]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Jonathan Westhues, Mar 2006 | |
3 | // Edits by Gerhard de Koning Gans, Sep 2007 (##) | |
4 | // | |
5 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
6 | // at your option, any later version. See the LICENSE.txt file for the text of | |
7 | // the license. | |
8 | //----------------------------------------------------------------------------- | |
9 | // The main application code. This is the first thing called after start.c | |
10 | // executes. | |
11 | //----------------------------------------------------------------------------- | |
12 | ||
13 | #include "usb_cdc.h" | |
14 | #include "cmd.h" | |
15 | ||
16 | #include "proxmark3.h" | |
17 | #include "apps.h" | |
18 | #include "util.h" | |
19 | #include "printf.h" | |
20 | #include "string.h" | |
21 | #include <stdarg.h> | |
22 | #include "legicrf.h" | |
23 | #include <hitag2.h> | |
24 | #include "lfsampling.h" | |
25 | #include "BigBuf.h" | |
26 | ||
27 | #ifdef WITH_LCD | |
28 | #include "LCD.h" | |
29 | #endif | |
30 | ||
31 | #define abs(x) ( ((x)<0) ? -(x) : (x) ) | |
32 | ||
33 | //============================================================================= | |
34 | // A buffer where we can queue things up to be sent through the FPGA, for | |
35 | // any purpose (fake tag, as reader, whatever). We go MSB first, since that | |
36 | // is the order in which they go out on the wire. | |
37 | //============================================================================= | |
38 | ||
39 | #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits | |
40 | uint8_t ToSend[TOSEND_BUFFER_SIZE]; | |
41 | int ToSendMax; | |
42 | static int ToSendBit; | |
43 | struct common_area common_area __attribute__((section(".commonarea"))); | |
44 | ||
45 | void ToSendReset(void) | |
46 | { | |
47 | ToSendMax = -1; | |
48 | ToSendBit = 8; | |
49 | } | |
50 | ||
51 | void ToSendStuffBit(int b) | |
52 | { | |
53 | if(ToSendBit >= 8) { | |
54 | ToSendMax++; | |
55 | ToSend[ToSendMax] = 0; | |
56 | ToSendBit = 0; | |
57 | } | |
58 | ||
59 | if(b) { | |
60 | ToSend[ToSendMax] |= (1 << (7 - ToSendBit)); | |
61 | } | |
62 | ||
63 | ToSendBit++; | |
64 | ||
65 | if(ToSendMax >= sizeof(ToSend)) { | |
66 | ToSendBit = 0; | |
67 | DbpString("ToSendStuffBit overflowed!"); | |
68 | } | |
69 | } | |
70 | ||
71 | //============================================================================= | |
72 | // Debug print functions, to go out over USB, to the usual PC-side client. | |
73 | //============================================================================= | |
74 | ||
75 | void DbpString(char *str) | |
76 | { | |
77 | byte_t len = strlen(str); | |
78 | cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len); | |
79 | } | |
80 | ||
81 | #if 0 | |
82 | void DbpIntegers(int x1, int x2, int x3) | |
83 | { | |
84 | cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0); | |
85 | } | |
86 | #endif | |
87 | ||
88 | void Dbprintf(const char *fmt, ...) { | |
89 | // should probably limit size here; oh well, let's just use a big buffer | |
90 | char output_string[128]; | |
91 | va_list ap; | |
92 | ||
93 | va_start(ap, fmt); | |
94 | kvsprintf(fmt, output_string, 10, ap); | |
95 | va_end(ap); | |
96 | ||
97 | DbpString(output_string); | |
98 | } | |
99 | ||
100 | // prints HEX & ASCII | |
101 | void Dbhexdump(int len, uint8_t *d, bool bAsci) { | |
102 | int l=0,i; | |
103 | char ascii[9]; | |
104 | ||
105 | while (len>0) { | |
106 | if (len>8) l=8; | |
107 | else l=len; | |
108 | ||
109 | memcpy(ascii,d,l); | |
110 | ascii[l]=0; | |
111 | ||
112 | // filter safe ascii | |
113 | for (i=0;i<l;i++) | |
114 | if (ascii[i]<32 || ascii[i]>126) ascii[i]='.'; | |
115 | ||
116 | if (bAsci) { | |
117 | Dbprintf("%-8s %*D",ascii,l,d," "); | |
118 | } else { | |
119 | Dbprintf("%*D",l,d," "); | |
120 | } | |
121 | ||
122 | len-=8; | |
123 | d+=8; | |
124 | } | |
125 | } | |
126 | ||
127 | //----------------------------------------------------------------------------- | |
128 | // Read an ADC channel and block till it completes, then return the result | |
129 | // in ADC units (0 to 1023). Also a routine to average 32 samples and | |
130 | // return that. | |
131 | //----------------------------------------------------------------------------- | |
132 | static int ReadAdc(int ch) | |
133 | { | |
134 | uint32_t d; | |
135 | ||
136 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; | |
137 | AT91C_BASE_ADC->ADC_MR = | |
138 | ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz | |
139 | ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us | |
140 | ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us | |
141 | ||
142 | // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value. | |
143 | // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant | |
144 | // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged. | |
145 | // | |
146 | // The maths are: | |
147 | // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be | |
148 | // | |
149 | // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%) | |
150 | // | |
151 | // Note: with the "historic" values in the comments above, the error was 34% !!! | |
152 | ||
153 | AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch); | |
154 | ||
155 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
156 | ||
157 | while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) | |
158 | ; | |
159 | d = AT91C_BASE_ADC->ADC_CDR[ch]; | |
160 | ||
161 | return d; | |
162 | } | |
163 | ||
164 | int AvgAdc(int ch) // was static - merlok | |
165 | { | |
166 | int i; | |
167 | int a = 0; | |
168 | ||
169 | for(i = 0; i < 32; i++) { | |
170 | a += ReadAdc(ch); | |
171 | } | |
172 | ||
173 | return (a + 15) >> 5; | |
174 | } | |
175 | ||
176 | void MeasureAntennaTuning(void) | |
177 | { | |
178 | uint8_t LF_Results[256]; | |
179 | int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0 | |
180 | int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV | |
181 | ||
182 | LED_B_ON(); | |
183 | ||
184 | /* | |
185 | * Sweeps the useful LF range of the proxmark from | |
186 | * 46.8kHz (divisor=255) to 600kHz (divisor=19) and | |
187 | * read the voltage in the antenna, the result left | |
188 | * in the buffer is a graph which should clearly show | |
189 | * the resonating frequency of your LF antenna | |
190 | * ( hopefully around 95 if it is tuned to 125kHz!) | |
191 | */ | |
192 | ||
193 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
194 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
195 | for (i=255; i>=19; i--) { | |
196 | WDT_HIT(); | |
197 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); | |
198 | SpinDelay(20); | |
199 | adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10); | |
200 | if (i==95) vLf125 = adcval; // voltage at 125Khz | |
201 | if (i==89) vLf134 = adcval; // voltage at 134Khz | |
202 | ||
203 | LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes | |
204 | if(LF_Results[i] > peak) { | |
205 | peakv = adcval; | |
206 | peak = LF_Results[i]; | |
207 | peakf = i; | |
208 | //ptr = i; | |
209 | } | |
210 | } | |
211 | ||
212 | for (i=18; i >= 0; i--) LF_Results[i] = 0; | |
213 | ||
214 | LED_A_ON(); | |
215 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. | |
216 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
217 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); | |
218 | SpinDelay(20); | |
219 | vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; | |
220 | ||
221 | cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256); | |
222 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
223 | LED_A_OFF(); | |
224 | LED_B_OFF(); | |
225 | return; | |
226 | } | |
227 | ||
228 | void MeasureAntennaTuningHf(void) | |
229 | { | |
230 | int vHf = 0; // in mV | |
231 | ||
232 | DbpString("Measuring HF antenna, press button to exit"); | |
233 | ||
234 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. | |
235 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
236 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); | |
237 | ||
238 | for (;;) { | |
239 | SpinDelay(20); | |
240 | vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; | |
241 | ||
242 | Dbprintf("%d mV",vHf); | |
243 | if (BUTTON_PRESS()) break; | |
244 | } | |
245 | DbpString("cancelled"); | |
246 | ||
247 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
248 | ||
249 | } | |
250 | ||
251 | ||
252 | void SimulateTagHfListen(void) | |
253 | { | |
254 | // ToDo: historically this used the free buffer, which was 2744 Bytes long. | |
255 | // There might be a better size to be defined: | |
256 | #define HF_14B_SNOOP_BUFFER_SIZE 2744 | |
257 | uint8_t *dest = BigBuf_malloc(HF_14B_SNOOP_BUFFER_SIZE); | |
258 | uint8_t v = 0; | |
259 | int i; | |
260 | int p = 0; | |
261 | ||
262 | // We're using this mode just so that I can test it out; the simulated | |
263 | // tag mode would work just as well and be simpler. | |
264 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
265 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); | |
266 | ||
267 | // We need to listen to the high-frequency, peak-detected path. | |
268 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
269 | ||
270 | FpgaSetupSsc(); | |
271 | ||
272 | i = 0; | |
273 | for(;;) { | |
274 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
275 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
276 | } | |
277 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
278 | uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
279 | ||
280 | v <<= 1; | |
281 | if(r & 1) { | |
282 | v |= 1; | |
283 | } | |
284 | p++; | |
285 | ||
286 | if(p >= 8) { | |
287 | dest[i] = v; | |
288 | v = 0; | |
289 | p = 0; | |
290 | i++; | |
291 | ||
292 | if(i >= HF_14B_SNOOP_BUFFER_SIZE) { | |
293 | break; | |
294 | } | |
295 | } | |
296 | } | |
297 | } | |
298 | DbpString("simulate tag (now type bitsamples)"); | |
299 | } | |
300 | ||
301 | void ReadMem(int addr) | |
302 | { | |
303 | const uint8_t *data = ((uint8_t *)addr); | |
304 | ||
305 | Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x", | |
306 | addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); | |
307 | } | |
308 | ||
309 | /* osimage version information is linked in */ | |
310 | extern struct version_information version_information; | |
311 | /* bootrom version information is pointed to from _bootphase1_version_pointer */ | |
312 | extern char *_bootphase1_version_pointer, _flash_start, _flash_end; | |
313 | void SendVersion(void) | |
314 | { | |
315 | char temp[512]; /* Limited data payload in USB packets */ | |
316 | DbpString("Prox/RFID mark3 RFID instrument"); | |
317 | ||
318 | /* Try to find the bootrom version information. Expect to find a pointer at | |
319 | * symbol _bootphase1_version_pointer, perform slight sanity checks on the | |
320 | * pointer, then use it. | |
321 | */ | |
322 | char *bootrom_version = *(char**)&_bootphase1_version_pointer; | |
323 | if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) { | |
324 | DbpString("bootrom version information appears invalid"); | |
325 | } else { | |
326 | FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version); | |
327 | DbpString(temp); | |
328 | } | |
329 | ||
330 | FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information); | |
331 | DbpString(temp); | |
332 | ||
333 | FpgaGatherVersion(temp, sizeof(temp)); | |
334 | DbpString(temp); | |
335 | // Send Chip ID | |
336 | cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0); | |
337 | } | |
338 | ||
339 | #ifdef WITH_LF | |
340 | // samy's sniff and repeat routine | |
341 | void SamyRun() | |
342 | { | |
343 | DbpString("Stand-alone mode! No PC necessary."); | |
344 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
345 | ||
346 | // 3 possible options? no just 2 for now | |
347 | #define OPTS 2 | |
348 | ||
349 | int high[OPTS], low[OPTS]; | |
350 | ||
351 | // Oooh pretty -- notify user we're in elite samy mode now | |
352 | LED(LED_RED, 200); | |
353 | LED(LED_ORANGE, 200); | |
354 | LED(LED_GREEN, 200); | |
355 | LED(LED_ORANGE, 200); | |
356 | LED(LED_RED, 200); | |
357 | LED(LED_ORANGE, 200); | |
358 | LED(LED_GREEN, 200); | |
359 | LED(LED_ORANGE, 200); | |
360 | LED(LED_RED, 200); | |
361 | ||
362 | int selected = 0; | |
363 | int playing = 0; | |
364 | int cardRead = 0; | |
365 | ||
366 | // Turn on selected LED | |
367 | LED(selected + 1, 0); | |
368 | ||
369 | for (;;) | |
370 | { | |
371 | usb_poll(); | |
372 | WDT_HIT(); | |
373 | ||
374 | // Was our button held down or pressed? | |
375 | int button_pressed = BUTTON_HELD(1000); | |
376 | SpinDelay(300); | |
377 | ||
378 | // Button was held for a second, begin recording | |
379 | if (button_pressed > 0 && cardRead == 0) | |
380 | { | |
381 | LEDsoff(); | |
382 | LED(selected + 1, 0); | |
383 | LED(LED_RED2, 0); | |
384 | ||
385 | // record | |
386 | DbpString("Starting recording"); | |
387 | ||
388 | // wait for button to be released | |
389 | while(BUTTON_PRESS()) | |
390 | WDT_HIT(); | |
391 | ||
392 | /* need this delay to prevent catching some weird data */ | |
393 | SpinDelay(500); | |
394 | ||
395 | CmdHIDdemodFSK(1, &high[selected], &low[selected], 0); | |
396 | Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]); | |
397 | ||
398 | LEDsoff(); | |
399 | LED(selected + 1, 0); | |
400 | // Finished recording | |
401 | ||
402 | // If we were previously playing, set playing off | |
403 | // so next button push begins playing what we recorded | |
404 | playing = 0; | |
405 | ||
406 | cardRead = 1; | |
407 | ||
408 | } | |
409 | ||
410 | else if (button_pressed > 0 && cardRead == 1) | |
411 | { | |
412 | LEDsoff(); | |
413 | LED(selected + 1, 0); | |
414 | LED(LED_ORANGE, 0); | |
415 | ||
416 | // record | |
417 | Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]); | |
418 | ||
419 | // wait for button to be released | |
420 | while(BUTTON_PRESS()) | |
421 | WDT_HIT(); | |
422 | ||
423 | /* need this delay to prevent catching some weird data */ | |
424 | SpinDelay(500); | |
425 | ||
426 | CopyHIDtoT55x7(high[selected], low[selected], 0, 0); | |
427 | Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]); | |
428 | ||
429 | LEDsoff(); | |
430 | LED(selected + 1, 0); | |
431 | // Finished recording | |
432 | ||
433 | // If we were previously playing, set playing off | |
434 | // so next button push begins playing what we recorded | |
435 | playing = 0; | |
436 | ||
437 | cardRead = 0; | |
438 | ||
439 | } | |
440 | ||
441 | // Change where to record (or begin playing) | |
442 | else if (button_pressed) | |
443 | { | |
444 | // Next option if we were previously playing | |
445 | if (playing) | |
446 | selected = (selected + 1) % OPTS; | |
447 | playing = !playing; | |
448 | ||
449 | LEDsoff(); | |
450 | LED(selected + 1, 0); | |
451 | ||
452 | // Begin transmitting | |
453 | if (playing) | |
454 | { | |
455 | LED(LED_GREEN, 0); | |
456 | DbpString("Playing"); | |
457 | // wait for button to be released | |
458 | while(BUTTON_PRESS()) | |
459 | WDT_HIT(); | |
460 | Dbprintf("%x %x %x", selected, high[selected], low[selected]); | |
461 | CmdHIDsimTAG(high[selected], low[selected], 0); | |
462 | DbpString("Done playing"); | |
463 | if (BUTTON_HELD(1000) > 0) | |
464 | { | |
465 | DbpString("Exiting"); | |
466 | LEDsoff(); | |
467 | return; | |
468 | } | |
469 | ||
470 | /* We pressed a button so ignore it here with a delay */ | |
471 | SpinDelay(300); | |
472 | ||
473 | // when done, we're done playing, move to next option | |
474 | selected = (selected + 1) % OPTS; | |
475 | playing = !playing; | |
476 | LEDsoff(); | |
477 | LED(selected + 1, 0); | |
478 | } | |
479 | else | |
480 | while(BUTTON_PRESS()) | |
481 | WDT_HIT(); | |
482 | } | |
483 | } | |
484 | } | |
485 | #endif | |
486 | ||
487 | /* | |
488 | OBJECTIVE | |
489 | Listen and detect an external reader. Determine the best location | |
490 | for the antenna. | |
491 | ||
492 | INSTRUCTIONS: | |
493 | Inside the ListenReaderField() function, there is two mode. | |
494 | By default, when you call the function, you will enter mode 1. | |
495 | If you press the PM3 button one time, you will enter mode 2. | |
496 | If you press the PM3 button a second time, you will exit the function. | |
497 | ||
498 | DESCRIPTION OF MODE 1: | |
499 | This mode just listens for an external reader field and lights up green | |
500 | for HF and/or red for LF. This is the original mode of the detectreader | |
501 | function. | |
502 | ||
503 | DESCRIPTION OF MODE 2: | |
504 | This mode will visually represent, using the LEDs, the actual strength of the | |
505 | current compared to the maximum current detected. Basically, once you know | |
506 | what kind of external reader is present, it will help you spot the best location to place | |
507 | your antenna. You will probably not get some good results if there is a LF and a HF reader | |
508 | at the same place! :-) | |
509 | ||
510 | LIGHT SCHEME USED: | |
511 | */ | |
512 | static const char LIGHT_SCHEME[] = { | |
513 | 0x0, /* ---- | No field detected */ | |
514 | 0x1, /* X--- | 14% of maximum current detected */ | |
515 | 0x2, /* -X-- | 29% of maximum current detected */ | |
516 | 0x4, /* --X- | 43% of maximum current detected */ | |
517 | 0x8, /* ---X | 57% of maximum current detected */ | |
518 | 0xC, /* --XX | 71% of maximum current detected */ | |
519 | 0xE, /* -XXX | 86% of maximum current detected */ | |
520 | 0xF, /* XXXX | 100% of maximum current detected */ | |
521 | }; | |
522 | static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]); | |
523 | ||
524 | void ListenReaderField(int limit) | |
525 | { | |
526 | int lf_av, lf_av_new, lf_baseline= 0, lf_max; | |
527 | int hf_av, hf_av_new, hf_baseline= 0, hf_max; | |
528 | int mode=1, display_val, display_max, i; | |
529 | ||
530 | #define LF_ONLY 1 | |
531 | #define HF_ONLY 2 | |
532 | #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE | |
533 | ||
534 | ||
535 | // switch off FPGA - we don't want to measure our own signal | |
536 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
537 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
538 | ||
539 | LEDsoff(); | |
540 | ||
541 | lf_av = lf_max = AvgAdc(ADC_CHAN_LF); | |
542 | ||
543 | if(limit != HF_ONLY) { | |
544 | Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10); | |
545 | lf_baseline = lf_av; | |
546 | } | |
547 | ||
548 | hf_av = hf_max = AvgAdc(ADC_CHAN_HF); | |
549 | ||
550 | if (limit != LF_ONLY) { | |
551 | Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10); | |
552 | hf_baseline = hf_av; | |
553 | } | |
554 | ||
555 | for(;;) { | |
556 | if (BUTTON_PRESS()) { | |
557 | SpinDelay(500); | |
558 | switch (mode) { | |
559 | case 1: | |
560 | mode=2; | |
561 | DbpString("Signal Strength Mode"); | |
562 | break; | |
563 | case 2: | |
564 | default: | |
565 | DbpString("Stopped"); | |
566 | LEDsoff(); | |
567 | return; | |
568 | break; | |
569 | } | |
570 | } | |
571 | WDT_HIT(); | |
572 | ||
573 | if (limit != HF_ONLY) { | |
574 | if(mode == 1) { | |
575 | if (abs(lf_av - lf_baseline) > REPORT_CHANGE) | |
576 | LED_D_ON(); | |
577 | else | |
578 | LED_D_OFF(); | |
579 | } | |
580 | ||
581 | lf_av_new = AvgAdc(ADC_CHAN_LF); | |
582 | // see if there's a significant change | |
583 | if(abs(lf_av - lf_av_new) > REPORT_CHANGE) { | |
584 | Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10); | |
585 | lf_av = lf_av_new; | |
586 | if (lf_av > lf_max) | |
587 | lf_max = lf_av; | |
588 | } | |
589 | } | |
590 | ||
591 | if (limit != LF_ONLY) { | |
592 | if (mode == 1){ | |
593 | if (abs(hf_av - hf_baseline) > REPORT_CHANGE) | |
594 | LED_B_ON(); | |
595 | else | |
596 | LED_B_OFF(); | |
597 | } | |
598 | ||
599 | hf_av_new = AvgAdc(ADC_CHAN_HF); | |
600 | // see if there's a significant change | |
601 | if(abs(hf_av - hf_av_new) > REPORT_CHANGE) { | |
602 | Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10); | |
603 | hf_av = hf_av_new; | |
604 | if (hf_av > hf_max) | |
605 | hf_max = hf_av; | |
606 | } | |
607 | } | |
608 | ||
609 | if(mode == 2) { | |
610 | if (limit == LF_ONLY) { | |
611 | display_val = lf_av; | |
612 | display_max = lf_max; | |
613 | } else if (limit == HF_ONLY) { | |
614 | display_val = hf_av; | |
615 | display_max = hf_max; | |
616 | } else { /* Pick one at random */ | |
617 | if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) { | |
618 | display_val = hf_av; | |
619 | display_max = hf_max; | |
620 | } else { | |
621 | display_val = lf_av; | |
622 | display_max = lf_max; | |
623 | } | |
624 | } | |
625 | for (i=0; i<LIGHT_LEN; i++) { | |
626 | if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) { | |
627 | if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF(); | |
628 | if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF(); | |
629 | if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF(); | |
630 | if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF(); | |
631 | break; | |
632 | } | |
633 | } | |
634 | } | |
635 | } | |
636 | } | |
637 | ||
638 | void UsbPacketReceived(uint8_t *packet, int len) | |
639 | { | |
640 | UsbCommand *c = (UsbCommand *)packet; | |
641 | ||
642 | //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]); | |
643 | ||
644 | switch(c->cmd) { | |
645 | #ifdef WITH_LF | |
646 | case CMD_SET_LF_SAMPLING_CONFIG: | |
647 | setSamplingConfig((sample_config *) c->d.asBytes); | |
648 | break; | |
649 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
650 | cmd_send(CMD_ACK,SampleLF(c->arg[0]),0,0,0,0); | |
651 | break; | |
652 | case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
653 | ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); | |
654 | break; | |
655 | case CMD_LF_SNOOP_RAW_ADC_SAMPLES: | |
656 | cmd_send(CMD_ACK,SnoopLF(),0,0,0,0); | |
657 | break; | |
658 | case CMD_HID_DEMOD_FSK: | |
659 | CmdHIDdemodFSK(c->arg[0], 0, 0, 1); | |
660 | break; | |
661 | case CMD_HID_SIM_TAG: | |
662 | CmdHIDsimTAG(c->arg[0], c->arg[1], 1); | |
663 | break; | |
664 | case CMD_FSK_SIM_TAG: | |
665 | CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
666 | break; | |
667 | case CMD_ASK_SIM_TAG: | |
668 | CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
669 | break; | |
670 | case CMD_PSK_SIM_TAG: | |
671 | CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
672 | break; | |
673 | case CMD_HID_CLONE_TAG: | |
674 | CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); | |
675 | break; | |
676 | case CMD_IO_DEMOD_FSK: | |
677 | CmdIOdemodFSK(c->arg[0], 0, 0, 1); | |
678 | break; | |
679 | case CMD_IO_CLONE_TAG: | |
680 | CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]); | |
681 | break; | |
682 | case CMD_EM410X_DEMOD: | |
683 | CmdEM410xdemod(c->arg[0], 0, 0, 1); | |
684 | break; | |
685 | case CMD_EM410X_WRITE_TAG: | |
686 | WriteEM410x(c->arg[0], c->arg[1], c->arg[2]); | |
687 | break; | |
688 | case CMD_READ_TI_TYPE: | |
689 | ReadTItag(); | |
690 | break; | |
691 | case CMD_WRITE_TI_TYPE: | |
692 | WriteTItag(c->arg[0],c->arg[1],c->arg[2]); | |
693 | break; | |
694 | case CMD_SIMULATE_TAG_125K: | |
695 | LED_A_ON(); | |
696 | SimulateTagLowFrequency(c->arg[0], c->arg[1], 1); | |
697 | LED_A_OFF(); | |
698 | break; | |
699 | case CMD_LF_SIMULATE_BIDIR: | |
700 | SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]); | |
701 | break; | |
702 | case CMD_INDALA_CLONE_TAG: | |
703 | CopyIndala64toT55x7(c->arg[0], c->arg[1]); | |
704 | break; | |
705 | case CMD_INDALA_CLONE_TAG_L: | |
706 | CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]); | |
707 | break; | |
708 | case CMD_T55XX_READ_BLOCK: | |
709 | T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]); | |
710 | break; | |
711 | case CMD_T55XX_WRITE_BLOCK: | |
712 | T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); | |
713 | break; | |
714 | case CMD_T55XX_READ_TRACE: | |
715 | T55xxReadTrace(); | |
716 | break; | |
717 | case CMD_PCF7931_READ: | |
718 | ReadPCF7931(); | |
719 | cmd_send(CMD_ACK,0,0,0,0,0); | |
720 | break; | |
721 | case CMD_EM4X_READ_WORD: | |
722 | EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]); | |
723 | break; | |
724 | case CMD_EM4X_WRITE_WORD: | |
725 | EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); | |
726 | break; | |
727 | #endif | |
728 | ||
729 | #ifdef WITH_HITAG | |
730 | case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type | |
731 | SnoopHitag(c->arg[0]); | |
732 | break; | |
733 | case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content | |
734 | SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes); | |
735 | break; | |
736 | case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function | |
737 | ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes); | |
738 | break; | |
739 | #endif | |
740 | ||
741 | #ifdef WITH_ISO15693 | |
742 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: | |
743 | AcquireRawAdcSamplesIso15693(); | |
744 | break; | |
745 | case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693: | |
746 | RecordRawAdcSamplesIso15693(); | |
747 | break; | |
748 | ||
749 | case CMD_ISO_15693_COMMAND: | |
750 | DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); | |
751 | break; | |
752 | ||
753 | case CMD_ISO_15693_FIND_AFI: | |
754 | BruteforceIso15693Afi(c->arg[0]); | |
755 | break; | |
756 | ||
757 | case CMD_ISO_15693_DEBUG: | |
758 | SetDebugIso15693(c->arg[0]); | |
759 | break; | |
760 | ||
761 | case CMD_READER_ISO_15693: | |
762 | ReaderIso15693(c->arg[0]); | |
763 | break; | |
764 | case CMD_SIMTAG_ISO_15693: | |
765 | SimTagIso15693(c->arg[0], c->d.asBytes); | |
766 | break; | |
767 | #endif | |
768 | ||
769 | #ifdef WITH_LEGICRF | |
770 | case CMD_SIMULATE_TAG_LEGIC_RF: | |
771 | LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]); | |
772 | break; | |
773 | ||
774 | case CMD_WRITER_LEGIC_RF: | |
775 | LegicRfWriter(c->arg[1], c->arg[0]); | |
776 | break; | |
777 | ||
778 | case CMD_READER_LEGIC_RF: | |
779 | LegicRfReader(c->arg[0], c->arg[1]); | |
780 | break; | |
781 | #endif | |
782 | ||
783 | #ifdef WITH_ISO14443b | |
784 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443: | |
785 | AcquireRawAdcSamplesIso14443(c->arg[0]); | |
786 | break; | |
787 | case CMD_READ_SRI512_TAG: | |
788 | ReadSTMemoryIso14443(0x0F); | |
789 | break; | |
790 | case CMD_READ_SRIX4K_TAG: | |
791 | ReadSTMemoryIso14443(0x7F); | |
792 | break; | |
793 | case CMD_SNOOP_ISO_14443: | |
794 | SnoopIso14443(); | |
795 | break; | |
796 | case CMD_SIMULATE_TAG_ISO_14443: | |
797 | SimulateIso14443Tag(); | |
798 | break; | |
799 | case CMD_ISO_14443B_COMMAND: | |
800 | SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); | |
801 | break; | |
802 | #endif | |
803 | ||
804 | #ifdef WITH_ISO14443a | |
805 | case CMD_SNOOP_ISO_14443a: | |
806 | SniffIso14443a(c->arg[0]); | |
807 | break; | |
808 | case CMD_READER_ISO_14443a: | |
809 | ReaderIso14443a(c); | |
810 | break; | |
811 | case CMD_SIMULATE_TAG_ISO_14443a: | |
812 | SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID | |
813 | break; | |
814 | ||
815 | case CMD_EPA_PACE_COLLECT_NONCE: | |
816 | EPA_PACE_Collect_Nonce(c); | |
817 | break; | |
818 | ||
819 | // case CMD_EPA_: | |
820 | // EpaFoo(c); | |
821 | // break; | |
822 | ||
823 | case CMD_READER_MIFARE: | |
824 | ReaderMifare(c->arg[0]); | |
825 | break; | |
826 | case CMD_MIFARE_READBL: | |
827 | MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
828 | break; | |
829 | case CMD_MIFAREU_READBL: | |
830 | MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes); | |
831 | break; | |
832 | case CMD_MIFAREUC_AUTH: | |
833 | MifareUC_Auth(c->arg[0],c->d.asBytes); | |
834 | break; | |
835 | case CMD_MIFAREU_READCARD: | |
836 | MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
837 | break; | |
838 | case CMD_MIFAREUC_SETPWD: | |
839 | MifareUSetPwd(c->arg[0], c->d.asBytes); | |
840 | break; | |
841 | case CMD_MIFARE_READSC: | |
842 | MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
843 | break; | |
844 | case CMD_MIFARE_WRITEBL: | |
845 | MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
846 | break; | |
847 | //case CMD_MIFAREU_WRITEBL_COMPAT: | |
848 | //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes); | |
849 | //break; | |
850 | case CMD_MIFAREU_WRITEBL: | |
851 | MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes); | |
852 | break; | |
853 | case CMD_MIFARE_NESTED: | |
854 | MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
855 | break; | |
856 | case CMD_MIFARE_CHKKEYS: | |
857 | MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
858 | break; | |
859 | case CMD_SIMULATE_MIFARE_CARD: | |
860 | Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
861 | break; | |
862 | ||
863 | // emulator | |
864 | case CMD_MIFARE_SET_DBGMODE: | |
865 | MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
866 | break; | |
867 | case CMD_MIFARE_EML_MEMCLR: | |
868 | MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
869 | break; | |
870 | case CMD_MIFARE_EML_MEMSET: | |
871 | MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
872 | break; | |
873 | case CMD_MIFARE_EML_MEMGET: | |
874 | MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
875 | break; | |
876 | case CMD_MIFARE_EML_CARDLOAD: | |
877 | MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
878 | break; | |
879 | ||
880 | // Work with "magic Chinese" card | |
881 | case CMD_MIFARE_CSETBLOCK: | |
882 | MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
883 | break; | |
884 | case CMD_MIFARE_CGETBLOCK: | |
885 | MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
886 | break; | |
887 | case CMD_MIFARE_CIDENT: | |
888 | MifareCIdent(); | |
889 | break; | |
890 | ||
891 | // mifare sniffer | |
892 | case CMD_MIFARE_SNIFFER: | |
893 | SniffMifare(c->arg[0]); | |
894 | break; | |
895 | ||
896 | //mifare desfire | |
897 | case CMD_MIFARE_DESFIRE_READBL: break; | |
898 | case CMD_MIFARE_DESFIRE_WRITEBL: break; | |
899 | case CMD_MIFARE_DESFIRE_AUTH1: | |
900 | MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
901 | break; | |
902 | case CMD_MIFARE_DESFIRE_AUTH2: | |
903 | //MifareDES_Auth2(c->arg[0],c->d.asBytes); | |
904 | break; | |
905 | case CMD_MIFARE_DES_READER: | |
906 | //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes); | |
907 | break; | |
908 | case CMD_MIFARE_DESFIRE_INFO: | |
909 | MifareDesfireGetInformation(); | |
910 | break; | |
911 | case CMD_MIFARE_DESFIRE: | |
912 | MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes); | |
913 | break; | |
914 | ||
915 | case CMD_MIFARE_COLLECT_NONCES: | |
916 | MifareCollectNonces(c->arg[0], c->arg[1]); | |
917 | break; | |
918 | #endif | |
919 | ||
920 | #ifdef WITH_ICLASS | |
921 | // Makes use of ISO14443a FPGA Firmware | |
922 | case CMD_SNOOP_ICLASS: | |
923 | SnoopIClass(); | |
924 | break; | |
925 | case CMD_SIMULATE_TAG_ICLASS: | |
926 | SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
927 | break; | |
928 | case CMD_READER_ICLASS: | |
929 | ReaderIClass(c->arg[0]); | |
930 | break; | |
931 | case CMD_READER_ICLASS_REPLAY: | |
932 | ReaderIClass_Replay(c->arg[0], c->d.asBytes); | |
933 | break; | |
934 | case CMD_ICLASS_EML_MEMSET: | |
935 | emlSet(c->d.asBytes,c->arg[0], c->arg[1]); | |
936 | break; | |
937 | #endif | |
938 | ||
939 | case CMD_SIMULATE_TAG_HF_LISTEN: | |
940 | SimulateTagHfListen(); | |
941 | break; | |
942 | ||
943 | case CMD_BUFF_CLEAR: | |
944 | BigBuf_Clear(); | |
945 | break; | |
946 | ||
947 | case CMD_MEASURE_ANTENNA_TUNING: | |
948 | MeasureAntennaTuning(); | |
949 | break; | |
950 | ||
951 | case CMD_MEASURE_ANTENNA_TUNING_HF: | |
952 | MeasureAntennaTuningHf(); | |
953 | break; | |
954 | ||
955 | case CMD_LISTEN_READER_FIELD: | |
956 | ListenReaderField(c->arg[0]); | |
957 | break; | |
958 | ||
959 | case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control | |
960 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
961 | SpinDelay(200); | |
962 | LED_D_OFF(); // LED D indicates field ON or OFF | |
963 | break; | |
964 | ||
965 | case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: | |
966 | ||
967 | LED_B_ON(); | |
968 | uint8_t *BigBuf = BigBuf_get_addr(); | |
969 | for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) { | |
970 | size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE); | |
971 | cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len); | |
972 | } | |
973 | // Trigger a finish downloading signal with an ACK frame | |
974 | cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config)); | |
975 | LED_B_OFF(); | |
976 | break; | |
977 | ||
978 | case CMD_DOWNLOADED_SIM_SAMPLES_125K: { | |
979 | uint8_t *b = BigBuf_get_addr(); | |
980 | memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE); | |
981 | cmd_send(CMD_ACK,0,0,0,0,0); | |
982 | break; | |
983 | } | |
984 | case CMD_READ_MEM: | |
985 | ReadMem(c->arg[0]); | |
986 | break; | |
987 | ||
988 | case CMD_SET_LF_DIVISOR: | |
989 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
990 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]); | |
991 | break; | |
992 | ||
993 | case CMD_SET_ADC_MUX: | |
994 | switch(c->arg[0]) { | |
995 | case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break; | |
996 | case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break; | |
997 | case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break; | |
998 | case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break; | |
999 | } | |
1000 | break; | |
1001 | ||
1002 | case CMD_VERSION: | |
1003 | SendVersion(); | |
1004 | break; | |
1005 | ||
1006 | #ifdef WITH_LCD | |
1007 | case CMD_LCD_RESET: | |
1008 | LCDReset(); | |
1009 | break; | |
1010 | case CMD_LCD: | |
1011 | LCDSend(c->arg[0]); | |
1012 | break; | |
1013 | #endif | |
1014 | case CMD_SETUP_WRITE: | |
1015 | case CMD_FINISH_WRITE: | |
1016 | case CMD_HARDWARE_RESET: | |
1017 | usb_disable(); | |
1018 | SpinDelay(1000); | |
1019 | SpinDelay(1000); | |
1020 | AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; | |
1021 | for(;;) { | |
1022 | // We're going to reset, and the bootrom will take control. | |
1023 | } | |
1024 | break; | |
1025 | ||
1026 | case CMD_START_FLASH: | |
1027 | if(common_area.flags.bootrom_present) { | |
1028 | common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE; | |
1029 | } | |
1030 | usb_disable(); | |
1031 | AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; | |
1032 | for(;;); | |
1033 | break; | |
1034 | ||
1035 | case CMD_DEVICE_INFO: { | |
1036 | uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS; | |
1037 | if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT; | |
1038 | cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0); | |
1039 | break; | |
1040 | } | |
1041 | default: | |
1042 | Dbprintf("%s: 0x%04x","unknown command:",c->cmd); | |
1043 | break; | |
1044 | } | |
1045 | } | |
1046 | ||
1047 | void __attribute__((noreturn)) AppMain(void) | |
1048 | { | |
1049 | SpinDelay(100); | |
1050 | clear_trace(); | |
1051 | if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) { | |
1052 | /* Initialize common area */ | |
1053 | memset(&common_area, 0, sizeof(common_area)); | |
1054 | common_area.magic = COMMON_AREA_MAGIC; | |
1055 | common_area.version = 1; | |
1056 | } | |
1057 | common_area.flags.osimage_present = 1; | |
1058 | ||
1059 | LED_D_OFF(); | |
1060 | LED_C_OFF(); | |
1061 | LED_B_OFF(); | |
1062 | LED_A_OFF(); | |
1063 | ||
1064 | // Init USB device | |
1065 | usb_enable(); | |
1066 | ||
1067 | // The FPGA gets its clock from us from PCK0 output, so set that up. | |
1068 | AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0; | |
1069 | AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0; | |
1070 | AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0; | |
1071 | // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz | |
1072 | AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | | |
1073 | AT91C_PMC_PRES_CLK_4; | |
1074 | AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0; | |
1075 | ||
1076 | // Reset SPI | |
1077 | AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST; | |
1078 | // Reset SSC | |
1079 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
1080 | ||
1081 | // Load the FPGA image, which we have stored in our flash. | |
1082 | // (the HF version by default) | |
1083 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1084 | ||
1085 | StartTickCount(); | |
1086 | ||
1087 | #ifdef WITH_LCD | |
1088 | LCDInit(); | |
1089 | #endif | |
1090 | ||
1091 | byte_t rx[sizeof(UsbCommand)]; | |
1092 | size_t rx_len; | |
1093 | ||
1094 | for(;;) { | |
1095 | if (usb_poll()) { | |
1096 | rx_len = usb_read(rx,sizeof(UsbCommand)); | |
1097 | if (rx_len) { | |
1098 | UsbPacketReceived(rx,rx_len); | |
1099 | } | |
1100 | } | |
1101 | WDT_HIT(); | |
1102 | ||
1103 | #ifdef WITH_LF | |
1104 | if (BUTTON_HELD(1000) > 0) | |
1105 | SamyRun(); | |
1106 | #endif | |
1107 | } | |
1108 | } |