]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Copyright (C) 2015, 2016 by piwi | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // Implements a card only attack based on crypto text (encrypted nonces | |
9 | // received during a nested authentication) only. Unlike other card only | |
10 | // attacks this doesn't rely on implementation errors but only on the | |
11 | // inherent weaknesses of the crypto1 cypher. Described in | |
12 | // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened | |
13 | // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on | |
14 | // Computer and Communications Security, 2015 | |
15 | //----------------------------------------------------------------------------- | |
16 | ||
17 | #include "cmdhfmfhard.h" | |
18 | ||
19 | #include <stdio.h> | |
20 | #include <stdlib.h> | |
21 | #include <inttypes.h> | |
22 | #include <string.h> | |
23 | #include <time.h> | |
24 | #include <pthread.h> | |
25 | #include <locale.h> | |
26 | #include <math.h> | |
27 | #include "proxmark3.h" | |
28 | #include "cmdmain.h" | |
29 | #include "ui.h" | |
30 | #include "util.h" | |
31 | #include "util_posix.h" | |
32 | #include "crapto1/crapto1.h" | |
33 | #include "parity.h" | |
34 | #include "hardnested/hardnested_bruteforce.h" | |
35 | #include "hardnested/hardnested_bf_core.h" | |
36 | #include "hardnested/hardnested_bitarray_core.h" | |
37 | #include "zlib.h" | |
38 | ||
39 | #define NUM_CHECK_BITFLIPS_THREADS (num_CPUs()) | |
40 | #define NUM_REDUCTION_WORKING_THREADS (num_CPUs()) | |
41 | ||
42 | #define IGNORE_BITFLIP_THRESHOLD 0.99 // ignore bitflip arrays which have nearly only valid states | |
43 | ||
44 | #define STATE_FILES_DIRECTORY "hardnested/tables/" | |
45 | #define STATE_FILE_TEMPLATE "bitflip_%d_%03" PRIx16 "_states.bin.z" | |
46 | ||
47 | #define DEBUG_KEY_ELIMINATION | |
48 | // #define DEBUG_REDUCTION | |
49 | ||
50 | static uint16_t sums[NUM_SUMS] = {0, 32, 56, 64, 80, 96, 104, 112, 120, 128, 136, 144, 152, 160, 176, 192, 200, 224, 256}; // possible sum property values | |
51 | ||
52 | #define NUM_PART_SUMS 9 // number of possible partial sum property values | |
53 | ||
54 | typedef enum { | |
55 | EVEN_STATE = 0, | |
56 | ODD_STATE = 1 | |
57 | } odd_even_t; | |
58 | ||
59 | static uint32_t num_acquired_nonces = 0; | |
60 | static uint64_t start_time = 0; | |
61 | static uint16_t effective_bitflip[2][0x400]; | |
62 | static uint16_t num_effective_bitflips[2] = {0, 0}; | |
63 | static uint16_t all_effective_bitflip[0x400]; | |
64 | static uint16_t num_all_effective_bitflips = 0; | |
65 | static uint16_t num_1st_byte_effective_bitflips = 0; | |
66 | #define CHECK_1ST_BYTES 0x01 | |
67 | #define CHECK_2ND_BYTES 0x02 | |
68 | static uint8_t hardnested_stage = CHECK_1ST_BYTES; | |
69 | static uint64_t known_target_key; | |
70 | static uint32_t test_state[2] = {0,0}; | |
71 | static float brute_force_per_second; | |
72 | ||
73 | ||
74 | static void get_SIMD_instruction_set(char* instruction_set) { | |
75 | switch(GetSIMDInstrAuto()) { | |
76 | case SIMD_AVX512: | |
77 | strcpy(instruction_set, "AVX512F"); | |
78 | break; | |
79 | case SIMD_AVX2: | |
80 | strcpy(instruction_set, "AVX2"); | |
81 | break; | |
82 | case SIMD_AVX: | |
83 | strcpy(instruction_set, "AVX"); | |
84 | break; | |
85 | case SIMD_SSE2: | |
86 | strcpy(instruction_set, "SSE2"); | |
87 | break; | |
88 | case SIMD_MMX: | |
89 | strcpy(instruction_set, "MMX"); | |
90 | break; | |
91 | default: | |
92 | strcpy(instruction_set, "no"); | |
93 | break; | |
94 | } | |
95 | } | |
96 | ||
97 | ||
98 | static void print_progress_header(void) { | |
99 | char progress_text[80]; | |
100 | char instr_set[12] = {0}; | |
101 | get_SIMD_instruction_set(instr_set); | |
102 | sprintf(progress_text, "Start using %d threads and %s SIMD core", num_CPUs(), instr_set); | |
103 | PrintAndLog("\n\n"); | |
104 | PrintAndLog(" time | #nonces | Activity | expected to brute force"); | |
105 | PrintAndLog(" | | | #states | time "); | |
106 | PrintAndLog("------------------------------------------------------------------------------------------------------"); | |
107 | PrintAndLog(" 0 | 0 | %-55s | |", progress_text); | |
108 | } | |
109 | ||
110 | ||
111 | void hardnested_print_progress(uint32_t nonces, char *activity, float brute_force, uint64_t min_diff_print_time) { | |
112 | static uint64_t last_print_time = 0; | |
113 | if (msclock() - last_print_time > min_diff_print_time) { | |
114 | last_print_time = msclock(); | |
115 | uint64_t total_time = msclock() - start_time; | |
116 | float brute_force_time = brute_force / brute_force_per_second; | |
117 | char brute_force_time_string[20]; | |
118 | if (brute_force_time < 90) { | |
119 | sprintf(brute_force_time_string, "%2.0fs", brute_force_time); | |
120 | } else if (brute_force_time < 60 * 90) { | |
121 | sprintf(brute_force_time_string, "%2.0fmin", brute_force_time/60); | |
122 | } else if (brute_force_time < 60 * 60 * 36) { | |
123 | sprintf(brute_force_time_string, "%2.0fh", brute_force_time/(60*60)); | |
124 | } else { | |
125 | sprintf(brute_force_time_string, "%2.0fd", brute_force_time/(60*60*24)); | |
126 | } | |
127 | PrintAndLog(" %7.0f | %7d | %-55s | %15.0f | %5s", (float)total_time/1000.0, nonces, activity, brute_force, brute_force_time_string); | |
128 | } | |
129 | } | |
130 | ||
131 | ||
132 | ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
133 | // bitarray functions | |
134 | ||
135 | static inline void clear_bitarray24(uint32_t *bitarray) | |
136 | { | |
137 | memset(bitarray, 0x00, sizeof(uint32_t) * (1<<19)); | |
138 | } | |
139 | ||
140 | ||
141 | static inline void set_bitarray24(uint32_t *bitarray) | |
142 | { | |
143 | memset(bitarray, 0xff, sizeof(uint32_t) * (1<<19)); | |
144 | } | |
145 | ||
146 | ||
147 | static inline void set_bit24(uint32_t *bitarray, uint32_t index) | |
148 | { | |
149 | bitarray[index>>5] |= 0x80000000>>(index&0x0000001f); | |
150 | } | |
151 | ||
152 | ||
153 | static inline uint32_t test_bit24(uint32_t *bitarray, uint32_t index) | |
154 | { | |
155 | return bitarray[index>>5] & (0x80000000>>(index&0x0000001f)); | |
156 | } | |
157 | ||
158 | ||
159 | static inline uint32_t next_state(uint32_t *bitarray, uint32_t state) | |
160 | { | |
161 | if (++state == 1<<24) return 1<<24; | |
162 | uint32_t index = state >> 5; | |
163 | uint_fast8_t bit = state & 0x1f; | |
164 | uint32_t line = bitarray[index] << bit; | |
165 | while (bit <= 0x1f) { | |
166 | if (line & 0x80000000) return state; | |
167 | state++; | |
168 | bit++; | |
169 | line <<= 1; | |
170 | } | |
171 | index++; | |
172 | while (bitarray[index] == 0x00000000 && state < 1<<24) { | |
173 | index++; | |
174 | state += 0x20; | |
175 | } | |
176 | if (state >= 1<<24) return 1<<24; | |
177 | #if defined __GNUC__ | |
178 | return state + __builtin_clz(bitarray[index]); | |
179 | #else | |
180 | bit = 0x00; | |
181 | line = bitarray[index]; | |
182 | while (bit <= 0x1f) { | |
183 | if (line & 0x80000000) return state; | |
184 | state++; | |
185 | bit++; | |
186 | line <<= 1; | |
187 | } | |
188 | return 1<<24; | |
189 | #endif | |
190 | } | |
191 | ||
192 | ||
193 | ||
194 | ||
195 | #define BITFLIP_2ND_BYTE 0x0200 | |
196 | ||
197 | ||
198 | ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
199 | // bitflip property bitarrays | |
200 | ||
201 | static uint32_t *bitflip_bitarrays[2][0x400]; | |
202 | static uint32_t count_bitflip_bitarrays[2][0x400]; | |
203 | ||
204 | static int compare_count_bitflip_bitarrays(const void *b1, const void *b2) | |
205 | { | |
206 | uint64_t count1 = (uint64_t)count_bitflip_bitarrays[ODD_STATE][*(uint16_t *)b1] * count_bitflip_bitarrays[EVEN_STATE][*(uint16_t *)b1]; | |
207 | uint64_t count2 = (uint64_t)count_bitflip_bitarrays[ODD_STATE][*(uint16_t *)b2] * count_bitflip_bitarrays[EVEN_STATE][*(uint16_t *)b2]; | |
208 | return (count1 > count2) - (count2 > count1); | |
209 | } | |
210 | ||
211 | ||
212 | static voidpf inflate_malloc(voidpf opaque, uInt items, uInt size) | |
213 | { | |
214 | return malloc(items*size); | |
215 | } | |
216 | ||
217 | ||
218 | static void inflate_free(voidpf opaque, voidpf address) | |
219 | { | |
220 | free(address); | |
221 | } | |
222 | ||
223 | #define OUTPUT_BUFFER_LEN 80 | |
224 | #define INPUT_BUFFER_LEN 80 | |
225 | ||
226 | //---------------------------------------------------------------------------- | |
227 | // Initialize decompression of the respective (HF or LF) FPGA stream | |
228 | //---------------------------------------------------------------------------- | |
229 | static void init_inflate(z_streamp compressed_stream, uint8_t *input_buffer, uint32_t insize, uint8_t *output_buffer, uint32_t outsize) | |
230 | { | |
231 | ||
232 | // initialize z_stream structure for inflate: | |
233 | compressed_stream->next_in = input_buffer; | |
234 | compressed_stream->avail_in = insize; | |
235 | compressed_stream->next_out = output_buffer; | |
236 | compressed_stream->avail_out = outsize; | |
237 | compressed_stream->zalloc = &inflate_malloc; | |
238 | compressed_stream->zfree = &inflate_free; | |
239 | ||
240 | inflateInit2(compressed_stream, 0); | |
241 | ||
242 | } | |
243 | ||
244 | ||
245 | static void init_bitflip_bitarrays(void) | |
246 | { | |
247 | #if defined (DEBUG_REDUCTION) | |
248 | uint8_t line = 0; | |
249 | #endif | |
250 | ||
251 | ||
252 | z_stream compressed_stream; | |
253 | ||
254 | char state_files_path[strlen(get_my_executable_directory()) + strlen(STATE_FILES_DIRECTORY) + strlen(STATE_FILE_TEMPLATE) + 1]; | |
255 | char state_file_name[strlen(STATE_FILE_TEMPLATE)+1]; | |
256 | ||
257 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
258 | num_effective_bitflips[odd_even] = 0; | |
259 | for (uint16_t bitflip = 0x001; bitflip < 0x400; bitflip++) { | |
260 | bitflip_bitarrays[odd_even][bitflip] = NULL; | |
261 | count_bitflip_bitarrays[odd_even][bitflip] = 1<<24; | |
262 | sprintf(state_file_name, STATE_FILE_TEMPLATE, odd_even, bitflip); | |
263 | strcpy(state_files_path, get_my_executable_directory()); | |
264 | strcat(state_files_path, STATE_FILES_DIRECTORY); | |
265 | strcat(state_files_path, state_file_name); | |
266 | FILE *statesfile = fopen(state_files_path, "rb"); | |
267 | if (statesfile == NULL) { | |
268 | continue; | |
269 | } else { | |
270 | fseek(statesfile, 0, SEEK_END); | |
271 | uint32_t filesize = (uint32_t)ftell(statesfile); | |
272 | rewind(statesfile); | |
273 | uint8_t input_buffer[filesize]; | |
274 | size_t bytesread = fread(input_buffer, 1, filesize, statesfile); | |
275 | if (bytesread != filesize) { | |
276 | printf("File read error with %s. Aborting...\n", state_file_name); | |
277 | fclose(statesfile); | |
278 | inflateEnd(&compressed_stream); | |
279 | exit(5); | |
280 | } | |
281 | fclose(statesfile); | |
282 | uint32_t count = 0; | |
283 | init_inflate(&compressed_stream, input_buffer, filesize, (uint8_t *)&count, sizeof(count)); | |
284 | inflate(&compressed_stream, Z_SYNC_FLUSH); | |
285 | if ((float)count/(1<<24) < IGNORE_BITFLIP_THRESHOLD) { | |
286 | uint32_t *bitset = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); | |
287 | if (bitset == NULL) { | |
288 | printf("Out of memory error in init_bitflip_statelists(). Aborting...\n"); | |
289 | inflateEnd(&compressed_stream); | |
290 | exit(4); | |
291 | } | |
292 | compressed_stream.next_out = (uint8_t *)bitset; | |
293 | compressed_stream.avail_out = sizeof(uint32_t) * (1<<19); | |
294 | inflate(&compressed_stream, Z_SYNC_FLUSH); | |
295 | effective_bitflip[odd_even][num_effective_bitflips[odd_even]++] = bitflip; | |
296 | bitflip_bitarrays[odd_even][bitflip] = bitset; | |
297 | count_bitflip_bitarrays[odd_even][bitflip] = count; | |
298 | #if defined (DEBUG_REDUCTION) | |
299 | printf("(%03" PRIx16 " %s:%5.1f%%) ", bitflip, odd_even?"odd ":"even", (float)count/(1<<24)*100.0); | |
300 | line++; | |
301 | if (line == 8) { | |
302 | printf("\n"); | |
303 | line = 0; | |
304 | } | |
305 | #endif | |
306 | } | |
307 | inflateEnd(&compressed_stream); | |
308 | } | |
309 | } | |
310 | effective_bitflip[odd_even][num_effective_bitflips[odd_even]] = 0x400; // EndOfList marker | |
311 | } | |
312 | ||
313 | uint16_t i = 0; | |
314 | uint16_t j = 0; | |
315 | num_all_effective_bitflips = 0; | |
316 | num_1st_byte_effective_bitflips = 0; | |
317 | while (i < num_effective_bitflips[EVEN_STATE] || j < num_effective_bitflips[ODD_STATE]) { | |
318 | if (effective_bitflip[EVEN_STATE][i] < effective_bitflip[ODD_STATE][j]) { | |
319 | all_effective_bitflip[num_all_effective_bitflips++] = effective_bitflip[EVEN_STATE][i]; | |
320 | i++; | |
321 | } else if (effective_bitflip[EVEN_STATE][i] > effective_bitflip[ODD_STATE][j]) { | |
322 | all_effective_bitflip[num_all_effective_bitflips++] = effective_bitflip[ODD_STATE][j]; | |
323 | j++; | |
324 | } else { | |
325 | all_effective_bitflip[num_all_effective_bitflips++] = effective_bitflip[EVEN_STATE][i]; | |
326 | i++; j++; | |
327 | } | |
328 | if (!(all_effective_bitflip[num_all_effective_bitflips-1] & BITFLIP_2ND_BYTE)) { | |
329 | num_1st_byte_effective_bitflips = num_all_effective_bitflips; | |
330 | } | |
331 | } | |
332 | qsort(all_effective_bitflip, num_1st_byte_effective_bitflips, sizeof(uint16_t), compare_count_bitflip_bitarrays); | |
333 | #if defined (DEBUG_REDUCTION) | |
334 | printf("\n1st byte effective bitflips (%d): \n", num_1st_byte_effective_bitflips); | |
335 | for(uint16_t i = 0; i < num_1st_byte_effective_bitflips; i++) { | |
336 | printf("%03x ", all_effective_bitflip[i]); | |
337 | } | |
338 | #endif | |
339 | qsort(all_effective_bitflip+num_1st_byte_effective_bitflips, num_all_effective_bitflips - num_1st_byte_effective_bitflips, sizeof(uint16_t), compare_count_bitflip_bitarrays); | |
340 | #if defined (DEBUG_REDUCTION) | |
341 | printf("\n2nd byte effective bitflips (%d): \n", num_all_effective_bitflips - num_1st_byte_effective_bitflips); | |
342 | for(uint16_t i = num_1st_byte_effective_bitflips; i < num_all_effective_bitflips; i++) { | |
343 | printf("%03x ", all_effective_bitflip[i]); | |
344 | } | |
345 | #endif | |
346 | char progress_text[80]; | |
347 | sprintf(progress_text, "Using %d precalculated bitflip state tables", num_all_effective_bitflips); | |
348 | hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0); | |
349 | } | |
350 | ||
351 | ||
352 | static void free_bitflip_bitarrays(void) | |
353 | { | |
354 | for (int16_t bitflip = 0x3ff; bitflip > 0x000; bitflip--) { | |
355 | free_bitarray(bitflip_bitarrays[ODD_STATE][bitflip]); | |
356 | } | |
357 | for (int16_t bitflip = 0x3ff; bitflip > 0x000; bitflip--) { | |
358 | free_bitarray(bitflip_bitarrays[EVEN_STATE][bitflip]); | |
359 | } | |
360 | } | |
361 | ||
362 | ||
363 | ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
364 | // sum property bitarrays | |
365 | ||
366 | static uint32_t *part_sum_a0_bitarrays[2][NUM_PART_SUMS]; | |
367 | static uint32_t *part_sum_a8_bitarrays[2][NUM_PART_SUMS]; | |
368 | static uint32_t *sum_a0_bitarrays[2][NUM_SUMS]; | |
369 | ||
370 | static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even) | |
371 | { | |
372 | uint16_t sum = 0; | |
373 | for (uint16_t j = 0; j < 16; j++) { | |
374 | uint32_t st = state; | |
375 | uint16_t part_sum = 0; | |
376 | if (odd_even == ODD_STATE) { | |
377 | for (uint16_t i = 0; i < 5; i++) { | |
378 | part_sum ^= filter(st); | |
379 | st = (st << 1) | ((j >> (3-i)) & 0x01) ; | |
380 | } | |
381 | part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits | |
382 | } else { | |
383 | for (uint16_t i = 0; i < 4; i++) { | |
384 | st = (st << 1) | ((j >> (3-i)) & 0x01) ; | |
385 | part_sum ^= filter(st); | |
386 | } | |
387 | } | |
388 | sum += part_sum; | |
389 | } | |
390 | return sum; | |
391 | } | |
392 | ||
393 | ||
394 | static void init_part_sum_bitarrays(void) | |
395 | { | |
396 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
397 | for (uint16_t part_sum_a0 = 0; part_sum_a0 < NUM_PART_SUMS; part_sum_a0++) { | |
398 | part_sum_a0_bitarrays[odd_even][part_sum_a0] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); | |
399 | if (part_sum_a0_bitarrays[odd_even][part_sum_a0] == NULL) { | |
400 | printf("Out of memory error in init_part_suma0_statelists(). Aborting...\n"); | |
401 | exit(4); | |
402 | } | |
403 | clear_bitarray24(part_sum_a0_bitarrays[odd_even][part_sum_a0]); | |
404 | } | |
405 | } | |
406 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
407 | //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a0); | |
408 | for (uint32_t state = 0; state < (1<<20); state++) { | |
409 | uint16_t part_sum_a0 = PartialSumProperty(state, odd_even) / 2; | |
410 | for (uint16_t low_bits = 0; low_bits < 1<<4; low_bits++) { | |
411 | set_bit24(part_sum_a0_bitarrays[odd_even][part_sum_a0], state<<4 | low_bits); | |
412 | } | |
413 | } | |
414 | } | |
415 | ||
416 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
417 | for (uint16_t part_sum_a8 = 0; part_sum_a8 < NUM_PART_SUMS; part_sum_a8++) { | |
418 | part_sum_a8_bitarrays[odd_even][part_sum_a8] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); | |
419 | if (part_sum_a8_bitarrays[odd_even][part_sum_a8] == NULL) { | |
420 | printf("Out of memory error in init_part_suma8_statelists(). Aborting...\n"); | |
421 | exit(4); | |
422 | } | |
423 | clear_bitarray24(part_sum_a8_bitarrays[odd_even][part_sum_a8]); | |
424 | } | |
425 | } | |
426 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
427 | //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a8); | |
428 | for (uint32_t state = 0; state < (1<<20); state++) { | |
429 | uint16_t part_sum_a8 = PartialSumProperty(state, odd_even) / 2; | |
430 | for (uint16_t high_bits = 0; high_bits < 1<<4; high_bits++) { | |
431 | set_bit24(part_sum_a8_bitarrays[odd_even][part_sum_a8], state | high_bits<<20); | |
432 | } | |
433 | } | |
434 | } | |
435 | } | |
436 | ||
437 | ||
438 | static void free_part_sum_bitarrays(void) | |
439 | { | |
440 | for (int16_t part_sum_a8 = (NUM_PART_SUMS-1); part_sum_a8 >= 0; part_sum_a8--) { | |
441 | free_bitarray(part_sum_a8_bitarrays[ODD_STATE][part_sum_a8]); | |
442 | } | |
443 | for (int16_t part_sum_a8 = (NUM_PART_SUMS-1); part_sum_a8 >= 0; part_sum_a8--) { | |
444 | free_bitarray(part_sum_a8_bitarrays[EVEN_STATE][part_sum_a8]); | |
445 | } | |
446 | for (int16_t part_sum_a0 = (NUM_PART_SUMS-1); part_sum_a0 >= 0; part_sum_a0--) { | |
447 | free_bitarray(part_sum_a0_bitarrays[ODD_STATE][part_sum_a0]); | |
448 | } | |
449 | for (int16_t part_sum_a0 = (NUM_PART_SUMS-1); part_sum_a0 >= 0; part_sum_a0--) { | |
450 | free_bitarray(part_sum_a0_bitarrays[EVEN_STATE][part_sum_a0]); | |
451 | } | |
452 | } | |
453 | ||
454 | ||
455 | static void init_sum_bitarrays(void) | |
456 | { | |
457 | for (uint16_t sum_a0 = 0; sum_a0 < NUM_SUMS; sum_a0++) { | |
458 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
459 | sum_a0_bitarrays[odd_even][sum_a0] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); | |
460 | if (sum_a0_bitarrays[odd_even][sum_a0] == NULL) { | |
461 | printf("Out of memory error in init_sum_bitarrays(). Aborting...\n"); | |
462 | exit(4); | |
463 | } | |
464 | clear_bitarray24(sum_a0_bitarrays[odd_even][sum_a0]); | |
465 | } | |
466 | } | |
467 | for (uint8_t p = 0; p < NUM_PART_SUMS; p++) { | |
468 | for (uint8_t q = 0; q < NUM_PART_SUMS; q++) { | |
469 | uint16_t sum_a0 = 2*p*(16-2*q) + (16-2*p)*2*q; | |
470 | uint16_t sum_a0_idx = 0; | |
471 | while (sums[sum_a0_idx] != sum_a0) sum_a0_idx++; | |
472 | bitarray_OR(sum_a0_bitarrays[EVEN_STATE][sum_a0_idx], part_sum_a0_bitarrays[EVEN_STATE][q]); | |
473 | bitarray_OR(sum_a0_bitarrays[ODD_STATE][sum_a0_idx], part_sum_a0_bitarrays[ODD_STATE][p]); | |
474 | } | |
475 | } | |
476 | // for (uint16_t sum_a0 = 0; sum_a0 < NUM_SUMS; sum_a0++) { | |
477 | // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
478 | // uint32_t count = count_states(sum_a0_bitarrays[odd_even][sum_a0]); | |
479 | // printf("sum_a0_bitarray[%s][%d] has %d states (%5.2f%%)\n", odd_even==EVEN_STATE?"even":"odd ", sums[sum_a0], count, (float)count/(1<<24)*100.0); | |
480 | // } | |
481 | // } | |
482 | } | |
483 | ||
484 | ||
485 | static void free_sum_bitarrays(void) | |
486 | { | |
487 | for (int8_t sum_a0 = NUM_SUMS-1; sum_a0 >= 0; sum_a0--) { | |
488 | free_bitarray(sum_a0_bitarrays[ODD_STATE][sum_a0]); | |
489 | free_bitarray(sum_a0_bitarrays[EVEN_STATE][sum_a0]); | |
490 | } | |
491 | } | |
492 | ||
493 | ||
494 | #ifdef DEBUG_KEY_ELIMINATION | |
495 | char failstr[250] = ""; | |
496 | #endif | |
497 | ||
498 | static const float p_K0[NUM_SUMS] = { // the probability that a random nonce has a Sum Property K | |
499 | 0.0290, 0.0083, 0.0006, 0.0339, 0.0048, 0.0934, 0.0119, 0.0489, 0.0602, 0.4180, 0.0602, 0.0489, 0.0119, 0.0934, 0.0048, 0.0339, 0.0006, 0.0083, 0.0290 | |
500 | }; | |
501 | ||
502 | static float my_p_K[NUM_SUMS]; | |
503 | ||
504 | static const float *p_K; | |
505 | ||
506 | static uint32_t cuid; | |
507 | static noncelist_t nonces[256]; | |
508 | static uint8_t best_first_bytes[256]; | |
509 | static uint64_t maximum_states = 0; | |
510 | static uint8_t best_first_byte_smallest_bitarray = 0; | |
511 | static uint16_t first_byte_Sum = 0; | |
512 | static uint16_t first_byte_num = 0; | |
513 | static bool write_stats = false; | |
514 | static FILE *fstats = NULL; | |
515 | static uint32_t *all_bitflips_bitarray[2]; | |
516 | static uint32_t num_all_bitflips_bitarray[2]; | |
517 | static bool all_bitflips_bitarray_dirty[2]; | |
518 | static uint64_t last_sample_clock = 0; | |
519 | static uint64_t sample_period = 0; | |
520 | static uint64_t num_keys_tested = 0; | |
521 | static statelist_t *candidates = NULL; | |
522 | ||
523 | ||
524 | static int add_nonce(uint32_t nonce_enc, uint8_t par_enc) | |
525 | { | |
526 | uint8_t first_byte = nonce_enc >> 24; | |
527 | noncelistentry_t *p1 = nonces[first_byte].first; | |
528 | noncelistentry_t *p2 = NULL; | |
529 | ||
530 | if (p1 == NULL) { // first nonce with this 1st byte | |
531 | first_byte_num++; | |
532 | first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08)); | |
533 | } | |
534 | ||
535 | while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) { | |
536 | p2 = p1; | |
537 | p1 = p1->next; | |
538 | } | |
539 | ||
540 | if (p1 == NULL) { // need to add at the end of the list | |
541 | if (p2 == NULL) { // list is empty yet. Add first entry. | |
542 | p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t)); | |
543 | } else { // add new entry at end of existing list. | |
544 | p2 = p2->next = malloc(sizeof(noncelistentry_t)); | |
545 | } | |
546 | } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert. | |
547 | if (p2 == NULL) { // need to insert at start of list | |
548 | p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t)); | |
549 | } else { | |
550 | p2 = p2->next = malloc(sizeof(noncelistentry_t)); | |
551 | } | |
552 | } else { // we have seen this 2nd byte before. Nothing to add or insert. | |
553 | return (0); | |
554 | } | |
555 | ||
556 | // add or insert new data | |
557 | p2->next = p1; | |
558 | p2->nonce_enc = nonce_enc; | |
559 | p2->par_enc = par_enc; | |
560 | ||
561 | nonces[first_byte].num++; | |
562 | nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04)); | |
563 | nonces[first_byte].sum_a8_guess_dirty = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte | |
564 | return (1); // new nonce added | |
565 | } | |
566 | ||
567 | ||
568 | static void init_nonce_memory(void) | |
569 | { | |
570 | for (uint16_t i = 0; i < 256; i++) { | |
571 | nonces[i].num = 0; | |
572 | nonces[i].Sum = 0; | |
573 | nonces[i].first = NULL; | |
574 | for (uint16_t j = 0; j < NUM_SUMS; j++) { | |
575 | nonces[i].sum_a8_guess[j].sum_a8_idx = j; | |
576 | nonces[i].sum_a8_guess[j].prob = 0.0; | |
577 | } | |
578 | nonces[i].sum_a8_guess_dirty = false; | |
579 | for (uint16_t bitflip = 0x000; bitflip < 0x400; bitflip++) { | |
580 | nonces[i].BitFlips[bitflip] = 0; | |
581 | } | |
582 | nonces[i].states_bitarray[EVEN_STATE] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); | |
583 | if (nonces[i].states_bitarray[EVEN_STATE] == NULL) { | |
584 | printf("Out of memory error in init_nonce_memory(). Aborting...\n"); | |
585 | exit(4); | |
586 | } | |
587 | set_bitarray24(nonces[i].states_bitarray[EVEN_STATE]); | |
588 | nonces[i].num_states_bitarray[EVEN_STATE] = 1 << 24; | |
589 | nonces[i].states_bitarray[ODD_STATE] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); | |
590 | if (nonces[i].states_bitarray[ODD_STATE] == NULL) { | |
591 | printf("Out of memory error in init_nonce_memory(). Aborting...\n"); | |
592 | exit(4); | |
593 | } | |
594 | set_bitarray24(nonces[i].states_bitarray[ODD_STATE]); | |
595 | nonces[i].num_states_bitarray[ODD_STATE] = 1 << 24; | |
596 | nonces[i].all_bitflips_dirty[EVEN_STATE] = false; | |
597 | nonces[i].all_bitflips_dirty[ODD_STATE] = false; | |
598 | } | |
599 | first_byte_num = 0; | |
600 | first_byte_Sum = 0; | |
601 | } | |
602 | ||
603 | ||
604 | static void free_nonce_list(noncelistentry_t *p) | |
605 | { | |
606 | if (p == NULL) { | |
607 | return; | |
608 | } else { | |
609 | free_nonce_list(p->next); | |
610 | free(p); | |
611 | } | |
612 | } | |
613 | ||
614 | ||
615 | static void free_nonces_memory(void) | |
616 | { | |
617 | for (uint16_t i = 0; i < 256; i++) { | |
618 | free_nonce_list(nonces[i].first); | |
619 | } | |
620 | for (int i = 255; i >= 0; i--) { | |
621 | free_bitarray(nonces[i].states_bitarray[ODD_STATE]); | |
622 | free_bitarray(nonces[i].states_bitarray[EVEN_STATE]); | |
623 | } | |
624 | } | |
625 | ||
626 | ||
627 | // static double p_hypergeometric_cache[257][NUM_SUMS][257]; | |
628 | ||
629 | // #define CACHE_INVALID -1.0 | |
630 | // static void init_p_hypergeometric_cache(void) | |
631 | // { | |
632 | // for (uint16_t n = 0; n <= 256; n++) { | |
633 | // for (uint16_t i_K = 0; i_K < NUM_SUMS; i_K++) { | |
634 | // for (uint16_t k = 0; k <= 256; k++) { | |
635 | // p_hypergeometric_cache[n][i_K][k] = CACHE_INVALID; | |
636 | // } | |
637 | // } | |
638 | // } | |
639 | // } | |
640 | ||
641 | ||
642 | static double p_hypergeometric(uint16_t i_K, uint16_t n, uint16_t k) | |
643 | { | |
644 | // for efficient computation we are using the recursive definition | |
645 | // (K-k+1) * (n-k+1) | |
646 | // P(X=k) = P(X=k-1) * -------------------- | |
647 | // k * (N-K-n+k) | |
648 | // and | |
649 | // (N-K)*(N-K-1)*...*(N-K-n+1) | |
650 | // P(X=0) = ----------------------------- | |
651 | // N*(N-1)*...*(N-n+1) | |
652 | ||
653 | ||
654 | uint16_t const N = 256; | |
655 | uint16_t K = sums[i_K]; | |
656 | ||
657 | // if (p_hypergeometric_cache[n][i_K][k] != CACHE_INVALID) { | |
658 | // return p_hypergeometric_cache[n][i_K][k]; | |
659 | // } | |
660 | ||
661 | if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below | |
662 | if (k == 0) { | |
663 | // use logarithms to avoid overflow with huge factorials (double type can only hold 170!) | |
664 | double log_result = 0.0; | |
665 | for (int16_t i = N-K; i >= N-K-n+1; i--) { | |
666 | log_result += log(i); | |
667 | } | |
668 | for (int16_t i = N; i >= N-n+1; i--) { | |
669 | log_result -= log(i); | |
670 | } | |
671 | // p_hypergeometric_cache[n][i_K][k] = exp(log_result); | |
672 | return exp(log_result); | |
673 | } else { | |
674 | if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception | |
675 | double log_result = 0.0; | |
676 | for (int16_t i = k+1; i <= n; i++) { | |
677 | log_result += log(i); | |
678 | } | |
679 | for (int16_t i = K+1; i <= N; i++) { | |
680 | log_result -= log(i); | |
681 | } | |
682 | // p_hypergeometric_cache[n][i_K][k] = exp(log_result); | |
683 | return exp(log_result); | |
684 | } else { // recursion | |
685 | return (p_hypergeometric(i_K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k))); | |
686 | } | |
687 | } | |
688 | } | |
689 | ||
690 | ||
691 | static float sum_probability(uint16_t i_K, uint16_t n, uint16_t k) | |
692 | { | |
693 | if (k > sums[i_K]) return 0.0; | |
694 | ||
695 | double p_T_is_k_when_S_is_K = p_hypergeometric(i_K, n, k); | |
696 | double p_S_is_K = p_K[i_K]; | |
697 | double p_T_is_k = 0; | |
698 | for (uint16_t i = 0; i < NUM_SUMS; i++) { | |
699 | p_T_is_k += p_K[i] * p_hypergeometric(i, n, k); | |
700 | } | |
701 | return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k); | |
702 | } | |
703 | ||
704 | ||
705 | static uint32_t part_sum_count[2][NUM_PART_SUMS][NUM_PART_SUMS]; | |
706 | ||
707 | static void init_allbitflips_array(void) | |
708 | { | |
709 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
710 | uint32_t *bitset = all_bitflips_bitarray[odd_even] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); | |
711 | if (bitset == NULL) { | |
712 | printf("Out of memory in init_allbitflips_array(). Aborting..."); | |
713 | exit(4); | |
714 | } | |
715 | set_bitarray24(bitset); | |
716 | all_bitflips_bitarray_dirty[odd_even] = false; | |
717 | num_all_bitflips_bitarray[odd_even] = 1<<24; | |
718 | } | |
719 | } | |
720 | ||
721 | ||
722 | static void update_allbitflips_array(void) | |
723 | { | |
724 | if (hardnested_stage & CHECK_2ND_BYTES) { | |
725 | for (uint16_t i = 0; i < 256; i++) { | |
726 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
727 | if (nonces[i].all_bitflips_dirty[odd_even]) { | |
728 | uint32_t old_count = num_all_bitflips_bitarray[odd_even]; | |
729 | num_all_bitflips_bitarray[odd_even] = count_bitarray_low20_AND(all_bitflips_bitarray[odd_even], nonces[i].states_bitarray[odd_even]); | |
730 | nonces[i].all_bitflips_dirty[odd_even] = false; | |
731 | if (num_all_bitflips_bitarray[odd_even] != old_count) { | |
732 | all_bitflips_bitarray_dirty[odd_even] = true; | |
733 | } | |
734 | } | |
735 | } | |
736 | } | |
737 | } | |
738 | } | |
739 | ||
740 | ||
741 | static uint32_t estimated_num_states_part_sum_coarse(uint16_t part_sum_a0_idx, uint16_t part_sum_a8_idx, odd_even_t odd_even) | |
742 | { | |
743 | return part_sum_count[odd_even][part_sum_a0_idx][part_sum_a8_idx]; | |
744 | } | |
745 | ||
746 | ||
747 | static uint32_t estimated_num_states_part_sum(uint8_t first_byte, uint16_t part_sum_a0_idx, uint16_t part_sum_a8_idx, odd_even_t odd_even) | |
748 | { | |
749 | if (odd_even == ODD_STATE) { | |
750 | return count_bitarray_AND3(part_sum_a0_bitarrays[odd_even][part_sum_a0_idx], | |
751 | part_sum_a8_bitarrays[odd_even][part_sum_a8_idx], | |
752 | nonces[first_byte].states_bitarray[odd_even]); | |
753 | } else { | |
754 | return count_bitarray_AND4(part_sum_a0_bitarrays[odd_even][part_sum_a0_idx], | |
755 | part_sum_a8_bitarrays[odd_even][part_sum_a8_idx], | |
756 | nonces[first_byte].states_bitarray[odd_even], | |
757 | nonces[first_byte^0x80].states_bitarray[odd_even]); | |
758 | } | |
759 | ||
760 | // estimate reduction by all_bitflips_match() | |
761 | // if (odd_even) { | |
762 | // float p_bitflip = (float)nonces[first_byte ^ 0x80].num_states_bitarray[ODD_STATE] / num_all_bitflips_bitarray[ODD_STATE]; | |
763 | // return (float)count * p_bitflip; //(p_bitflip - 0.25*p_bitflip*p_bitflip); | |
764 | // } else { | |
765 | // return count; | |
766 | // } | |
767 | } | |
768 | ||
769 | ||
770 | static uint64_t estimated_num_states(uint8_t first_byte, uint16_t sum_a0, uint16_t sum_a8) | |
771 | { | |
772 | uint64_t num_states = 0; | |
773 | for (uint8_t p = 0; p < NUM_PART_SUMS; p++) { | |
774 | for (uint8_t q = 0; q < NUM_PART_SUMS; q++) { | |
775 | if (2*p*(16-2*q) + (16-2*p)*2*q == sum_a0) { | |
776 | for (uint8_t r = 0; r < NUM_PART_SUMS; r++) { | |
777 | for (uint8_t s = 0; s < NUM_PART_SUMS; s++) { | |
778 | if (2*r*(16-2*s) + (16-2*r)*2*s == sum_a8) { | |
779 | num_states += (uint64_t)estimated_num_states_part_sum(first_byte, p, r, ODD_STATE) | |
780 | * estimated_num_states_part_sum(first_byte, q, s, EVEN_STATE); | |
781 | } | |
782 | } | |
783 | } | |
784 | } | |
785 | } | |
786 | } | |
787 | return num_states; | |
788 | } | |
789 | ||
790 | ||
791 | static uint64_t estimated_num_states_coarse(uint16_t sum_a0, uint16_t sum_a8) | |
792 | { | |
793 | uint64_t num_states = 0; | |
794 | for (uint8_t p = 0; p < NUM_PART_SUMS; p++) { | |
795 | for (uint8_t q = 0; q < NUM_PART_SUMS; q++) { | |
796 | if (2*p*(16-2*q) + (16-2*p)*2*q == sum_a0) { | |
797 | for (uint8_t r = 0; r < NUM_PART_SUMS; r++) { | |
798 | for (uint8_t s = 0; s < NUM_PART_SUMS; s++) { | |
799 | if (2*r*(16-2*s) + (16-2*r)*2*s == sum_a8) { | |
800 | num_states += (uint64_t)estimated_num_states_part_sum_coarse(p, r, ODD_STATE) | |
801 | * estimated_num_states_part_sum_coarse(q, s, EVEN_STATE); | |
802 | } | |
803 | } | |
804 | } | |
805 | } | |
806 | } | |
807 | } | |
808 | return num_states; | |
809 | } | |
810 | ||
811 | ||
812 | static void update_p_K(void) | |
813 | { | |
814 | if (hardnested_stage & CHECK_2ND_BYTES) { | |
815 | uint64_t total_count = 0; | |
816 | uint16_t sum_a0 = sums[first_byte_Sum]; | |
817 | for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) { | |
818 | uint16_t sum_a8 = sums[sum_a8_idx]; | |
819 | total_count += estimated_num_states_coarse(sum_a0, sum_a8); | |
820 | } | |
821 | for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) { | |
822 | uint16_t sum_a8 = sums[sum_a8_idx]; | |
823 | my_p_K[sum_a8_idx] = (float)estimated_num_states_coarse(sum_a0, sum_a8) / total_count; | |
824 | } | |
825 | // printf("my_p_K = ["); | |
826 | // for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) { | |
827 | // printf("%7.4f ", my_p_K[sum_a8_idx]); | |
828 | // } | |
829 | p_K = my_p_K; | |
830 | } | |
831 | } | |
832 | ||
833 | ||
834 | static void update_sum_bitarrays(odd_even_t odd_even) | |
835 | { | |
836 | if (all_bitflips_bitarray_dirty[odd_even]) { | |
837 | for (uint8_t part_sum = 0; part_sum < NUM_PART_SUMS; part_sum++) { | |
838 | bitarray_AND(part_sum_a0_bitarrays[odd_even][part_sum], all_bitflips_bitarray[odd_even]); | |
839 | bitarray_AND(part_sum_a8_bitarrays[odd_even][part_sum], all_bitflips_bitarray[odd_even]); | |
840 | } | |
841 | for (uint16_t i = 0; i < 256; i++) { | |
842 | nonces[i].num_states_bitarray[odd_even] = count_bitarray_AND(nonces[i].states_bitarray[odd_even], all_bitflips_bitarray[odd_even]); | |
843 | } | |
844 | for (uint8_t part_sum_a0 = 0; part_sum_a0 < NUM_PART_SUMS; part_sum_a0++) { | |
845 | for (uint8_t part_sum_a8 = 0; part_sum_a8 < NUM_PART_SUMS; part_sum_a8++) { | |
846 | part_sum_count[odd_even][part_sum_a0][part_sum_a8] | |
847 | += count_bitarray_AND2(part_sum_a0_bitarrays[odd_even][part_sum_a0], part_sum_a8_bitarrays[odd_even][part_sum_a8]); | |
848 | } | |
849 | } | |
850 | all_bitflips_bitarray_dirty[odd_even] = false; | |
851 | } | |
852 | } | |
853 | ||
854 | ||
855 | static int compare_expected_num_brute_force(const void *b1, const void *b2) | |
856 | { | |
857 | uint8_t index1 = *(uint8_t *)b1; | |
858 | uint8_t index2 = *(uint8_t *)b2; | |
859 | float score1 = nonces[index1].expected_num_brute_force; | |
860 | float score2 = nonces[index2].expected_num_brute_force; | |
861 | return (score1 > score2) - (score1 < score2); | |
862 | } | |
863 | ||
864 | ||
865 | static int compare_sum_a8_guess(const void *b1, const void *b2) | |
866 | { | |
867 | float prob1 = ((guess_sum_a8_t *)b1)->prob; | |
868 | float prob2 = ((guess_sum_a8_t *)b2)->prob; | |
869 | return (prob1 < prob2) - (prob1 > prob2); | |
870 | ||
871 | } | |
872 | ||
873 | ||
874 | static float check_smallest_bitflip_bitarrays(void) | |
875 | { | |
876 | uint32_t num_odd, num_even; | |
877 | uint64_t smallest = 1LL << 48; | |
878 | // initialize best_first_bytes, do a rough estimation on remaining states | |
879 | for (uint16_t i = 0; i < 256; i++) { | |
880 | num_odd = nonces[i].num_states_bitarray[ODD_STATE]; | |
881 | num_even = nonces[i].num_states_bitarray[EVEN_STATE]; // * (float)nonces[i^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE]; | |
882 | if ((uint64_t)num_odd * num_even < smallest) { | |
883 | smallest = (uint64_t)num_odd * num_even; | |
884 | best_first_byte_smallest_bitarray = i; | |
885 | } | |
886 | } | |
887 | ||
888 | #if defined (DEBUG_REDUCTION) | |
889 | num_odd = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[ODD_STATE]; | |
890 | num_even = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[EVEN_STATE]; // * (float)nonces[best_first_byte_smallest_bitarray^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE]; | |
891 | printf("0x%02x: %8d * %8d = %12" PRIu64 " (2^%1.1f)\n", best_first_byte_smallest_bitarray, num_odd, num_even, (uint64_t)num_odd * num_even, log((uint64_t)num_odd * num_even)/log(2.0)); | |
892 | #endif | |
893 | return (float)smallest/2.0; | |
894 | } | |
895 | ||
896 | ||
897 | static void update_expected_brute_force(uint8_t best_byte) { | |
898 | ||
899 | float total_prob = 0.0; | |
900 | for (uint8_t i = 0; i < NUM_SUMS; i++) { | |
901 | total_prob += nonces[best_byte].sum_a8_guess[i].prob; | |
902 | } | |
903 | // linear adjust probabilities to result in total_prob = 1.0; | |
904 | for (uint8_t i = 0; i < NUM_SUMS; i++) { | |
905 | nonces[best_byte].sum_a8_guess[i].prob /= total_prob; | |
906 | } | |
907 | float prob_all_failed = 1.0; | |
908 | nonces[best_byte].expected_num_brute_force = 0.0; | |
909 | for (uint8_t i = 0; i < NUM_SUMS; i++) { | |
910 | nonces[best_byte].expected_num_brute_force += nonces[best_byte].sum_a8_guess[i].prob * (float)nonces[best_byte].sum_a8_guess[i].num_states / 2.0; | |
911 | prob_all_failed -= nonces[best_byte].sum_a8_guess[i].prob; | |
912 | nonces[best_byte].expected_num_brute_force += prob_all_failed * (float)nonces[best_byte].sum_a8_guess[i].num_states / 2.0; | |
913 | } | |
914 | return; | |
915 | } | |
916 | ||
917 | ||
918 | static float sort_best_first_bytes(void) | |
919 | { | |
920 | ||
921 | // initialize best_first_bytes, do a rough estimation on remaining states for each Sum_a8 property | |
922 | // and the expected number of states to brute force | |
923 | for (uint16_t i = 0; i < 256; i++) { | |
924 | best_first_bytes[i] = i; | |
925 | float prob_all_failed = 1.0; | |
926 | nonces[i].expected_num_brute_force = 0.0; | |
927 | for (uint8_t j = 0; j < NUM_SUMS; j++) { | |
928 | nonces[i].sum_a8_guess[j].num_states = estimated_num_states_coarse(sums[first_byte_Sum], sums[nonces[i].sum_a8_guess[j].sum_a8_idx]); | |
929 | nonces[i].expected_num_brute_force += nonces[i].sum_a8_guess[j].prob * (float)nonces[i].sum_a8_guess[j].num_states / 2.0; | |
930 | prob_all_failed -= nonces[i].sum_a8_guess[j].prob; | |
931 | nonces[i].expected_num_brute_force += prob_all_failed * (float)nonces[i].sum_a8_guess[j].num_states / 2.0; | |
932 | } | |
933 | } | |
934 | ||
935 | // sort based on expected number of states to brute force | |
936 | qsort(best_first_bytes, 256, 1, compare_expected_num_brute_force); | |
937 | ||
938 | // printf("refine estimations: "); | |
939 | #define NUM_REFINES 1 | |
940 | // refine scores for the best: | |
941 | for (uint16_t i = 0; i < NUM_REFINES; i++) { | |
942 | // printf("%d...", i); | |
943 | uint16_t first_byte = best_first_bytes[i]; | |
944 | for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) { | |
945 | nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]); | |
946 | } | |
947 | // while (nonces[first_byte].sum_a8_guess[0].num_states == 0 | |
948 | // || nonces[first_byte].sum_a8_guess[1].num_states == 0 | |
949 | // || nonces[first_byte].sum_a8_guess[2].num_states == 0) { | |
950 | // if (nonces[first_byte].sum_a8_guess[0].num_states == 0) { | |
951 | // nonces[first_byte].sum_a8_guess[0].prob = 0.0; | |
952 | // printf("(0x%02x,%d)", first_byte, 0); | |
953 | // } | |
954 | // if (nonces[first_byte].sum_a8_guess[1].num_states == 0) { | |
955 | // nonces[first_byte].sum_a8_guess[1].prob = 0.0; | |
956 | // printf("(0x%02x,%d)", first_byte, 1); | |
957 | // } | |
958 | // if (nonces[first_byte].sum_a8_guess[2].num_states == 0) { | |
959 | // nonces[first_byte].sum_a8_guess[2].prob = 0.0; | |
960 | // printf("(0x%02x,%d)", first_byte, 2); | |
961 | // } | |
962 | // printf("|"); | |
963 | // qsort(nonces[first_byte].sum_a8_guess, NUM_SUMS, sizeof(guess_sum_a8_t), compare_sum_a8_guess); | |
964 | // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) { | |
965 | // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]); | |
966 | // } | |
967 | // } | |
968 | // float fix_probs = 0.0; | |
969 | // for (uint8_t j = 0; j < NUM_SUMS; j++) { | |
970 | // fix_probs += nonces[first_byte].sum_a8_guess[j].prob; | |
971 | // } | |
972 | // for (uint8_t j = 0; j < NUM_SUMS; j++) { | |
973 | // nonces[first_byte].sum_a8_guess[j].prob /= fix_probs; | |
974 | // } | |
975 | // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) { | |
976 | // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]); | |
977 | // } | |
978 | float prob_all_failed = 1.0; | |
979 | nonces[first_byte].expected_num_brute_force = 0.0; | |
980 | for (uint8_t j = 0; j < NUM_SUMS; j++) { | |
981 | nonces[first_byte].expected_num_brute_force += nonces[first_byte].sum_a8_guess[j].prob * (float)nonces[first_byte].sum_a8_guess[j].num_states / 2.0; | |
982 | prob_all_failed -= nonces[first_byte].sum_a8_guess[j].prob; | |
983 | nonces[first_byte].expected_num_brute_force += prob_all_failed * (float)nonces[first_byte].sum_a8_guess[j].num_states / 2.0; | |
984 | } | |
985 | } | |
986 | ||
987 | // copy best byte to front: | |
988 | float least_expected_brute_force = (1LL << 48); | |
989 | uint8_t best_byte = 0; | |
990 | for (uint16_t i = 0; i < 10; i++) { | |
991 | uint16_t first_byte = best_first_bytes[i]; | |
992 | if (nonces[first_byte].expected_num_brute_force < least_expected_brute_force) { | |
993 | least_expected_brute_force = nonces[first_byte].expected_num_brute_force; | |
994 | best_byte = i; | |
995 | } | |
996 | } | |
997 | if (best_byte != 0) { | |
998 | // printf("0x%02x <-> 0x%02x", best_first_bytes[0], best_first_bytes[best_byte]); | |
999 | uint8_t tmp = best_first_bytes[0]; | |
1000 | best_first_bytes[0] = best_first_bytes[best_byte]; | |
1001 | best_first_bytes[best_byte] = tmp; | |
1002 | } | |
1003 | ||
1004 | return nonces[best_first_bytes[0]].expected_num_brute_force; | |
1005 | } | |
1006 | ||
1007 | ||
1008 | static float update_reduction_rate(float last, bool init) | |
1009 | { | |
1010 | #define QUEUE_LEN 4 | |
1011 | static float queue[QUEUE_LEN]; | |
1012 | ||
1013 | for (uint16_t i = 0; i < QUEUE_LEN-1; i++) { | |
1014 | if (init) { | |
1015 | queue[i] = (float)(1LL << 48); | |
1016 | } else { | |
1017 | queue[i] = queue[i+1]; | |
1018 | } | |
1019 | } | |
1020 | if (init) { | |
1021 | queue[QUEUE_LEN-1] = (float)(1LL << 48); | |
1022 | } else { | |
1023 | queue[QUEUE_LEN-1] = last; | |
1024 | } | |
1025 | ||
1026 | // linear regression | |
1027 | float avg_y = 0.0; | |
1028 | float avg_x = 0.0; | |
1029 | for (uint16_t i = 0; i < QUEUE_LEN; i++) { | |
1030 | avg_x += i; | |
1031 | avg_y += queue[i]; | |
1032 | } | |
1033 | avg_x /= QUEUE_LEN; | |
1034 | avg_y /= QUEUE_LEN; | |
1035 | ||
1036 | float dev_xy = 0.0; | |
1037 | float dev_x2 = 0.0; | |
1038 | for (uint16_t i = 0; i < QUEUE_LEN; i++) { | |
1039 | dev_xy += (i - avg_x)*(queue[i] - avg_y); | |
1040 | dev_x2 += (i - avg_x)*(i - avg_x); | |
1041 | } | |
1042 | ||
1043 | float reduction_rate = -1.0 * dev_xy / dev_x2; // the negative slope of the linear regression | |
1044 | ||
1045 | #if defined (DEBUG_REDUCTION) | |
1046 | printf("update_reduction_rate(%1.0f) = %1.0f per sample, brute_force_per_sample = %1.0f\n", last, reduction_rate, brute_force_per_second * (float)sample_period / 1000.0); | |
1047 | #endif | |
1048 | return reduction_rate; | |
1049 | } | |
1050 | ||
1051 | ||
1052 | static bool shrink_key_space(float *brute_forces) | |
1053 | { | |
1054 | #if defined(DEBUG_REDUCTION) | |
1055 | printf("shrink_key_space() with stage = 0x%02x\n", hardnested_stage); | |
1056 | #endif | |
1057 | float brute_forces1 = check_smallest_bitflip_bitarrays(); | |
1058 | float brute_forces2 = (float)(1LL << 47); | |
1059 | if (hardnested_stage & CHECK_2ND_BYTES) { | |
1060 | brute_forces2 = sort_best_first_bytes(); | |
1061 | } | |
1062 | *brute_forces = MIN(brute_forces1, brute_forces2); | |
1063 | float reduction_rate = update_reduction_rate(*brute_forces, false); | |
1064 | return ((hardnested_stage & CHECK_2ND_BYTES) | |
1065 | && reduction_rate >= 0.0 && reduction_rate < brute_force_per_second * sample_period / 1000.0); | |
1066 | } | |
1067 | ||
1068 | ||
1069 | static void estimate_sum_a8(void) | |
1070 | { | |
1071 | if (first_byte_num == 256) { | |
1072 | for (uint16_t i = 0; i < 256; i++) { | |
1073 | if (nonces[i].sum_a8_guess_dirty) { | |
1074 | for (uint16_t j = 0; j < NUM_SUMS; j++ ) { | |
1075 | uint16_t sum_a8_idx = nonces[i].sum_a8_guess[j].sum_a8_idx; | |
1076 | nonces[i].sum_a8_guess[j].prob = sum_probability(sum_a8_idx, nonces[i].num, nonces[i].Sum); | |
1077 | } | |
1078 | qsort(nonces[i].sum_a8_guess, NUM_SUMS, sizeof(guess_sum_a8_t), compare_sum_a8_guess); | |
1079 | nonces[i].sum_a8_guess_dirty = false; | |
1080 | } | |
1081 | } | |
1082 | } | |
1083 | } | |
1084 | ||
1085 | ||
1086 | static int read_nonce_file(void) | |
1087 | { | |
1088 | FILE *fnonces = NULL; | |
1089 | size_t bytes_read; | |
1090 | uint8_t trgBlockNo; | |
1091 | uint8_t trgKeyType; | |
1092 | uint8_t read_buf[9]; | |
1093 | uint32_t nt_enc1, nt_enc2; | |
1094 | uint8_t par_enc; | |
1095 | ||
1096 | num_acquired_nonces = 0; | |
1097 | if ((fnonces = fopen("nonces.bin","rb")) == NULL) { | |
1098 | PrintAndLog("Could not open file nonces.bin"); | |
1099 | return 1; | |
1100 | } | |
1101 | ||
1102 | hardnested_print_progress(0, "Reading nonces from file nonces.bin...", (float)(1LL<<47), 0); | |
1103 | bytes_read = fread(read_buf, 1, 6, fnonces); | |
1104 | if (bytes_read != 6) { | |
1105 | PrintAndLog("File reading error."); | |
1106 | fclose(fnonces); | |
1107 | return 1; | |
1108 | } | |
1109 | cuid = bytes_to_num(read_buf, 4); | |
1110 | trgBlockNo = bytes_to_num(read_buf+4, 1); | |
1111 | trgKeyType = bytes_to_num(read_buf+5, 1); | |
1112 | ||
1113 | bytes_read = fread(read_buf, 1, 9, fnonces); | |
1114 | while (bytes_read == 9) { | |
1115 | nt_enc1 = bytes_to_num(read_buf, 4); | |
1116 | nt_enc2 = bytes_to_num(read_buf+4, 4); | |
1117 | par_enc = bytes_to_num(read_buf+8, 1); | |
1118 | add_nonce(nt_enc1, par_enc >> 4); | |
1119 | add_nonce(nt_enc2, par_enc & 0x0f); | |
1120 | num_acquired_nonces += 2; | |
1121 | bytes_read = fread(read_buf, 1, 9, fnonces); | |
1122 | } | |
1123 | fclose(fnonces); | |
1124 | ||
1125 | char progress_string[80]; | |
1126 | sprintf(progress_string, "Read %d nonces from file. cuid=%08x", num_acquired_nonces, cuid); | |
1127 | hardnested_print_progress(num_acquired_nonces, progress_string, (float)(1LL<<47), 0); | |
1128 | sprintf(progress_string, "Target Block=%d, Keytype=%c", trgBlockNo, trgKeyType==0?'A':'B'); | |
1129 | hardnested_print_progress(num_acquired_nonces, progress_string, (float)(1LL<<47), 0); | |
1130 | ||
1131 | for (uint16_t i = 0; i < NUM_SUMS; i++) { | |
1132 | if (first_byte_Sum == sums[i]) { | |
1133 | first_byte_Sum = i; | |
1134 | break; | |
1135 | } | |
1136 | } | |
1137 | ||
1138 | return 0; | |
1139 | } | |
1140 | ||
1141 | ||
1142 | noncelistentry_t *SearchFor2ndByte(uint8_t b1, uint8_t b2) | |
1143 | { | |
1144 | noncelistentry_t *p = nonces[b1].first; | |
1145 | while (p != NULL) { | |
1146 | if ((p->nonce_enc >> 16 & 0xff) == b2) { | |
1147 | return p; | |
1148 | } | |
1149 | p = p->next; | |
1150 | } | |
1151 | return NULL; | |
1152 | } | |
1153 | ||
1154 | ||
1155 | static bool timeout(void) | |
1156 | { | |
1157 | return (msclock() > last_sample_clock + sample_period); | |
1158 | } | |
1159 | ||
1160 | ||
1161 | static void | |
1162 | #ifdef __has_attribute | |
1163 | #if __has_attribute(force_align_arg_pointer) | |
1164 | __attribute__((force_align_arg_pointer)) | |
1165 | #endif | |
1166 | #endif | |
1167 | *check_for_BitFlipProperties_thread(void *args) | |
1168 | { | |
1169 | uint8_t first_byte = ((uint8_t *)args)[0]; | |
1170 | uint8_t last_byte = ((uint8_t *)args)[1]; | |
1171 | uint8_t time_budget = ((uint8_t *)args)[2]; | |
1172 | ||
1173 | if (hardnested_stage & CHECK_1ST_BYTES) { | |
1174 | // for (uint16_t bitflip = 0x001; bitflip < 0x200; bitflip++) { | |
1175 | for (uint16_t bitflip_idx = 0; bitflip_idx < num_1st_byte_effective_bitflips; bitflip_idx++) { | |
1176 | uint16_t bitflip = all_effective_bitflip[bitflip_idx]; | |
1177 | if (time_budget & timeout()) { | |
1178 | #if defined (DEBUG_REDUCTION) | |
1179 | printf("break at bitflip_idx %d...", bitflip_idx); | |
1180 | #endif | |
1181 | return NULL; | |
1182 | } | |
1183 | for (uint16_t i = first_byte; i <= last_byte; i++) { | |
1184 | if (nonces[i].BitFlips[bitflip] == 0 && nonces[i].BitFlips[bitflip ^ 0x100] == 0 | |
1185 | && nonces[i].first != NULL && nonces[i^(bitflip&0xff)].first != NULL) { | |
1186 | uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte | |
1187 | uint8_t parity2 = (nonces[i^(bitflip&0xff)].first->par_enc) >> 3; // parity of nonce with bits flipped | |
1188 | if ((parity1 == parity2 && !(bitflip & 0x100)) // bitflip | |
1189 | || (parity1 != parity2 && (bitflip & 0x100))) { // not bitflip | |
1190 | nonces[i].BitFlips[bitflip] = 1; | |
1191 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
1192 | if (bitflip_bitarrays[odd_even][bitflip] != NULL) { | |
1193 | uint32_t old_count = nonces[i].num_states_bitarray[odd_even]; | |
1194 | nonces[i].num_states_bitarray[odd_even] = count_bitarray_AND(nonces[i].states_bitarray[odd_even], bitflip_bitarrays[odd_even][bitflip]); | |
1195 | if (nonces[i].num_states_bitarray[odd_even] != old_count) { | |
1196 | nonces[i].all_bitflips_dirty[odd_even] = true; | |
1197 | } | |
1198 | // printf("bitflip: %d old: %d, new: %d ", bitflip, old_count, nonces[i].num_states_bitarray[odd_even]); | |
1199 | } | |
1200 | } | |
1201 | } | |
1202 | } | |
1203 | } | |
1204 | ((uint8_t *)args)[1] = num_1st_byte_effective_bitflips - bitflip_idx - 1; // bitflips still to go in stage 1 | |
1205 | } | |
1206 | } | |
1207 | ||
1208 | ((uint8_t *)args)[1] = 0; // stage 1 definitely completed | |
1209 | ||
1210 | if (hardnested_stage & CHECK_2ND_BYTES) { | |
1211 | for (uint16_t bitflip_idx = num_1st_byte_effective_bitflips; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) { | |
1212 | uint16_t bitflip = all_effective_bitflip[bitflip_idx]; | |
1213 | if (time_budget & timeout()) { | |
1214 | #if defined (DEBUG_REDUCTION) | |
1215 | printf("break at bitflip_idx %d...", bitflip_idx); | |
1216 | #endif | |
1217 | return NULL; | |
1218 | } | |
1219 | for (uint16_t i = first_byte; i <= last_byte; i++) { | |
1220 | // Check for Bit Flip Property of 2nd bytes | |
1221 | if (nonces[i].BitFlips[bitflip] == 0) { | |
1222 | for (uint16_t j = 0; j < 256; j++) { // for each 2nd Byte | |
1223 | noncelistentry_t *byte1 = SearchFor2ndByte(i, j); | |
1224 | noncelistentry_t *byte2 = SearchFor2ndByte(i, j^(bitflip&0xff)); | |
1225 | if (byte1 != NULL && byte2 != NULL) { | |
1226 | uint8_t parity1 = byte1->par_enc >> 2 & 0x01; // parity of 2nd byte | |
1227 | uint8_t parity2 = byte2->par_enc >> 2 & 0x01; // parity of 2nd byte with bits flipped | |
1228 | if ((parity1 == parity2 && !(bitflip&0x100)) // bitflip | |
1229 | || (parity1 != parity2 && (bitflip&0x100))) { // not bitflip | |
1230 | nonces[i].BitFlips[bitflip] = 1; | |
1231 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
1232 | if (bitflip_bitarrays[odd_even][bitflip] != NULL) { | |
1233 | uint32_t old_count = nonces[i].num_states_bitarray[odd_even]; | |
1234 | nonces[i].num_states_bitarray[odd_even] = count_bitarray_AND(nonces[i].states_bitarray[odd_even], bitflip_bitarrays[odd_even][bitflip]); | |
1235 | if (nonces[i].num_states_bitarray[odd_even] != old_count) { | |
1236 | nonces[i].all_bitflips_dirty[odd_even] = true; | |
1237 | } | |
1238 | } | |
1239 | } | |
1240 | break; | |
1241 | } | |
1242 | } | |
1243 | } | |
1244 | } | |
1245 | // printf("states_bitarray[0][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[EVEN_STATE])); | |
1246 | // printf("states_bitarray[1][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[ODD_STATE])); | |
1247 | } | |
1248 | } | |
1249 | } | |
1250 | ||
1251 | return NULL; | |
1252 | } | |
1253 | ||
1254 | ||
1255 | static void check_for_BitFlipProperties(bool time_budget) | |
1256 | { | |
1257 | // create and run worker threads | |
1258 | pthread_t thread_id[NUM_CHECK_BITFLIPS_THREADS]; | |
1259 | ||
1260 | uint8_t args[NUM_CHECK_BITFLIPS_THREADS][3]; | |
1261 | uint16_t bytes_per_thread = (256 + (NUM_CHECK_BITFLIPS_THREADS/2)) / NUM_CHECK_BITFLIPS_THREADS; | |
1262 | for (uint8_t i = 0; i < NUM_CHECK_BITFLIPS_THREADS; i++) { | |
1263 | args[i][0] = i * bytes_per_thread; | |
1264 | args[i][1] = MIN(args[i][0]+bytes_per_thread-1, 255); | |
1265 | args[i][2] = time_budget; | |
1266 | } | |
1267 | args[NUM_CHECK_BITFLIPS_THREADS-1][1] = MAX(args[NUM_CHECK_BITFLIPS_THREADS-1][1], 255); | |
1268 | ||
1269 | // start threads | |
1270 | for (uint8_t i = 0; i < NUM_CHECK_BITFLIPS_THREADS; i++) { | |
1271 | pthread_create(&thread_id[i], NULL, check_for_BitFlipProperties_thread, args[i]); | |
1272 | } | |
1273 | ||
1274 | // wait for threads to terminate: | |
1275 | for (uint8_t i = 0; i < NUM_CHECK_BITFLIPS_THREADS; i++) { | |
1276 | pthread_join(thread_id[i], NULL); | |
1277 | } | |
1278 | ||
1279 | if (hardnested_stage & CHECK_2ND_BYTES) { | |
1280 | hardnested_stage &= ~CHECK_1ST_BYTES; // we are done with 1st stage, except... | |
1281 | for (uint16_t i = 0; i < NUM_CHECK_BITFLIPS_THREADS; i++) { | |
1282 | if (args[i][1] != 0) { | |
1283 | hardnested_stage |= CHECK_1ST_BYTES; // ... when any of the threads didn't complete in time | |
1284 | break; | |
1285 | } | |
1286 | } | |
1287 | } | |
1288 | #if defined (DEBUG_REDUCTION) | |
1289 | if (hardnested_stage & CHECK_1ST_BYTES) printf("stage 1 not completed yet\n"); | |
1290 | #endif | |
1291 | } | |
1292 | ||
1293 | ||
1294 | static void update_nonce_data(bool time_budget) | |
1295 | { | |
1296 | check_for_BitFlipProperties(time_budget); | |
1297 | update_allbitflips_array(); | |
1298 | update_sum_bitarrays(EVEN_STATE); | |
1299 | update_sum_bitarrays(ODD_STATE); | |
1300 | update_p_K(); | |
1301 | estimate_sum_a8(); | |
1302 | } | |
1303 | ||
1304 | ||
1305 | static void apply_sum_a0(void) | |
1306 | { | |
1307 | uint32_t old_count = num_all_bitflips_bitarray[EVEN_STATE]; | |
1308 | num_all_bitflips_bitarray[EVEN_STATE] = count_bitarray_AND(all_bitflips_bitarray[EVEN_STATE], sum_a0_bitarrays[EVEN_STATE][first_byte_Sum]); | |
1309 | if (num_all_bitflips_bitarray[EVEN_STATE] != old_count) { | |
1310 | all_bitflips_bitarray_dirty[EVEN_STATE] = true; | |
1311 | } | |
1312 | old_count = num_all_bitflips_bitarray[ODD_STATE]; | |
1313 | num_all_bitflips_bitarray[ODD_STATE] = count_bitarray_AND(all_bitflips_bitarray[ODD_STATE], sum_a0_bitarrays[ODD_STATE][first_byte_Sum]); | |
1314 | if (num_all_bitflips_bitarray[ODD_STATE] != old_count) { | |
1315 | all_bitflips_bitarray_dirty[ODD_STATE] = true; | |
1316 | } | |
1317 | } | |
1318 | ||
1319 | ||
1320 | static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc) | |
1321 | { | |
1322 | struct Crypto1State sim_cs = {0, 0}; | |
1323 | ||
1324 | // init cryptostate with key: | |
1325 | for(int8_t i = 47; i > 0; i -= 2) { | |
1326 | sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7); | |
1327 | sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7); | |
1328 | } | |
1329 | ||
1330 | *par_enc = 0; | |
1331 | uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); | |
1332 | for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) { | |
1333 | uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff; | |
1334 | uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte | |
1335 | *nt_enc = (*nt_enc << 8) | nt_byte_enc; | |
1336 | uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit | |
1337 | uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it | |
1338 | *par_enc = (*par_enc << 1) | nt_byte_par_enc; | |
1339 | } | |
1340 | ||
1341 | } | |
1342 | ||
1343 | ||
1344 | static void simulate_acquire_nonces() | |
1345 | { | |
1346 | time_t time1 = time(NULL); | |
1347 | last_sample_clock = 0; | |
1348 | sample_period = 1000; // for simulation | |
1349 | hardnested_stage = CHECK_1ST_BYTES; | |
1350 | bool acquisition_completed = false; | |
1351 | uint32_t total_num_nonces = 0; | |
1352 | float brute_force; | |
1353 | bool reported_suma8 = false; | |
1354 | ||
1355 | cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); | |
1356 | if (known_target_key == -1) { | |
1357 | known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff); | |
1358 | } | |
1359 | ||
1360 | char progress_text[80]; | |
1361 | sprintf(progress_text, "Simulating key %012" PRIx64 ", cuid %08" PRIx32 " ...", known_target_key, cuid); | |
1362 | hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0); | |
1363 | fprintf(fstats, "%012" PRIx64 ";%" PRIx32 ";", known_target_key, cuid); | |
1364 | ||
1365 | num_acquired_nonces = 0; | |
1366 | ||
1367 | do { | |
1368 | uint32_t nt_enc = 0; | |
1369 | uint8_t par_enc = 0; | |
1370 | ||
1371 | for (uint16_t i = 0; i < 113; i++) { | |
1372 | simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc); | |
1373 | num_acquired_nonces += add_nonce(nt_enc, par_enc); | |
1374 | total_num_nonces++; | |
1375 | } | |
1376 | ||
1377 | last_sample_clock = msclock(); | |
1378 | ||
1379 | if (first_byte_num == 256 ) { | |
1380 | if (hardnested_stage == CHECK_1ST_BYTES) { | |
1381 | for (uint16_t i = 0; i < NUM_SUMS; i++) { | |
1382 | if (first_byte_Sum == sums[i]) { | |
1383 | first_byte_Sum = i; | |
1384 | break; | |
1385 | } | |
1386 | } | |
1387 | hardnested_stage |= CHECK_2ND_BYTES; | |
1388 | apply_sum_a0(); | |
1389 | } | |
1390 | update_nonce_data(true); | |
1391 | acquisition_completed = shrink_key_space(&brute_force); | |
1392 | if (!reported_suma8) { | |
1393 | char progress_string[80]; | |
1394 | sprintf(progress_string, "Apply Sum property. Sum(a0) = %d", sums[first_byte_Sum]); | |
1395 | hardnested_print_progress(num_acquired_nonces, progress_string, brute_force, 0); | |
1396 | reported_suma8 = true; | |
1397 | } else { | |
1398 | hardnested_print_progress(num_acquired_nonces, "Apply bit flip properties", brute_force, 0); | |
1399 | } | |
1400 | } else { | |
1401 | update_nonce_data(true); | |
1402 | acquisition_completed = shrink_key_space(&brute_force); | |
1403 | hardnested_print_progress(num_acquired_nonces, "Apply bit flip properties", brute_force, 0); | |
1404 | } | |
1405 | } while (!acquisition_completed); | |
1406 | ||
1407 | time_t end_time = time(NULL); | |
1408 | // PrintAndLog("Acquired a total of %" PRId32" nonces in %1.0f seconds (%1.0f nonces/minute)", | |
1409 | // num_acquired_nonces, | |
1410 | // difftime(end_time, time1), | |
1411 | // difftime(end_time, time1)!=0.0?(float)total_num_nonces*60.0/difftime(end_time, time1):INFINITY | |
1412 | // ); | |
1413 | ||
1414 | fprintf(fstats, "%" PRId32 ";%" PRId32 ";%1.0f;", total_num_nonces, num_acquired_nonces, difftime(end_time,time1)); | |
1415 | ||
1416 | } | |
1417 | ||
1418 | ||
1419 | static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow) | |
1420 | { | |
1421 | last_sample_clock = msclock(); | |
1422 | sample_period = 2000; // initial rough estimate. Will be refined. | |
1423 | bool initialize = true; | |
1424 | bool field_off = false; | |
1425 | hardnested_stage = CHECK_1ST_BYTES; | |
1426 | bool acquisition_completed = false; | |
1427 | uint32_t flags = 0; | |
1428 | uint8_t write_buf[9]; | |
1429 | uint32_t total_num_nonces = 0; | |
1430 | float brute_force; | |
1431 | bool reported_suma8 = false; | |
1432 | FILE *fnonces = NULL; | |
1433 | UsbCommand resp; | |
1434 | ||
1435 | num_acquired_nonces = 0; | |
1436 | ||
1437 | clearCommandBuffer(); | |
1438 | ||
1439 | do { | |
1440 | flags = 0; | |
1441 | flags |= initialize ? 0x0001 : 0; | |
1442 | flags |= slow ? 0x0002 : 0; | |
1443 | flags |= field_off ? 0x0004 : 0; | |
1444 | UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}}; | |
1445 | memcpy(c.d.asBytes, key, 6); | |
1446 | ||
1447 | SendCommand(&c); | |
1448 | ||
1449 | if (field_off) break; | |
1450 | ||
1451 | if (initialize) { | |
1452 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1; | |
1453 | ||
1454 | if (resp.arg[0]) return resp.arg[0]; // error during nested_hard | |
1455 | ||
1456 | cuid = resp.arg[1]; | |
1457 | // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid); | |
1458 | if (nonce_file_write && fnonces == NULL) { | |
1459 | if ((fnonces = fopen("nonces.bin","wb")) == NULL) { | |
1460 | PrintAndLog("Could not create file nonces.bin"); | |
1461 | return 3; | |
1462 | } | |
1463 | hardnested_print_progress(0, "Writing acquired nonces to binary file nonces.bin", (float)(1LL<<47), 0); | |
1464 | num_to_bytes(cuid, 4, write_buf); | |
1465 | fwrite(write_buf, 1, 4, fnonces); | |
1466 | fwrite(&trgBlockNo, 1, 1, fnonces); | |
1467 | fwrite(&trgKeyType, 1, 1, fnonces); | |
1468 | } | |
1469 | } | |
1470 | ||
1471 | if (!initialize) { | |
1472 | uint32_t nt_enc1, nt_enc2; | |
1473 | uint8_t par_enc; | |
1474 | uint16_t num_sampled_nonces = resp.arg[2]; | |
1475 | uint8_t *bufp = resp.d.asBytes; | |
1476 | for (uint16_t i = 0; i < num_sampled_nonces; i+=2) { | |
1477 | nt_enc1 = bytes_to_num(bufp, 4); | |
1478 | nt_enc2 = bytes_to_num(bufp+4, 4); | |
1479 | par_enc = bytes_to_num(bufp+8, 1); | |
1480 | ||
1481 | //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4); | |
1482 | num_acquired_nonces += add_nonce(nt_enc1, par_enc >> 4); | |
1483 | //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f); | |
1484 | num_acquired_nonces += add_nonce(nt_enc2, par_enc & 0x0f); | |
1485 | ||
1486 | if (nonce_file_write) { | |
1487 | fwrite(bufp, 1, 9, fnonces); | |
1488 | } | |
1489 | bufp += 9; | |
1490 | } | |
1491 | total_num_nonces += num_sampled_nonces; | |
1492 | ||
1493 | if (first_byte_num == 256 ) { | |
1494 | if (hardnested_stage == CHECK_1ST_BYTES) { | |
1495 | for (uint16_t i = 0; i < NUM_SUMS; i++) { | |
1496 | if (first_byte_Sum == sums[i]) { | |
1497 | first_byte_Sum = i; | |
1498 | break; | |
1499 | } | |
1500 | } | |
1501 | hardnested_stage |= CHECK_2ND_BYTES; | |
1502 | apply_sum_a0(); | |
1503 | } | |
1504 | update_nonce_data(true); | |
1505 | acquisition_completed = shrink_key_space(&brute_force); | |
1506 | if (!reported_suma8) { | |
1507 | char progress_string[80]; | |
1508 | sprintf(progress_string, "Apply Sum property. Sum(a0) = %d", sums[first_byte_Sum]); | |
1509 | hardnested_print_progress(num_acquired_nonces, progress_string, brute_force, 0); | |
1510 | reported_suma8 = true; | |
1511 | } else { | |
1512 | hardnested_print_progress(num_acquired_nonces, "Apply bit flip properties", brute_force, 0); | |
1513 | } | |
1514 | } else { | |
1515 | update_nonce_data(true); | |
1516 | acquisition_completed = shrink_key_space(&brute_force); | |
1517 | hardnested_print_progress(num_acquired_nonces, "Apply bit flip properties", brute_force, 0); | |
1518 | } | |
1519 | } | |
1520 | ||
1521 | if (acquisition_completed) { | |
1522 | field_off = true; // switch off field with next SendCommand and then finish | |
1523 | } | |
1524 | ||
1525 | if (!initialize) { | |
1526 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) { | |
1527 | if (nonce_file_write) { | |
1528 | fclose(fnonces); | |
1529 | } | |
1530 | return 1; | |
1531 | } | |
1532 | if (resp.arg[0]) { | |
1533 | if (nonce_file_write) { | |
1534 | fclose(fnonces); | |
1535 | } | |
1536 | return resp.arg[0]; // error during nested_hard | |
1537 | } | |
1538 | } | |
1539 | ||
1540 | initialize = false; | |
1541 | ||
1542 | if (msclock() - last_sample_clock < sample_period) { | |
1543 | sample_period = msclock() - last_sample_clock; | |
1544 | } | |
1545 | last_sample_clock = msclock(); | |
1546 | ||
1547 | } while (!acquisition_completed || field_off); | |
1548 | ||
1549 | if (nonce_file_write) { | |
1550 | fclose(fnonces); | |
1551 | } | |
1552 | ||
1553 | // PrintAndLog("Sampled a total of %d nonces in %d seconds (%0.0f nonces/minute)", | |
1554 | // total_num_nonces, | |
1555 | // time(NULL)-time1, | |
1556 | // (float)total_num_nonces*60.0/(time(NULL)-time1)); | |
1557 | ||
1558 | return 0; | |
1559 | } | |
1560 | ||
1561 | ||
1562 | static inline bool invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) | |
1563 | { | |
1564 | uint_fast8_t j_1_bit_mask = 0x01 << (bit-1); | |
1565 | uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit | |
1566 | uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function | |
1567 | uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit; | |
1568 | uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13 | |
1569 | uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits | |
1570 | return !all_diff; | |
1571 | } | |
1572 | ||
1573 | ||
1574 | static inline bool invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) | |
1575 | { | |
1576 | uint_fast8_t j_bit_mask = 0x01 << bit; | |
1577 | uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit | |
1578 | uint_fast8_t mask_y13_y16 = 0x48 >> state_bit; | |
1579 | uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16 | |
1580 | uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits | |
1581 | return all_diff; | |
1582 | } | |
1583 | ||
1584 | ||
1585 | static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even) | |
1586 | { | |
1587 | if (odd_even) { | |
1588 | // odd bits | |
1589 | switch (num_common_bits) { | |
1590 | case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true; | |
1591 | case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false; | |
1592 | case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true; | |
1593 | case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false; | |
1594 | case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true; | |
1595 | case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false; | |
1596 | case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true; | |
1597 | case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false; | |
1598 | } | |
1599 | } else { | |
1600 | // even bits | |
1601 | switch (num_common_bits) { | |
1602 | case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false; | |
1603 | case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true; | |
1604 | case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false; | |
1605 | case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true; | |
1606 | case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false; | |
1607 | case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true; | |
1608 | case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false; | |
1609 | } | |
1610 | } | |
1611 | ||
1612 | return true; // valid state | |
1613 | } | |
1614 | ||
1615 | ||
1616 | static pthread_mutex_t statelist_cache_mutex; | |
1617 | static pthread_mutex_t book_of_work_mutex; | |
1618 | ||
1619 | ||
1620 | typedef enum { | |
1621 | TO_BE_DONE, | |
1622 | WORK_IN_PROGRESS, | |
1623 | COMPLETED | |
1624 | } work_status_t; | |
1625 | ||
1626 | static struct sl_cache_entry { | |
1627 | uint32_t *sl; | |
1628 | uint32_t len; | |
1629 | work_status_t cache_status; | |
1630 | } sl_cache[NUM_PART_SUMS][NUM_PART_SUMS][2]; | |
1631 | ||
1632 | ||
1633 | static void init_statelist_cache(void) | |
1634 | { | |
1635 | pthread_mutex_lock(&statelist_cache_mutex); | |
1636 | for (uint16_t i = 0; i < NUM_PART_SUMS; i++) { | |
1637 | for (uint16_t j = 0; j < NUM_PART_SUMS; j++) { | |
1638 | for (uint16_t k = 0; k < 2; k++) { | |
1639 | sl_cache[i][j][k].sl = NULL; | |
1640 | sl_cache[i][j][k].len = 0; | |
1641 | sl_cache[i][j][k].cache_status = TO_BE_DONE; | |
1642 | } | |
1643 | } | |
1644 | } | |
1645 | pthread_mutex_unlock(&statelist_cache_mutex); | |
1646 | } | |
1647 | ||
1648 | ||
1649 | static void free_statelist_cache(void) | |
1650 | { | |
1651 | pthread_mutex_lock(&statelist_cache_mutex); | |
1652 | for (uint16_t i = 0; i < NUM_PART_SUMS; i++) { | |
1653 | for (uint16_t j = 0; j < NUM_PART_SUMS; j++) { | |
1654 | for (uint16_t k = 0; k < 2; k++) { | |
1655 | free(sl_cache[i][j][k].sl); | |
1656 | } | |
1657 | } | |
1658 | } | |
1659 | pthread_mutex_unlock(&statelist_cache_mutex); | |
1660 | } | |
1661 | ||
1662 | ||
1663 | #ifdef DEBUG_KEY_ELIMINATION | |
1664 | static inline bool bitflips_match(uint8_t byte, uint32_t state, odd_even_t odd_even, bool quiet) | |
1665 | #else | |
1666 | static inline bool bitflips_match(uint8_t byte, uint32_t state, odd_even_t odd_even) | |
1667 | #endif | |
1668 | { | |
1669 | uint32_t *bitset = nonces[byte].states_bitarray[odd_even]; | |
1670 | bool possible = test_bit24(bitset, state); | |
1671 | if (!possible) { | |
1672 | #ifdef DEBUG_KEY_ELIMINATION | |
1673 | if (!quiet && known_target_key != -1 && state == test_state[odd_even]) { | |
1674 | printf("Initial state lists: %s test state eliminated by bitflip property.\n", odd_even==EVEN_STATE?"even":"odd"); | |
1675 | sprintf(failstr, "Initial %s Byte Bitflip property", odd_even==EVEN_STATE?"even":"odd"); | |
1676 | } | |
1677 | #endif | |
1678 | return false; | |
1679 | } else { | |
1680 | return true; | |
1681 | } | |
1682 | } | |
1683 | ||
1684 | ||
1685 | static uint_fast8_t reverse(uint_fast8_t byte) | |
1686 | { | |
1687 | uint_fast8_t rev_byte = 0; | |
1688 | ||
1689 | for (uint8_t i = 0; i < 8; i++) { | |
1690 | rev_byte <<= 1; | |
1691 | rev_byte |= (byte >> i) & 0x01; | |
1692 | } | |
1693 | ||
1694 | return rev_byte; | |
1695 | } | |
1696 | ||
1697 | ||
1698 | static bool all_bitflips_match(uint8_t byte, uint32_t state, odd_even_t odd_even) | |
1699 | { | |
1700 | uint32_t masks[2][8] = {{0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe, 0x00ffffff}, | |
1701 | {0x00fffff0, 0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe} }; | |
1702 | ||
1703 | for (uint16_t i = 1; i < 256; i++) { | |
1704 | uint_fast8_t bytes_diff = reverse(i); // start with most common bits | |
1705 | uint_fast8_t byte2 = byte ^ bytes_diff; | |
1706 | uint_fast8_t num_common = trailing_zeros(bytes_diff); | |
1707 | uint32_t mask = masks[odd_even][num_common]; | |
1708 | bool found_match = false; | |
1709 | for (uint8_t remaining_bits = 0; remaining_bits <= (~mask & 0xff); remaining_bits++) { | |
1710 | if (remaining_bits_match(num_common, bytes_diff, state, (state & mask) | remaining_bits, odd_even)) { | |
1711 | #ifdef DEBUG_KEY_ELIMINATION | |
1712 | if (bitflips_match(byte2, (state & mask) | remaining_bits, odd_even, true)) { | |
1713 | #else | |
1714 | if (bitflips_match(byte2, (state & mask) | remaining_bits, odd_even)) { | |
1715 | #endif | |
1716 | found_match = true; | |
1717 | break; | |
1718 | } | |
1719 | } | |
1720 | } | |
1721 | if (!found_match) { | |
1722 | #ifdef DEBUG_KEY_ELIMINATION | |
1723 | if (known_target_key != -1 && state == test_state[odd_even]) { | |
1724 | printf("all_bitflips_match() 1st Byte: %s test state (0x%06x): Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", | |
1725 | odd_even==ODD_STATE?"odd":"even", | |
1726 | test_state[odd_even], | |
1727 | byte, byte2, num_common); | |
1728 | if (failstr[0] == '\0') { | |
1729 | sprintf(failstr, "Other 1st Byte %s, all_bitflips_match(), no match", odd_even?"odd":"even"); | |
1730 | } | |
1731 | } | |
1732 | #endif | |
1733 | return false; | |
1734 | } | |
1735 | } | |
1736 | ||
1737 | return true; | |
1738 | } | |
1739 | ||
1740 | ||
1741 | static void bitarray_to_list(uint8_t byte, uint32_t *bitarray, uint32_t *state_list, uint32_t *len, odd_even_t odd_even) | |
1742 | { | |
1743 | uint32_t *p = state_list; | |
1744 | for (uint32_t state = next_state(bitarray, -1L); state < (1<<24); state = next_state(bitarray, state)) { | |
1745 | if (all_bitflips_match(byte, state, odd_even)) { | |
1746 | *p++ = state; | |
1747 | } | |
1748 | } | |
1749 | // add End Of List marker | |
1750 | *p = 0xffffffff; | |
1751 | *len = p - state_list; | |
1752 | } | |
1753 | ||
1754 | ||
1755 | static void add_cached_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even) | |
1756 | { | |
1757 | candidates->states[odd_even] = sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].sl; | |
1758 | candidates->len[odd_even] = sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].len; | |
1759 | return; | |
1760 | } | |
1761 | ||
1762 | ||
1763 | static void add_matching_states(statelist_t *candidates, uint8_t part_sum_a0, uint8_t part_sum_a8, odd_even_t odd_even) | |
1764 | { | |
1765 | uint32_t worstcase_size = 1<<20; | |
1766 | candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size); | |
1767 | if (candidates->states[odd_even] == NULL) { | |
1768 | PrintAndLog("Out of memory error in add_matching_states() - statelist.\n"); | |
1769 | exit(4); | |
1770 | } | |
1771 | uint32_t *candidates_bitarray = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); | |
1772 | if (candidates_bitarray == NULL) { | |
1773 | PrintAndLog("Out of memory error in add_matching_states() - bitarray.\n"); | |
1774 | free(candidates->states[odd_even]); | |
1775 | exit(4); | |
1776 | } | |
1777 | ||
1778 | uint32_t *bitarray_a0 = part_sum_a0_bitarrays[odd_even][part_sum_a0/2]; | |
1779 | uint32_t *bitarray_a8 = part_sum_a8_bitarrays[odd_even][part_sum_a8/2]; | |
1780 | uint32_t *bitarray_bitflips = nonces[best_first_bytes[0]].states_bitarray[odd_even]; | |
1781 | ||
1782 | // for (uint32_t i = 0; i < (1<<19); i++) { | |
1783 | // candidates_bitarray[i] = bitarray_a0[i] & bitarray_a8[i] & bitarray_bitflips[i]; | |
1784 | // } | |
1785 | bitarray_AND4(candidates_bitarray, bitarray_a0, bitarray_a8, bitarray_bitflips); | |
1786 | ||
1787 | bitarray_to_list(best_first_bytes[0], candidates_bitarray, candidates->states[odd_even], &(candidates->len[odd_even]), odd_even); | |
1788 | if (candidates->len[odd_even] == 0) { | |
1789 | free(candidates->states[odd_even]); | |
1790 | candidates->states[odd_even] = NULL; | |
1791 | } else if (candidates->len[odd_even] + 1 < worstcase_size) { | |
1792 | candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1)); | |
1793 | } | |
1794 | free_bitarray(candidates_bitarray); | |
1795 | ||
1796 | ||
1797 | pthread_mutex_lock(&statelist_cache_mutex); | |
1798 | sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].sl = candidates->states[odd_even]; | |
1799 | sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].len = candidates->len[odd_even]; | |
1800 | sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].cache_status = COMPLETED; | |
1801 | pthread_mutex_unlock(&statelist_cache_mutex); | |
1802 | ||
1803 | return; | |
1804 | } | |
1805 | ||
1806 | ||
1807 | static statelist_t *add_more_candidates(void) | |
1808 | { | |
1809 | statelist_t *new_candidates = candidates; | |
1810 | if (candidates == NULL) { | |
1811 | candidates = (statelist_t *)malloc(sizeof(statelist_t)); | |
1812 | new_candidates = candidates; | |
1813 | } else { | |
1814 | new_candidates = candidates; | |
1815 | while (new_candidates->next != NULL) { | |
1816 | new_candidates = new_candidates->next; | |
1817 | } | |
1818 | new_candidates = new_candidates->next = (statelist_t *)malloc(sizeof(statelist_t)); | |
1819 | } | |
1820 | new_candidates->next = NULL; | |
1821 | new_candidates->len[ODD_STATE] = 0; | |
1822 | new_candidates->len[EVEN_STATE] = 0; | |
1823 | new_candidates->states[ODD_STATE] = NULL; | |
1824 | new_candidates->states[EVEN_STATE] = NULL; | |
1825 | return new_candidates; | |
1826 | } | |
1827 | ||
1828 | ||
1829 | static void add_bitflip_candidates(uint8_t byte) | |
1830 | { | |
1831 | statelist_t *candidates = add_more_candidates(); | |
1832 | ||
1833 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
1834 | uint32_t worstcase_size = nonces[byte].num_states_bitarray[odd_even] + 1; | |
1835 | candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size); | |
1836 | if (candidates->states[odd_even] == NULL) { | |
1837 | PrintAndLog("Out of memory error in add_bitflip_candidates().\n"); | |
1838 | exit(4); | |
1839 | } | |
1840 | ||
1841 | bitarray_to_list(byte, nonces[byte].states_bitarray[odd_even], candidates->states[odd_even], &(candidates->len[odd_even]), odd_even); | |
1842 | ||
1843 | if (candidates->len[odd_even] + 1 < worstcase_size) { | |
1844 | candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1)); | |
1845 | } | |
1846 | } | |
1847 | return; | |
1848 | } | |
1849 | ||
1850 | ||
1851 | static bool TestIfKeyExists(uint64_t key) | |
1852 | { | |
1853 | struct Crypto1State *pcs; | |
1854 | pcs = crypto1_create(key); | |
1855 | crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); | |
1856 | ||
1857 | uint32_t state_odd = pcs->odd & 0x00ffffff; | |
1858 | uint32_t state_even = pcs->even & 0x00ffffff; | |
1859 | ||
1860 | uint64_t count = 0; | |
1861 | for (statelist_t *p = candidates; p != NULL; p = p->next) { | |
1862 | bool found_odd = false; | |
1863 | bool found_even = false; | |
1864 | uint32_t *p_odd = p->states[ODD_STATE]; | |
1865 | uint32_t *p_even = p->states[EVEN_STATE]; | |
1866 | if (p_odd != NULL && p_even != NULL) { | |
1867 | while (*p_odd != 0xffffffff) { | |
1868 | if ((*p_odd & 0x00ffffff) == state_odd) { | |
1869 | found_odd = true; | |
1870 | break; | |
1871 | } | |
1872 | p_odd++; | |
1873 | } | |
1874 | while (*p_even != 0xffffffff) { | |
1875 | if ((*p_even & 0x00ffffff) == state_even) { | |
1876 | found_even = true; | |
1877 | } | |
1878 | p_even++; | |
1879 | } | |
1880 | count += (uint64_t)(p_odd - p->states[ODD_STATE]) * (uint64_t)(p_even - p->states[EVEN_STATE]); | |
1881 | } | |
1882 | if (found_odd && found_even) { | |
1883 | num_keys_tested += count; | |
1884 | hardnested_print_progress(num_acquired_nonces, "(Test: Key found)", 0.0, 0); | |
1885 | crypto1_destroy(pcs); | |
1886 | return true; | |
1887 | } | |
1888 | } | |
1889 | ||
1890 | num_keys_tested += count; | |
1891 | hardnested_print_progress(num_acquired_nonces, "(Test: Key NOT found)", 0.0, 0); | |
1892 | ||
1893 | crypto1_destroy(pcs); | |
1894 | return false; | |
1895 | } | |
1896 | ||
1897 | ||
1898 | static work_status_t book_of_work[NUM_PART_SUMS][NUM_PART_SUMS][NUM_PART_SUMS][NUM_PART_SUMS]; | |
1899 | ||
1900 | ||
1901 | static void init_book_of_work(void) | |
1902 | { | |
1903 | for (uint8_t p = 0; p < NUM_PART_SUMS; p++) { | |
1904 | for (uint8_t q = 0; q < NUM_PART_SUMS; q++) { | |
1905 | for (uint8_t r = 0; r < NUM_PART_SUMS; r++) { | |
1906 | for (uint8_t s = 0; s < NUM_PART_SUMS; s++) { | |
1907 | book_of_work[p][q][r][s] = TO_BE_DONE; | |
1908 | } | |
1909 | } | |
1910 | } | |
1911 | } | |
1912 | } | |
1913 | ||
1914 | ||
1915 | static void | |
1916 | #ifdef __has_attribute | |
1917 | #if __has_attribute(force_align_arg_pointer) | |
1918 | __attribute__((force_align_arg_pointer)) | |
1919 | #endif | |
1920 | #endif | |
1921 | *generate_candidates_worker_thread(void *args) | |
1922 | { | |
1923 | uint16_t *sum_args = (uint16_t *)args; | |
1924 | uint16_t sum_a0 = sums[sum_args[0]]; | |
1925 | uint16_t sum_a8 = sums[sum_args[1]]; | |
1926 | // uint16_t my_thread_number = sums[2]; | |
1927 | ||
1928 | bool there_might_be_more_work = true; | |
1929 | do { | |
1930 | there_might_be_more_work = false; | |
1931 | for (uint8_t p = 0; p < NUM_PART_SUMS; p++) { | |
1932 | for (uint8_t q = 0; q < NUM_PART_SUMS; q++) { | |
1933 | if (2*p*(16-2*q) + (16-2*p)*2*q == sum_a0) { | |
1934 | // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n", | |
1935 | // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]); | |
1936 | for (uint8_t r = 0; r < NUM_PART_SUMS; r++) { | |
1937 | for (uint8_t s = 0; s < NUM_PART_SUMS; s++) { | |
1938 | if (2*r*(16-2*s) + (16-2*r)*2*s == sum_a8) { | |
1939 | pthread_mutex_lock(&book_of_work_mutex); | |
1940 | if (book_of_work[p][q][r][s] != TO_BE_DONE) { // this has been done or is currently been done by another thread. Look for some other work. | |
1941 | pthread_mutex_unlock(&book_of_work_mutex); | |
1942 | continue; | |
1943 | } | |
1944 | ||
1945 | pthread_mutex_lock(&statelist_cache_mutex); | |
1946 | if (sl_cache[p][r][ODD_STATE].cache_status == WORK_IN_PROGRESS | |
1947 | || sl_cache[q][s][EVEN_STATE].cache_status == WORK_IN_PROGRESS) { // defer until not blocked by another thread. | |
1948 | pthread_mutex_unlock(&statelist_cache_mutex); | |
1949 | pthread_mutex_unlock(&book_of_work_mutex); | |
1950 | there_might_be_more_work = true; | |
1951 | continue; | |
1952 | } | |
1953 | ||
1954 | // we finally can do some work. | |
1955 | book_of_work[p][q][r][s] = WORK_IN_PROGRESS; | |
1956 | statelist_t *current_candidates = add_more_candidates(); | |
1957 | ||
1958 | // Check for cached results and add them first | |
1959 | bool odd_completed = false; | |
1960 | if (sl_cache[p][r][ODD_STATE].cache_status == COMPLETED) { | |
1961 | add_cached_states(current_candidates, 2*p, 2*r, ODD_STATE); | |
1962 | odd_completed = true; | |
1963 | } | |
1964 | bool even_completed = false; | |
1965 | if (sl_cache[q][s][EVEN_STATE].cache_status == COMPLETED) { | |
1966 | add_cached_states(current_candidates, 2*q, 2*s, EVEN_STATE); | |
1967 | even_completed = true; | |
1968 | } | |
1969 | ||
1970 | bool work_required = true; | |
1971 | ||
1972 | // if there had been two cached results, there is no more work to do | |
1973 | if (even_completed && odd_completed) { | |
1974 | work_required = false; | |
1975 | } | |
1976 | ||
1977 | // if there had been one cached empty result, there is no need to calculate the other part: | |
1978 | if (work_required) { | |
1979 | if (even_completed && !current_candidates->len[EVEN_STATE]) { | |
1980 | current_candidates->len[ODD_STATE] = 0; | |
1981 | current_candidates->states[ODD_STATE] = NULL; | |
1982 | work_required = false; | |
1983 | } | |
1984 | if (odd_completed && !current_candidates->len[ODD_STATE]) { | |
1985 | current_candidates->len[EVEN_STATE] = 0; | |
1986 | current_candidates->states[EVEN_STATE] = NULL; | |
1987 | work_required = false; | |
1988 | } | |
1989 | } | |
1990 | ||
1991 | if (!work_required) { | |
1992 | pthread_mutex_unlock(&statelist_cache_mutex); | |
1993 | pthread_mutex_unlock(&book_of_work_mutex); | |
1994 | } else { | |
1995 | // we really need to calculate something | |
1996 | if (even_completed) { // we had one cache hit with non-zero even states | |
1997 | // printf("Thread #%u: start working on odd states p=%2d, r=%2d...\n", my_thread_number, p, r); | |
1998 | sl_cache[p][r][ODD_STATE].cache_status = WORK_IN_PROGRESS; | |
1999 | pthread_mutex_unlock(&statelist_cache_mutex); | |
2000 | pthread_mutex_unlock(&book_of_work_mutex); | |
2001 | add_matching_states(current_candidates, 2*p, 2*r, ODD_STATE); | |
2002 | work_required = false; | |
2003 | } else if (odd_completed) { // we had one cache hit with non-zero odd_states | |
2004 | // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s); | |
2005 | sl_cache[q][s][EVEN_STATE].cache_status = WORK_IN_PROGRESS; | |
2006 | pthread_mutex_unlock(&statelist_cache_mutex); | |
2007 | pthread_mutex_unlock(&book_of_work_mutex); | |
2008 | add_matching_states(current_candidates, 2*q, 2*s, EVEN_STATE); | |
2009 | work_required = false; | |
2010 | } | |
2011 | } | |
2012 | ||
2013 | if (work_required) { // we had no cached result. Need to calculate both odd and even | |
2014 | sl_cache[p][r][ODD_STATE].cache_status = WORK_IN_PROGRESS; | |
2015 | sl_cache[q][s][EVEN_STATE].cache_status = WORK_IN_PROGRESS; | |
2016 | pthread_mutex_unlock(&statelist_cache_mutex); | |
2017 | pthread_mutex_unlock(&book_of_work_mutex); | |
2018 | ||
2019 | add_matching_states(current_candidates, 2*p, 2*r, ODD_STATE); | |
2020 | if(current_candidates->len[ODD_STATE]) { | |
2021 | // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s); | |
2022 | add_matching_states(current_candidates, 2*q, 2*s, EVEN_STATE); | |
2023 | } else { // no need to calculate even states yet | |
2024 | pthread_mutex_lock(&statelist_cache_mutex); | |
2025 | sl_cache[q][s][EVEN_STATE].cache_status = TO_BE_DONE; | |
2026 | pthread_mutex_unlock(&statelist_cache_mutex); | |
2027 | current_candidates->len[EVEN_STATE] = 0; | |
2028 | current_candidates->states[EVEN_STATE] = NULL; | |
2029 | } | |
2030 | } | |
2031 | ||
2032 | // update book of work | |
2033 | pthread_mutex_lock(&book_of_work_mutex); | |
2034 | book_of_work[p][q][r][s] = COMPLETED; | |
2035 | pthread_mutex_unlock(&book_of_work_mutex); | |
2036 | ||
2037 | // if ((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE]) { | |
2038 | // printf("Candidates for p=%2u, q=%2u, r=%2u, s=%2u: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", | |
2039 | // 2*p, 2*q, 2*r, 2*s, current_candidates->len[ODD_STATE], current_candidates->len[EVEN_STATE], | |
2040 | // (uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE], | |
2041 | // log((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE])/log(2)); | |
2042 | // uint32_t estimated_odd = estimated_num_states_part_sum(best_first_bytes[0], p, r, ODD_STATE); | |
2043 | // uint32_t estimated_even= estimated_num_states_part_sum(best_first_bytes[0], q, s, EVEN_STATE); | |
2044 | // uint64_t estimated_total = (uint64_t)estimated_odd * estimated_even; | |
2045 | // printf("Estimated: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", estimated_odd, estimated_even, estimated_total, log(estimated_total) / log(2)); | |
2046 | // if (estimated_odd < current_candidates->len[ODD_STATE] || estimated_even < current_candidates->len[EVEN_STATE]) { | |
2047 | // printf("############################################################################ERROR! ESTIMATED < REAL !!!\n"); | |
2048 | // //exit(2); | |
2049 | // } | |
2050 | // } | |
2051 | } | |
2052 | } | |
2053 | } | |
2054 | } | |
2055 | } | |
2056 | } | |
2057 | } while (there_might_be_more_work); | |
2058 | ||
2059 | return NULL; | |
2060 | } | |
2061 | ||
2062 | ||
2063 | static void generate_candidates(uint8_t sum_a0_idx, uint8_t sum_a8_idx) | |
2064 | { | |
2065 | // printf("Generating crypto1 state candidates... \n"); | |
2066 | ||
2067 | // estimate maximum candidate states | |
2068 | // maximum_states = 0; | |
2069 | // for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) { | |
2070 | // for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) { | |
2071 | // if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) { | |
2072 | // maximum_states += (uint64_t)count_states(part_sum_a0_bitarrays[EVEN_STATE][sum_even/2]) | |
2073 | // * count_states(part_sum_a0_bitarrays[ODD_STATE][sum_odd/2]); | |
2074 | // } | |
2075 | // } | |
2076 | // } | |
2077 | // printf("Number of possible keys with Sum(a0) = %d: %" PRIu64 " (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0)); | |
2078 | ||
2079 | init_statelist_cache(); | |
2080 | init_book_of_work(); | |
2081 | ||
2082 | // create mutexes for accessing the statelist cache and our "book of work" | |
2083 | pthread_mutex_init(&statelist_cache_mutex, NULL); | |
2084 | pthread_mutex_init(&book_of_work_mutex, NULL); | |
2085 | ||
2086 | // create and run worker threads | |
2087 | pthread_t thread_id[NUM_REDUCTION_WORKING_THREADS]; | |
2088 | ||
2089 | uint16_t sums[NUM_REDUCTION_WORKING_THREADS][3]; | |
2090 | for (uint16_t i = 0; i < NUM_REDUCTION_WORKING_THREADS; i++) { | |
2091 | sums[i][0] = sum_a0_idx; | |
2092 | sums[i][1] = sum_a8_idx; | |
2093 | sums[i][2] = i+1; | |
2094 | pthread_create(thread_id + i, NULL, generate_candidates_worker_thread, sums[i]); | |
2095 | } | |
2096 | ||
2097 | // wait for threads to terminate: | |
2098 | for (uint16_t i = 0; i < NUM_REDUCTION_WORKING_THREADS; i++) { | |
2099 | pthread_join(thread_id[i], NULL); | |
2100 | } | |
2101 | ||
2102 | // clean up mutex | |
2103 | pthread_mutex_destroy(&statelist_cache_mutex); | |
2104 | ||
2105 | maximum_states = 0; | |
2106 | for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) { | |
2107 | maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; | |
2108 | } | |
2109 | ||
2110 | for (uint8_t i = 0; i < NUM_SUMS; i++) { | |
2111 | if (nonces[best_first_bytes[0]].sum_a8_guess[i].sum_a8_idx == sum_a8_idx) { | |
2112 | nonces[best_first_bytes[0]].sum_a8_guess[i].num_states = maximum_states; | |
2113 | break; | |
2114 | } | |
2115 | } | |
2116 | update_expected_brute_force(best_first_bytes[0]); | |
2117 | ||
2118 | hardnested_print_progress(num_acquired_nonces, "Apply Sum(a8) and all bytes bitflip properties", nonces[best_first_bytes[0]].expected_num_brute_force, 0); | |
2119 | } | |
2120 | ||
2121 | ||
2122 | static void free_candidates_memory(statelist_t *sl) | |
2123 | { | |
2124 | if (sl == NULL) { | |
2125 | return; | |
2126 | } else { | |
2127 | free_candidates_memory(sl->next); | |
2128 | free(sl); | |
2129 | } | |
2130 | } | |
2131 | ||
2132 | ||
2133 | static void pre_XOR_nonces(void) | |
2134 | { | |
2135 | // prepare acquired nonces for faster brute forcing. | |
2136 | ||
2137 | // XOR the cryptoUID and its parity | |
2138 | for (uint16_t i = 0; i < 256; i++) { | |
2139 | noncelistentry_t *test_nonce = nonces[i].first; | |
2140 | while (test_nonce != NULL) { | |
2141 | test_nonce->nonce_enc ^= cuid; | |
2142 | test_nonce->par_enc ^= oddparity8(cuid >> 0 & 0xff) << 0; | |
2143 | test_nonce->par_enc ^= oddparity8(cuid >> 8 & 0xff) << 1; | |
2144 | test_nonce->par_enc ^= oddparity8(cuid >> 16 & 0xff) << 2; | |
2145 | test_nonce->par_enc ^= oddparity8(cuid >> 24 & 0xff) << 3; | |
2146 | test_nonce = test_nonce->next; | |
2147 | } | |
2148 | } | |
2149 | } | |
2150 | ||
2151 | ||
2152 | static bool brute_force(void) | |
2153 | { | |
2154 | if (known_target_key != -1) { | |
2155 | TestIfKeyExists(known_target_key); | |
2156 | } | |
2157 | return brute_force_bs(NULL, candidates, cuid, num_acquired_nonces, maximum_states, nonces, best_first_bytes); | |
2158 | } | |
2159 | ||
2160 | ||
2161 | static uint16_t SumProperty(struct Crypto1State *s) | |
2162 | { | |
2163 | uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE); | |
2164 | uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE); | |
2165 | return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even); | |
2166 | } | |
2167 | ||
2168 | ||
2169 | static void Tests() | |
2170 | { | |
2171 | ||
2172 | /* #define NUM_STATISTICS 100000 | |
2173 | uint32_t statistics_odd[17]; | |
2174 | uint64_t statistics[257]; | |
2175 | uint32_t statistics_even[17]; | |
2176 | struct Crypto1State cs; | |
2177 | uint64_t time1 = msclock(); | |
2178 | ||
2179 | for (uint16_t i = 0; i < 257; i++) { | |
2180 | statistics[i] = 0; | |
2181 | } | |
2182 | for (uint16_t i = 0; i < 17; i++) { | |
2183 | statistics_odd[i] = 0; | |
2184 | statistics_even[i] = 0; | |
2185 | } | |
2186 | ||
2187 | for (uint64_t i = 0; i < NUM_STATISTICS; i++) { | |
2188 | cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); | |
2189 | cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); | |
2190 | uint16_t sum_property = SumProperty(&cs); | |
2191 | statistics[sum_property] += 1; | |
2192 | sum_property = PartialSumProperty(cs.even, EVEN_STATE); | |
2193 | statistics_even[sum_property]++; | |
2194 | sum_property = PartialSumProperty(cs.odd, ODD_STATE); | |
2195 | statistics_odd[sum_property]++; | |
2196 | if (i%(NUM_STATISTICS/100) == 0) printf("."); | |
2197 | } | |
2198 | ||
2199 | printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0); | |
2200 | for (uint16_t i = 0; i < 257; i++) { | |
2201 | if (statistics[i] != 0) { | |
2202 | printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS); | |
2203 | } | |
2204 | } | |
2205 | for (uint16_t i = 0; i <= 16; i++) { | |
2206 | if (statistics_odd[i] != 0) { | |
2207 | printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS); | |
2208 | } | |
2209 | } | |
2210 | for (uint16_t i = 0; i <= 16; i++) { | |
2211 | if (statistics_odd[i] != 0) { | |
2212 | printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS); | |
2213 | } | |
2214 | } | |
2215 | */ | |
2216 | ||
2217 | /* #define NUM_STATISTICS 100000000LL | |
2218 | uint64_t statistics_a0[257]; | |
2219 | uint64_t statistics_a8[257][257]; | |
2220 | struct Crypto1State cs; | |
2221 | uint64_t time1 = msclock(); | |
2222 | ||
2223 | for (uint16_t i = 0; i < 257; i++) { | |
2224 | statistics_a0[i] = 0; | |
2225 | for (uint16_t j = 0; j < 257; j++) { | |
2226 | statistics_a8[i][j] = 0; | |
2227 | } | |
2228 | } | |
2229 | ||
2230 | for (uint64_t i = 0; i < NUM_STATISTICS; i++) { | |
2231 | cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); | |
2232 | cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); | |
2233 | uint16_t sum_property_a0 = SumProperty(&cs); | |
2234 | statistics_a0[sum_property_a0]++; | |
2235 | uint8_t first_byte = rand() & 0xff; | |
2236 | crypto1_byte(&cs, first_byte, true); | |
2237 | uint16_t sum_property_a8 = SumProperty(&cs); | |
2238 | statistics_a8[sum_property_a0][sum_property_a8] += 1; | |
2239 | if (i%(NUM_STATISTICS/100) == 0) printf("."); | |
2240 | } | |
2241 | ||
2242 | printf("\nTests: Probability Distribution of a8 depending on a0:\n"); | |
2243 | printf("\n "); | |
2244 | for (uint16_t i = 0; i < NUM_SUMS; i++) { | |
2245 | printf("%7d ", sums[i]); | |
2246 | } | |
2247 | printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n"); | |
2248 | printf("a0: "); | |
2249 | for (uint16_t i = 0; i < NUM_SUMS; i++) { | |
2250 | printf("%7.5f ", (float)statistics_a0[sums[i]] / NUM_STATISTICS); | |
2251 | } | |
2252 | printf("\n"); | |
2253 | for (uint16_t i = 0; i < NUM_SUMS; i++) { | |
2254 | printf("%3d ", sums[i]); | |
2255 | for (uint16_t j = 0; j < NUM_SUMS; j++) { | |
2256 | printf("%7.5f ", (float)statistics_a8[sums[i]][sums[j]] / statistics_a0[sums[i]]); | |
2257 | } | |
2258 | printf("\n"); | |
2259 | } | |
2260 | printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0); | |
2261 | */ | |
2262 | ||
2263 | /* #define NUM_STATISTICS 100000LL | |
2264 | uint64_t statistics_a8[257]; | |
2265 | struct Crypto1State cs; | |
2266 | uint64_t time1 = msclock(); | |
2267 | ||
2268 | printf("\nTests: Probability Distribution of a8 depending on first byte:\n"); | |
2269 | printf("\n "); | |
2270 | for (uint16_t i = 0; i < NUM_SUMS; i++) { | |
2271 | printf("%7d ", sums[i]); | |
2272 | } | |
2273 | printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n"); | |
2274 | for (uint16_t first_byte = 0; first_byte < 256; first_byte++) { | |
2275 | for (uint16_t i = 0; i < 257; i++) { | |
2276 | statistics_a8[i] = 0; | |
2277 | } | |
2278 | for (uint64_t i = 0; i < NUM_STATISTICS; i++) { | |
2279 | cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); | |
2280 | cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); | |
2281 | crypto1_byte(&cs, first_byte, true); | |
2282 | uint16_t sum_property_a8 = SumProperty(&cs); | |
2283 | statistics_a8[sum_property_a8] += 1; | |
2284 | } | |
2285 | printf("%03x ", first_byte); | |
2286 | for (uint16_t j = 0; j < NUM_SUMS; j++) { | |
2287 | printf("%7.5f ", (float)statistics_a8[sums[j]] / NUM_STATISTICS); | |
2288 | } | |
2289 | printf("\n"); | |
2290 | } | |
2291 | printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0); | |
2292 | */ | |
2293 | ||
2294 | /* printf("Tests: Sum Probabilities based on Partial Sums\n"); | |
2295 | for (uint16_t i = 0; i < 257; i++) { | |
2296 | statistics[i] = 0; | |
2297 | } | |
2298 | uint64_t num_states = 0; | |
2299 | for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) { | |
2300 | for (uint16_t evensum = 0; evensum <= 16; evensum += 2) { | |
2301 | uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum; | |
2302 | statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); | |
2303 | num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); | |
2304 | } | |
2305 | } | |
2306 | printf("num_states = %"lld", expected %"lld"\n", num_states, (1LL<<48)); | |
2307 | for (uint16_t i = 0; i < 257; i++) { | |
2308 | if (statistics[i] != 0) { | |
2309 | printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states); | |
2310 | } | |
2311 | } | |
2312 | */ | |
2313 | ||
2314 | /* struct Crypto1State *pcs; | |
2315 | pcs = crypto1_create(0xffffffffffff); | |
2316 | printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
2317 | SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
2318 | crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); | |
2319 | printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
2320 | best_first_bytes[0], | |
2321 | SumProperty(pcs), | |
2322 | pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
2323 | //test_state_odd = pcs->odd & 0x00ffffff; | |
2324 | //test_state_even = pcs->even & 0x00ffffff; | |
2325 | crypto1_destroy(pcs); | |
2326 | pcs = crypto1_create(0xa0a1a2a3a4a5); | |
2327 | printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
2328 | SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
2329 | crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); | |
2330 | printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
2331 | best_first_bytes[0], | |
2332 | SumProperty(pcs), | |
2333 | pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
2334 | //test_state_odd = pcs->odd & 0x00ffffff; | |
2335 | //test_state_even = pcs->even & 0x00ffffff; | |
2336 | crypto1_destroy(pcs); | |
2337 | pcs = crypto1_create(0xa6b9aa97b955); | |
2338 | printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
2339 | SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
2340 | crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); | |
2341 | printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
2342 | best_first_bytes[0], | |
2343 | SumProperty(pcs), | |
2344 | pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
2345 | test_state_odd = pcs->odd & 0x00ffffff; | |
2346 | test_state_even = pcs->even & 0x00ffffff; | |
2347 | crypto1_destroy(pcs); | |
2348 | */ | |
2349 | ||
2350 | // printf("\nTests: Sorted First Bytes:\n"); | |
2351 | // for (uint16_t i = 0; i < 20; i++) { | |
2352 | // uint8_t best_byte = best_first_bytes[i]; | |
2353 | // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%\n", | |
2354 | // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8) = ", i, best_byte, nonces[best_byte].num, nonces[best_byte].Sum); | |
2355 | // for (uint16_t j = 0; j < 3; j++) { | |
2356 | // printf("%3d @ %4.1f%%, ", sums[nonces[best_byte].sum_a8_guess[j].sum_a8_idx], nonces[best_byte].sum_a8_guess[j].prob * 100.0); | |
2357 | // } | |
2358 | // printf(" %12" PRIu64 ", %12" PRIu64 ", %12" PRIu64 ", exp_brute: %12.0f\n", | |
2359 | // nonces[best_byte].sum_a8_guess[0].num_states, | |
2360 | // nonces[best_byte].sum_a8_guess[1].num_states, | |
2361 | // nonces[best_byte].sum_a8_guess[2].num_states, | |
2362 | // nonces[best_byte].expected_num_brute_force); | |
2363 | // } | |
2364 | ||
2365 | // printf("\nTests: Actual BitFlipProperties of best byte:\n"); | |
2366 | // printf("[%02x]:", best_first_bytes[0]); | |
2367 | // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) { | |
2368 | // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx]; | |
2369 | // if (nonces[best_first_bytes[0]].BitFlips[bitflip_prop]) { | |
2370 | // printf(" %03" PRIx16 , bitflip_prop); | |
2371 | // } | |
2372 | // } | |
2373 | // printf("\n"); | |
2374 | ||
2375 | // printf("\nTests2: Actual BitFlipProperties of first_byte_smallest_bitarray:\n"); | |
2376 | // printf("[%02x]:", best_first_byte_smallest_bitarray); | |
2377 | // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) { | |
2378 | // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx]; | |
2379 | // if (nonces[best_first_byte_smallest_bitarray].BitFlips[bitflip_prop]) { | |
2380 | // printf(" %03" PRIx16 , bitflip_prop); | |
2381 | // } | |
2382 | // } | |
2383 | // printf("\n"); | |
2384 | ||
2385 | if (known_target_key != -1) { | |
2386 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
2387 | uint32_t *bitset = nonces[best_first_bytes[0]].states_bitarray[odd_even]; | |
2388 | if (!test_bit24(bitset, test_state[odd_even])) { | |
2389 | printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n", | |
2390 | odd_even==EVEN_STATE?"even":"odd ", | |
2391 | best_first_bytes[0]); | |
2392 | } | |
2393 | } | |
2394 | } | |
2395 | ||
2396 | if (known_target_key != -1) { | |
2397 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
2398 | uint32_t *bitset = all_bitflips_bitarray[odd_even]; | |
2399 | if (!test_bit24(bitset, test_state[odd_even])) { | |
2400 | printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n", | |
2401 | odd_even==EVEN_STATE?"even":"odd "); | |
2402 | } | |
2403 | } | |
2404 | } | |
2405 | ||
2406 | // if (known_target_key != -1) { | |
2407 | // int16_t p = -1, q = -1, r = -1, s = -1; | |
2408 | ||
2409 | // printf("\nTests: known target key is member of these partial sum_a0 bitsets:\n"); | |
2410 | // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
2411 | // printf("%s", odd_even==EVEN_STATE?"even:":"odd: "); | |
2412 | // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) { | |
2413 | // uint32_t *bitset = part_sum_a0_bitarrays[odd_even][i]; | |
2414 | // if (test_bit24(bitset, test_state[odd_even])) { | |
2415 | // printf("%d ", i); | |
2416 | // if (odd_even == ODD_STATE) { | |
2417 | // p = 2*i; | |
2418 | // } else { | |
2419 | // q = 2*i; | |
2420 | // } | |
2421 | // } | |
2422 | // } | |
2423 | // printf("\n"); | |
2424 | // } | |
2425 | ||
2426 | // printf("\nTests: known target key is member of these partial sum_a8 bitsets:\n"); | |
2427 | // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
2428 | // printf("%s", odd_even==EVEN_STATE?"even:":"odd: "); | |
2429 | // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) { | |
2430 | // uint32_t *bitset = part_sum_a8_bitarrays[odd_even][i]; | |
2431 | // if (test_bit24(bitset, test_state[odd_even])) { | |
2432 | // printf("%d ", i); | |
2433 | // if (odd_even == ODD_STATE) { | |
2434 | // r = 2*i; | |
2435 | // } else { | |
2436 | // s = 2*i; | |
2437 | // } | |
2438 | // } | |
2439 | // } | |
2440 | // printf("\n"); | |
2441 | // } | |
2442 | ||
2443 | // printf("Sum(a0) = p*(16-q) + (16-p)*q = %d*(16-%d) + (16-%d)*%d = %d\n", p, q, p, q, p*(16-q)+(16-p)*q); | |
2444 | // printf("Sum(a8) = r*(16-s) + (16-r)*s = %d*(16-%d) + (16-%d)*%d = %d\n", r, s, r, s, r*(16-s)+(16-r)*s); | |
2445 | // } | |
2446 | ||
2447 | /* printf("\nTests: parity performance\n"); | |
2448 | uint64_t time1p = msclock(); | |
2449 | uint32_t par_sum = 0; | |
2450 | for (uint32_t i = 0; i < 100000000; i++) { | |
2451 | par_sum += parity(i); | |
2452 | } | |
2453 | printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0); | |
2454 | ||
2455 | time1p = msclock(); | |
2456 | par_sum = 0; | |
2457 | for (uint32_t i = 0; i < 100000000; i++) { | |
2458 | par_sum += evenparity32(i); | |
2459 | } | |
2460 | printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0); | |
2461 | */ | |
2462 | ||
2463 | } | |
2464 | ||
2465 | ||
2466 | static void Tests2(void) | |
2467 | { | |
2468 | if (known_target_key != -1) { | |
2469 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
2470 | uint32_t *bitset = nonces[best_first_byte_smallest_bitarray].states_bitarray[odd_even]; | |
2471 | if (!test_bit24(bitset, test_state[odd_even])) { | |
2472 | printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n", | |
2473 | odd_even==EVEN_STATE?"even":"odd ", | |
2474 | best_first_byte_smallest_bitarray); | |
2475 | } | |
2476 | } | |
2477 | } | |
2478 | ||
2479 | if (known_target_key != -1) { | |
2480 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
2481 | uint32_t *bitset = all_bitflips_bitarray[odd_even]; | |
2482 | if (!test_bit24(bitset, test_state[odd_even])) { | |
2483 | printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n", | |
2484 | odd_even==EVEN_STATE?"even":"odd "); | |
2485 | } | |
2486 | } | |
2487 | } | |
2488 | ||
2489 | } | |
2490 | ||
2491 | ||
2492 | static uint16_t real_sum_a8 = 0; | |
2493 | ||
2494 | static void set_test_state(uint8_t byte) | |
2495 | { | |
2496 | struct Crypto1State *pcs; | |
2497 | pcs = crypto1_create(known_target_key); | |
2498 | crypto1_byte(pcs, (cuid >> 24) ^ byte, true); | |
2499 | test_state[ODD_STATE] = pcs->odd & 0x00ffffff; | |
2500 | test_state[EVEN_STATE] = pcs->even & 0x00ffffff; | |
2501 | real_sum_a8 = SumProperty(pcs); | |
2502 | crypto1_destroy(pcs); | |
2503 | } | |
2504 | ||
2505 | ||
2506 | int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests) | |
2507 | { | |
2508 | char progress_text[80]; | |
2509 | ||
2510 | char instr_set[12] = {0}; | |
2511 | get_SIMD_instruction_set(instr_set); | |
2512 | PrintAndLog("Using %s SIMD core.", instr_set); | |
2513 | ||
2514 | srand((unsigned) time(NULL)); | |
2515 | brute_force_per_second = brute_force_benchmark(); | |
2516 | write_stats = false; | |
2517 | ||
2518 | if (tests) { | |
2519 | // set the correct locale for the stats printing | |
2520 | write_stats = true; | |
2521 | setlocale(LC_NUMERIC, ""); | |
2522 | if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) { | |
2523 | PrintAndLog("Could not create/open file hardnested_stats.txt"); | |
2524 | return 3; | |
2525 | } | |
2526 | for (uint32_t i = 0; i < tests; i++) { | |
2527 | start_time = msclock(); | |
2528 | print_progress_header(); | |
2529 | sprintf(progress_text, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second/1000000, log(brute_force_per_second)/log(2.0)); | |
2530 | hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0); | |
2531 | sprintf(progress_text, "Starting Test #%" PRIu32 " ...", i+1); | |
2532 | hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0); | |
2533 | if (trgkey != NULL) { | |
2534 | known_target_key = bytes_to_num(trgkey, 6); | |
2535 | } else { | |
2536 | known_target_key = -1; | |
2537 | } | |
2538 | ||
2539 | init_bitflip_bitarrays(); | |
2540 | init_part_sum_bitarrays(); | |
2541 | init_sum_bitarrays(); | |
2542 | init_allbitflips_array(); | |
2543 | init_nonce_memory(); | |
2544 | update_reduction_rate(0.0, true); | |
2545 | ||
2546 | simulate_acquire_nonces(); | |
2547 | ||
2548 | set_test_state(best_first_bytes[0]); | |
2549 | ||
2550 | Tests(); | |
2551 | free_bitflip_bitarrays(); | |
2552 | ||
2553 | fprintf(fstats, "%" PRIu16 ";%1.1f;", sums[first_byte_Sum], log(p_K0[first_byte_Sum])/log(2.0)); | |
2554 | fprintf(fstats, "%" PRIu16 ";%1.1f;", sums[nonces[best_first_bytes[0]].sum_a8_guess[0].sum_a8_idx], log(p_K[nonces[best_first_bytes[0]].sum_a8_guess[0].sum_a8_idx])/log(2.0)); | |
2555 | fprintf(fstats, "%" PRIu16 ";", real_sum_a8); | |
2556 | ||
2557 | #ifdef DEBUG_KEY_ELIMINATION | |
2558 | failstr[0] = '\0'; | |
2559 | #endif | |
2560 | bool key_found = false; | |
2561 | num_keys_tested = 0; | |
2562 | uint32_t num_odd = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[ODD_STATE]; | |
2563 | uint32_t num_even = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[EVEN_STATE]; | |
2564 | float expected_brute_force1 = (float)num_odd * num_even / 2.0; | |
2565 | float expected_brute_force2 = nonces[best_first_bytes[0]].expected_num_brute_force; | |
2566 | fprintf(fstats, "%1.1f;%1.1f;", log(expected_brute_force1)/log(2.0), log(expected_brute_force2)/log(2.0)); | |
2567 | if (expected_brute_force1 < expected_brute_force2) { | |
2568 | hardnested_print_progress(num_acquired_nonces, "(Ignoring Sum(a8) properties)", expected_brute_force1, 0); | |
2569 | set_test_state(best_first_byte_smallest_bitarray); | |
2570 | add_bitflip_candidates(best_first_byte_smallest_bitarray); | |
2571 | Tests2(); | |
2572 | maximum_states = 0; | |
2573 | for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) { | |
2574 | maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; | |
2575 | } | |
2576 | //printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0)); | |
2577 | // fprintf("fstats, "%" PRIu64 ";", maximum_states); | |
2578 | best_first_bytes[0] = best_first_byte_smallest_bitarray; | |
2579 | pre_XOR_nonces(); | |
2580 | prepare_bf_test_nonces(nonces, best_first_bytes[0]); | |
2581 | hardnested_print_progress(num_acquired_nonces, "Starting brute force...", expected_brute_force1, 0); | |
2582 | key_found = brute_force(); | |
2583 | free(candidates->states[ODD_STATE]); | |
2584 | free(candidates->states[EVEN_STATE]); | |
2585 | free_candidates_memory(candidates); | |
2586 | candidates = NULL; | |
2587 | } else { | |
2588 | pre_XOR_nonces(); | |
2589 | prepare_bf_test_nonces(nonces, best_first_bytes[0]); | |
2590 | for (uint8_t j = 0; j < NUM_SUMS && !key_found; j++) { | |
2591 | float expected_brute_force = nonces[best_first_bytes[0]].expected_num_brute_force; | |
2592 | sprintf(progress_text, "(%d. guess: Sum(a8) = %" PRIu16 ")", j+1, sums[nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx]); | |
2593 | hardnested_print_progress(num_acquired_nonces, progress_text, expected_brute_force, 0); | |
2594 | if (sums[nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx] != real_sum_a8) { | |
2595 | sprintf(progress_text, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16 ")", real_sum_a8); | |
2596 | hardnested_print_progress(num_acquired_nonces, progress_text, expected_brute_force, 0); | |
2597 | } | |
2598 | // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0)); | |
2599 | generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx); | |
2600 | // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0); | |
2601 | hardnested_print_progress(num_acquired_nonces, "Starting brute force...", expected_brute_force, 0); | |
2602 | key_found = brute_force(); | |
2603 | free_statelist_cache(); | |
2604 | free_candidates_memory(candidates); | |
2605 | candidates = NULL; | |
2606 | if (!key_found) { | |
2607 | // update the statistics | |
2608 | nonces[best_first_bytes[0]].sum_a8_guess[j].prob = 0; | |
2609 | nonces[best_first_bytes[0]].sum_a8_guess[j].num_states = 0; | |
2610 | // and calculate new expected number of brute forces | |
2611 | update_expected_brute_force(best_first_bytes[0]); | |
2612 | } | |
2613 | } | |
2614 | } | |
2615 | #ifdef DEBUG_KEY_ELIMINATION | |
2616 | fprintf(fstats, "%1.1f;%1.0f;%d;%s\n", log(num_keys_tested)/log(2.0), (float)num_keys_tested/brute_force_per_second, key_found, failstr); | |
2617 | #else | |
2618 | fprintf(fstats, "%1.0f;%d\n", log(num_keys_tested)/log(2.0), (float)num_keys_tested/brute_force_per_second, key_found); | |
2619 | #endif | |
2620 | ||
2621 | free_nonces_memory(); | |
2622 | free_bitarray(all_bitflips_bitarray[ODD_STATE]); | |
2623 | free_bitarray(all_bitflips_bitarray[EVEN_STATE]); | |
2624 | free_sum_bitarrays(); | |
2625 | free_part_sum_bitarrays(); | |
2626 | } | |
2627 | fclose(fstats); | |
2628 | } else { | |
2629 | start_time = msclock(); | |
2630 | print_progress_header(); | |
2631 | sprintf(progress_text, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second/1000000, log(brute_force_per_second)/log(2.0)); | |
2632 | hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0); | |
2633 | init_bitflip_bitarrays(); | |
2634 | init_part_sum_bitarrays(); | |
2635 | init_sum_bitarrays(); | |
2636 | init_allbitflips_array(); | |
2637 | init_nonce_memory(); | |
2638 | update_reduction_rate(0.0, true); | |
2639 | ||
2640 | if (nonce_file_read) { // use pre-acquired data from file nonces.bin | |
2641 | if (read_nonce_file() != 0) { | |
2642 | free_bitflip_bitarrays(); | |
2643 | free_nonces_memory(); | |
2644 | free_bitarray(all_bitflips_bitarray[ODD_STATE]); | |
2645 | free_bitarray(all_bitflips_bitarray[EVEN_STATE]); | |
2646 | free_sum_bitarrays(); | |
2647 | free_part_sum_bitarrays(); | |
2648 | return 3; | |
2649 | } | |
2650 | hardnested_stage = CHECK_1ST_BYTES | CHECK_2ND_BYTES; | |
2651 | update_nonce_data(false); | |
2652 | float brute_force; | |
2653 | shrink_key_space(&brute_force); | |
2654 | } else { // acquire nonces. | |
2655 | uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow); | |
2656 | if (is_OK != 0) { | |
2657 | free_bitflip_bitarrays(); | |
2658 | free_nonces_memory(); | |
2659 | free_bitarray(all_bitflips_bitarray[ODD_STATE]); | |
2660 | free_bitarray(all_bitflips_bitarray[EVEN_STATE]); | |
2661 | free_sum_bitarrays(); | |
2662 | free_part_sum_bitarrays(); | |
2663 | return is_OK; | |
2664 | } | |
2665 | } | |
2666 | ||
2667 | if (trgkey != NULL) { | |
2668 | known_target_key = bytes_to_num(trgkey, 6); | |
2669 | set_test_state(best_first_bytes[0]); | |
2670 | } else { | |
2671 | known_target_key = -1; | |
2672 | } | |
2673 | ||
2674 | Tests(); | |
2675 | ||
2676 | free_bitflip_bitarrays(); | |
2677 | bool key_found = false; | |
2678 | num_keys_tested = 0; | |
2679 | uint32_t num_odd = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[ODD_STATE]; | |
2680 | uint32_t num_even = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[EVEN_STATE]; | |
2681 | float expected_brute_force1 = (float)num_odd * num_even / 2.0; | |
2682 | float expected_brute_force2 = nonces[best_first_bytes[0]].expected_num_brute_force; | |
2683 | if (expected_brute_force1 < expected_brute_force2) { | |
2684 | hardnested_print_progress(num_acquired_nonces, "(Ignoring Sum(a8) properties)", expected_brute_force1, 0); | |
2685 | set_test_state(best_first_byte_smallest_bitarray); | |
2686 | add_bitflip_candidates(best_first_byte_smallest_bitarray); | |
2687 | Tests2(); | |
2688 | maximum_states = 0; | |
2689 | for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) { | |
2690 | maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; | |
2691 | } | |
2692 | // printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0)); | |
2693 | best_first_bytes[0] = best_first_byte_smallest_bitarray; | |
2694 | pre_XOR_nonces(); | |
2695 | prepare_bf_test_nonces(nonces, best_first_bytes[0]); | |
2696 | hardnested_print_progress(num_acquired_nonces, "Starting brute force...", expected_brute_force1, 0); | |
2697 | key_found = brute_force(); | |
2698 | free(candidates->states[ODD_STATE]); | |
2699 | free(candidates->states[EVEN_STATE]); | |
2700 | free_candidates_memory(candidates); | |
2701 | candidates = NULL; | |
2702 | } else { | |
2703 | pre_XOR_nonces(); | |
2704 | prepare_bf_test_nonces(nonces, best_first_bytes[0]); | |
2705 | for (uint8_t j = 0; j < NUM_SUMS && !key_found; j++) { | |
2706 | float expected_brute_force = nonces[best_first_bytes[0]].expected_num_brute_force; | |
2707 | sprintf(progress_text, "(%d. guess: Sum(a8) = %" PRIu16 ")", j+1, sums[nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx]); | |
2708 | hardnested_print_progress(num_acquired_nonces, progress_text, expected_brute_force, 0); | |
2709 | if (trgkey != NULL && sums[nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx] != real_sum_a8) { | |
2710 | sprintf(progress_text, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16 ")", real_sum_a8); | |
2711 | hardnested_print_progress(num_acquired_nonces, progress_text, expected_brute_force, 0); | |
2712 | } | |
2713 | // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0)); | |
2714 | generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx); | |
2715 | // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0); | |
2716 | hardnested_print_progress(num_acquired_nonces, "Starting brute force...", expected_brute_force, 0); | |
2717 | key_found = brute_force(); | |
2718 | free_statelist_cache(); | |
2719 | free_candidates_memory(candidates); | |
2720 | candidates = NULL; | |
2721 | if (!key_found) { | |
2722 | // update the statistics | |
2723 | nonces[best_first_bytes[0]].sum_a8_guess[j].prob = 0; | |
2724 | nonces[best_first_bytes[0]].sum_a8_guess[j].num_states = 0; | |
2725 | // and calculate new expected number of brute forces | |
2726 | update_expected_brute_force(best_first_bytes[0]); | |
2727 | } | |
2728 | ||
2729 | } | |
2730 | } | |
2731 | ||
2732 | free_nonces_memory(); | |
2733 | free_bitarray(all_bitflips_bitarray[ODD_STATE]); | |
2734 | free_bitarray(all_bitflips_bitarray[EVEN_STATE]); | |
2735 | free_sum_bitarrays(); | |
2736 | free_part_sum_bitarrays(); | |
2737 | } | |
2738 | ||
2739 | return 0; | |
2740 | } |