]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Jonathan Westhues, Mar 2006 | |
3 | // Edits by Gerhard de Koning Gans, Sep 2007 (##) | |
4 | // | |
5 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
6 | // at your option, any later version. See the LICENSE.txt file for the text of | |
7 | // the license. | |
8 | //----------------------------------------------------------------------------- | |
9 | // The main application code. This is the first thing called after start.c | |
10 | // executes. | |
11 | //----------------------------------------------------------------------------- | |
12 | ||
13 | #include <stdarg.h> | |
14 | ||
15 | #include "usb_cdc.h" | |
16 | #include "cmd.h" | |
17 | #include "proxmark3.h" | |
18 | #include "apps.h" | |
19 | #include "fpga.h" | |
20 | #include "util.h" | |
21 | #include "printf.h" | |
22 | #include "string.h" | |
23 | #include "legicrf.h" | |
24 | #include "legicrfsim.h" | |
25 | #include "hitag2.h" | |
26 | #include "hitagS.h" | |
27 | #include "iclass.h" | |
28 | #include "iso14443b.h" | |
29 | #include "iso15693.h" | |
30 | #include "lfsampling.h" | |
31 | #include "BigBuf.h" | |
32 | #include "mifarecmd.h" | |
33 | #include "mifareutil.h" | |
34 | #include "mifaresim.h" | |
35 | #include "pcf7931.h" | |
36 | #include "i2c.h" | |
37 | #include "hfsnoop.h" | |
38 | #include "fpgaloader.h" | |
39 | #ifdef WITH_LCD | |
40 | #include "LCD.h" | |
41 | #endif | |
42 | ||
43 | static uint32_t hw_capabilities; | |
44 | ||
45 | // Craig Young - 14a stand-alone code | |
46 | #ifdef WITH_ISO14443a | |
47 | #include "iso14443a.h" | |
48 | #endif | |
49 | ||
50 | //============================================================================= | |
51 | // A buffer where we can queue things up to be sent through the FPGA, for | |
52 | // any purpose (fake tag, as reader, whatever). We go MSB first, since that | |
53 | // is the order in which they go out on the wire. | |
54 | //============================================================================= | |
55 | ||
56 | #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits | |
57 | uint8_t ToSend[TOSEND_BUFFER_SIZE]; | |
58 | int ToSendMax; | |
59 | static int ToSendBit; | |
60 | struct common_area common_area __attribute__((section(".commonarea"))); | |
61 | ||
62 | void ToSendReset(void) | |
63 | { | |
64 | ToSendMax = -1; | |
65 | ToSendBit = 8; | |
66 | } | |
67 | ||
68 | void ToSendStuffBit(int b) | |
69 | { | |
70 | if(ToSendBit >= 8) { | |
71 | ToSendMax++; | |
72 | ToSend[ToSendMax] = 0; | |
73 | ToSendBit = 0; | |
74 | } | |
75 | ||
76 | if(b) { | |
77 | ToSend[ToSendMax] |= (1 << (7 - ToSendBit)); | |
78 | } | |
79 | ||
80 | ToSendBit++; | |
81 | ||
82 | if(ToSendMax >= sizeof(ToSend)) { | |
83 | ToSendBit = 0; | |
84 | DbpString("ToSendStuffBit overflowed!"); | |
85 | } | |
86 | } | |
87 | ||
88 | //============================================================================= | |
89 | // Debug print functions, to go out over USB, to the usual PC-side client. | |
90 | //============================================================================= | |
91 | ||
92 | void DbpString(char *str) | |
93 | { | |
94 | byte_t len = strlen(str); | |
95 | cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len); | |
96 | } | |
97 | ||
98 | #if 0 | |
99 | void DbpIntegers(int x1, int x2, int x3) | |
100 | { | |
101 | cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0); | |
102 | } | |
103 | #endif | |
104 | ||
105 | void Dbprintf(const char *fmt, ...) { | |
106 | // should probably limit size here; oh well, let's just use a big buffer | |
107 | char output_string[128]; | |
108 | va_list ap; | |
109 | ||
110 | va_start(ap, fmt); | |
111 | kvsprintf(fmt, output_string, 10, ap); | |
112 | va_end(ap); | |
113 | ||
114 | DbpString(output_string); | |
115 | } | |
116 | ||
117 | // prints HEX & ASCII | |
118 | void Dbhexdump(int len, uint8_t *d, bool bAsci) { | |
119 | int l=0,i; | |
120 | char ascii[9]; | |
121 | ||
122 | while (len>0) { | |
123 | if (len>8) l=8; | |
124 | else l=len; | |
125 | ||
126 | memcpy(ascii,d,l); | |
127 | ascii[l]=0; | |
128 | ||
129 | // filter safe ascii | |
130 | for (i=0;i<l;i++) | |
131 | if (ascii[i]<32 || ascii[i]>126) ascii[i]='.'; | |
132 | ||
133 | if (bAsci) { | |
134 | Dbprintf("%-8s %*D",ascii,l,d," "); | |
135 | } else { | |
136 | Dbprintf("%*D",l,d," "); | |
137 | } | |
138 | ||
139 | len-=8; | |
140 | d+=8; | |
141 | } | |
142 | } | |
143 | ||
144 | //----------------------------------------------------------------------------- | |
145 | // Read an ADC channel and block till it completes, then return the result | |
146 | // in ADC units (0 to 1023). Also a routine to average 32 samples and | |
147 | // return that. | |
148 | //----------------------------------------------------------------------------- | |
149 | static int ReadAdc(int ch) | |
150 | { | |
151 | // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value. | |
152 | // AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant | |
153 | // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged. | |
154 | // | |
155 | // The maths are: | |
156 | // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be | |
157 | // | |
158 | // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%) | |
159 | ||
160 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; | |
161 | AT91C_BASE_ADC->ADC_MR = | |
162 | ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz | |
163 | ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us | |
164 | ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us | |
165 | ||
166 | AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch); | |
167 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
168 | ||
169 | while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) {}; | |
170 | ||
171 | return AT91C_BASE_ADC->ADC_CDR[ch] & 0x3ff; | |
172 | } | |
173 | ||
174 | int AvgAdc(int ch) // was static - merlok | |
175 | { | |
176 | int i; | |
177 | int a = 0; | |
178 | ||
179 | for(i = 0; i < 32; i++) { | |
180 | a += ReadAdc(ch); | |
181 | } | |
182 | ||
183 | return (a + 15) >> 5; | |
184 | } | |
185 | ||
186 | static int AvgAdc_Voltage_HF(void) | |
187 | { | |
188 | int AvgAdc_Voltage_Low, AvgAdc_Voltage_High; | |
189 | ||
190 | AvgAdc_Voltage_Low= (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10; | |
191 | // if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only) | |
192 | if (AvgAdc_Voltage_Low > MAX_ADC_HF_VOLTAGE_LOW - 300) { | |
193 | AvgAdc_Voltage_High = (MAX_ADC_HF_VOLTAGE_HIGH * AvgAdc(ADC_CHAN_HF_HIGH)) >> 10; | |
194 | if (AvgAdc_Voltage_High >= AvgAdc_Voltage_Low) { | |
195 | return AvgAdc_Voltage_High; | |
196 | } | |
197 | } | |
198 | return AvgAdc_Voltage_Low; | |
199 | } | |
200 | ||
201 | static int AvgAdc_Voltage_LF(void) | |
202 | { | |
203 | return (MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10; | |
204 | } | |
205 | ||
206 | void MeasureAntennaTuningLfOnly(int *vLf125, int *vLf134, int *peakf, int *peakv, uint8_t LF_Results[]) | |
207 | { | |
208 | int i, adcval = 0, peak = 0; | |
209 | ||
210 | /* | |
211 | * Sweeps the useful LF range of the proxmark from | |
212 | * 46.8kHz (divisor=255) to 600kHz (divisor=19) and | |
213 | * read the voltage in the antenna, the result left | |
214 | * in the buffer is a graph which should clearly show | |
215 | * the resonating frequency of your LF antenna | |
216 | * ( hopefully around 95 if it is tuned to 125kHz!) | |
217 | */ | |
218 | ||
219 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
220 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
221 | SpinDelay(50); | |
222 | ||
223 | for (i=255; i>=19; i--) { | |
224 | WDT_HIT(); | |
225 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); | |
226 | SpinDelay(20); | |
227 | adcval = AvgAdc_Voltage_LF(); | |
228 | if (i==95) *vLf125 = adcval; // voltage at 125Khz | |
229 | if (i==89) *vLf134 = adcval; // voltage at 134Khz | |
230 | ||
231 | LF_Results[i] = adcval >> 9; // scale int to fit in byte for graphing purposes | |
232 | if(LF_Results[i] > peak) { | |
233 | *peakv = adcval; | |
234 | peak = LF_Results[i]; | |
235 | *peakf = i; | |
236 | //ptr = i; | |
237 | } | |
238 | } | |
239 | ||
240 | for (i=18; i >= 0; i--) LF_Results[i] = 0; | |
241 | ||
242 | return; | |
243 | } | |
244 | ||
245 | void MeasureAntennaTuningHfOnly(int *vHf) | |
246 | { | |
247 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. | |
248 | LED_A_ON(); | |
249 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
250 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER); | |
251 | SpinDelay(20); | |
252 | *vHf = AvgAdc_Voltage_HF(); | |
253 | LED_A_OFF(); | |
254 | return; | |
255 | } | |
256 | ||
257 | void MeasureAntennaTuning(int mode) | |
258 | { | |
259 | uint8_t LF_Results[256] = {0}; | |
260 | int peakv = 0, peakf = 0; | |
261 | int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV | |
262 | ||
263 | LED_B_ON(); | |
264 | ||
265 | if (((mode & FLAG_TUNE_ALL) == FLAG_TUNE_ALL) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF)) { | |
266 | // Reverse "standard" order if HF already loaded, to avoid unnecessary swap. | |
267 | MeasureAntennaTuningHfOnly(&vHf); | |
268 | MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results); | |
269 | } else { | |
270 | if (mode & FLAG_TUNE_LF) { | |
271 | MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results); | |
272 | } | |
273 | if (mode & FLAG_TUNE_HF) { | |
274 | MeasureAntennaTuningHfOnly(&vHf); | |
275 | } | |
276 | } | |
277 | ||
278 | cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125>>1 | (vLf134>>1<<16), vHf, peakf | (peakv>>1<<16), LF_Results, 256); | |
279 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
280 | LED_B_OFF(); | |
281 | return; | |
282 | } | |
283 | ||
284 | void MeasureAntennaTuningHf(void) | |
285 | { | |
286 | int vHf = 0; // in mV | |
287 | ||
288 | DbpString("Measuring HF antenna, press button to exit"); | |
289 | ||
290 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. | |
291 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
292 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER); | |
293 | ||
294 | for (;;) { | |
295 | SpinDelay(500); | |
296 | vHf = AvgAdc_Voltage_HF(); | |
297 | ||
298 | Dbprintf("%d mV",vHf); | |
299 | if (BUTTON_PRESS()) break; | |
300 | } | |
301 | DbpString("cancelled"); | |
302 | ||
303 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
304 | ||
305 | } | |
306 | ||
307 | ||
308 | void ReadMem(int addr) | |
309 | { | |
310 | const uint8_t *data = ((uint8_t *)addr); | |
311 | ||
312 | Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x", | |
313 | addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); | |
314 | } | |
315 | ||
316 | /* osimage version information is linked in */ | |
317 | extern struct version_information version_information; | |
318 | /* bootrom version information is pointed to from _bootphase1_version_pointer */ | |
319 | extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__; | |
320 | ||
321 | ||
322 | void set_hw_capabilities(void) | |
323 | { | |
324 | if (I2C_is_available()) { | |
325 | hw_capabilities |= HAS_SMARTCARD_SLOT; | |
326 | } | |
327 | ||
328 | if (false) { // TODO: implement a test | |
329 | hw_capabilities |= HAS_EXTRA_FLASH_MEM; | |
330 | } | |
331 | } | |
332 | ||
333 | ||
334 | void SendVersion(void) | |
335 | { | |
336 | set_hw_capabilities(); | |
337 | ||
338 | char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */ | |
339 | char VersionString[USB_CMD_DATA_SIZE] = { '\0' }; | |
340 | ||
341 | /* Try to find the bootrom version information. Expect to find a pointer at | |
342 | * symbol _bootphase1_version_pointer, perform slight sanity checks on the | |
343 | * pointer, then use it. | |
344 | */ | |
345 | char *bootrom_version = *(char**)&_bootphase1_version_pointer; | |
346 | if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) { | |
347 | strcat(VersionString, "bootrom version information appears invalid\n"); | |
348 | } else { | |
349 | FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version); | |
350 | strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); | |
351 | } | |
352 | ||
353 | FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information); | |
354 | strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); | |
355 | ||
356 | for (int i = 0; i < fpga_bitstream_num; i++) { | |
357 | strncat(VersionString, fpga_version_information[i], sizeof(VersionString) - strlen(VersionString) - 1); | |
358 | strncat(VersionString, "\n", sizeof(VersionString) - strlen(VersionString) - 1); | |
359 | } | |
360 | ||
361 | // test availability of SmartCard slot | |
362 | if (I2C_is_available()) { | |
363 | strncat(VersionString, "SmartCard Slot: available\n", sizeof(VersionString) - strlen(VersionString) - 1); | |
364 | } else { | |
365 | strncat(VersionString, "SmartCard Slot: not available\n", sizeof(VersionString) - strlen(VersionString) - 1); | |
366 | } | |
367 | ||
368 | // Send Chip ID and used flash memory | |
369 | uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start; | |
370 | uint32_t compressed_data_section_size = common_area.arg1; | |
371 | cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, hw_capabilities, VersionString, strlen(VersionString)); | |
372 | } | |
373 | ||
374 | // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time. | |
375 | // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included. | |
376 | void printUSBSpeed(void) | |
377 | { | |
378 | Dbprintf("USB Speed:"); | |
379 | Dbprintf(" Sending USB packets to client..."); | |
380 | ||
381 | #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds | |
382 | uint8_t *test_data = BigBuf_get_addr(); | |
383 | uint32_t end_time; | |
384 | ||
385 | uint32_t start_time = end_time = GetTickCount(); | |
386 | uint32_t bytes_transferred = 0; | |
387 | ||
388 | LED_B_ON(); | |
389 | while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) { | |
390 | cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE); | |
391 | end_time = GetTickCount(); | |
392 | bytes_transferred += USB_CMD_DATA_SIZE; | |
393 | } | |
394 | LED_B_OFF(); | |
395 | ||
396 | Dbprintf(" Time elapsed: %dms", end_time - start_time); | |
397 | Dbprintf(" Bytes transferred: %d", bytes_transferred); | |
398 | Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s", | |
399 | 1000 * bytes_transferred / (end_time - start_time)); | |
400 | ||
401 | } | |
402 | ||
403 | /** | |
404 | * Prints runtime information about the PM3. | |
405 | **/ | |
406 | void SendStatus(void) | |
407 | { | |
408 | BigBuf_print_status(); | |
409 | Fpga_print_status(); | |
410 | #ifdef WITH_SMARTCARD | |
411 | I2C_print_status(); | |
412 | #endif | |
413 | printConfig(); //LF Sampling config | |
414 | printUSBSpeed(); | |
415 | Dbprintf("Various"); | |
416 | Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL); | |
417 | Dbprintf(" ToSendMax..........%d", ToSendMax); | |
418 | Dbprintf(" ToSendBit..........%d", ToSendBit); | |
419 | ||
420 | cmd_send(CMD_ACK,1,0,0,0,0); | |
421 | } | |
422 | ||
423 | #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone) | |
424 | ||
425 | #define OPTS 2 | |
426 | ||
427 | void StandAloneMode() | |
428 | { | |
429 | DbpString("Stand-alone mode! No PC necessary."); | |
430 | // Oooh pretty -- notify user we're in elite samy mode now | |
431 | LED(LED_RED, 200); | |
432 | LED(LED_ORANGE, 200); | |
433 | LED(LED_GREEN, 200); | |
434 | LED(LED_ORANGE, 200); | |
435 | LED(LED_RED, 200); | |
436 | LED(LED_ORANGE, 200); | |
437 | LED(LED_GREEN, 200); | |
438 | LED(LED_ORANGE, 200); | |
439 | LED(LED_RED, 200); | |
440 | ||
441 | } | |
442 | ||
443 | #endif | |
444 | ||
445 | ||
446 | ||
447 | #ifdef WITH_ISO14443a_StandAlone | |
448 | void StandAloneMode14a() | |
449 | { | |
450 | StandAloneMode(); | |
451 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
452 | ||
453 | int selected = 0; | |
454 | bool playing = false, GotoRecord = false, GotoClone = false; | |
455 | bool cardRead[OPTS] = {false}; | |
456 | uint8_t readUID[10] = {0}; | |
457 | uint32_t uid_1st[OPTS]={0}; | |
458 | uint32_t uid_2nd[OPTS]={0}; | |
459 | uint32_t uid_tmp1 = 0; | |
460 | uint32_t uid_tmp2 = 0; | |
461 | iso14a_card_select_t hi14a_card[OPTS]; | |
462 | ||
463 | LED(selected + 1, 0); | |
464 | ||
465 | for (;;) | |
466 | { | |
467 | usb_poll(); | |
468 | WDT_HIT(); | |
469 | SpinDelay(300); | |
470 | ||
471 | if (GotoRecord || !cardRead[selected]) | |
472 | { | |
473 | GotoRecord = false; | |
474 | LEDsoff(); | |
475 | LED(selected + 1, 0); | |
476 | LED(LED_RED2, 0); | |
477 | ||
478 | // record | |
479 | Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected); | |
480 | /* need this delay to prevent catching some weird data */ | |
481 | SpinDelay(500); | |
482 | /* Code for reading from 14a tag */ | |
483 | uint8_t uid[10] ={0}; | |
484 | uint32_t cuid; | |
485 | iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); | |
486 | ||
487 | for ( ; ; ) | |
488 | { | |
489 | WDT_HIT(); | |
490 | if (BUTTON_PRESS()) { | |
491 | if (cardRead[selected]) { | |
492 | Dbprintf("Button press detected -- replaying card in bank[%d]", selected); | |
493 | break; | |
494 | } | |
495 | else if (cardRead[(selected+1)%OPTS]) { | |
496 | Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS); | |
497 | selected = (selected+1)%OPTS; | |
498 | break; | |
499 | } | |
500 | else { | |
501 | Dbprintf("Button press detected but no stored tag to play. (Ignoring button)"); | |
502 | SpinDelay(300); | |
503 | } | |
504 | } | |
505 | if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0, true)) | |
506 | continue; | |
507 | else | |
508 | { | |
509 | Dbprintf("Read UID:"); Dbhexdump(10,uid,0); | |
510 | memcpy(readUID,uid,10*sizeof(uint8_t)); | |
511 | uint8_t *dst = (uint8_t *)&uid_tmp1; | |
512 | // Set UID byte order | |
513 | for (int i=0; i<4; i++) | |
514 | dst[i] = uid[3-i]; | |
515 | dst = (uint8_t *)&uid_tmp2; | |
516 | for (int i=0; i<4; i++) | |
517 | dst[i] = uid[7-i]; | |
518 | if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) { | |
519 | Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping."); | |
520 | } | |
521 | else { | |
522 | if (uid_tmp2) { | |
523 | Dbprintf("Bank[%d] received a 7-byte UID",selected); | |
524 | uid_1st[selected] = (uid_tmp1)>>8; | |
525 | uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8); | |
526 | } | |
527 | else { | |
528 | Dbprintf("Bank[%d] received a 4-byte UID",selected); | |
529 | uid_1st[selected] = uid_tmp1; | |
530 | uid_2nd[selected] = uid_tmp2; | |
531 | } | |
532 | break; | |
533 | } | |
534 | } | |
535 | } | |
536 | Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]); | |
537 | Dbprintf("SAK = %02X",hi14a_card[selected].sak); | |
538 | LEDsoff(); | |
539 | LED(LED_GREEN, 200); | |
540 | LED(LED_ORANGE, 200); | |
541 | LED(LED_GREEN, 200); | |
542 | LED(LED_ORANGE, 200); | |
543 | ||
544 | LEDsoff(); | |
545 | LED(selected + 1, 0); | |
546 | ||
547 | // Next state is replay: | |
548 | playing = true; | |
549 | ||
550 | cardRead[selected] = true; | |
551 | } | |
552 | /* MF Classic UID clone */ | |
553 | else if (GotoClone) | |
554 | { | |
555 | GotoClone=false; | |
556 | LEDsoff(); | |
557 | LED(selected + 1, 0); | |
558 | LED(LED_ORANGE, 250); | |
559 | ||
560 | ||
561 | // record | |
562 | Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]); | |
563 | ||
564 | // wait for button to be released | |
565 | while(BUTTON_PRESS()) | |
566 | { | |
567 | // Delay cloning until card is in place | |
568 | WDT_HIT(); | |
569 | } | |
570 | Dbprintf("Starting clone. [Bank: %u]", selected); | |
571 | // need this delay to prevent catching some weird data | |
572 | SpinDelay(500); | |
573 | // Begin clone function here: | |
574 | /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards: | |
575 | UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}}; | |
576 | memcpy(c.d.asBytes, data, 16); | |
577 | SendCommand(&c); | |
578 | ||
579 | Block read is similar: | |
580 | UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}}; | |
581 | We need to imitate that call with blockNo 0 to set a uid. | |
582 | ||
583 | The get and set commands are handled in this file: | |
584 | // Work with "magic Chinese" card | |
585 | case CMD_MIFARE_CSETBLOCK: | |
586 | MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
587 | break; | |
588 | case CMD_MIFARE_CGETBLOCK: | |
589 | MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
590 | break; | |
591 | ||
592 | mfCSetUID provides example logic for UID set workflow: | |
593 | -Read block0 from card in field with MifareCGetBlock() | |
594 | -Configure new values without replacing reserved bytes | |
595 | memcpy(block0, uid, 4); // Copy UID bytes from byte array | |
596 | // Mifare UID BCC | |
597 | block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5 | |
598 | Bytes 5-7 are reserved SAK and ATQA for mifare classic | |
599 | -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it | |
600 | */ | |
601 | uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0}; | |
602 | // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo | |
603 | MifareCGetBlock(0x3F, 1, 0, oldBlock0); | |
604 | if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) { | |
605 | Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected); | |
606 | playing = true; | |
607 | } | |
608 | else { | |
609 | Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]); | |
610 | memcpy(newBlock0,oldBlock0,16); | |
611 | // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic) | |
612 | ||
613 | newBlock0[0] = uid_1st[selected]>>24; | |
614 | newBlock0[1] = 0xFF & (uid_1st[selected]>>16); | |
615 | newBlock0[2] = 0xFF & (uid_1st[selected]>>8); | |
616 | newBlock0[3] = 0xFF & (uid_1st[selected]); | |
617 | newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3]; | |
618 | // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain | |
619 | MifareCSetBlock(0, 0xFF,0, newBlock0); | |
620 | MifareCGetBlock(0x3F, 1, 0, testBlock0); | |
621 | if (memcmp(testBlock0,newBlock0,16)==0) | |
622 | { | |
623 | DbpString("Cloned successfull!"); | |
624 | cardRead[selected] = false; // Only if the card was cloned successfully should we clear it | |
625 | playing = false; | |
626 | GotoRecord = true; | |
627 | selected = (selected+1) % OPTS; | |
628 | } | |
629 | else { | |
630 | Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected); | |
631 | playing = true; | |
632 | } | |
633 | } | |
634 | LEDsoff(); | |
635 | LED(selected + 1, 0); | |
636 | ||
637 | } | |
638 | // Change where to record (or begin playing) | |
639 | else if (playing) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected]) | |
640 | { | |
641 | LEDsoff(); | |
642 | LED(selected + 1, 0); | |
643 | ||
644 | // Begin transmitting | |
645 | LED(LED_GREEN, 0); | |
646 | DbpString("Playing"); | |
647 | for ( ; ; ) { | |
648 | WDT_HIT(); | |
649 | int button_action = BUTTON_HELD(1000); | |
650 | if (button_action == 0) { // No button action, proceed with sim | |
651 | uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break | |
652 | Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected); | |
653 | if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) { | |
654 | DbpString("Mifare Classic"); | |
655 | SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data); // Mifare Classic | |
656 | } | |
657 | else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) { | |
658 | DbpString("Mifare Ultralight"); | |
659 | SimulateIso14443aTag(2,uid_1st[selected],uid_2nd[selected],data); // Mifare Ultralight | |
660 | } | |
661 | else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) { | |
662 | DbpString("Mifare DESFire"); | |
663 | SimulateIso14443aTag(3,uid_1st[selected],uid_2nd[selected],data); // Mifare DESFire | |
664 | } | |
665 | else { | |
666 | Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation"); | |
667 | SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data); | |
668 | } | |
669 | } | |
670 | else if (button_action == BUTTON_SINGLE_CLICK) { | |
671 | selected = (selected + 1) % OPTS; | |
672 | Dbprintf("Done playing. Switching to record mode on bank %d",selected); | |
673 | GotoRecord = true; | |
674 | break; | |
675 | } | |
676 | else if (button_action == BUTTON_HOLD) { | |
677 | Dbprintf("Playtime over. Begin cloning..."); | |
678 | GotoClone = true; | |
679 | break; | |
680 | } | |
681 | WDT_HIT(); | |
682 | } | |
683 | ||
684 | /* We pressed a button so ignore it here with a delay */ | |
685 | SpinDelay(300); | |
686 | LEDsoff(); | |
687 | LED(selected + 1, 0); | |
688 | } | |
689 | } | |
690 | } | |
691 | #elif WITH_LF_StandAlone | |
692 | // samy's sniff and repeat routine | |
693 | void SamyRun() | |
694 | { | |
695 | StandAloneMode(); | |
696 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
697 | ||
698 | int tops[OPTS], high[OPTS], low[OPTS]; | |
699 | int selected = 0; | |
700 | int playing = 0; | |
701 | int cardRead = 0; | |
702 | ||
703 | // Turn on selected LED | |
704 | LED(selected + 1, 0); | |
705 | ||
706 | for (;;) | |
707 | { | |
708 | usb_poll(); | |
709 | WDT_HIT(); | |
710 | ||
711 | // Was our button held down or pressed? | |
712 | int button_pressed = BUTTON_HELD(1000); | |
713 | SpinDelay(300); | |
714 | ||
715 | // Button was held for a second, begin recording | |
716 | if (button_pressed > 0 && cardRead == 0) | |
717 | { | |
718 | LEDsoff(); | |
719 | LED(selected + 1, 0); | |
720 | LED(LED_RED2, 0); | |
721 | ||
722 | // record | |
723 | DbpString("Starting recording"); | |
724 | ||
725 | // wait for button to be released | |
726 | while(BUTTON_PRESS()) | |
727 | WDT_HIT(); | |
728 | ||
729 | /* need this delay to prevent catching some weird data */ | |
730 | SpinDelay(500); | |
731 | ||
732 | CmdHIDdemodFSK(1, &tops[selected], &high[selected], &low[selected], 0); | |
733 | if (tops[selected] > 0) | |
734 | Dbprintf("Recorded %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]); | |
735 | else | |
736 | Dbprintf("Recorded %x %x%08x", selected, high[selected], low[selected]); | |
737 | ||
738 | LEDsoff(); | |
739 | LED(selected + 1, 0); | |
740 | // Finished recording | |
741 | ||
742 | // If we were previously playing, set playing off | |
743 | // so next button push begins playing what we recorded | |
744 | playing = 0; | |
745 | ||
746 | cardRead = 1; | |
747 | ||
748 | } | |
749 | ||
750 | else if (button_pressed > 0 && cardRead == 1) | |
751 | { | |
752 | LEDsoff(); | |
753 | LED(selected + 1, 0); | |
754 | LED(LED_ORANGE, 0); | |
755 | ||
756 | // record | |
757 | if (tops[selected] > 0) | |
758 | Dbprintf("Cloning %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]); | |
759 | else | |
760 | Dbprintf("Cloning %x %x%08x", selected, high[selected], low[selected]); | |
761 | ||
762 | // wait for button to be released | |
763 | while(BUTTON_PRESS()) | |
764 | WDT_HIT(); | |
765 | ||
766 | /* need this delay to prevent catching some weird data */ | |
767 | SpinDelay(500); | |
768 | ||
769 | CopyHIDtoT55x7(tops[selected] & 0x000FFFFF, high[selected], low[selected], (tops[selected] != 0 && ((high[selected]& 0xFFFFFFC0) != 0)), 0x1D); | |
770 | if (tops[selected] > 0) | |
771 | Dbprintf("Cloned %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]); | |
772 | else | |
773 | Dbprintf("Cloned %x %x%08x", selected, high[selected], low[selected]); | |
774 | ||
775 | LEDsoff(); | |
776 | LED(selected + 1, 0); | |
777 | // Finished recording | |
778 | ||
779 | // If we were previously playing, set playing off | |
780 | // so next button push begins playing what we recorded | |
781 | playing = 0; | |
782 | ||
783 | cardRead = 0; | |
784 | ||
785 | } | |
786 | ||
787 | // Change where to record (or begin playing) | |
788 | else if (button_pressed) | |
789 | { | |
790 | // Next option if we were previously playing | |
791 | if (playing) | |
792 | selected = (selected + 1) % OPTS; | |
793 | playing = !playing; | |
794 | ||
795 | LEDsoff(); | |
796 | LED(selected + 1, 0); | |
797 | ||
798 | // Begin transmitting | |
799 | if (playing) | |
800 | { | |
801 | LED(LED_GREEN, 0); | |
802 | DbpString("Playing"); | |
803 | // wait for button to be released | |
804 | while(BUTTON_PRESS()) | |
805 | WDT_HIT(); | |
806 | if (tops[selected] > 0) | |
807 | Dbprintf("%x %x%08x%08x", selected, tops[selected], high[selected], low[selected]); | |
808 | else | |
809 | Dbprintf("%x %x%08x", selected, high[selected], low[selected]); | |
810 | ||
811 | CmdHIDsimTAG(tops[selected], high[selected], low[selected], 0); | |
812 | DbpString("Done playing"); | |
813 | if (BUTTON_HELD(1000) > 0) | |
814 | { | |
815 | DbpString("Exiting"); | |
816 | LEDsoff(); | |
817 | return; | |
818 | } | |
819 | ||
820 | /* We pressed a button so ignore it here with a delay */ | |
821 | SpinDelay(300); | |
822 | ||
823 | // when done, we're done playing, move to next option | |
824 | selected = (selected + 1) % OPTS; | |
825 | playing = !playing; | |
826 | LEDsoff(); | |
827 | LED(selected + 1, 0); | |
828 | } | |
829 | else | |
830 | while(BUTTON_PRESS()) | |
831 | WDT_HIT(); | |
832 | } | |
833 | } | |
834 | } | |
835 | ||
836 | #endif | |
837 | /* | |
838 | OBJECTIVE | |
839 | Listen and detect an external reader. Determine the best location | |
840 | for the antenna. | |
841 | ||
842 | INSTRUCTIONS: | |
843 | Inside the ListenReaderField() function, there is two mode. | |
844 | By default, when you call the function, you will enter mode 1. | |
845 | If you press the PM3 button one time, you will enter mode 2. | |
846 | If you press the PM3 button a second time, you will exit the function. | |
847 | ||
848 | DESCRIPTION OF MODE 1: | |
849 | This mode just listens for an external reader field and lights up green | |
850 | for HF and/or red for LF. This is the original mode of the detectreader | |
851 | function. | |
852 | ||
853 | DESCRIPTION OF MODE 2: | |
854 | This mode will visually represent, using the LEDs, the actual strength of the | |
855 | current compared to the maximum current detected. Basically, once you know | |
856 | what kind of external reader is present, it will help you spot the best location to place | |
857 | your antenna. You will probably not get some good results if there is a LF and a HF reader | |
858 | at the same place! :-) | |
859 | ||
860 | LIGHT SCHEME USED: | |
861 | */ | |
862 | static const char LIGHT_SCHEME[] = { | |
863 | 0x0, /* ---- | No field detected */ | |
864 | 0x1, /* X--- | 14% of maximum current detected */ | |
865 | 0x2, /* -X-- | 29% of maximum current detected */ | |
866 | 0x4, /* --X- | 43% of maximum current detected */ | |
867 | 0x8, /* ---X | 57% of maximum current detected */ | |
868 | 0xC, /* --XX | 71% of maximum current detected */ | |
869 | 0xE, /* -XXX | 86% of maximum current detected */ | |
870 | 0xF, /* XXXX | 100% of maximum current detected */ | |
871 | }; | |
872 | static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]); | |
873 | ||
874 | void ListenReaderField(int limit) | |
875 | { | |
876 | int lf_av, lf_av_new=0, lf_baseline= 0, lf_max; | |
877 | int hf_av, hf_av_new=0, hf_baseline= 0, hf_max; | |
878 | int mode=1, display_val, display_max, i; | |
879 | ||
880 | #define LF_ONLY 1 | |
881 | #define HF_ONLY 2 | |
882 | #define REPORT_CHANGE_PERCENT 5 // report new values only if they have changed at least by REPORT_CHANGE_PERCENT | |
883 | #define MIN_HF_FIELD 300 // in mode 1 signal HF field greater than MIN_HF_FIELD above baseline | |
884 | #define MIN_LF_FIELD 1200 // in mode 1 signal LF field greater than MIN_LF_FIELD above baseline | |
885 | ||
886 | ||
887 | // switch off FPGA - we don't want to measure our own signal | |
888 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
889 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
890 | ||
891 | LEDsoff(); | |
892 | ||
893 | lf_av = lf_max = AvgAdc_Voltage_LF(); | |
894 | ||
895 | if(limit != HF_ONLY) { | |
896 | Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av); | |
897 | lf_baseline = lf_av; | |
898 | } | |
899 | ||
900 | hf_av = hf_max = AvgAdc_Voltage_HF(); | |
901 | ||
902 | if (limit != LF_ONLY) { | |
903 | Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av); | |
904 | hf_baseline = hf_av; | |
905 | } | |
906 | ||
907 | for(;;) { | |
908 | SpinDelay(500); | |
909 | if (BUTTON_PRESS()) { | |
910 | switch (mode) { | |
911 | case 1: | |
912 | mode=2; | |
913 | DbpString("Signal Strength Mode"); | |
914 | break; | |
915 | case 2: | |
916 | default: | |
917 | DbpString("Stopped"); | |
918 | LEDsoff(); | |
919 | return; | |
920 | break; | |
921 | } | |
922 | while (BUTTON_PRESS()); | |
923 | } | |
924 | WDT_HIT(); | |
925 | ||
926 | if (limit != HF_ONLY) { | |
927 | if(mode == 1) { | |
928 | if (lf_av - lf_baseline > MIN_LF_FIELD) | |
929 | LED_D_ON(); | |
930 | else | |
931 | LED_D_OFF(); | |
932 | } | |
933 | ||
934 | lf_av_new = AvgAdc_Voltage_LF(); | |
935 | // see if there's a significant change | |
936 | if (ABS((lf_av - lf_av_new)*100/(lf_av?lf_av:1)) > REPORT_CHANGE_PERCENT) { | |
937 | Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new); | |
938 | lf_av = lf_av_new; | |
939 | if (lf_av > lf_max) | |
940 | lf_max = lf_av; | |
941 | } | |
942 | } | |
943 | ||
944 | if (limit != LF_ONLY) { | |
945 | if (mode == 1){ | |
946 | if (hf_av - hf_baseline > MIN_HF_FIELD) | |
947 | LED_B_ON(); | |
948 | else | |
949 | LED_B_OFF(); | |
950 | } | |
951 | ||
952 | hf_av_new = AvgAdc_Voltage_HF(); | |
953 | ||
954 | // see if there's a significant change | |
955 | if (ABS((hf_av - hf_av_new)*100/(hf_av?hf_av:1)) > REPORT_CHANGE_PERCENT) { | |
956 | Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new); | |
957 | hf_av = hf_av_new; | |
958 | if (hf_av > hf_max) | |
959 | hf_max = hf_av; | |
960 | } | |
961 | } | |
962 | ||
963 | if(mode == 2) { | |
964 | if (limit == LF_ONLY) { | |
965 | display_val = lf_av; | |
966 | display_max = lf_max; | |
967 | } else if (limit == HF_ONLY) { | |
968 | display_val = hf_av; | |
969 | display_max = hf_max; | |
970 | } else { /* Pick one at random */ | |
971 | if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) { | |
972 | display_val = hf_av; | |
973 | display_max = hf_max; | |
974 | } else { | |
975 | display_val = lf_av; | |
976 | display_max = lf_max; | |
977 | } | |
978 | } | |
979 | for (i=0; i<LIGHT_LEN; i++) { | |
980 | if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) { | |
981 | if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF(); | |
982 | if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF(); | |
983 | if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF(); | |
984 | if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF(); | |
985 | break; | |
986 | } | |
987 | } | |
988 | } | |
989 | } | |
990 | } | |
991 | ||
992 | void UsbPacketReceived(uint8_t *packet, int len) | |
993 | { | |
994 | UsbCommand *c = (UsbCommand *)packet; | |
995 | ||
996 | // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]); | |
997 | ||
998 | switch(c->cmd) { | |
999 | #ifdef WITH_LF | |
1000 | case CMD_SET_LF_SAMPLING_CONFIG: | |
1001 | setSamplingConfig(c->d.asBytes); | |
1002 | break; | |
1003 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
1004 | cmd_send(CMD_ACK,SampleLF(c->arg[0], c->arg[1]),0,0,0,0); | |
1005 | break; | |
1006 | case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
1007 | ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); | |
1008 | break; | |
1009 | case CMD_LF_SNOOP_RAW_ADC_SAMPLES: | |
1010 | cmd_send(CMD_ACK,SnoopLF(),0,0,0,0); | |
1011 | break; | |
1012 | case CMD_HID_DEMOD_FSK: | |
1013 | CmdHIDdemodFSK(c->arg[0], 0, 0, 0, 1); | |
1014 | break; | |
1015 | case CMD_HID_SIM_TAG: | |
1016 | CmdHIDsimTAG(c->arg[0], c->arg[1], c->arg[2], 1); | |
1017 | break; | |
1018 | case CMD_FSK_SIM_TAG: | |
1019 | CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1020 | break; | |
1021 | case CMD_ASK_SIM_TAG: | |
1022 | CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1023 | break; | |
1024 | case CMD_PSK_SIM_TAG: | |
1025 | CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1026 | break; | |
1027 | case CMD_HID_CLONE_TAG: | |
1028 | CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x1D); | |
1029 | break; | |
1030 | case CMD_PARADOX_CLONE_TAG: | |
1031 | // Paradox cards are the same as HID, with a different preamble, so we can reuse the same function | |
1032 | CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x0F); | |
1033 | break; | |
1034 | case CMD_IO_DEMOD_FSK: | |
1035 | CmdIOdemodFSK(c->arg[0], 0, 0, 1); | |
1036 | break; | |
1037 | case CMD_IO_CLONE_TAG: | |
1038 | CopyIOtoT55x7(c->arg[0], c->arg[1]); | |
1039 | break; | |
1040 | case CMD_EM410X_DEMOD: | |
1041 | CmdEM410xdemod(c->arg[0], 0, 0, 1); | |
1042 | break; | |
1043 | case CMD_EM410X_WRITE_TAG: | |
1044 | WriteEM410x(c->arg[0], c->arg[1], c->arg[2]); | |
1045 | break; | |
1046 | case CMD_READ_TI_TYPE: | |
1047 | ReadTItag(); | |
1048 | break; | |
1049 | case CMD_WRITE_TI_TYPE: | |
1050 | WriteTItag(c->arg[0],c->arg[1],c->arg[2]); | |
1051 | break; | |
1052 | case CMD_SIMULATE_TAG_125K: | |
1053 | LED_A_ON(); | |
1054 | SimulateTagLowFrequency(c->arg[0], c->arg[1], 1); | |
1055 | LED_A_OFF(); | |
1056 | break; | |
1057 | case CMD_LF_SIMULATE_BIDIR: | |
1058 | SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]); | |
1059 | break; | |
1060 | case CMD_INDALA_CLONE_TAG: | |
1061 | CopyIndala64toT55x7(c->arg[0], c->arg[1]); | |
1062 | break; | |
1063 | case CMD_INDALA_CLONE_TAG_L: | |
1064 | CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]); | |
1065 | break; | |
1066 | case CMD_T55XX_READ_BLOCK: | |
1067 | T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]); | |
1068 | break; | |
1069 | case CMD_T55XX_WRITE_BLOCK: | |
1070 | T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); | |
1071 | break; | |
1072 | case CMD_T55XX_WAKEUP: | |
1073 | T55xxWakeUp(c->arg[0]); | |
1074 | break; | |
1075 | case CMD_T55XX_RESET_READ: | |
1076 | T55xxResetRead(); | |
1077 | break; | |
1078 | case CMD_PCF7931_READ: | |
1079 | ReadPCF7931(); | |
1080 | break; | |
1081 | case CMD_PCF7931_WRITE: | |
1082 | WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]); | |
1083 | break; | |
1084 | case CMD_PCF7931_BRUTEFORCE: | |
1085 | BruteForcePCF7931(c->arg[0], (c->arg[1] & 0xFF), c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128); | |
1086 | break; | |
1087 | case CMD_EM4X_READ_WORD: | |
1088 | EM4xReadWord(c->arg[0], c->arg[1],c->arg[2]); | |
1089 | break; | |
1090 | case CMD_EM4X_WRITE_WORD: | |
1091 | EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2]); | |
1092 | break; | |
1093 | case CMD_EM4X_PROTECT: | |
1094 | EM4xProtect(c->arg[0], c->arg[1], c->arg[2]); | |
1095 | break; | |
1096 | case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation | |
1097 | CmdAWIDdemodFSK(c->arg[0], 0, 0, 1); | |
1098 | break; | |
1099 | case CMD_VIKING_CLONE_TAG: | |
1100 | CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]); | |
1101 | break; | |
1102 | case CMD_COTAG: | |
1103 | Cotag(c->arg[0]); | |
1104 | break; | |
1105 | #endif | |
1106 | ||
1107 | #ifdef WITH_HITAG | |
1108 | case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type | |
1109 | SnoopHitag(c->arg[0]); | |
1110 | break; | |
1111 | case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content | |
1112 | SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes); | |
1113 | break; | |
1114 | case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function | |
1115 | ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes); | |
1116 | break; | |
1117 | case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content | |
1118 | SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes); | |
1119 | break; | |
1120 | case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file | |
1121 | check_challenges_cmd((bool)c->arg[0], (byte_t*)c->d.asBytes, (uint8_t)c->arg[1]); | |
1122 | break; | |
1123 | case CMD_READ_HITAG_S://Reader for only Hitag S tags, args = key or challenge | |
1124 | ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], false); | |
1125 | break; | |
1126 | case CMD_READ_HITAG_S_BLK: | |
1127 | ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], true); | |
1128 | break; | |
1129 | case CMD_WR_HITAG_S://writer for Hitag tags args=data to write,page and key or challenge | |
1130 | if ((hitag_function)c->arg[0] < 10) { | |
1131 | WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]); | |
1132 | } | |
1133 | else if ((hitag_function)c->arg[0] >= 10) { | |
1134 | WriterHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes, c->arg[2]); | |
1135 | } | |
1136 | break; | |
1137 | #endif | |
1138 | ||
1139 | #ifdef WITH_ISO15693 | |
1140 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: | |
1141 | AcquireRawAdcSamplesIso15693(); | |
1142 | break; | |
1143 | ||
1144 | case CMD_SNOOP_ISO_15693: | |
1145 | SnoopIso15693(); | |
1146 | break; | |
1147 | ||
1148 | case CMD_ISO_15693_COMMAND: | |
1149 | DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); | |
1150 | break; | |
1151 | ||
1152 | case CMD_ISO_15693_FIND_AFI: | |
1153 | BruteforceIso15693Afi(c->arg[0]); | |
1154 | break; | |
1155 | ||
1156 | case CMD_ISO_15693_DEBUG: | |
1157 | SetDebugIso15693(c->arg[0]); | |
1158 | break; | |
1159 | ||
1160 | case CMD_READER_ISO_15693: | |
1161 | ReaderIso15693(c->arg[0]); | |
1162 | break; | |
1163 | ||
1164 | case CMD_SIMTAG_ISO_15693: | |
1165 | SimTagIso15693(c->arg[0], c->d.asBytes); | |
1166 | break; | |
1167 | ||
1168 | case CMD_CSETUID_ISO_15693: | |
1169 | SetTag15693Uid(c->d.asBytes); | |
1170 | break; | |
1171 | #endif | |
1172 | ||
1173 | #ifdef WITH_LEGICRF | |
1174 | case CMD_SIMULATE_TAG_LEGIC_RF: | |
1175 | LegicRfSimulate(c->arg[0]); | |
1176 | break; | |
1177 | ||
1178 | case CMD_WRITER_LEGIC_RF: | |
1179 | LegicRfWriter(c->arg[1], c->arg[0]); | |
1180 | break; | |
1181 | ||
1182 | case CMD_READER_LEGIC_RF: | |
1183 | LegicRfReader(c->arg[0], c->arg[1]); | |
1184 | break; | |
1185 | #endif | |
1186 | ||
1187 | #ifdef WITH_ISO14443b | |
1188 | case CMD_READ_SRI512_TAG: | |
1189 | ReadSTMemoryIso14443b(0x0F); | |
1190 | break; | |
1191 | case CMD_READ_SRIX4K_TAG: | |
1192 | ReadSTMemoryIso14443b(0x7F); | |
1193 | break; | |
1194 | case CMD_SNOOP_ISO_14443B: | |
1195 | SnoopIso14443b(); | |
1196 | break; | |
1197 | case CMD_SIMULATE_TAG_ISO_14443B: | |
1198 | SimulateIso14443bTag(); | |
1199 | break; | |
1200 | case CMD_ISO_14443B_COMMAND: | |
1201 | SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); | |
1202 | break; | |
1203 | #endif | |
1204 | ||
1205 | #ifdef WITH_ISO14443a | |
1206 | case CMD_SNOOP_ISO_14443a: | |
1207 | SnoopIso14443a(c->arg[0]); | |
1208 | break; | |
1209 | case CMD_READER_ISO_14443a: | |
1210 | ReaderIso14443a(c); | |
1211 | break; | |
1212 | case CMD_SIMULATE_TAG_ISO_14443a: | |
1213 | SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID | |
1214 | break; | |
1215 | ||
1216 | case CMD_EPA_PACE_COLLECT_NONCE: | |
1217 | EPA_PACE_Collect_Nonce(c); | |
1218 | break; | |
1219 | case CMD_EPA_PACE_REPLAY: | |
1220 | EPA_PACE_Replay(c); | |
1221 | break; | |
1222 | ||
1223 | case CMD_READER_MIFARE: | |
1224 | ReaderMifare(c->arg[0]); | |
1225 | break; | |
1226 | case CMD_MIFARE_READBL: | |
1227 | MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1228 | break; | |
1229 | case CMD_MIFAREU_READBL: | |
1230 | MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes); | |
1231 | break; | |
1232 | case CMD_MIFAREUC_AUTH: | |
1233 | MifareUC_Auth(c->arg[0],c->d.asBytes); | |
1234 | break; | |
1235 | case CMD_MIFAREU_READCARD: | |
1236 | MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1237 | break; | |
1238 | case CMD_MIFAREUC_SETPWD: | |
1239 | MifareUSetPwd(c->arg[0], c->d.asBytes); | |
1240 | break; | |
1241 | case CMD_MIFARE_READSC: | |
1242 | MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1243 | break; | |
1244 | case CMD_MIFARE_WRITEBL: | |
1245 | MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1246 | break; | |
1247 | case CMD_MIFARE_PERSONALIZE_UID: | |
1248 | MifarePersonalizeUID(c->arg[0], c->arg[1], c->d.asBytes); | |
1249 | break; | |
1250 | //case CMD_MIFAREU_WRITEBL_COMPAT: | |
1251 | //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes); | |
1252 | //break; | |
1253 | case CMD_MIFAREU_WRITEBL: | |
1254 | MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes); | |
1255 | break; | |
1256 | case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES: | |
1257 | MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1258 | break; | |
1259 | case CMD_MIFARE_NESTED: | |
1260 | MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1261 | break; | |
1262 | case CMD_MIFARE_CHKKEYS: | |
1263 | MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1264 | break; | |
1265 | case CMD_SIMULATE_MIFARE_CARD: | |
1266 | MifareSim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1267 | break; | |
1268 | ||
1269 | // emulator | |
1270 | case CMD_MIFARE_SET_DBGMODE: | |
1271 | MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1272 | break; | |
1273 | case CMD_MIFARE_EML_MEMCLR: | |
1274 | MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1275 | break; | |
1276 | case CMD_MIFARE_EML_MEMSET: | |
1277 | MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1278 | break; | |
1279 | case CMD_MIFARE_EML_MEMGET: | |
1280 | MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1281 | break; | |
1282 | case CMD_MIFARE_EML_CARDLOAD: | |
1283 | MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1284 | break; | |
1285 | ||
1286 | // Work with "magic Chinese" card | |
1287 | case CMD_MIFARE_CWIPE: | |
1288 | MifareCWipe(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1289 | break; | |
1290 | case CMD_MIFARE_CSETBLOCK: | |
1291 | MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1292 | break; | |
1293 | case CMD_MIFARE_CGETBLOCK: | |
1294 | MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1295 | break; | |
1296 | case CMD_MIFARE_CIDENT: | |
1297 | MifareCIdent(); | |
1298 | break; | |
1299 | ||
1300 | // mifare sniffer | |
1301 | case CMD_MIFARE_SNIFFER: | |
1302 | SniffMifare(c->arg[0]); | |
1303 | break; | |
1304 | ||
1305 | #endif | |
1306 | ||
1307 | #ifdef WITH_ICLASS | |
1308 | // Makes use of ISO14443a FPGA Firmware | |
1309 | case CMD_SNOOP_ICLASS: | |
1310 | SnoopIClass(); | |
1311 | break; | |
1312 | case CMD_SIMULATE_TAG_ICLASS: | |
1313 | SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
1314 | break; | |
1315 | case CMD_READER_ICLASS: | |
1316 | ReaderIClass(c->arg[0]); | |
1317 | break; | |
1318 | case CMD_READER_ICLASS_REPLAY: | |
1319 | ReaderIClass_Replay(c->arg[0], c->d.asBytes); | |
1320 | break; | |
1321 | case CMD_ICLASS_EML_MEMSET: | |
1322 | emlSet(c->d.asBytes,c->arg[0], c->arg[1]); | |
1323 | break; | |
1324 | case CMD_ICLASS_WRITEBLOCK: | |
1325 | iClass_WriteBlock(c->arg[0], c->d.asBytes); | |
1326 | break; | |
1327 | case CMD_ICLASS_READBLOCK: | |
1328 | iClass_ReadBlk(c->arg[0]); | |
1329 | break; | |
1330 | case CMD_ICLASS_AUTHENTICATION: //check | |
1331 | iClass_Authentication(c->d.asBytes); | |
1332 | break; | |
1333 | case CMD_ICLASS_DUMP: | |
1334 | iClass_Dump(c->arg[0], c->arg[1]); | |
1335 | break; | |
1336 | case CMD_ICLASS_CLONE: | |
1337 | iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes); | |
1338 | break; | |
1339 | #endif | |
1340 | ||
1341 | #ifdef WITH_HFSNOOP | |
1342 | case CMD_HF_SNIFFER: | |
1343 | HfSnoop(c->arg[0], c->arg[1]); | |
1344 | break; | |
1345 | case CMD_HF_PLOT: | |
1346 | HfPlot(); | |
1347 | break; | |
1348 | #endif | |
1349 | ||
1350 | #ifdef WITH_SMARTCARD | |
1351 | case CMD_SMART_ATR: { | |
1352 | SmartCardAtr(); | |
1353 | break; | |
1354 | } | |
1355 | case CMD_SMART_SETCLOCK:{ | |
1356 | SmartCardSetClock(c->arg[0]); | |
1357 | break; | |
1358 | } | |
1359 | case CMD_SMART_RAW: { | |
1360 | SmartCardRaw(c->arg[0], c->arg[1], c->d.asBytes); | |
1361 | break; | |
1362 | } | |
1363 | case CMD_SMART_UPLOAD: { | |
1364 | // upload file from client | |
1365 | uint8_t *mem = BigBuf_get_addr(); | |
1366 | memcpy( mem + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE); | |
1367 | cmd_send(CMD_ACK,1,0,0,0,0); | |
1368 | break; | |
1369 | } | |
1370 | case CMD_SMART_UPGRADE: { | |
1371 | SmartCardUpgrade(c->arg[0]); | |
1372 | break; | |
1373 | } | |
1374 | #endif | |
1375 | ||
1376 | case CMD_BUFF_CLEAR: | |
1377 | BigBuf_Clear(); | |
1378 | break; | |
1379 | ||
1380 | case CMD_MEASURE_ANTENNA_TUNING: | |
1381 | MeasureAntennaTuning(c->arg[0]); | |
1382 | break; | |
1383 | ||
1384 | case CMD_MEASURE_ANTENNA_TUNING_HF: | |
1385 | MeasureAntennaTuningHf(); | |
1386 | break; | |
1387 | ||
1388 | case CMD_LISTEN_READER_FIELD: | |
1389 | ListenReaderField(c->arg[0]); | |
1390 | break; | |
1391 | ||
1392 | case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control | |
1393 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1394 | SpinDelay(200); | |
1395 | LED_D_OFF(); // LED D indicates field ON or OFF | |
1396 | break; | |
1397 | ||
1398 | case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: | |
1399 | LED_B_ON(); | |
1400 | uint8_t *BigBuf = BigBuf_get_addr(); | |
1401 | for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) { | |
1402 | size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE); | |
1403 | cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len); | |
1404 | } | |
1405 | // Trigger a finish downloading signal with an ACK frame | |
1406 | cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config)); | |
1407 | LED_B_OFF(); | |
1408 | break; | |
1409 | ||
1410 | case CMD_DOWNLOADED_SIM_SAMPLES_125K: { | |
1411 | // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before. | |
1412 | // to be able to use this one for uploading data to device | |
1413 | // arg1 = 0 upload for LF usage | |
1414 | // 1 upload for HF usage | |
1415 | if (c->arg[1] == 0) | |
1416 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1417 | else | |
1418 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1419 | ||
1420 | uint8_t *b = BigBuf_get_addr(); | |
1421 | memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE); | |
1422 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1423 | break; | |
1424 | } | |
1425 | case CMD_READ_MEM: | |
1426 | ReadMem(c->arg[0]); | |
1427 | break; | |
1428 | ||
1429 | case CMD_SET_LF_DIVISOR: | |
1430 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1431 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]); | |
1432 | break; | |
1433 | ||
1434 | case CMD_SET_ADC_MUX: | |
1435 | switch(c->arg[0]) { | |
1436 | case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break; | |
1437 | case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break; | |
1438 | case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break; | |
1439 | case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break; | |
1440 | } | |
1441 | break; | |
1442 | ||
1443 | case CMD_VERSION: | |
1444 | SendVersion(); | |
1445 | break; | |
1446 | case CMD_STATUS: | |
1447 | SendStatus(); | |
1448 | break; | |
1449 | case CMD_PING: | |
1450 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1451 | break; | |
1452 | #ifdef WITH_LCD | |
1453 | case CMD_LCD_RESET: | |
1454 | LCDReset(); | |
1455 | break; | |
1456 | case CMD_LCD: | |
1457 | LCDSend(c->arg[0]); | |
1458 | break; | |
1459 | #endif | |
1460 | case CMD_SETUP_WRITE: | |
1461 | case CMD_FINISH_WRITE: | |
1462 | case CMD_HARDWARE_RESET: | |
1463 | usb_disable(); | |
1464 | SpinDelay(1000); | |
1465 | SpinDelay(1000); | |
1466 | AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; | |
1467 | for(;;) { | |
1468 | // We're going to reset, and the bootrom will take control. | |
1469 | } | |
1470 | break; | |
1471 | ||
1472 | case CMD_START_FLASH: | |
1473 | if(common_area.flags.bootrom_present) { | |
1474 | common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE; | |
1475 | } | |
1476 | usb_disable(); | |
1477 | AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; | |
1478 | for(;;); | |
1479 | break; | |
1480 | ||
1481 | case CMD_DEVICE_INFO: { | |
1482 | uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS; | |
1483 | if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT; | |
1484 | cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0); | |
1485 | break; | |
1486 | } | |
1487 | default: | |
1488 | Dbprintf("%s: 0x%04x","unknown command:",c->cmd); | |
1489 | break; | |
1490 | } | |
1491 | } | |
1492 | ||
1493 | void __attribute__((noreturn)) AppMain(void) | |
1494 | { | |
1495 | SpinDelay(100); | |
1496 | clear_trace(); | |
1497 | if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) { | |
1498 | /* Initialize common area */ | |
1499 | memset(&common_area, 0, sizeof(common_area)); | |
1500 | common_area.magic = COMMON_AREA_MAGIC; | |
1501 | common_area.version = 1; | |
1502 | } | |
1503 | common_area.flags.osimage_present = 1; | |
1504 | ||
1505 | LEDsoff(); | |
1506 | ||
1507 | // Init USB device | |
1508 | usb_enable(); | |
1509 | ||
1510 | // The FPGA gets its clock from us from PCK0 output, so set that up. | |
1511 | AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0; | |
1512 | AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0; | |
1513 | AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0; | |
1514 | // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz | |
1515 | AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | | |
1516 | AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0 | |
1517 | AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0; | |
1518 | ||
1519 | // Reset SPI | |
1520 | AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST; | |
1521 | // Reset SSC | |
1522 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
1523 | ||
1524 | // Load the FPGA image, which we have stored in our flash. | |
1525 | // (the HF version by default) | |
1526 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1527 | ||
1528 | StartTickCount(); | |
1529 | ||
1530 | #ifdef WITH_LCD | |
1531 | LCDInit(); | |
1532 | #endif | |
1533 | ||
1534 | byte_t rx[sizeof(UsbCommand)]; | |
1535 | size_t rx_len; | |
1536 | ||
1537 | for(;;) { | |
1538 | if (usb_poll()) { | |
1539 | rx_len = usb_read(rx,sizeof(UsbCommand)); | |
1540 | if (rx_len) { | |
1541 | UsbPacketReceived(rx,rx_len); | |
1542 | } | |
1543 | } | |
1544 | WDT_HIT(); | |
1545 | ||
1546 | #ifdef WITH_LF_StandAlone | |
1547 | #ifndef WITH_ISO14443a_StandAlone | |
1548 | if (BUTTON_HELD(1000) > 0) | |
1549 | SamyRun(); | |
1550 | #endif | |
1551 | #endif | |
1552 | #ifdef WITH_ISO14443a | |
1553 | #ifdef WITH_ISO14443a_StandAlone | |
1554 | if (BUTTON_HELD(1000) > 0) | |
1555 | StandAloneMode14a(); | |
1556 | #endif | |
1557 | #endif | |
1558 | } | |
1559 | } |