demod.output[Demod.len] = 0xaa; | |
501 | error = 0x01; | |
502 | }*/ | |
503 | } | |
504 | ||
505 | switch(Demod.state) { | |
506 | case DEMOD_START_OF_COMMUNICATION: | |
507 | if(Demod.sub == SUB_BOTH) { | |
508 | //Demod.state = DEMOD_MANCHESTER_D; | |
509 | Demod.state = DEMOD_START_OF_COMMUNICATION2; | |
510 | Demod.posCount = 1; | |
511 | Demod.sub = SUB_NONE; | |
512 | } | |
513 | else { | |
514 | Demod.output[Demod.len] = 0xab; | |
515 | Demod.state = DEMOD_ERROR_WAIT; | |
516 | error = 0xd2; | |
517 | } | |
518 | break; | |
519 | case DEMOD_START_OF_COMMUNICATION2: | |
520 | if(Demod.sub == SUB_SECOND_HALF) { | |
521 | Demod.state = DEMOD_START_OF_COMMUNICATION3; | |
522 | } | |
523 | else { | |
524 | Demod.output[Demod.len] = 0xab; | |
525 | Demod.state = DEMOD_ERROR_WAIT; | |
526 | error = 0xd3; | |
527 | } | |
528 | break; | |
529 | case DEMOD_START_OF_COMMUNICATION3: | |
530 | if(Demod.sub == SUB_SECOND_HALF) { | |
531 | // Demod.state = DEMOD_MANCHESTER_D; | |
532 | Demod.state = DEMOD_SOF_COMPLETE; | |
533 | //Demod.output[Demod.len] = Demod.syncBit & 0xFF; | |
534 | //Demod.len++; | |
535 | } | |
536 | else { | |
537 | Demod.output[Demod.len] = 0xab; | |
538 | Demod.state = DEMOD_ERROR_WAIT; | |
539 | error = 0xd4; | |
540 | } | |
541 | break; | |
542 | case DEMOD_SOF_COMPLETE: | |
543 | case DEMOD_MANCHESTER_D: | |
544 | case DEMOD_MANCHESTER_E: | |
545 | // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443) | |
546 | // 00001111 = 1 (0 in 14443) | |
547 | if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF | |
548 | Demod.bitCount++; | |
549 | Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; | |
550 | Demod.state = DEMOD_MANCHESTER_D; | |
551 | } | |
552 | else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF | |
553 | Demod.bitCount++; | |
554 | Demod.shiftReg >>= 1; | |
555 | Demod.state = DEMOD_MANCHESTER_E; | |
556 | } | |
557 | else if(Demod.sub == SUB_BOTH) { | |
558 | Demod.state = DEMOD_MANCHESTER_F; | |
559 | } | |
560 | else { | |
561 | Demod.state = DEMOD_ERROR_WAIT; | |
562 | error = 0x55; | |
563 | } | |
564 | break; | |
565 | ||
566 | case DEMOD_MANCHESTER_F: | |
567 | // Tag response does not need to be a complete byte! | |
568 | if(Demod.len > 0 || Demod.bitCount > 0) { | |
569 | if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF | |
570 | Demod.shiftReg >>= (9 - Demod.bitCount); | |
571 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
572 | Demod.len++; | |
573 | // No parity bit, so just shift a 0 | |
574 | Demod.parityBits <<= 1; | |
575 | } | |
576 | ||
577 | Demod.state = DEMOD_UNSYNCD; | |
578 | return TRUE; | |
579 | } | |
580 | else { | |
581 | Demod.output[Demod.len] = 0xad; | |
582 | Demod.state = DEMOD_ERROR_WAIT; | |
583 | error = 0x03; | |
584 | } | |
585 | break; | |
586 | ||
587 | case DEMOD_ERROR_WAIT: | |
588 | Demod.state = DEMOD_UNSYNCD; | |
589 | break; | |
590 | ||
591 | default: | |
592 | Demod.output[Demod.len] = 0xdd; | |
593 | Demod.state = DEMOD_UNSYNCD; | |
594 | break; | |
595 | } | |
596 | ||
597 | /*if(Demod.bitCount>=9) { | |
598 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
599 | Demod.len++; | |
600 | ||
601 | Demod.parityBits <<= 1; | |
602 | Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); | |
603 | ||
604 | Demod.bitCount = 0; | |
605 | Demod.shiftReg = 0; | |
606 | }*/ | |
607 | if(Demod.bitCount>=8) { | |
608 | Demod.shiftReg >>= 1; | |
609 | Demod.output[Demod.len] = (Demod.shiftReg & 0xff); | |
610 | Demod.len++; | |
611 | ||
612 | // FOR ISO15639 PARITY NOT SEND OTA, JUST CALCULATE IT FOR THE CLIENT | |
613 | Demod.parityBits <<= 1; | |
614 | Demod.parityBits ^= OddByteParity[(Demod.shiftReg & 0xff)]; | |
615 | ||
616 | Demod.bitCount = 0; | |
617 | Demod.shiftReg = 0; | |
618 | } | |
619 | ||
620 | if(error) { | |
621 | Demod.output[Demod.len] = 0xBB; | |
622 | Demod.len++; | |
623 | Demod.output[Demod.len] = error & 0xFF; | |
624 | Demod.len++; | |
625 | Demod.output[Demod.len] = 0xBB; | |
626 | Demod.len++; | |
627 | Demod.output[Demod.len] = bit & 0xFF; | |
628 | Demod.len++; | |
629 | Demod.output[Demod.len] = Demod.buffer & 0xFF; | |
630 | Demod.len++; | |
631 | // Look harder ;-) | |
632 | Demod.output[Demod.len] = Demod.buffer2 & 0xFF; | |
633 | Demod.len++; | |
634 | Demod.output[Demod.len] = Demod.syncBit & 0xFF; | |
635 | Demod.len++; | |
636 | Demod.output[Demod.len] = 0xBB; | |
637 | Demod.len++; | |
638 | return TRUE; | |
639 | } | |
640 | ||
641 | } | |
642 | ||
643 | } // end (state != UNSYNCED) | |
644 | ||
645 | return FALSE; | |
646 | } | |
647 | ||
648 | //============================================================================= | |
649 | // Finally, a `sniffer' for iClass communication | |
650 | // Both sides of communication! | |
651 | //============================================================================= | |
652 | ||
653 | //----------------------------------------------------------------------------- | |
654 | // Record the sequence of commands sent by the reader to the tag, with | |
655 | // triggering so that we start recording at the point that the tag is moved | |
656 | // near the reader. | |
657 | //----------------------------------------------------------------------------- | |
658 | void RAMFUNC SnoopIClass(void) | |
659 | { | |
660 | ||
661 | ||
662 | // We won't start recording the frames that we acquire until we trigger; | |
663 | // a good trigger condition to get started is probably when we see a | |
664 | // response from the tag. | |
665 | //int triggered = FALSE; // FALSE to wait first for card | |
666 | ||
667 | // The command (reader -> tag) that we're receiving. | |
668 | // The length of a received command will in most cases be no more than 18 bytes. | |
669 | // So 32 should be enough! | |
670 | uint8_t *readerToTagCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); | |
671 | // The response (tag -> reader) that we're receiving. | |
672 | uint8_t *tagToReaderResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); | |
673 | ||
674 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
675 | ||
676 | // reset traceLen to 0 | |
677 | iso14a_set_tracing(TRUE); | |
678 | iso14a_clear_trace(); | |
679 | iso14a_set_trigger(FALSE); | |
680 | ||
681 | // The DMA buffer, used to stream samples from the FPGA | |
682 | int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; | |
683 | int lastRxCounter; | |
684 | int8_t *upTo; | |
685 | int smpl; | |
686 | int maxBehindBy = 0; | |
687 | ||
688 | // Count of samples received so far, so that we can include timing | |
689 | // information in the trace buffer. | |
690 | int samples = 0; | |
691 | rsamples = 0; | |
692 | ||
693 | // Set up the demodulator for tag -> reader responses. | |
694 | Demod.output = tagToReaderResponse; | |
695 | Demod.len = 0; | |
696 | Demod.state = DEMOD_UNSYNCD; | |
697 | ||
698 | // Setup for the DMA. | |
699 | FpgaSetupSsc(); | |
700 | upTo = dmaBuf; | |
701 | lastRxCounter = DMA_BUFFER_SIZE; | |
702 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); | |
703 | ||
704 | // And the reader -> tag commands | |
705 | memset(&Uart, 0, sizeof(Uart)); | |
706 | Uart.output = readerToTagCmd; | |
707 | Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// | |
708 | Uart.state = STATE_UNSYNCD; | |
709 | ||
710 | // And put the FPGA in the appropriate mode | |
711 | // Signal field is off with the appropriate LED | |
712 | LED_D_OFF(); | |
713 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); | |
714 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
715 | ||
716 | uint32_t time_0 = GetCountSspClk(); | |
717 | ||
718 | ||
719 | int div = 0; | |
720 | //int div2 = 0; | |
721 | int decbyte = 0; | |
722 | int decbyter = 0; | |
723 | ||
724 | // And now we loop, receiving samples. | |
725 | for(;;) { | |
726 | LED_A_ON(); | |
727 | WDT_HIT(); | |
728 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & | |
729 | (DMA_BUFFER_SIZE-1); | |
730 | if(behindBy > maxBehindBy) { | |
731 | maxBehindBy = behindBy; | |
732 | if(behindBy > 400) { | |
733 | Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); | |
734 | goto done; | |
735 | } | |
736 | } | |
737 | if(behindBy < 1) continue; | |
738 | ||
739 | LED_A_OFF(); | |
740 | smpl = upTo[0]; | |
741 | upTo++; | |
742 | lastRxCounter -= 1; | |
743 | if(upTo - dmaBuf > DMA_BUFFER_SIZE) { | |
744 | upTo -= DMA_BUFFER_SIZE; | |
745 | lastRxCounter += DMA_BUFFER_SIZE; | |
746 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
747 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; | |
748 | } | |
749 | ||
750 | //samples += 4; | |
751 | samples += 1; | |
752 | ||
753 | if(smpl & 0xF) { | |
754 | decbyte ^= (1 << (3 - div)); | |
755 | } | |
756 | ||
757 | // FOR READER SIDE COMMUMICATION... | |
758 | ||
759 | decbyter <<= 2; | |
760 | decbyter ^= (smpl & 0x30); | |
761 | ||
762 | div++; | |
763 | ||
764 | if((div + 1) % 2 == 0) { | |
765 | smpl = decbyter; | |
766 | if(OutOfNDecoding((smpl & 0xF0) >> 4)) { | |
767 | rsamples = samples - Uart.samples; | |
768 | LED_C_ON(); | |
769 | ||
770 | //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break; | |
771 | //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break; | |
772 | if(tracing) | |
773 | { | |
774 | LogTrace(Uart.output,Uart.byteCnt, (GetCountSspClk()-time_0) << 4, Uart.parityBits,TRUE); | |
775 | LogTrace(NULL, 0, (GetCountSspClk()-time_0) << 4, 0, TRUE); | |
776 | } | |
777 | ||
778 | ||
779 | /* And ready to receive another command. */ | |
780 | Uart.state = STATE_UNSYNCD; | |
781 | /* And also reset the demod code, which might have been */ | |
782 | /* false-triggered by the commands from the reader. */ | |
783 | Demod.state = DEMOD_UNSYNCD; | |
784 | LED_B_OFF(); | |
785 | Uart.byteCnt = 0; | |
786 | } | |
787 | decbyter = 0; | |
788 | } | |
789 | ||
790 | if(div > 3) { | |
791 | smpl = decbyte; | |
792 | if(ManchesterDecoding(smpl & 0x0F)) { | |
793 | rsamples = samples - Demod.samples; | |
794 | LED_B_ON(); | |
795 | ||
796 | if(tracing) | |
797 | { | |
798 | LogTrace(Demod.output,Demod.len, (GetCountSspClk()-time_0) << 4 , Demod.parityBits,FALSE); | |
799 | LogTrace(NULL, 0, (GetCountSspClk()-time_0) << 4, 0, FALSE); | |
800 | } | |
801 | ||
802 | ||
803 | // And ready to receive another response. | |
804 | memset(&Demod, 0, sizeof(Demod)); | |
805 | Demod.output = tagToReaderResponse; | |
806 | Demod.state = DEMOD_UNSYNCD; | |
807 | LED_C_OFF(); | |
808 | } | |
809 | ||
810 | div = 0; | |
811 | decbyte = 0x00; | |
812 | } | |
813 | //} | |
814 | ||
815 | if(BUTTON_PRESS()) { | |
816 | DbpString("cancelled_a"); | |
817 | goto done; | |
818 | } | |
819 | } | |
820 | ||
821 | DbpString("COMMAND FINISHED"); | |
822 | ||
823 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); | |
824 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); | |
825 | ||
826 | done: | |
827 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; | |
828 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); | |
829 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); | |
830 | LED_A_OFF(); | |
831 | LED_B_OFF(); | |
832 | LED_C_OFF(); | |
833 | LED_D_OFF(); | |
834 | } | |
835 | ||
836 | void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) { | |
837 | int i; | |
838 | for(i = 0; i < 8; i++) { | |
839 | rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5); | |
840 | } | |
841 | } | |
842 | ||
843 | //----------------------------------------------------------------------------- | |
844 | // Wait for commands from reader | |
845 | // Stop when button is pressed | |
846 | // Or return TRUE when command is captured | |
847 | //----------------------------------------------------------------------------- | |
848 | static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen) | |
849 | { | |
850 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
851 | // only, since we are receiving, not transmitting). | |
852 | // Signal field is off with the appropriate LED | |
853 | LED_D_OFF(); | |
854 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
855 | ||
856 | // Now run a `software UART' on the stream of incoming samples. | |
857 | Uart.output = received; | |
858 | Uart.byteCntMax = maxLen; | |
859 | Uart.state = STATE_UNSYNCD; | |
860 | ||
861 | for(;;) { | |
862 | WDT_HIT(); | |
863 | ||
864 | if(BUTTON_PRESS()) return FALSE; | |
865 | ||
866 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
867 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
868 | } | |
869 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
870 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
871 | /*if(OutOfNDecoding((b & 0xf0) >> 4)) { | |
872 | *len = Uart.byteCnt; | |
873 | return TRUE; | |
874 | }*/ | |
875 | if(OutOfNDecoding(b & 0x0f)) { | |
876 | *len = Uart.byteCnt; | |
877 | return TRUE; | |
878 | } | |
879 | } | |
880 | } | |
881 | } | |
882 | ||
883 | ||
884 | //----------------------------------------------------------------------------- | |
885 | // Prepare tag messages | |
886 | //----------------------------------------------------------------------------- | |
887 | static void CodeIClassTagAnswer(const uint8_t *cmd, int len) | |
888 | { | |
889 | //So far a dummy implementation, not used | |
890 | //int lastProxToAirDuration =0; | |
891 | int i; | |
892 | ||
893 | ToSendReset(); | |
894 | ||
895 | // Send SOF | |
896 | ToSend[++ToSendMax] = 0x00; | |
897 | ToSend[++ToSendMax] = 0x00; | |
898 | ToSend[++ToSendMax] = 0x00; | |
899 | ToSend[++ToSendMax] = 0xff;//Proxtoair duration starts here | |
900 | ToSend[++ToSendMax] = 0xff; | |
901 | ToSend[++ToSendMax] = 0xff; | |
902 | ToSend[++ToSendMax] = 0x00; | |
903 | ToSend[++ToSendMax] = 0xff; | |
904 | ||
905 | for(i = 0; i < len; i++) { | |
906 | int j; | |
907 | uint8_t b = cmd[i]; | |
908 | ||
909 | // Data bits | |
910 | for(j = 0; j < 8; j++) { | |
911 | if(b & 1) { | |
912 | ToSend[++ToSendMax] = 0x00; | |
913 | ToSend[++ToSendMax] = 0xff; | |
914 | } else { | |
915 | ToSend[++ToSendMax] = 0xff; | |
916 | ToSend[++ToSendMax] = 0x00; | |
917 | } | |
918 | b >>= 1; | |
919 | } | |
920 | } | |
921 | ||
922 | // Send EOF | |
923 | ToSend[++ToSendMax] = 0xff; | |
924 | ToSend[++ToSendMax] = 0x00; | |
925 | ToSend[++ToSendMax] = 0xff; | |
926 | ToSend[++ToSendMax] = 0xff; | |
927 | ToSend[++ToSendMax] = 0xff; | |
928 | ToSend[++ToSendMax] = 0x00; | |
929 | ToSend[++ToSendMax] = 0x00; | |
930 | ToSend[++ToSendMax] = 0x00; | |
931 | ||
932 | //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end | |
933 | ||
934 | // Convert from last byte pos to length | |
935 | ToSendMax++; | |
936 | } | |
937 | ||
938 | // Only SOF | |
939 | static void CodeIClassTagSOF() | |
940 | { | |
941 | //So far a dummy implementation, not used | |
942 | //int lastProxToAirDuration =0; | |
943 | ||
944 | ToSendReset(); | |
945 | // Send SOF | |
946 | ToSend[++ToSendMax] = 0x00; | |
947 | ToSend[++ToSendMax] = 0x00; | |
948 | ToSend[++ToSendMax] = 0x00; | |
949 | ToSend[++ToSendMax] = 0xff; | |
950 | ToSend[++ToSendMax] = 0xff; | |
951 | ToSend[++ToSendMax] = 0xff; | |
952 | ToSend[++ToSendMax] = 0x00; | |
953 | ToSend[++ToSendMax] = 0xff; | |
954 | ||
955 | // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning | |
956 | ||
957 | ||
958 | // Convert from last byte pos to length | |
959 | ToSendMax++; | |
960 | } | |
961 | int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf); | |
962 | /** | |
963 | * @brief SimulateIClass simulates an iClass card. | |
964 | * @param arg0 type of simulation | |
965 | * - 0 uses the first 8 bytes in usb data as CSN | |
966 | * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified | |
967 | * in the usb data. This mode collects MAC from the reader, in order to do an offline | |
968 | * attack on the keys. For more info, see "dismantling iclass" and proxclone.com. | |
969 | * - Other : Uses the default CSN (031fec8af7ff12e0) | |
970 | * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only) | |
971 | * @param arg2 | |
972 | * @param datain | |
973 | */ | |
974 | void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) | |
975 | { | |
976 | uint32_t simType = arg0; | |
977 | uint32_t numberOfCSNS = arg1; | |
978 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
979 | ||
980 | // Enable and clear the trace | |
981 | iso14a_set_tracing(TRUE); | |
982 | iso14a_clear_trace(); | |
983 | ||
984 | uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; | |
985 | if(simType == 0) { | |
986 | // Use the CSN from commandline | |
987 | memcpy(csn_crc, datain, 8); | |
988 | doIClassSimulation(csn_crc,0,NULL); | |
989 | }else if(simType == 1) | |
990 | { | |
991 | doIClassSimulation(csn_crc,0,NULL); | |
992 | } | |
993 | else if(simType == 2) | |
994 | { | |
995 | ||
996 | uint8_t mac_responses[64] = { 0 }; | |
997 | Dbprintf("Going into attack mode"); | |
998 | // In this mode, a number of csns are within datain. We'll simulate each one, one at a time | |
999 | // in order to collect MAC's from the reader. This can later be used in an offlne-attack | |
1000 | // in order to obtain the keys, as in the "dismantling iclass"-paper. | |
1001 | int i = 0; | |
1002 | for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++) | |
1003 | { | |
1004 | // The usb data is 512 bytes, fitting 65 8-byte CSNs in there. | |
1005 | ||
1006 | memcpy(csn_crc, datain+(i*8), 8); | |
1007 | if(doIClassSimulation(csn_crc,1,mac_responses)) | |
1008 | { | |
1009 | return; // Button pressed | |
1010 | } | |
1011 | } | |
1012 | cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8); | |
1013 | ||
1014 | } | |
1015 | else{ | |
1016 | // We may want a mode here where we hardcode the csns to use (from proxclone). | |
1017 | // That will speed things up a little, but not required just yet. | |
1018 | Dbprintf("The mode is not implemented, reserved for future use"); | |
1019 | } | |
1020 | Dbprintf("Done..."); | |
1021 | ||
1022 | } | |
1023 | /** | |
1024 | * @brief Does the actual simulation | |
1025 | * @param csn - csn to use | |
1026 | * @param breakAfterMacReceived if true, returns after reader MAC has been received. | |
1027 | */ | |
1028 | int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf) | |
1029 | { | |
1030 | ||
1031 | ||
1032 | // CSN followed by two CRC bytes | |
1033 | uint8_t response2[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1034 | uint8_t response3[] = { 0,0,0,0,0,0,0,0,0,0}; | |
1035 | memcpy(response3,csn,sizeof(response3)); | |
1036 | Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]); | |
1037 | // e-Purse | |
1038 | uint8_t response4[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1039 | ||
1040 | // Construct anticollision-CSN | |
1041 | rotateCSN(response3,response2); | |
1042 | ||
1043 | // Compute CRC on both CSNs | |
1044 | ComputeCrc14443(CRC_ICLASS, response2, 8, &response2[8], &response2[9]); | |
1045 | ComputeCrc14443(CRC_ICLASS, response3, 8, &response3[8], &response3[9]); | |
1046 | ||
1047 | int exitLoop = 0; | |
1048 | // Reader 0a | |
1049 | // Tag 0f | |
1050 | // Reader 0c | |
1051 | // Tag anticoll. CSN | |
1052 | // Reader 81 anticoll. CSN | |
1053 | // Tag CSN | |
1054 | ||
1055 | uint8_t *resp; | |
1056 | int respLen; | |
1057 | uint8_t* respdata = NULL; | |
1058 | int respsize = 0; | |
1059 | uint8_t sof = 0x0f; | |
1060 | ||
1061 | // Respond SOF -- takes 8 bytes | |
1062 | uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); | |
1063 | int resp1Len; | |
1064 | ||
1065 | // Anticollision CSN (rotated CSN) | |
1066 | // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit) | |
1067 | uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 10); | |
1068 | int resp2Len; | |
1069 | ||
1070 | // CSN | |
1071 | // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit) | |
1072 | uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 190); | |
1073 | int resp3Len; | |
1074 | ||
1075 | // e-Purse | |
1076 | // 144: Takes 16 bytes for SOF/EOF and 8 * 16 = 128 bytes (2 bytes/bit) | |
1077 | uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 370); | |
1078 | int resp4Len; | |
1079 | ||
1080 | // + 1720.. | |
1081 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); | |
1082 | memset(receivedCmd, 0x44, RECV_CMD_SIZE); | |
1083 | int len; | |
1084 | ||
1085 | // Prepare card messages | |
1086 | ToSendMax = 0; | |
1087 | ||
1088 | // First card answer: SOF | |
1089 | CodeIClassTagSOF(); | |
1090 | memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax; | |
1091 | ||
1092 | // Anticollision CSN | |
1093 | CodeIClassTagAnswer(response2, sizeof(response2)); | |
1094 | memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax; | |
1095 | ||
1096 | // CSN | |
1097 | CodeIClassTagAnswer(response3, sizeof(response3)); | |
1098 | memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax; | |
1099 | ||
1100 | // e-Purse | |
1101 | CodeIClassTagAnswer(response4, sizeof(response4)); | |
1102 | memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax; | |
1103 | ||
1104 | ||
1105 | // Start from off (no field generated) | |
1106 | //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1107 | //SpinDelay(200); | |
1108 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
1109 | SpinDelay(100); | |
1110 | StartCountSspClk(); | |
1111 | // We need to listen to the high-frequency, peak-detected path. | |
1112 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1113 | FpgaSetupSsc(); | |
1114 | ||
1115 | // To control where we are in the protocol | |
1116 | int cmdsRecvd = 0; | |
1117 | uint32_t time_0 = GetCountSspClk(); | |
1118 | uint32_t t2r_time =0; | |
1119 | uint32_t r2t_time =0; | |
1120 | ||
1121 | LED_A_ON(); | |
1122 | bool buttonPressed = false; | |
1123 | ||
1124 | /** Hack for testing | |
1125 | memcpy(reader_mac_buf,csn,8); | |
1126 | exitLoop = true; | |
1127 | end hack **/ | |
1128 | ||
1129 | while(!exitLoop) { | |
1130 | ||
1131 | LED_B_OFF(); | |
1132 | //Signal tracer | |
1133 | // Can be used to get a trigger for an oscilloscope.. | |
1134 | LED_C_OFF(); | |
1135 | ||
1136 | if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) { | |
1137 | buttonPressed = true; | |
1138 | break; | |
1139 | } | |
1140 | r2t_time = GetCountSspClk(); | |
1141 | //Signal tracer | |
1142 | LED_C_ON(); | |
1143 | ||
1144 | // Okay, look at the command now. | |
1145 | if(receivedCmd[0] == 0x0a ) { | |
1146 | // Reader in anticollission phase | |
1147 | resp = resp1; respLen = resp1Len; //order = 1; | |
1148 | respdata = &sof; | |
1149 | respsize = sizeof(sof); | |
1150 | } else if(receivedCmd[0] == 0x0c) { | |
1151 | // Reader asks for anticollission CSN | |
1152 | resp = resp2; respLen = resp2Len; //order = 2; | |
1153 | respdata = response2; | |
1154 | respsize = sizeof(response2); | |
1155 | //DbpString("Reader requests anticollission CSN:"); | |
1156 | } else if(receivedCmd[0] == 0x81) { | |
1157 | // Reader selects anticollission CSN. | |
1158 | // Tag sends the corresponding real CSN | |
1159 | resp = resp3; respLen = resp3Len; //order = 3; | |
1160 | respdata = response3; | |
1161 | respsize = sizeof(response3); | |
1162 | //DbpString("Reader selects anticollission CSN:"); | |
1163 | } else if(receivedCmd[0] == 0x88) { | |
1164 | // Read e-purse (88 02) | |
1165 | resp = resp4; respLen = resp4Len; //order = 4; | |
1166 | respdata = response4; | |
1167 | respsize = sizeof(response4); | |
1168 | LED_B_ON(); | |
1169 | } else if(receivedCmd[0] == 0x05) { | |
1170 | // Reader random and reader MAC!!! | |
1171 | // Do not respond | |
1172 | // We do not know what to answer, so lets keep quiet | |
1173 | resp = resp1; respLen = 0; //order = 5; | |
1174 | respdata = NULL; | |
1175 | respsize = 0; | |
1176 | if (breakAfterMacReceived){ | |
1177 | // dbprintf:ing ... | |
1178 | Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]); | |
1179 | Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len, | |
1180 | receivedCmd[0], receivedCmd[1], receivedCmd[2], | |
1181 | receivedCmd[3], receivedCmd[4], receivedCmd[5], | |
1182 | receivedCmd[6], receivedCmd[7], receivedCmd[8]); | |
1183 | if (reader_mac_buf != NULL) | |
1184 | { | |
1185 | memcpy(reader_mac_buf,receivedCmd+1,8); | |
1186 | } | |
1187 | exitLoop = true; | |
1188 | } | |
1189 | } else if(receivedCmd[0] == 0x00 && len == 1) { | |
1190 | // Reader ends the session | |
1191 | resp = resp1; respLen = 0; //order = 0; | |
1192 | respdata = NULL; | |
1193 | respsize = 0; | |
1194 | } else { | |
1195 | //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44 | |
1196 | // Never seen this command before | |
1197 | Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x", | |
1198 | len, | |
1199 | receivedCmd[0], receivedCmd[1], receivedCmd[2], | |
1200 | receivedCmd[3], receivedCmd[4], receivedCmd[5], | |
1201 | receivedCmd[6], receivedCmd[7], receivedCmd[8]); | |
1202 | // Do not respond | |
1203 | resp = resp1; respLen = 0; //order = 0; | |
1204 | respdata = NULL; | |
1205 | respsize = 0; | |
1206 | } | |
1207 | ||
1208 | if(cmdsRecvd > 100) { | |
1209 | //DbpString("100 commands later..."); | |
1210 | //break; | |
1211 | } | |
1212 | else { | |
1213 | cmdsRecvd++; | |
1214 | } | |
1215 | ||
1216 | if(respLen > 0) { | |
1217 | SendIClassAnswer(resp, respLen, 21); | |
1218 | t2r_time = GetCountSspClk(); | |
1219 | } | |
1220 | ||
1221 | if (tracing) { | |
1222 | LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, Uart.parityBits,TRUE); | |
1223 | LogTrace(NULL,0, (r2t_time-time_0) << 4, 0,TRUE); | |
1224 | ||
1225 | if (respdata != NULL) { | |
1226 | LogTrace(respdata,respsize, (t2r_time-time_0) << 4,SwapBits(GetParity(respdata,respsize),respsize),FALSE); | |
1227 | LogTrace(NULL,0, (t2r_time-time_0) << 4,0,FALSE); | |
1228 | ||
1229 | ||
1230 | } | |
1231 | if(!tracing) { | |
1232 | DbpString("Trace full"); | |
1233 | //break; | |
1234 | } | |
1235 | ||
1236 | } | |
1237 | memset(receivedCmd, 0x44, RECV_CMD_SIZE); | |
1238 | } | |
1239 | ||
1240 | //Dbprintf("%x", cmdsRecvd); | |
1241 | LED_A_OFF(); | |
1242 | LED_B_OFF(); | |
1243 | if(buttonPressed) | |
1244 | { | |
1245 | DbpString("Button pressed"); | |
1246 | } | |
1247 | return buttonPressed; | |
1248 | } | |
1249 | ||
1250 | static int SendIClassAnswer(uint8_t *resp, int respLen, int delay) | |
1251 | { | |
1252 | int i = 0, d=0;//, u = 0, d = 0; | |
1253 | uint8_t b = 0; | |
1254 | ||
1255 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K); | |
1256 | ||
1257 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
1258 | FpgaSetupSsc(); | |
1259 | while(!BUTTON_PRESS()) { | |
1260 | if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){ | |
1261 | b = AT91C_BASE_SSC->SSC_RHR; (void) b; | |
1262 | } | |
1263 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){ | |
1264 | b = 0x00; | |
1265 | if(d < delay) { | |
1266 | d++; | |
1267 | } | |
1268 | else { | |
1269 | if( i < respLen){ | |
1270 | b = resp[i]; | |
1271 | //Hack | |
1272 | //b = 0xAC; | |
1273 | } | |
1274 | i++; | |
1275 | } | |
1276 | AT91C_BASE_SSC->SSC_THR = b; | |
1277 | } | |
1278 | ||
1279 | if (i > respLen +4) break; | |
1280 | } | |
1281 | ||
1282 | return 0; | |
1283 | } | |
1284 | ||
1285 | /// THE READER CODE | |
1286 | ||
1287 | //----------------------------------------------------------------------------- | |
1288 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1289 | //----------------------------------------------------------------------------- | |
1290 | static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) | |
1291 | { | |
1292 | int c; | |
1293 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1294 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
1295 | FpgaSetupSsc(); | |
1296 | ||
1297 | if (wait) | |
1298 | if(*wait < 10) | |
1299 | *wait = 10; | |
1300 | ||
1301 | for(c = 0; c < *wait;) { | |
1302 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1303 | AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! | |
1304 | c++; | |
1305 | } | |
1306 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1307 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1308 | (void)r; | |
1309 | } | |
1310 | WDT_HIT(); | |
1311 | } | |
1312 | ||
1313 | uint8_t sendbyte; | |
1314 | bool firstpart = TRUE; | |
1315 | c = 0; | |
1316 | for(;;) { | |
1317 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1318 | ||
1319 | // DOUBLE THE SAMPLES! | |
1320 | if(firstpart) { | |
1321 | sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4); | |
1322 | } | |
1323 | else { | |
1324 | sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4); | |
1325 | c++; | |
1326 | } | |
1327 | if(sendbyte == 0xff) { | |
1328 | sendbyte = 0xfe; | |
1329 | } | |
1330 | AT91C_BASE_SSC->SSC_THR = sendbyte; | |
1331 | firstpart = !firstpart; | |
1332 | ||
1333 | if(c >= len) { | |
1334 | break; | |
1335 | } | |
1336 | } | |
1337 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1338 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1339 | (void)r; | |
1340 | } | |
1341 | WDT_HIT(); | |
1342 | } | |
1343 | if (samples) *samples = (c + *wait) << 3; | |
1344 | } | |
1345 | ||
1346 | ||
1347 | //----------------------------------------------------------------------------- | |
1348 | // Prepare iClass reader command to send to FPGA | |
1349 | //----------------------------------------------------------------------------- | |
1350 | void CodeIClassCommand(const uint8_t * cmd, int len) | |
1351 | { | |
1352 | int i, j, k; | |
1353 | uint8_t b; | |
1354 | ||
1355 | ToSendReset(); | |
1356 | ||
1357 | // Start of Communication: 1 out of 4 | |
1358 | ToSend[++ToSendMax] = 0xf0; | |
1359 | ToSend[++ToSendMax] = 0x00; | |
1360 | ToSend[++ToSendMax] = 0x0f; | |
1361 | ToSend[++ToSendMax] = 0x00; | |
1362 | ||
1363 | // Modulate the bytes | |
1364 | for (i = 0; i < len; i++) { | |
1365 | b = cmd[i]; | |
1366 | for(j = 0; j < 4; j++) { | |
1367 | for(k = 0; k < 4; k++) { | |
1368 | if(k == (b & 3)) { | |
1369 | ToSend[++ToSendMax] = 0x0f; | |
1370 | } | |
1371 | else { | |
1372 | ToSend[++ToSendMax] = 0x00; | |
1373 | } | |
1374 | } | |
1375 | b >>= 2; | |
1376 | } | |
1377 | } | |
1378 | ||
1379 | // End of Communication | |
1380 | ToSend[++ToSendMax] = 0x00; | |
1381 | ToSend[++ToSendMax] = 0x00; | |
1382 | ToSend[++ToSendMax] = 0xf0; | |
1383 | ToSend[++ToSendMax] = 0x00; | |
1384 | ||
1385 | // Convert from last character reference to length | |
1386 | ToSendMax++; | |
1387 | } | |
1388 | ||
1389 | void ReaderTransmitIClass(uint8_t* frame, int len) | |
1390 | { | |
1391 | int wait = 0; | |
1392 | int samples = 0; | |
1393 | int par = 0; | |
1394 | ||
1395 | // This is tied to other size changes | |
1396 | // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024; | |
1397 | CodeIClassCommand(frame,len); | |
1398 | ||
1399 | // Select the card | |
1400 | TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait); | |
1401 | if(trigger) | |
1402 | LED_A_ON(); | |
1403 | ||
1404 | // Store reader command in buffer | |
1405 | if (tracing) LogTrace(frame,len,rsamples,par,TRUE); | |
1406 | } | |
1407 | ||
1408 | //----------------------------------------------------------------------------- | |
1409 | // Wait a certain time for tag response | |
1410 | // If a response is captured return TRUE | |
1411 | // If it takes too long return FALSE | |
1412 | //----------------------------------------------------------------------------- | |
1413 | static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer | |
1414 | { | |
1415 | // buffer needs to be 512 bytes | |
1416 | int c; | |
1417 | ||
1418 | // Set FPGA mode to "reader listen mode", no modulation (listen | |
1419 | // only, since we are receiving, not transmitting). | |
1420 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); | |
1421 | ||
1422 | // Now get the answer from the card | |
1423 | Demod.output = receivedResponse; | |
1424 | Demod.len = 0; | |
1425 | Demod.state = DEMOD_UNSYNCD; | |
1426 | ||
1427 | uint8_t b; | |
1428 | if (elapsed) *elapsed = 0; | |
1429 | ||
1430 | bool skip = FALSE; | |
1431 | ||
1432 | c = 0; | |
1433 | for(;;) { | |
1434 | WDT_HIT(); | |
1435 | ||
1436 | if(BUTTON_PRESS()) return FALSE; | |
1437 | ||
1438 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1439 | AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! | |
1440 | if (elapsed) (*elapsed)++; | |
1441 | } | |
1442 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1443 | if(c < timeout) { c++; } else { return FALSE; } | |
1444 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1445 | skip = !skip; | |
1446 | if(skip) continue; | |
1447 | /*if(ManchesterDecoding((b>>4) & 0xf)) { | |
1448 | *samples = ((c - 1) << 3) + 4; | |
1449 | return TRUE; | |
1450 | }*/ | |
1451 | if(ManchesterDecoding(b & 0x0f)) { | |
1452 | *samples = c << 3; | |
1453 | return TRUE; | |
1454 | } | |
1455 | } | |
1456 | } | |
1457 | } | |
1458 | ||
1459 | int ReaderReceiveIClass(uint8_t* receivedAnswer) | |
1460 | { | |
1461 | int samples = 0; | |
1462 | if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE; | |
1463 | rsamples += samples; | |
1464 | if (tracing) LogTrace(receivedAnswer,Demod.len,rsamples,Demod.parityBits,FALSE); | |
1465 | if(samples == 0) return FALSE; | |
1466 | return Demod.len; | |
1467 | } | |
1468 | ||
1469 | void setupIclassReader() | |
1470 | { | |
1471 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1472 | // Reset trace buffer | |
1473 | iso14a_set_tracing(TRUE); | |
1474 | iso14a_clear_trace(); | |
1475 | ||
1476 | // Setup SSC | |
1477 | FpgaSetupSsc(); | |
1478 | // Start from off (no field generated) | |
1479 | // Signal field is off with the appropriate LED | |
1480 | LED_D_OFF(); | |
1481 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1482 | SpinDelay(200); | |
1483 | ||
1484 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1485 | ||
1486 | // Now give it time to spin up. | |
1487 | // Signal field is on with the appropriate LED | |
1488 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1489 | SpinDelay(200); | |
1490 | LED_A_ON(); | |
1491 | ||
1492 | } | |
1493 | ||
1494 | // Reader iClass Anticollission | |
1495 | void ReaderIClass(uint8_t arg0) { | |
1496 | uint8_t act_all[] = { 0x0a }; | |
1497 | uint8_t identify[] = { 0x0c }; | |
1498 | uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1499 | uint8_t readcheck_cc[]= { 0x88, 0x02 }; | |
1500 | ||
1501 | uint8_t card_data[24]={0}; | |
1502 | uint8_t last_csn[8]={0}; | |
1503 | ||
1504 | uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes | |
1505 | ||
1506 | int read_status= 0; | |
1507 | bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE; | |
1508 | ||
1509 | setupIclassReader(); | |
1510 | ||
1511 | size_t datasize = 0; | |
1512 | while(!BUTTON_PRESS()) | |
1513 | { | |
1514 | WDT_HIT(); | |
1515 | ||
1516 | // Send act_all | |
1517 | ReaderTransmitIClass(act_all, 1); | |
1518 | // Card present? | |
1519 | if(ReaderReceiveIClass(resp)) { | |
1520 | ||
1521 | ReaderTransmitIClass(identify, 1); | |
1522 | ||
1523 | if(ReaderReceiveIClass(resp) == 10) { | |
1524 | //Copy the Anti-collision CSN to our select-packet | |
1525 | memcpy(&select[1],resp,8); | |
1526 | //Dbprintf("Anti-collision CSN: %02x %02x %02x %02x %02x %02x %02x %02x",resp[0], resp[1], resp[2], | |
1527 | // resp[3], resp[4], resp[5], | |
1528 | // resp[6], resp[7]); | |
1529 | //Select the card | |
1530 | ReaderTransmitIClass(select, sizeof(select)); | |
1531 | ||
1532 | if(ReaderReceiveIClass(resp) == 10) { | |
1533 | //Save CSN in response data | |
1534 | memcpy(card_data,resp,8); | |
1535 | datasize += 8; | |
1536 | //Flag that we got to at least stage 1, read CSN | |
1537 | read_status = 1; | |
1538 | ||
1539 | // Card selected | |
1540 | //Dbprintf("Readcheck on Sector 2"); | |
1541 | ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc)); | |
1542 | if(ReaderReceiveIClass(resp) == 8) { | |
1543 | //Save CC (e-purse) in response data | |
1544 | memcpy(card_data+8,resp,8); | |
1545 | datasize += 8; | |
1546 | //Got both | |
1547 | read_status = 2; | |
1548 | } | |
1549 | ||
1550 | LED_B_ON(); | |
1551 | //Send back to client, but don't bother if we already sent this | |
1552 | if(memcmp(last_csn, card_data, 8) != 0) | |
1553 | cmd_send(CMD_ACK,read_status,0,0,card_data,datasize); | |
1554 | ||
1555 | //Save that we already sent this.... | |
1556 | if(read_status == 2) | |
1557 | memcpy(last_csn, card_data, 8); | |
1558 | ||
1559 | LED_B_OFF(); | |
1560 | ||
1561 | if(abort_after_read) break; | |
1562 | } | |
1563 | } | |
1564 | } | |
1565 | ||
1566 | if(traceLen > TRACE_SIZE) { | |
1567 | DbpString("Trace full"); | |
1568 | break; | |
1569 | } | |
1570 | } | |
1571 | LED_A_OFF(); | |
1572 | } | |
1573 | ||
1574 | void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) { | |
1575 | uint8_t act_all[] = { 0x0a }; | |
1576 | uint8_t identify[] = { 0x0c }; | |
1577 | uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1578 | uint8_t readcheck_cc[]= { 0x88, 0x02 }; | |
1579 | uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1580 | uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 }; | |
1581 | ||
1582 | uint16_t crc = 0; | |
1583 | uint8_t cardsize=0; | |
1584 | bool read_success=false; | |
1585 | uint8_t mem=0; | |
1586 | ||
1587 | static struct memory_t{ | |
1588 | int k16; | |
1589 | int book; | |
1590 | int k2; | |
1591 | int lockauth; | |
1592 | int keyaccess; | |
1593 | } memory; | |
1594 | ||
1595 | uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes | |
1596 | ||
1597 | setupIclassReader(); | |
1598 | ||
1599 | ||
1600 | for(int i=0;i<1;i++) { | |
1601 | ||
1602 | if(traceLen > TRACE_SIZE) { | |
1603 | DbpString("Trace full"); | |
1604 | break; | |
1605 | } | |
1606 | ||
1607 | if (BUTTON_PRESS()) break; | |
1608 | ||
1609 | // Send act_all | |
1610 | ReaderTransmitIClass(act_all, 1); | |
1611 | // Card present? | |
1612 | if(ReaderReceiveIClass(resp)) { | |
1613 | ReaderTransmitIClass(identify, 1); | |
1614 | if(ReaderReceiveIClass(resp) == 10) { | |
1615 | // Select card | |
1616 | memcpy(&select[1],resp,8); | |
1617 | ReaderTransmitIClass(select, sizeof(select)); | |
1618 | ||
1619 | if(ReaderReceiveIClass(resp) == 10) { | |
1620 | Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x", | |
1621 | resp[0], resp[1], resp[2], | |
1622 | resp[3], resp[4], resp[5], | |
1623 | resp[6], resp[7]); | |
1624 | } | |
1625 | // Card selected | |
1626 | Dbprintf("Readcheck on Sector 2"); | |
1627 | ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc)); | |
1628 | if(ReaderReceiveIClass(resp) == 8) { | |
1629 | Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x", | |
1630 | resp[0], resp[1], resp[2], | |
1631 | resp[3], resp[4], resp[5], | |
1632 | resp[6], resp[7]); | |
1633 | }else return; | |
1634 | Dbprintf("Authenticate"); | |
1635 | //for now replay captured auth (as cc not updated) | |
1636 | memcpy(check+5,MAC,4); | |
1637 | //Dbprintf(" AA: %02x %02x %02x %02x", | |
1638 | // check[5], check[6], check[7],check[8]); | |
1639 | ReaderTransmitIClass(check, sizeof(check)); | |
1640 | if(ReaderReceiveIClass(resp) == 4) { | |
1641 | Dbprintf(" AR: %02x %02x %02x %02x", | |
1642 | resp[0], resp[1], resp[2],resp[3]); | |
1643 | }else { | |
1644 | Dbprintf("Error: Authentication Fail!"); | |
1645 | return; | |
1646 | } | |
1647 | Dbprintf("Dump Contents"); | |
1648 | //first get configuration block | |
1649 | read_success=false; | |
1650 | read[1]=1; | |
1651 | uint8_t *blockno=&read[1]; | |
1652 | crc = iclass_crc16((char *)blockno,1); | |
1653 | read[2] = crc >> 8; | |
1654 | read[3] = crc & 0xff; | |
1655 | while(!read_success){ | |
1656 | ReaderTransmitIClass(read, sizeof(read)); | |
1657 | if(ReaderReceiveIClass(resp) == 10) { | |
1658 | read_success=true; | |
1659 | mem=resp[5]; | |
1660 | memory.k16= (mem & 0x80); | |
1661 | memory.book= (mem & 0x20); | |
1662 | memory.k2= (mem & 0x8); | |
1663 | memory.lockauth= (mem & 0x2); | |
1664 | memory.keyaccess= (mem & 0x1); | |
1665 | ||
1666 | } | |
1667 | } | |
1668 | if (memory.k16){ | |
1669 | cardsize=255; | |
1670 | }else cardsize=32; | |
1671 | //then loop around remaining blocks | |
1672 | for(uint8_t j=0; j<cardsize; j++){ | |
1673 | read_success=false; | |
1674 | uint8_t *blockno=&j; | |
1675 | //crc_data[0]=j; | |
1676 | read[1]=j; | |
1677 | crc = iclass_crc16((char *)blockno,1); | |
1678 | read[2] = crc >> 8; | |
1679 | read[3] = crc & 0xff; | |
1680 | while(!read_success){ | |
1681 | ReaderTransmitIClass(read, sizeof(read)); | |
1682 | if(ReaderReceiveIClass(resp) == 10) { | |
1683 | read_success=true; | |
1684 | Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x", | |
1685 | j, resp[0], resp[1], resp[2], | |
1686 | resp[3], resp[4], resp[5], | |
1687 | resp[6], resp[7]); | |
1688 | } | |
1689 | } | |
1690 | } | |
1691 | } | |
1692 | } | |
1693 | WDT_HIT(); | |
1694 | } | |
1695 | ||
1696 | LED_A_OFF(); | |
1697 | } | |
1698 | ||
1699 | //2. Create Read method (cut-down from above) based off responses from 1. | |
1700 | // Since we have the MAC could continue to use replay function. | |
1701 | //3. Create Write method | |
1702 | /* | |
1703 | void IClass_iso14443A_write(uint8_t arg0, uint8_t blockNo, uint8_t *data, uint8_t *MAC) { | |
1704 | uint8_t act_all[] = { 0x0a }; | |
1705 | uint8_t identify[] = { 0x0c }; | |
1706 | uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1707 | uint8_t readcheck_cc[]= { 0x88, 0x02 }; | |
1708 | uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1709 | uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 }; | |
1710 | uint8_t write[] = { 0x87, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1711 | ||
1712 | uint16_t crc = 0; | |
1713 | ||
1714 | uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes | |
1715 | ||
1716 | // Reset trace buffer | |
1717 | memset(trace, 0x44, RECV_CMD_OFFSET); | |
1718 | traceLen = 0; | |
1719 | ||
1720 | // Setup SSC | |
1721 | FpgaSetupSsc(); | |
1722 | // Start from off (no field generated) | |
1723 | // Signal field is off with the appropriate LED | |
1724 | LED_D_OFF(); | |
1725 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1726 | SpinDelay(200); | |
1727 | ||
1728 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1729 | ||
1730 | // Now give it time to spin up. | |
1731 | // Signal field is on with the appropriate LED | |
1732 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1733 | SpinDelay(200); | |
1734 | ||
1735 | LED_A_ON(); | |
1736 | ||
1737 | for(int i=0;i<1;i++) { | |
1738 | ||
1739 | if(traceLen > TRACE_SIZE) { | |
1740 | DbpString("Trace full"); | |
1741 | break; | |
1742 | } | |
1743 | ||
1744 | if (BUTTON_PRESS()) break; | |
1745 | ||
1746 | // Send act_all | |
1747 | ReaderTransmitIClass(act_all, 1); | |
1748 | // Card present? | |
1749 | if(ReaderReceiveIClass(resp)) { | |
1750 | ReaderTransmitIClass(identify, 1); | |
1751 | if(ReaderReceiveIClass(resp) == 10) { | |
1752 | // Select card | |
1753 | memcpy(&select[1],resp,8); | |
1754 | ReaderTransmitIClass(select, sizeof(select)); | |
1755 | ||
1756 | if(ReaderReceiveIClass(resp) == 10) { | |
1757 | Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x", | |
1758 | resp[0], resp[1], resp[2], | |
1759 | resp[3], resp[4], resp[5], | |
1760 | resp[6], resp[7]); | |
1761 | } | |
1762 | // Card selected | |
1763 | Dbprintf("Readcheck on Sector 2"); | |
1764 | ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc)); | |
1765 | if(ReaderReceiveIClass(resp) == 8) { | |
1766 | Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x", | |
1767 | resp[0], resp[1], resp[2], | |
1768 | resp[3], resp[4], resp[5], | |
1769 | resp[6], resp[7]); | |
1770 | }else return; | |
1771 | Dbprintf("Authenticate"); | |
1772 | //for now replay captured auth (as cc not updated) | |
1773 | memcpy(check+5,MAC,4); | |
1774 | Dbprintf(" AA: %02x %02x %02x %02x", | |
1775 | check[5], check[6], check[7],check[8]); | |
1776 | ReaderTransmitIClass(check, sizeof(check)); | |
1777 | if(ReaderReceiveIClass(resp) == 4) { | |
1778 | Dbprintf(" AR: %02x %02x %02x %02x", | |
1779 | resp[0], resp[1], resp[2],resp[3]); | |
1780 | }else { | |
1781 | Dbprintf("Error: Authentication Fail!"); | |
1782 | return; | |
1783 | } | |
1784 | Dbprintf("Write Block"); | |
1785 | ||
1786 | //read configuration for max block number | |
1787 | read_success=false; | |
1788 | read[1]=1; | |
1789 | uint8_t *blockno=&read[1]; | |
1790 | crc = iclass_crc16((char *)blockno,1); | |
1791 | read[2] = crc >> 8; | |
1792 | read[3] = crc & 0xff; | |
1793 | while(!read_success){ | |
1794 | ReaderTransmitIClass(read, sizeof(read)); | |
1795 | if(ReaderReceiveIClass(resp) == 10) { | |
1796 | read_success=true; | |
1797 | mem=resp[5]; | |
1798 | memory.k16= (mem & 0x80); | |
1799 | memory.book= (mem & 0x20); | |
1800 | memory.k2= (mem & 0x8); | |
1801 | memory.lockauth= (mem & 0x2); | |
1802 | memory.keyaccess= (mem & 0x1); | |
1803 | ||
1804 | } | |
1805 | } | |
1806 | if (memory.k16){ | |
1807 | cardsize=255; | |
1808 | }else cardsize=32; | |
1809 | //check card_size | |
1810 | ||
1811 | memcpy(write+1,blockNo,1); | |
1812 | memcpy(write+2,data,8); | |
1813 | memcpy(write+10,mac,4); | |
1814 | while(!send_success){ | |
1815 | ReaderTransmitIClass(write, sizeof(write)); | |
1816 | if(ReaderReceiveIClass(resp) == 10) { | |
1817 | write_success=true; | |
1818 | } | |
1819 | }// | |
1820 | } | |
1821 | WDT_HIT(); | |
1822 | } | |
1823 | ||
1824 | LED_A_OFF(); | |
1825 | }*/ |