| 1 | //----------------------------------------------------------------------------- |
| 2 | // Copyright (C) 2010 iZsh <izsh at fail0verflow.com> |
| 3 | // |
| 4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
| 5 | // at your option, any later version. See the LICENSE.txt file for the text of |
| 6 | // the license. |
| 7 | //----------------------------------------------------------------------------- |
| 8 | // Low frequency EM4x commands |
| 9 | //----------------------------------------------------------------------------- |
| 10 | |
| 11 | #include "cmdlfem4x.h" |
| 12 | |
| 13 | #include <stdio.h> |
| 14 | #include <string.h> |
| 15 | #include <inttypes.h> |
| 16 | #include "comms.h" |
| 17 | #include "ui.h" |
| 18 | #include "util.h" |
| 19 | #include "graph.h" |
| 20 | #include "cmdparser.h" |
| 21 | #include "cmddata.h" |
| 22 | #include "cmdlf.h" |
| 23 | #include "cmdmain.h" |
| 24 | #include "lfdemod.h" |
| 25 | #include "protocols.h" |
| 26 | #include "util_posix.h" |
| 27 | |
| 28 | uint64_t g_em410xId=0; |
| 29 | |
| 30 | static int CmdHelp(const char *Cmd); |
| 31 | void ConstructEM410xEmulGraph(const char *uid,const uint8_t clock); |
| 32 | |
| 33 | int CmdEMdemodASK(const char *Cmd) |
| 34 | { |
| 35 | char cmdp = param_getchar(Cmd, 0); |
| 36 | int findone = (cmdp == '1') ? 1 : 0; |
| 37 | UsbCommand c={CMD_EM410X_DEMOD}; |
| 38 | c.arg[0]=findone; |
| 39 | SendCommand(&c); |
| 40 | return 0; |
| 41 | } |
| 42 | |
| 43 | //by marshmellow |
| 44 | //print 64 bit EM410x ID in multiple formats |
| 45 | void printEM410x(uint32_t hi, uint64_t id) |
| 46 | { |
| 47 | if (id || hi){ |
| 48 | uint64_t iii=1; |
| 49 | uint64_t id2lo=0; |
| 50 | uint32_t ii=0; |
| 51 | uint32_t i=0; |
| 52 | for (ii=5; ii>0;ii--){ |
| 53 | for (i=0;i<8;i++){ |
| 54 | id2lo=(id2lo<<1LL) | ((id & (iii << (i+((ii-1)*8)))) >> (i+((ii-1)*8))); |
| 55 | } |
| 56 | } |
| 57 | if (hi){ |
| 58 | //output 88 bit em id |
| 59 | PrintAndLog("\nEM TAG ID : %06X%016" PRIX64, hi, id); |
| 60 | } else{ |
| 61 | //output 40 bit em id |
| 62 | PrintAndLog("\nEM TAG ID : %010" PRIX64, id); |
| 63 | PrintAndLog("\nPossible de-scramble patterns"); |
| 64 | PrintAndLog("Unique TAG ID : %010" PRIX64, id2lo); |
| 65 | PrintAndLog("HoneyWell IdentKey {"); |
| 66 | PrintAndLog("DEZ 8 : %08" PRIu64,id & 0xFFFFFF); |
| 67 | PrintAndLog("DEZ 10 : %010" PRIu64,id & 0xFFFFFFFF); |
| 68 | PrintAndLog("DEZ 5.5 : %05lld.%05" PRIu64,(id>>16LL) & 0xFFFF,(id & 0xFFFF)); |
| 69 | PrintAndLog("DEZ 3.5A : %03lld.%05" PRIu64,(id>>32ll),(id & 0xFFFF)); |
| 70 | PrintAndLog("DEZ 3.5B : %03lld.%05" PRIu64,(id & 0xFF000000) >> 24,(id & 0xFFFF)); |
| 71 | PrintAndLog("DEZ 3.5C : %03lld.%05" PRIu64,(id & 0xFF0000) >> 16,(id & 0xFFFF)); |
| 72 | PrintAndLog("DEZ 14/IK2 : %014" PRIu64,id); |
| 73 | PrintAndLog("DEZ 15/IK3 : %015" PRIu64,id2lo); |
| 74 | PrintAndLog("DEZ 20/ZK : %02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64, |
| 75 | (id2lo & 0xf000000000) >> 36, |
| 76 | (id2lo & 0x0f00000000) >> 32, |
| 77 | (id2lo & 0x00f0000000) >> 28, |
| 78 | (id2lo & 0x000f000000) >> 24, |
| 79 | (id2lo & 0x0000f00000) >> 20, |
| 80 | (id2lo & 0x00000f0000) >> 16, |
| 81 | (id2lo & 0x000000f000) >> 12, |
| 82 | (id2lo & 0x0000000f00) >> 8, |
| 83 | (id2lo & 0x00000000f0) >> 4, |
| 84 | (id2lo & 0x000000000f) |
| 85 | ); |
| 86 | uint64_t paxton = (((id>>32) << 24) | (id & 0xffffff)) + 0x143e00; |
| 87 | PrintAndLog("}\nOther : %05" PRIu64 "_%03" PRIu64 "_%08" PRIu64 "",(id&0xFFFF),((id>>16LL) & 0xFF),(id & 0xFFFFFF)); |
| 88 | PrintAndLog("Pattern Paxton : %" PRIu64 " [0x%" PRIX64 "]", paxton, paxton); |
| 89 | |
| 90 | uint32_t p1id = (id & 0xFFFFFF); |
| 91 | uint8_t arr[32] = {0x00}; |
| 92 | int i =0; |
| 93 | int j = 23; |
| 94 | for (; i < 24; ++i, --j ){ |
| 95 | arr[i] = (p1id >> i) & 1; |
| 96 | } |
| 97 | |
| 98 | uint32_t p1 = 0; |
| 99 | |
| 100 | p1 |= arr[23] << 21; |
| 101 | p1 |= arr[22] << 23; |
| 102 | p1 |= arr[21] << 20; |
| 103 | p1 |= arr[20] << 22; |
| 104 | |
| 105 | p1 |= arr[19] << 18; |
| 106 | p1 |= arr[18] << 16; |
| 107 | p1 |= arr[17] << 19; |
| 108 | p1 |= arr[16] << 17; |
| 109 | |
| 110 | p1 |= arr[15] << 13; |
| 111 | p1 |= arr[14] << 15; |
| 112 | p1 |= arr[13] << 12; |
| 113 | p1 |= arr[12] << 14; |
| 114 | |
| 115 | p1 |= arr[11] << 6; |
| 116 | p1 |= arr[10] << 2; |
| 117 | p1 |= arr[9] << 7; |
| 118 | p1 |= arr[8] << 1; |
| 119 | |
| 120 | p1 |= arr[7] << 0; |
| 121 | p1 |= arr[6] << 8; |
| 122 | p1 |= arr[5] << 11; |
| 123 | p1 |= arr[4] << 3; |
| 124 | |
| 125 | p1 |= arr[3] << 10; |
| 126 | p1 |= arr[2] << 4; |
| 127 | p1 |= arr[1] << 5; |
| 128 | p1 |= arr[0] << 9; |
| 129 | PrintAndLog("Pattern 1 : %d [0x%X]", p1, p1); |
| 130 | |
| 131 | uint16_t sebury1 = id & 0xFFFF; |
| 132 | uint8_t sebury2 = (id >> 16) & 0x7F; |
| 133 | uint32_t sebury3 = id & 0x7FFFFF; |
| 134 | PrintAndLog("Pattern Sebury : %d %d %d [0x%X 0x%X 0x%X]", sebury1, sebury2, sebury3, sebury1, sebury2, sebury3); |
| 135 | } |
| 136 | } |
| 137 | return; |
| 138 | } |
| 139 | |
| 140 | /* Read the ID of an EM410x tag. |
| 141 | * Format: |
| 142 | * 1111 1111 1 <-- standard non-repeatable header |
| 143 | * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID |
| 144 | * .... |
| 145 | * CCCC <-- each bit here is parity for the 10 bits above in corresponding column |
| 146 | * 0 <-- stop bit, end of tag |
| 147 | */ |
| 148 | int AskEm410xDecode(bool verbose, uint32_t *hi, uint64_t *lo ) |
| 149 | { |
| 150 | size_t idx = 0; |
| 151 | uint8_t BitStream[512]={0}; |
| 152 | size_t BitLen = sizeof(BitStream); |
| 153 | if ( !getDemodBuf(BitStream, &BitLen) ) return 0; |
| 154 | |
| 155 | if (Em410xDecode(BitStream, &BitLen, &idx, hi, lo)) { |
| 156 | //set GraphBuffer for clone or sim command |
| 157 | setDemodBuf(DemodBuffer, (BitLen==40) ? 64 : 128, idx+1); |
| 158 | setClockGrid(g_DemodClock, g_DemodStartIdx + ((idx+1)*g_DemodClock)); |
| 159 | |
| 160 | if (g_debugMode) { |
| 161 | PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, BitLen); |
| 162 | printDemodBuff(); |
| 163 | } |
| 164 | if (verbose) { |
| 165 | PrintAndLog("EM410x pattern found: "); |
| 166 | printEM410x(*hi, *lo); |
| 167 | g_em410xId = *lo; |
| 168 | } |
| 169 | return 1; |
| 170 | } |
| 171 | return 0; |
| 172 | } |
| 173 | |
| 174 | //askdemod then call Em410xdecode |
| 175 | int AskEm410xDemod(const char *Cmd, uint32_t *hi, uint64_t *lo, bool verbose) |
| 176 | { |
| 177 | bool st = true; |
| 178 | if (!ASKDemod_ext(Cmd, false, false, 1, &st)) return 0; |
| 179 | return AskEm410xDecode(verbose, hi, lo); |
| 180 | } |
| 181 | |
| 182 | //by marshmellow |
| 183 | //takes 3 arguments - clock, invert and maxErr as integers |
| 184 | //attempts to demodulate ask while decoding manchester |
| 185 | //prints binary found and saves in graphbuffer for further commands |
| 186 | int CmdAskEM410xDemod(const char *Cmd) |
| 187 | { |
| 188 | char cmdp = param_getchar(Cmd, 0); |
| 189 | if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') { |
| 190 | PrintAndLog("Usage: lf em 410xdemod [clock] <0|1> [maxError]"); |
| 191 | PrintAndLog(" [set clock as integer] optional, if not set, autodetect."); |
| 192 | PrintAndLog(" <invert>, 1 for invert output"); |
| 193 | PrintAndLog(" [set maximum allowed errors], default = 100."); |
| 194 | PrintAndLog(""); |
| 195 | PrintAndLog(" sample: lf em 410xdemod = demod an EM410x Tag ID from GraphBuffer"); |
| 196 | PrintAndLog(" : lf em 410xdemod 32 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32"); |
| 197 | PrintAndLog(" : lf em 410xdemod 32 1 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32 and inverting data"); |
| 198 | PrintAndLog(" : lf em 410xdemod 1 = demod an EM410x Tag ID from GraphBuffer while inverting data"); |
| 199 | PrintAndLog(" : lf em 410xdemod 64 1 0 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/64 and inverting data and allowing 0 demod errors"); |
| 200 | return 0; |
| 201 | } |
| 202 | uint64_t lo = 0; |
| 203 | uint32_t hi = 0; |
| 204 | return AskEm410xDemod(Cmd, &hi, &lo, true); |
| 205 | } |
| 206 | |
| 207 | int usage_lf_em410x_sim(void) { |
| 208 | PrintAndLog("Simulating EM410x tag"); |
| 209 | PrintAndLog(""); |
| 210 | PrintAndLog("Usage: lf em 410xsim [h] <uid> <clock>"); |
| 211 | PrintAndLog("Options:"); |
| 212 | PrintAndLog(" h - this help"); |
| 213 | PrintAndLog(" uid - uid (10 HEX symbols)"); |
| 214 | PrintAndLog(" clock - clock (32|64) (optional)"); |
| 215 | PrintAndLog("samples:"); |
| 216 | PrintAndLog(" lf em 410xsim 0F0368568B"); |
| 217 | PrintAndLog(" lf em 410xsim 0F0368568B 32"); |
| 218 | return 0; |
| 219 | } |
| 220 | |
| 221 | // Construct the graph for emulating an EM410X tag |
| 222 | void ConstructEM410xEmulGraph(const char *uid,const uint8_t clock) |
| 223 | { |
| 224 | int i, n, j, binary[4], parity[4]; |
| 225 | /* clear our graph */ |
| 226 | ClearGraph(0); |
| 227 | |
| 228 | /* write 9 start bits */ |
| 229 | for (i = 0; i < 9; i++) |
| 230 | AppendGraph(0, clock, 1); |
| 231 | |
| 232 | /* for each hex char */ |
| 233 | parity[0] = parity[1] = parity[2] = parity[3] = 0; |
| 234 | for (i = 0; i < 10; i++){ |
| 235 | /* read each hex char */ |
| 236 | sscanf(&uid[i], "%1x", &n); |
| 237 | for (j = 3; j >= 0; j--, n/= 2) |
| 238 | binary[j] = n % 2; |
| 239 | |
| 240 | /* append each bit */ |
| 241 | AppendGraph(0, clock, binary[0]); |
| 242 | AppendGraph(0, clock, binary[1]); |
| 243 | AppendGraph(0, clock, binary[2]); |
| 244 | AppendGraph(0, clock, binary[3]); |
| 245 | |
| 246 | /* append parity bit */ |
| 247 | AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]); |
| 248 | |
| 249 | /* keep track of column parity */ |
| 250 | parity[0] ^= binary[0]; |
| 251 | parity[1] ^= binary[1]; |
| 252 | parity[2] ^= binary[2]; |
| 253 | parity[3] ^= binary[3]; |
| 254 | } |
| 255 | |
| 256 | /* parity columns */ |
| 257 | AppendGraph(0, clock, parity[0]); |
| 258 | AppendGraph(0, clock, parity[1]); |
| 259 | AppendGraph(0, clock, parity[2]); |
| 260 | AppendGraph(0, clock, parity[3]); |
| 261 | |
| 262 | /* stop bit */ |
| 263 | AppendGraph(1, clock, 0); |
| 264 | } |
| 265 | |
| 266 | // emulate an EM410X tag |
| 267 | int CmdEM410xSim(const char *Cmd) |
| 268 | { |
| 269 | char cmdp = param_getchar(Cmd, 0); |
| 270 | uint8_t uid[5] = {0x00}; |
| 271 | |
| 272 | if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim(); |
| 273 | /* clock is 64 in EM410x tags */ |
| 274 | uint8_t clock = 64; |
| 275 | |
| 276 | if (param_gethex(Cmd, 0, uid, 10)) { |
| 277 | PrintAndLog("UID must include 10 HEX symbols"); |
| 278 | return 0; |
| 279 | } |
| 280 | param_getdec(Cmd,1, &clock); |
| 281 | |
| 282 | PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock); |
| 283 | PrintAndLog("Press pm3-button to abort simulation"); |
| 284 | |
| 285 | ConstructEM410xEmulGraph(Cmd, clock); |
| 286 | |
| 287 | CmdLFSim("0"); //240 start_gap. |
| 288 | return 0; |
| 289 | } |
| 290 | |
| 291 | int usage_lf_em410x_brute(void) { |
| 292 | PrintAndLog("Bruteforcing by emulating EM410x tag"); |
| 293 | PrintAndLog(""); |
| 294 | PrintAndLog("Usage: lf em 410xbrute [h] ids.txt [d 2000] [c clock]"); |
| 295 | PrintAndLog("Options:"); |
| 296 | PrintAndLog(" h - this help"); |
| 297 | PrintAndLog(" ids.txt - file with UIDs in HEX format, one per line"); |
| 298 | PrintAndLog(" d (2000) - pause delay in milliseconds between UIDs simulation, default 1000 ms (optional)"); |
| 299 | PrintAndLog(" c (32) - clock (32|64), default 64 (optional)"); |
| 300 | PrintAndLog("samples:"); |
| 301 | PrintAndLog(" lf em 410xbrute ids.txt"); |
| 302 | PrintAndLog(" lf em 410xbrute ids.txt c 32"); |
| 303 | PrintAndLog(" lf em 410xbrute ids.txt d 3000"); |
| 304 | PrintAndLog(" lf em 410xbrute ids.txt d 3000 c 32"); |
| 305 | return 0; |
| 306 | } |
| 307 | |
| 308 | int CmdEM410xBrute(const char *Cmd) |
| 309 | { |
| 310 | char filename[FILE_PATH_SIZE]={0}; |
| 311 | FILE *f = NULL; |
| 312 | char buf[11]; |
| 313 | uint32_t uidcnt = 0; |
| 314 | uint8_t stUidBlock = 20; |
| 315 | uint8_t *uidBlock = NULL, *p = NULL; |
| 316 | int ch; |
| 317 | uint8_t uid[5] = {0x00}; |
| 318 | /* clock is 64 in EM410x tags */ |
| 319 | uint8_t clock = 64; |
| 320 | /* default pause time: 1 second */ |
| 321 | uint32_t delay = 1000; |
| 322 | |
| 323 | char cmdp = param_getchar(Cmd, 0); |
| 324 | |
| 325 | if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_brute(); |
| 326 | |
| 327 | |
| 328 | cmdp = param_getchar(Cmd, 1); |
| 329 | |
| 330 | if (cmdp == 'd' || cmdp == 'D') { |
| 331 | delay = param_get32ex(Cmd, 2, 1000, 10); |
| 332 | param_getdec(Cmd, 4, &clock); |
| 333 | } else if (cmdp == 'c' || cmdp == 'C') { |
| 334 | param_getdec(Cmd, 2, &clock); |
| 335 | delay = param_get32ex(Cmd, 4, 1000, 10); |
| 336 | } |
| 337 | |
| 338 | param_getstr(Cmd, 0, filename, sizeof(filename)); |
| 339 | |
| 340 | uidBlock = calloc(stUidBlock, 5); |
| 341 | if (uidBlock == NULL) return 1; |
| 342 | |
| 343 | if (strlen(filename) > 0) { |
| 344 | if ((f = fopen(filename, "r")) == NULL) { |
| 345 | PrintAndLog("Error: Could not open UIDs file [%s]",filename); |
| 346 | free(uidBlock); |
| 347 | return 1; |
| 348 | } |
| 349 | } else { |
| 350 | PrintAndLog("Error: Please specify a filename"); |
| 351 | free(uidBlock); |
| 352 | return 1; |
| 353 | } |
| 354 | |
| 355 | while( fgets(buf, sizeof(buf), f) ) { |
| 356 | if (strlen(buf) < 10 || buf[9] == '\n') continue; |
| 357 | while (fgetc(f) != '\n' && !feof(f)); //goto next line |
| 358 | |
| 359 | //The line start with # is comment, skip |
| 360 | if( buf[0]=='#' ) continue; |
| 361 | |
| 362 | if (param_gethex(buf, 0, uid, 10)) { |
| 363 | PrintAndLog("UIDs must include 10 HEX symbols"); |
| 364 | free(uidBlock); |
| 365 | fclose(f); |
| 366 | return 1; |
| 367 | } |
| 368 | |
| 369 | buf[10] = 0; |
| 370 | |
| 371 | if ( stUidBlock - uidcnt < 2) { |
| 372 | p = realloc(uidBlock, 5*(stUidBlock+=10)); |
| 373 | if (!p) { |
| 374 | PrintAndLog("Cannot allocate memory for UIDs"); |
| 375 | free(uidBlock); |
| 376 | fclose(f); |
| 377 | return 1; |
| 378 | } |
| 379 | uidBlock = p; |
| 380 | } |
| 381 | memset(uidBlock + 5 * uidcnt, 0, 5); |
| 382 | num_to_bytes(strtoll(buf, NULL, 16), 5, uidBlock + 5*uidcnt); |
| 383 | uidcnt++; |
| 384 | memset(buf, 0, sizeof(buf)); |
| 385 | } |
| 386 | fclose(f); |
| 387 | |
| 388 | if (uidcnt == 0) { |
| 389 | PrintAndLog("No UIDs found in file"); |
| 390 | free(uidBlock); |
| 391 | return 1; |
| 392 | } |
| 393 | PrintAndLog("Loaded %d UIDs from %s, pause delay: %d ms", uidcnt, filename, delay); |
| 394 | |
| 395 | // loop |
| 396 | for(uint32_t c = 0; c < uidcnt; ++c ) { |
| 397 | char testuid[11]; |
| 398 | testuid[10] = 0; |
| 399 | |
| 400 | if (ukbhit()) { |
| 401 | ch = getchar(); |
| 402 | (void)ch; |
| 403 | printf("\nAborted via keyboard!\n"); |
| 404 | free(uidBlock); |
| 405 | return 0; |
| 406 | } |
| 407 | |
| 408 | sprintf(testuid, "%010" PRIX64, bytes_to_num(uidBlock + 5*c, 5)); |
| 409 | PrintAndLog("Bruteforce %d / %d: simulating UID %s, clock %d", c + 1, uidcnt, testuid, clock); |
| 410 | |
| 411 | ConstructEM410xEmulGraph(testuid, clock); |
| 412 | |
| 413 | CmdLFSim("0"); //240 start_gap. |
| 414 | |
| 415 | msleep(delay); |
| 416 | } |
| 417 | |
| 418 | free(uidBlock); |
| 419 | return 0; |
| 420 | } |
| 421 | |
| 422 | |
| 423 | /* Function is equivalent of lf read + data samples + em410xread |
| 424 | * looped until an EM410x tag is detected |
| 425 | * |
| 426 | * Why is CmdSamples("16000")? |
| 427 | * TBD: Auto-grow sample size based on detected sample rate. IE: If the |
| 428 | * rate gets lower, then grow the number of samples |
| 429 | * Changed by martin, 4000 x 4 = 16000, |
| 430 | * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235 |
| 431 | * |
| 432 | * EDIT -- capture enough to get 2 complete preambles at the slowest data rate known to be used (rf/64) (64*64*2+9 = 8201) marshmellow |
| 433 | */ |
| 434 | int CmdEM410xWatch(const char *Cmd) |
| 435 | { |
| 436 | do { |
| 437 | if (ukbhit()) { |
| 438 | printf("\naborted via keyboard!\n"); |
| 439 | break; |
| 440 | } |
| 441 | lf_read(true, 8201); |
| 442 | } while (!CmdAskEM410xDemod("")); |
| 443 | |
| 444 | return 0; |
| 445 | } |
| 446 | |
| 447 | //currently only supports manchester modulations |
| 448 | int CmdEM410xWatchnSpoof(const char *Cmd) |
| 449 | { |
| 450 | CmdEM410xWatch(Cmd); |
| 451 | PrintAndLog("# Replaying captured ID: %010"PRIx64, g_em410xId); |
| 452 | CmdLFaskSim(""); |
| 453 | return 0; |
| 454 | } |
| 455 | |
| 456 | int CmdEM410xWrite(const char *Cmd) |
| 457 | { |
| 458 | uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value |
| 459 | int card = 0xFF; // invalid card value |
| 460 | unsigned int clock = 0; // invalid clock value |
| 461 | |
| 462 | sscanf(Cmd, "%" SCNx64 " %d %d", &id, &card, &clock); |
| 463 | |
| 464 | // Check ID |
| 465 | if (id == 0xFFFFFFFFFFFFFFFF) { |
| 466 | PrintAndLog("Error! ID is required.\n"); |
| 467 | return 0; |
| 468 | } |
| 469 | if (id >= 0x10000000000) { |
| 470 | PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n"); |
| 471 | return 0; |
| 472 | } |
| 473 | |
| 474 | // Check Card |
| 475 | if (card == 0xFF) { |
| 476 | PrintAndLog("Error! Card type required.\n"); |
| 477 | return 0; |
| 478 | } |
| 479 | if (card < 0) { |
| 480 | PrintAndLog("Error! Bad card type selected.\n"); |
| 481 | return 0; |
| 482 | } |
| 483 | |
| 484 | // Check Clock |
| 485 | // Default: 64 |
| 486 | if (clock == 0) |
| 487 | clock = 64; |
| 488 | |
| 489 | // Allowed clock rates: 16, 32, 40 and 64 |
| 490 | if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) { |
| 491 | PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock); |
| 492 | return 0; |
| 493 | } |
| 494 | |
| 495 | if (card == 1) { |
| 496 | PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock); |
| 497 | // NOTE: We really should pass the clock in as a separate argument, but to |
| 498 | // provide for backwards-compatibility for older firmware, and to avoid |
| 499 | // having to add another argument to CMD_EM410X_WRITE_TAG, we just store |
| 500 | // the clock rate in bits 8-15 of the card value |
| 501 | card = (card & 0xFF) | ((clock << 8) & 0xFF00); |
| 502 | } else if (card == 0) { |
| 503 | PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock); |
| 504 | card = (card & 0xFF) | ((clock << 8) & 0xFF00); |
| 505 | } else { |
| 506 | PrintAndLog("Error! Bad card type selected.\n"); |
| 507 | return 0; |
| 508 | } |
| 509 | |
| 510 | UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}}; |
| 511 | SendCommand(&c); |
| 512 | |
| 513 | return 0; |
| 514 | } |
| 515 | |
| 516 | //**************** Start of EM4x50 Code ************************ |
| 517 | bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType) |
| 518 | { |
| 519 | if (rows*cols>size) return false; |
| 520 | uint8_t colP=0; |
| 521 | //assume last col is a parity and do not test |
| 522 | for (uint8_t colNum = 0; colNum < cols-1; colNum++) { |
| 523 | for (uint8_t rowNum = 0; rowNum < rows; rowNum++) { |
| 524 | colP ^= BitStream[(rowNum*cols)+colNum]; |
| 525 | } |
| 526 | if (colP != pType) return false; |
| 527 | } |
| 528 | return true; |
| 529 | } |
| 530 | |
| 531 | bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType) |
| 532 | { |
| 533 | if (rows*cols>size) return false; |
| 534 | uint8_t rowP=0; |
| 535 | //assume last row is a parity row and do not test |
| 536 | for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) { |
| 537 | for (uint8_t colNum = 0; colNum < cols; colNum++) { |
| 538 | rowP ^= BitStream[(rowNum*cols)+colNum]; |
| 539 | } |
| 540 | if (rowP != pType) return false; |
| 541 | } |
| 542 | return true; |
| 543 | } |
| 544 | |
| 545 | uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest) |
| 546 | { |
| 547 | if (size<45) return 0; |
| 548 | uint32_t code = bytebits_to_byte(BitStream,8); |
| 549 | code = code<<8 | bytebits_to_byte(BitStream+9,8); |
| 550 | code = code<<8 | bytebits_to_byte(BitStream+18,8); |
| 551 | code = code<<8 | bytebits_to_byte(BitStream+27,8); |
| 552 | if (verbose || g_debugMode){ |
| 553 | for (uint8_t i = 0; i<5; i++){ |
| 554 | if (i == 4) PrintAndLog(""); //parity byte spacer |
| 555 | PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x", |
| 556 | BitStream[i*9], |
| 557 | BitStream[i*9+1], |
| 558 | BitStream[i*9+2], |
| 559 | BitStream[i*9+3], |
| 560 | BitStream[i*9+4], |
| 561 | BitStream[i*9+5], |
| 562 | BitStream[i*9+6], |
| 563 | BitStream[i*9+7], |
| 564 | BitStream[i*9+8], |
| 565 | bytebits_to_byte(BitStream+i*9,8) |
| 566 | ); |
| 567 | } |
| 568 | if (pTest) |
| 569 | PrintAndLog("Parity Passed"); |
| 570 | else |
| 571 | PrintAndLog("Parity Failed"); |
| 572 | } |
| 573 | return code; |
| 574 | } |
| 575 | /* Read the transmitted data of an EM4x50 tag from the graphbuffer |
| 576 | * Format: |
| 577 | * |
| 578 | * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity |
| 579 | * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity |
| 580 | * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity |
| 581 | * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity |
| 582 | * CCCCCCCC <- column parity bits |
| 583 | * 0 <- stop bit |
| 584 | * LW <- Listen Window |
| 585 | * |
| 586 | * This pattern repeats for every block of data being transmitted. |
| 587 | * Transmission starts with two Listen Windows (LW - a modulated |
| 588 | * pattern of 320 cycles each (32/32/128/64/64)). |
| 589 | * |
| 590 | * Note that this data may or may not be the UID. It is whatever data |
| 591 | * is stored in the blocks defined in the control word First and Last |
| 592 | * Word Read values. UID is stored in block 32. |
| 593 | */ |
| 594 | //completed by Marshmellow |
| 595 | int EM4x50Read(const char *Cmd, bool verbose) |
| 596 | { |
| 597 | uint8_t fndClk[] = {8,16,32,40,50,64,128}; |
| 598 | int clk = 0; |
| 599 | int invert = 0; |
| 600 | int tol = 0; |
| 601 | int i, j, startblock, skip, block, start, end, low, high, minClk; |
| 602 | bool complete = false; |
| 603 | int tmpbuff[MAX_GRAPH_TRACE_LEN / 64]; |
| 604 | uint32_t Code[6]; |
| 605 | char tmp[6]; |
| 606 | char tmp2[20]; |
| 607 | int phaseoff; |
| 608 | high = low = 0; |
| 609 | memset(tmpbuff, 0, sizeof(tmpbuff)); |
| 610 | |
| 611 | // get user entry if any |
| 612 | sscanf(Cmd, "%i %i", &clk, &invert); |
| 613 | |
| 614 | // first get high and low values |
| 615 | for (i = 0; i < GraphTraceLen; i++) { |
| 616 | if (GraphBuffer[i] > high) |
| 617 | high = GraphBuffer[i]; |
| 618 | else if (GraphBuffer[i] < low) |
| 619 | low = GraphBuffer[i]; |
| 620 | } |
| 621 | |
| 622 | i = 0; |
| 623 | j = 0; |
| 624 | minClk = 255; |
| 625 | // get to first full low to prime loop and skip incomplete first pulse |
| 626 | while ((GraphBuffer[i] < high) && (i < GraphTraceLen)) |
| 627 | ++i; |
| 628 | while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) |
| 629 | ++i; |
| 630 | skip = i; |
| 631 | |
| 632 | // populate tmpbuff buffer with pulse lengths |
| 633 | while (i < GraphTraceLen) { |
| 634 | // measure from low to low |
| 635 | while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) |
| 636 | ++i; |
| 637 | start= i; |
| 638 | while ((GraphBuffer[i] < high) && (i < GraphTraceLen)) |
| 639 | ++i; |
| 640 | while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) |
| 641 | ++i; |
| 642 | if (j>=(MAX_GRAPH_TRACE_LEN/64)) { |
| 643 | break; |
| 644 | } |
| 645 | tmpbuff[j++]= i - start; |
| 646 | if (i-start < minClk && i < GraphTraceLen) { |
| 647 | minClk = i - start; |
| 648 | } |
| 649 | } |
| 650 | // set clock |
| 651 | if (!clk) { |
| 652 | for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { |
| 653 | tol = fndClk[clkCnt]/8; |
| 654 | if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) { |
| 655 | clk=fndClk[clkCnt]; |
| 656 | break; |
| 657 | } |
| 658 | } |
| 659 | if (!clk) return 0; |
| 660 | } else tol = clk/8; |
| 661 | |
| 662 | // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2) |
| 663 | start = -1; |
| 664 | for (i= 0; i < j - 4 ; ++i) { |
| 665 | skip += tmpbuff[i]; |
| 666 | if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks |
| 667 | if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks |
| 668 | if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks |
| 669 | if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following |
| 670 | { |
| 671 | start= i + 4; |
| 672 | break; |
| 673 | } |
| 674 | } |
| 675 | startblock = i + 4; |
| 676 | |
| 677 | // skip over the remainder of LW |
| 678 | skip += tmpbuff[i+1] + tmpbuff[i+2] + clk; |
| 679 | if (tmpbuff[i+3]>clk) |
| 680 | phaseoff = tmpbuff[i+3]-clk; |
| 681 | else |
| 682 | phaseoff = 0; |
| 683 | // now do it again to find the end |
| 684 | end = skip; |
| 685 | for (i += 3; i < j - 4 ; ++i) { |
| 686 | end += tmpbuff[i]; |
| 687 | if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks |
| 688 | if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks |
| 689 | if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks |
| 690 | if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following |
| 691 | { |
| 692 | complete= true; |
| 693 | break; |
| 694 | } |
| 695 | } |
| 696 | end = i; |
| 697 | // report back |
| 698 | if (verbose || g_debugMode) { |
| 699 | if (start >= 0) { |
| 700 | PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)"); |
| 701 | } else { |
| 702 | PrintAndLog("No data found!, clock tried:%d",clk); |
| 703 | PrintAndLog("Try again with more samples."); |
| 704 | PrintAndLog(" or after a 'data askedge' command to clean up the read"); |
| 705 | return 0; |
| 706 | } |
| 707 | } else if (start < 0) return 0; |
| 708 | start = skip; |
| 709 | snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47); |
| 710 | // save GraphBuffer - to restore it later |
| 711 | save_restoreGB(GRAPH_SAVE); |
| 712 | // get rid of leading crap |
| 713 | snprintf(tmp, sizeof(tmp), "%i", skip); |
| 714 | CmdLtrim(tmp); |
| 715 | bool pTest; |
| 716 | bool AllPTest = true; |
| 717 | // now work through remaining buffer printing out data blocks |
| 718 | block = 0; |
| 719 | i = startblock; |
| 720 | while (block < 6) { |
| 721 | if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block); |
| 722 | skip = phaseoff; |
| 723 | |
| 724 | // look for LW before start of next block |
| 725 | for ( ; i < j - 4 ; ++i) { |
| 726 | skip += tmpbuff[i]; |
| 727 | if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) |
| 728 | if (tmpbuff[i+1] >= clk-tol) |
| 729 | break; |
| 730 | } |
| 731 | if (i >= j-4) break; //next LW not found |
| 732 | skip += clk; |
| 733 | if (tmpbuff[i+1]>clk) |
| 734 | phaseoff = tmpbuff[i+1]-clk; |
| 735 | else |
| 736 | phaseoff = 0; |
| 737 | i += 2; |
| 738 | if (ASKDemod(tmp2, false, false, 1) < 1) { |
| 739 | save_restoreGB(GRAPH_RESTORE); |
| 740 | return 0; |
| 741 | } |
| 742 | //set DemodBufferLen to just one block |
| 743 | DemodBufferLen = skip/clk; |
| 744 | //test parities |
| 745 | pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0); |
| 746 | pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0); |
| 747 | AllPTest &= pTest; |
| 748 | //get output |
| 749 | Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest); |
| 750 | if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk); |
| 751 | //skip to start of next block |
| 752 | snprintf(tmp,sizeof(tmp),"%i",skip); |
| 753 | CmdLtrim(tmp); |
| 754 | block++; |
| 755 | if (i >= end) break; //in case chip doesn't output 6 blocks |
| 756 | } |
| 757 | //print full code: |
| 758 | if (verbose || g_debugMode || AllPTest){ |
| 759 | if (!complete) { |
| 760 | PrintAndLog("*** Warning!"); |
| 761 | PrintAndLog("Partial data - no end found!"); |
| 762 | PrintAndLog("Try again with more samples."); |
| 763 | } |
| 764 | PrintAndLog("Found data at sample: %i - using clock: %i", start, clk); |
| 765 | end = block; |
| 766 | for (block=0; block < end; block++){ |
| 767 | PrintAndLog("Block %d: %08x",block,Code[block]); |
| 768 | } |
| 769 | if (AllPTest) { |
| 770 | PrintAndLog("Parities Passed"); |
| 771 | } else { |
| 772 | PrintAndLog("Parities Failed"); |
| 773 | PrintAndLog("Try cleaning the read samples with 'data askedge'"); |
| 774 | } |
| 775 | } |
| 776 | |
| 777 | //restore GraphBuffer |
| 778 | save_restoreGB(GRAPH_RESTORE); |
| 779 | return (int)AllPTest; |
| 780 | } |
| 781 | |
| 782 | int CmdEM4x50Read(const char *Cmd) |
| 783 | { |
| 784 | return EM4x50Read(Cmd, true); |
| 785 | } |
| 786 | |
| 787 | //**************** Start of EM4x05/EM4x69 Code ************************ |
| 788 | int usage_lf_em_read(void) { |
| 789 | PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. "); |
| 790 | PrintAndLog(""); |
| 791 | PrintAndLog("Usage: lf em 4x05readword [h] <address> <pwd>"); |
| 792 | PrintAndLog("Options:"); |
| 793 | PrintAndLog(" h - this help"); |
| 794 | PrintAndLog(" address - memory address to read. (0-15)"); |
| 795 | PrintAndLog(" pwd - password (hex) (optional)"); |
| 796 | PrintAndLog("samples:"); |
| 797 | PrintAndLog(" lf em 4x05readword 1"); |
| 798 | PrintAndLog(" lf em 4x05readword 1 11223344"); |
| 799 | return 0; |
| 800 | } |
| 801 | |
| 802 | // for command responses from em4x05 or em4x69 |
| 803 | // download samples from device and copy them to the Graphbuffer |
| 804 | bool downloadSamplesEM() { |
| 805 | // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples) |
| 806 | uint8_t got[6000]; |
| 807 | if (!GetFromBigBuf(got, sizeof(got), 0, NULL, 4000, true)) { |
| 808 | PrintAndLog("command execution time out"); |
| 809 | return false; |
| 810 | } |
| 811 | setGraphBuf(got, sizeof(got)); |
| 812 | return true; |
| 813 | } |
| 814 | |
| 815 | bool EM4x05testDemodReadData(uint32_t *word, bool readCmd) { |
| 816 | // em4x05/em4x69 command response preamble is 00001010 |
| 817 | // skip first two 0 bits as they might have been missed in the demod |
| 818 | uint8_t preamble[] = {0,0,1,0,1,0}; |
| 819 | size_t startIdx = 0; |
| 820 | |
| 821 | // set size to 20 to only test first 14 positions for the preamble or less if not a read command |
| 822 | size_t size = (readCmd) ? 20 : 11; |
| 823 | // sanity check |
| 824 | size = (size > DemodBufferLen) ? DemodBufferLen : size; |
| 825 | // test preamble |
| 826 | if ( !preambleSearchEx(DemodBuffer, preamble, sizeof(preamble), &size, &startIdx, true) ) { |
| 827 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", startIdx); |
| 828 | return false; |
| 829 | } |
| 830 | // if this is a readword command, get the read bytes and test the parities |
| 831 | if (readCmd) { |
| 832 | if (!EM_EndParityTest(DemodBuffer + startIdx + sizeof(preamble), 45, 5, 9, 0)) { |
| 833 | if (g_debugMode) PrintAndLog("DEBUG: Error - End Parity check failed"); |
| 834 | return false; |
| 835 | } |
| 836 | // test for even parity bits and remove them. (leave out the end row of parities so 36 bits) |
| 837 | if ( removeParity(DemodBuffer, startIdx + sizeof(preamble),9,0,36) == 0 ) { |
| 838 | if (g_debugMode) PrintAndLog("DEBUG: Error - Parity not detected"); |
| 839 | return false; |
| 840 | } |
| 841 | |
| 842 | setDemodBuf(DemodBuffer, 32, 0); |
| 843 | //setClockGrid(0,0); |
| 844 | |
| 845 | *word = bytebits_to_byteLSBF(DemodBuffer, 32); |
| 846 | } |
| 847 | return true; |
| 848 | } |
| 849 | |
| 850 | // FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE |
| 851 | // should cover 90% of known used configs |
| 852 | // the rest will need to be manually demoded for now... |
| 853 | int demodEM4x05resp(uint32_t *word, bool readCmd) { |
| 854 | int ans = 0; |
| 855 | |
| 856 | // test for FSK wave (easiest to 99% ID) |
| 857 | if (GetFskClock("", false, false)) { |
| 858 | //valid fsk clocks found |
| 859 | ans = FSKrawDemod("0 0", false); |
| 860 | if (!ans) { |
| 861 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: FSK Demod failed, ans: %d", ans); |
| 862 | } else { |
| 863 | if (EM4x05testDemodReadData(word, readCmd)) { |
| 864 | return 1; |
| 865 | } |
| 866 | } |
| 867 | } |
| 868 | // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... ) |
| 869 | ans = GetPskClock("", false, false); |
| 870 | if (ans>0) { |
| 871 | //try psk1 |
| 872 | ans = PSKDemod("0 0 6", false); |
| 873 | if (!ans) { |
| 874 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans); |
| 875 | } else { |
| 876 | if (EM4x05testDemodReadData(word, readCmd)) { |
| 877 | return 1; |
| 878 | } else { |
| 879 | //try psk2 |
| 880 | psk1TOpsk2(DemodBuffer, DemodBufferLen); |
| 881 | if (EM4x05testDemodReadData(word, readCmd)) { |
| 882 | return 1; |
| 883 | } |
| 884 | } |
| 885 | //try psk1 inverted |
| 886 | ans = PSKDemod("0 1 6", false); |
| 887 | if (!ans) { |
| 888 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans); |
| 889 | } else { |
| 890 | if (EM4x05testDemodReadData(word, readCmd)) { |
| 891 | return 1; |
| 892 | } else { |
| 893 | //try psk2 |
| 894 | psk1TOpsk2(DemodBuffer, DemodBufferLen); |
| 895 | if (EM4x05testDemodReadData(word, readCmd)) { |
| 896 | return 1; |
| 897 | } |
| 898 | } |
| 899 | } |
| 900 | } |
| 901 | } |
| 902 | |
| 903 | // manchester is more common than biphase... try first |
| 904 | bool stcheck = false; |
| 905 | // try manchester - NOTE: ST only applies to T55x7 tags. |
| 906 | ans = ASKDemod_ext("0,0,1", false, false, 1, &stcheck); |
| 907 | if (!ans) { |
| 908 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/Manchester Demod failed, ans: %d", ans); |
| 909 | } else { |
| 910 | if (EM4x05testDemodReadData(word, readCmd)) { |
| 911 | return 1; |
| 912 | } |
| 913 | } |
| 914 | |
| 915 | //try biphase |
| 916 | ans = ASKbiphaseDemod("0 0 1", false); |
| 917 | if (!ans) { |
| 918 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans); |
| 919 | } else { |
| 920 | if (EM4x05testDemodReadData(word, readCmd)) { |
| 921 | return 1; |
| 922 | } |
| 923 | } |
| 924 | |
| 925 | //try diphase (differential biphase or inverted) |
| 926 | ans = ASKbiphaseDemod("0 1 1", false); |
| 927 | if (!ans) { |
| 928 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans); |
| 929 | } else { |
| 930 | if (EM4x05testDemodReadData(word, readCmd)) { |
| 931 | return 1; |
| 932 | } |
| 933 | } |
| 934 | |
| 935 | return -1; |
| 936 | } |
| 937 | |
| 938 | int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *wordData) { |
| 939 | UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}}; |
| 940 | clearCommandBuffer(); |
| 941 | SendCommand(&c); |
| 942 | UsbCommand resp; |
| 943 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){ |
| 944 | PrintAndLog("Command timed out"); |
| 945 | return -1; |
| 946 | } |
| 947 | if ( !downloadSamplesEM() ) { |
| 948 | return -1; |
| 949 | } |
| 950 | int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000; |
| 951 | if (graphJustNoise(GraphBuffer, testLen)) { |
| 952 | return -1; |
| 953 | } |
| 954 | //attempt demod: |
| 955 | return demodEM4x05resp(wordData, true); |
| 956 | } |
| 957 | |
| 958 | int EM4x05ReadWord(uint8_t addr, uint32_t pwd, bool usePwd) { |
| 959 | uint32_t wordData = 0; |
| 960 | int success = EM4x05ReadWord_ext(addr, pwd, usePwd, &wordData); |
| 961 | if (success == 1) |
| 962 | PrintAndLog("%s Address %02d | %08X", (addr>13) ? "Lock":" Got",addr,wordData); |
| 963 | else |
| 964 | PrintAndLog("Read Address %02d | failed",addr); |
| 965 | |
| 966 | return success; |
| 967 | } |
| 968 | |
| 969 | int CmdEM4x05ReadWord(const char *Cmd) { |
| 970 | uint8_t addr; |
| 971 | uint32_t pwd; |
| 972 | bool usePwd = false; |
| 973 | uint8_t ctmp = param_getchar(Cmd, 0); |
| 974 | if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_read(); |
| 975 | |
| 976 | addr = param_get8ex(Cmd, 0, 50, 10); |
| 977 | // for now use default input of 1 as invalid (unlikely 1 will be a valid password...) |
| 978 | pwd = param_get32ex(Cmd, 1, 1, 16); |
| 979 | |
| 980 | if ( (addr > 15) ) { |
| 981 | PrintAndLog("Address must be between 0 and 15"); |
| 982 | return 1; |
| 983 | } |
| 984 | if ( pwd == 1 ) { |
| 985 | PrintAndLog("Reading address %02u", addr); |
| 986 | } else { |
| 987 | usePwd = true; |
| 988 | PrintAndLog("Reading address %02u | password %08X", addr, pwd); |
| 989 | } |
| 990 | |
| 991 | return EM4x05ReadWord(addr, pwd, usePwd); |
| 992 | } |
| 993 | |
| 994 | int usage_lf_em_dump(void) { |
| 995 | PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. "); |
| 996 | PrintAndLog(""); |
| 997 | PrintAndLog("Usage: lf em 4x05dump [h] <pwd>"); |
| 998 | PrintAndLog("Options:"); |
| 999 | PrintAndLog(" h - this help"); |
| 1000 | PrintAndLog(" pwd - password (hex) (optional)"); |
| 1001 | PrintAndLog("samples:"); |
| 1002 | PrintAndLog(" lf em 4x05dump"); |
| 1003 | PrintAndLog(" lf em 4x05dump 11223344"); |
| 1004 | return 0; |
| 1005 | } |
| 1006 | |
| 1007 | int CmdEM4x05dump(const char *Cmd) { |
| 1008 | uint8_t addr = 0; |
| 1009 | uint32_t pwd; |
| 1010 | bool usePwd = false; |
| 1011 | uint8_t ctmp = param_getchar(Cmd, 0); |
| 1012 | if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump(); |
| 1013 | |
| 1014 | // for now use default input of 1 as invalid (unlikely 1 will be a valid password...) |
| 1015 | pwd = param_get32ex(Cmd, 0, 1, 16); |
| 1016 | |
| 1017 | if ( pwd != 1 ) { |
| 1018 | usePwd = true; |
| 1019 | } |
| 1020 | int success = 1; |
| 1021 | for (; addr < 16; addr++) { |
| 1022 | if (addr == 2) { |
| 1023 | if (usePwd) { |
| 1024 | PrintAndLog(" PWD Address %02u | %08X",addr,pwd); |
| 1025 | } else { |
| 1026 | PrintAndLog(" PWD Address 02 | cannot read"); |
| 1027 | } |
| 1028 | } else { |
| 1029 | success &= EM4x05ReadWord(addr, pwd, usePwd); |
| 1030 | } |
| 1031 | } |
| 1032 | |
| 1033 | return success; |
| 1034 | } |
| 1035 | |
| 1036 | |
| 1037 | int usage_lf_em_write(void) { |
| 1038 | PrintAndLog("Write EM4x05/EM4x69. Tag must be on antenna. "); |
| 1039 | PrintAndLog(""); |
| 1040 | PrintAndLog("Usage: lf em 4x05writeword [h] a <address> d <data> p <pwd> [s] [i]"); |
| 1041 | PrintAndLog("Options:"); |
| 1042 | PrintAndLog(" h - this help"); |
| 1043 | PrintAndLog(" a <address> - memory address to write to. (0-15)"); |
| 1044 | PrintAndLog(" d <data> - data to write (hex)"); |
| 1045 | PrintAndLog(" p <pwd> - password (hex) (optional)"); |
| 1046 | PrintAndLog(" s - swap the data bit order before write"); |
| 1047 | PrintAndLog(" i - invert the data bits before write"); |
| 1048 | PrintAndLog("samples:"); |
| 1049 | PrintAndLog(" lf em 4x05writeword a 5 d 11223344"); |
| 1050 | PrintAndLog(" lf em 4x05writeword a 5 p deadc0de d 11223344 s i"); |
| 1051 | return 0; |
| 1052 | } |
| 1053 | |
| 1054 | // note: em4x05 doesn't have a way to invert data output so we must invert the data prior to writing |
| 1055 | // it if invertion is needed. (example FSK2a vs FSK) |
| 1056 | // also em4x05 requires swapping word data when compared to the data used for t55xx chips. |
| 1057 | int EM4x05WriteWord(uint8_t addr, uint32_t data, uint32_t pwd, bool usePwd, bool swap, bool invert) { |
| 1058 | if (swap) data = SwapBits(data, 32); |
| 1059 | |
| 1060 | if (invert) data ^= 0xFFFFFFFF; |
| 1061 | |
| 1062 | if ( (addr > 15) ) { |
| 1063 | PrintAndLog("Address must be between 0 and 15"); |
| 1064 | return -1; |
| 1065 | } |
| 1066 | if ( !usePwd ) { |
| 1067 | PrintAndLog("Writing address %d data %08X", addr, data); |
| 1068 | } else { |
| 1069 | PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd); |
| 1070 | } |
| 1071 | |
| 1072 | uint16_t flag = (addr << 8 ) | usePwd; |
| 1073 | |
| 1074 | UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}}; |
| 1075 | clearCommandBuffer(); |
| 1076 | SendCommand(&c); |
| 1077 | UsbCommand resp; |
| 1078 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){ |
| 1079 | PrintAndLog("Error occurred, device did not respond during write operation."); |
| 1080 | return -1; |
| 1081 | } |
| 1082 | if ( !downloadSamplesEM() ) { |
| 1083 | return -1; |
| 1084 | } |
| 1085 | //check response for 00001010 for write confirmation! |
| 1086 | //attempt demod: |
| 1087 | uint32_t dummy = 0; |
| 1088 | int result = demodEM4x05resp(&dummy,false); |
| 1089 | if (result == 1) { |
| 1090 | PrintAndLog("Write Verified"); |
| 1091 | } else { |
| 1092 | PrintAndLog("Write could not be verified"); |
| 1093 | } |
| 1094 | return result; |
| 1095 | } |
| 1096 | |
| 1097 | int CmdEM4x05WriteWord(const char *Cmd) { |
| 1098 | bool errors = false; |
| 1099 | bool usePwd = false; |
| 1100 | uint32_t data = 0xFFFFFFFF; |
| 1101 | uint32_t pwd = 0xFFFFFFFF; |
| 1102 | bool swap = false; |
| 1103 | bool invert = false; |
| 1104 | uint8_t addr = 16; // default to invalid address |
| 1105 | bool gotData = false; |
| 1106 | char cmdp = 0; |
| 1107 | while(param_getchar(Cmd, cmdp) != 0x00) |
| 1108 | { |
| 1109 | switch(param_getchar(Cmd, cmdp)) |
| 1110 | { |
| 1111 | case 'h': |
| 1112 | case 'H': |
| 1113 | return usage_lf_em_write(); |
| 1114 | case 'a': |
| 1115 | case 'A': |
| 1116 | addr = param_get8ex(Cmd, cmdp+1, 16, 10); |
| 1117 | cmdp += 2; |
| 1118 | break; |
| 1119 | case 'd': |
| 1120 | case 'D': |
| 1121 | data = param_get32ex(Cmd, cmdp+1, 0, 16); |
| 1122 | gotData = true; |
| 1123 | cmdp += 2; |
| 1124 | break; |
| 1125 | case 'i': |
| 1126 | case 'I': |
| 1127 | invert = true; |
| 1128 | cmdp++; |
| 1129 | break; |
| 1130 | case 'p': |
| 1131 | case 'P': |
| 1132 | pwd = param_get32ex(Cmd, cmdp+1, 1, 16); |
| 1133 | if (pwd == 1) { |
| 1134 | PrintAndLog("invalid pwd"); |
| 1135 | errors = true; |
| 1136 | } |
| 1137 | usePwd = true; |
| 1138 | cmdp += 2; |
| 1139 | break; |
| 1140 | case 's': |
| 1141 | case 'S': |
| 1142 | swap = true; |
| 1143 | cmdp++; |
| 1144 | break; |
| 1145 | default: |
| 1146 | PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); |
| 1147 | errors = true; |
| 1148 | break; |
| 1149 | } |
| 1150 | if(errors) break; |
| 1151 | } |
| 1152 | //Validations |
| 1153 | if(errors) return usage_lf_em_write(); |
| 1154 | |
| 1155 | if ( strlen(Cmd) == 0 ) return usage_lf_em_write(); |
| 1156 | |
| 1157 | if (!gotData) { |
| 1158 | PrintAndLog("You must enter the data you want to write"); |
| 1159 | return usage_lf_em_write(); |
| 1160 | } |
| 1161 | return EM4x05WriteWord(addr, data, pwd, usePwd, swap, invert); |
| 1162 | } |
| 1163 | |
| 1164 | void printEM4x05config(uint32_t wordData) { |
| 1165 | uint16_t datarate = EM4x05_GET_BITRATE(wordData); |
| 1166 | uint8_t encoder = ((wordData >> 6) & 0xF); |
| 1167 | char enc[14]; |
| 1168 | memset(enc,0,sizeof(enc)); |
| 1169 | |
| 1170 | uint8_t PSKcf = (wordData >> 10) & 0x3; |
| 1171 | char cf[10]; |
| 1172 | memset(cf,0,sizeof(cf)); |
| 1173 | uint8_t delay = (wordData >> 12) & 0x3; |
| 1174 | char cdelay[33]; |
| 1175 | memset(cdelay,0,sizeof(cdelay)); |
| 1176 | uint8_t numblks = EM4x05_GET_NUM_BLOCKS(wordData); |
| 1177 | uint8_t LWR = numblks+5-1; //last word read |
| 1178 | switch (encoder) { |
| 1179 | case 0: snprintf(enc,sizeof(enc),"NRZ"); break; |
| 1180 | case 1: snprintf(enc,sizeof(enc),"Manchester"); break; |
| 1181 | case 2: snprintf(enc,sizeof(enc),"Biphase"); break; |
| 1182 | case 3: snprintf(enc,sizeof(enc),"Miller"); break; |
| 1183 | case 4: snprintf(enc,sizeof(enc),"PSK1"); break; |
| 1184 | case 5: snprintf(enc,sizeof(enc),"PSK2"); break; |
| 1185 | case 6: snprintf(enc,sizeof(enc),"PSK3"); break; |
| 1186 | case 7: snprintf(enc,sizeof(enc),"Unknown"); break; |
| 1187 | case 8: snprintf(enc,sizeof(enc),"FSK1"); break; |
| 1188 | case 9: snprintf(enc,sizeof(enc),"FSK2"); break; |
| 1189 | default: snprintf(enc,sizeof(enc),"Unknown"); break; |
| 1190 | } |
| 1191 | |
| 1192 | switch (PSKcf) { |
| 1193 | case 0: snprintf(cf,sizeof(cf),"RF/2"); break; |
| 1194 | case 1: snprintf(cf,sizeof(cf),"RF/8"); break; |
| 1195 | case 2: snprintf(cf,sizeof(cf),"RF/4"); break; |
| 1196 | case 3: snprintf(cf,sizeof(cf),"unknown"); break; |
| 1197 | } |
| 1198 | |
| 1199 | switch (delay) { |
| 1200 | case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break; |
| 1201 | case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break; |
| 1202 | case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break; |
| 1203 | case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break; |
| 1204 | } |
| 1205 | uint8_t readLogin = (wordData & EM4x05_READ_LOGIN_REQ)>>18; |
| 1206 | uint8_t readHKL = (wordData & EM4x05_READ_HK_LOGIN_REQ)>>19; |
| 1207 | uint8_t writeLogin = (wordData & EM4x05_WRITE_LOGIN_REQ)>>20; |
| 1208 | uint8_t writeHKL = (wordData & EM4x05_WRITE_HK_LOGIN_REQ)>>21; |
| 1209 | uint8_t raw = (wordData & EM4x05_READ_AFTER_WRITE)>>22; |
| 1210 | uint8_t disable = (wordData & EM4x05_DISABLE_ALLOWED)>>23; |
| 1211 | uint8_t rtf = (wordData & EM4x05_READER_TALK_FIRST)>>24; |
| 1212 | uint8_t pigeon = (wordData & (1<<26))>>26; |
| 1213 | PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData); |
| 1214 | PrintAndLog("Config Breakdown:"); |
| 1215 | PrintAndLog(" Data Rate: %02u | RF/%u", wordData & 0x3F, datarate); |
| 1216 | PrintAndLog(" Encoder: %u | %s", encoder, enc); |
| 1217 | PrintAndLog(" PSK CF: %u | %s", PSKcf, cf); |
| 1218 | PrintAndLog(" Delay: %u | %s", delay, cdelay); |
| 1219 | PrintAndLog(" LastWordR: %02u | Address of last word for default read - meaning %u blocks are output", LWR, numblks); |
| 1220 | PrintAndLog(" ReadLogin: %u | Read Login is %s", readLogin, readLogin ? "Required" : "Not Required"); |
| 1221 | PrintAndLog(" ReadHKL: %u | Read Housekeeping Words Login is %s", readHKL, readHKL ? "Required" : "Not Required"); |
| 1222 | PrintAndLog("WriteLogin: %u | Write Login is %s", writeLogin, writeLogin ? "Required" : "Not Required"); |
| 1223 | PrintAndLog(" WriteHKL: %u | Write Housekeeping Words Login is %s", writeHKL, writeHKL ? "Required" : "Not Required"); |
| 1224 | PrintAndLog(" R.A.W.: %u | Read After Write is %s", raw, raw ? "On" : "Off"); |
| 1225 | PrintAndLog(" Disable: %u | Disable Command is %s", disable, disable ? "Accepted" : "Not Accepted"); |
| 1226 | PrintAndLog(" R.T.F.: %u | Reader Talk First is %s", rtf, rtf ? "Enabled" : "Disabled"); |
| 1227 | PrintAndLog(" Pigeon: %u | Pigeon Mode is %s\n", pigeon, pigeon ? "Enabled" : "Disabled"); |
| 1228 | } |
| 1229 | |
| 1230 | void printEM4x05info(uint8_t chipType, uint8_t cap, uint16_t custCode, uint32_t serial) { |
| 1231 | switch (chipType) { |
| 1232 | case 9: PrintAndLog("\n Chip Type: %u | EM4305", chipType); break; |
| 1233 | case 4: PrintAndLog(" Chip Type: %u | Unknown", chipType); break; |
| 1234 | case 2: PrintAndLog(" Chip Type: %u | EM4469", chipType); break; |
| 1235 | //add more here when known |
| 1236 | default: PrintAndLog(" Chip Type: %u Unknown", chipType); break; |
| 1237 | } |
| 1238 | |
| 1239 | switch (cap) { |
| 1240 | case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break; |
| 1241 | case 2: PrintAndLog(" Cap Type: %u | %spF",cap, (chipType==2)? "75":"210"); break; |
| 1242 | case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break; |
| 1243 | case 0: PrintAndLog(" Cap Type: %u | no resonant capacitor",cap); break; |
| 1244 | default: PrintAndLog(" Cap Type: %u | unknown",cap); break; |
| 1245 | } |
| 1246 | |
| 1247 | PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown"); |
| 1248 | if (serial != 0) { |
| 1249 | PrintAndLog("\n Serial #: %08X\n", serial); |
| 1250 | } |
| 1251 | } |
| 1252 | |
| 1253 | void printEM4x05ProtectionBits(uint32_t wordData) { |
| 1254 | for (uint8_t i = 0; i < 15; i++) { |
| 1255 | PrintAndLog(" Word: %02u | %s", i, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked"); |
| 1256 | if (i==14) { |
| 1257 | PrintAndLog(" Word: %02u | %s", i+1, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked"); |
| 1258 | } |
| 1259 | } |
| 1260 | } |
| 1261 | |
| 1262 | //quick test for EM4x05/EM4x69 tag |
| 1263 | bool EM4x05Block0Test(uint32_t *wordData) { |
| 1264 | if (EM4x05ReadWord_ext(0,0,false,wordData) == 1) { |
| 1265 | return true; |
| 1266 | } |
| 1267 | return false; |
| 1268 | } |
| 1269 | |
| 1270 | int CmdEM4x05info(const char *Cmd) { |
| 1271 | //uint8_t addr = 0; |
| 1272 | uint32_t pwd; |
| 1273 | uint32_t wordData = 0; |
| 1274 | bool usePwd = false; |
| 1275 | uint8_t ctmp = param_getchar(Cmd, 0); |
| 1276 | if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump(); |
| 1277 | |
| 1278 | // for now use default input of 1 as invalid (unlikely 1 will be a valid password...) |
| 1279 | pwd = param_get32ex(Cmd, 0, 1, 16); |
| 1280 | |
| 1281 | if ( pwd != 1 ) { |
| 1282 | usePwd = true; |
| 1283 | } |
| 1284 | |
| 1285 | // read word 0 (chip info) |
| 1286 | // block 0 can be read even without a password. |
| 1287 | if ( !EM4x05Block0Test(&wordData) ) |
| 1288 | return -1; |
| 1289 | |
| 1290 | uint8_t chipType = (wordData >> 1) & 0xF; |
| 1291 | uint8_t cap = (wordData >> 5) & 3; |
| 1292 | uint16_t custCode = (wordData >> 9) & 0x3FF; |
| 1293 | |
| 1294 | // read word 1 (serial #) doesn't need pwd |
| 1295 | wordData = 0; |
| 1296 | if (EM4x05ReadWord_ext(1, 0, false, &wordData) != 1) { |
| 1297 | //failed, but continue anyway... |
| 1298 | } |
| 1299 | printEM4x05info(chipType, cap, custCode, wordData); |
| 1300 | |
| 1301 | // read word 4 (config block) |
| 1302 | // needs password if one is set |
| 1303 | wordData = 0; |
| 1304 | if ( EM4x05ReadWord_ext(4, pwd, usePwd, &wordData) != 1 ) { |
| 1305 | //failed |
| 1306 | PrintAndLog("Config block read failed - might be password protected."); |
| 1307 | return 0; |
| 1308 | } |
| 1309 | printEM4x05config(wordData); |
| 1310 | |
| 1311 | // read word 14 and 15 to see which is being used for the protection bits |
| 1312 | wordData = 0; |
| 1313 | if ( EM4x05ReadWord_ext(14, pwd, usePwd, &wordData) != 1 ) { |
| 1314 | //failed |
| 1315 | return 0; |
| 1316 | } |
| 1317 | // if status bit says this is not the used protection word |
| 1318 | if (!(wordData & 0x8000)) { |
| 1319 | if ( EM4x05ReadWord_ext(15, pwd, usePwd, &wordData) != 1 ) { |
| 1320 | //failed |
| 1321 | return 0; |
| 1322 | } |
| 1323 | } |
| 1324 | if (!(wordData & 0x8000)) { |
| 1325 | //something went wrong |
| 1326 | return 0; |
| 1327 | } |
| 1328 | printEM4x05ProtectionBits(wordData); |
| 1329 | |
| 1330 | return 1; |
| 1331 | } |
| 1332 | |
| 1333 | |
| 1334 | static command_t CommandTable[] = |
| 1335 | { |
| 1336 | {"help", CmdHelp, 1, "This help"}, |
| 1337 | {"410xread", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"}, |
| 1338 | {"410xdemod", CmdAskEM410xDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Demodulate an EM410x tag from GraphBuffer (args optional)"}, |
| 1339 | {"410xsim", CmdEM410xSim, 0, "<UID> [clock rate] -- Simulate EM410x tag"}, |
| 1340 | {"410xbrute", CmdEM410xBrute, 0, "ids.txt [d (delay in ms)] [c (clock rate)] -- Reader bruteforce attack by simulating EM410x tags"}, |
| 1341 | {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"}, |
| 1342 | {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" }, |
| 1343 | {"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"}, |
| 1344 | {"4x05dump", CmdEM4x05dump, 0, "(pwd) -- Read EM4x05/EM4x69 all word data"}, |
| 1345 | {"4x05info", CmdEM4x05info, 0, "(pwd) -- Get info from EM4x05/EM4x69 tag"}, |
| 1346 | {"4x05readword", CmdEM4x05ReadWord, 0, "<Word> (pwd) -- Read EM4x05/EM4x69 word data"}, |
| 1347 | {"4x05writeword", CmdEM4x05WriteWord, 0, "<Word> <data> (pwd) -- Write EM4x05/EM4x69 word data"}, |
| 1348 | {"4x50read", CmdEM4x50Read, 1, "demod data from EM4x50 tag from the graph buffer"}, |
| 1349 | {NULL, NULL, 0, NULL} |
| 1350 | }; |
| 1351 | |
| 1352 | int CmdLFEM4X(const char *Cmd) |
| 1353 | { |
| 1354 | CmdsParse(CommandTable, Cmd); |
| 1355 | return 0; |
| 1356 | } |
| 1357 | |
| 1358 | int CmdHelp(const char *Cmd) |
| 1359 | { |
| 1360 | CmdsHelp(CommandTable); |
| 1361 | return 0; |
| 1362 | } |