]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Jonathan Westhues, Mar 2006 | |
3 | // Edits by Gerhard de Koning Gans, Sep 2007 (##) | |
4 | // | |
5 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
6 | // at your option, any later version. See the LICENSE.txt file for the text of | |
7 | // the license. | |
8 | //----------------------------------------------------------------------------- | |
9 | // The main application code. This is the first thing called after start.c | |
10 | // executes. | |
11 | //----------------------------------------------------------------------------- | |
12 | ||
13 | #include "proxmark3.h" | |
14 | #include "apps.h" | |
15 | #include "util.h" | |
16 | #include "printf.h" | |
17 | #include "string.h" | |
18 | ||
19 | #include <stdarg.h> | |
20 | ||
21 | #include "legicrf.h" | |
22 | ||
23 | #ifdef WITH_LCD | |
24 | # include "fonts.h" | |
25 | # include "LCD.h" | |
26 | #endif | |
27 | ||
28 | #define abs(x) ( ((x)<0) ? -(x) : (x) ) | |
29 | ||
30 | //============================================================================= | |
31 | // A buffer where we can queue things up to be sent through the FPGA, for | |
32 | // any purpose (fake tag, as reader, whatever). We go MSB first, since that | |
33 | // is the order in which they go out on the wire. | |
34 | //============================================================================= | |
35 | ||
36 | uint8_t ToSend[512]; | |
37 | int ToSendMax; | |
38 | static int ToSendBit; | |
39 | struct common_area common_area __attribute__((section(".commonarea"))); | |
40 | ||
41 | void BufferClear(void) | |
42 | { | |
43 | memset(BigBuf,0,sizeof(BigBuf)); | |
44 | Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf)); | |
45 | } | |
46 | ||
47 | void ToSendReset(void) | |
48 | { | |
49 | ToSendMax = -1; | |
50 | ToSendBit = 8; | |
51 | } | |
52 | ||
53 | void ToSendStuffBit(int b) | |
54 | { | |
55 | if(ToSendBit >= 8) { | |
56 | ToSendMax++; | |
57 | ToSend[ToSendMax] = 0; | |
58 | ToSendBit = 0; | |
59 | } | |
60 | ||
61 | if(b) { | |
62 | ToSend[ToSendMax] |= (1 << (7 - ToSendBit)); | |
63 | } | |
64 | ||
65 | ToSendBit++; | |
66 | ||
67 | if(ToSendBit >= sizeof(ToSend)) { | |
68 | ToSendBit = 0; | |
69 | DbpString("ToSendStuffBit overflowed!"); | |
70 | } | |
71 | } | |
72 | ||
73 | //============================================================================= | |
74 | // Debug print functions, to go out over USB, to the usual PC-side client. | |
75 | //============================================================================= | |
76 | ||
77 | void DbpString(char *str) | |
78 | { | |
79 | /* this holds up stuff unless we're connected to usb */ | |
80 | if (!UsbConnected()) | |
81 | return; | |
82 | ||
83 | UsbCommand c; | |
84 | c.cmd = CMD_DEBUG_PRINT_STRING; | |
85 | c.arg[0] = strlen(str); | |
86 | if(c.arg[0] > sizeof(c.d.asBytes)) { | |
87 | c.arg[0] = sizeof(c.d.asBytes); | |
88 | } | |
89 | memcpy(c.d.asBytes, str, c.arg[0]); | |
90 | ||
91 | UsbSendPacket((uint8_t *)&c, sizeof(c)); | |
92 | // TODO fix USB so stupid things like this aren't req'd | |
93 | SpinDelay(50); | |
94 | } | |
95 | ||
96 | #if 0 | |
97 | void DbpIntegers(int x1, int x2, int x3) | |
98 | { | |
99 | /* this holds up stuff unless we're connected to usb */ | |
100 | if (!UsbConnected()) | |
101 | return; | |
102 | ||
103 | UsbCommand c; | |
104 | c.cmd = CMD_DEBUG_PRINT_INTEGERS; | |
105 | c.arg[0] = x1; | |
106 | c.arg[1] = x2; | |
107 | c.arg[2] = x3; | |
108 | ||
109 | UsbSendPacket((uint8_t *)&c, sizeof(c)); | |
110 | // XXX | |
111 | SpinDelay(50); | |
112 | } | |
113 | #endif | |
114 | ||
115 | void Dbprintf(const char *fmt, ...) { | |
116 | // should probably limit size here; oh well, let's just use a big buffer | |
117 | char output_string[128]; | |
118 | va_list ap; | |
119 | ||
120 | va_start(ap, fmt); | |
121 | kvsprintf(fmt, output_string, 10, ap); | |
122 | va_end(ap); | |
123 | ||
124 | DbpString(output_string); | |
125 | } | |
126 | ||
127 | // prints HEX & ASCII | |
128 | void Dbhexdump(int len, uint8_t *d) { | |
129 | int l=0,i; | |
130 | char ascii[9]; | |
131 | ||
132 | while (len>0) { | |
133 | if (len>8) l=8; | |
134 | else l=len; | |
135 | ||
136 | memcpy(ascii,d,l); | |
137 | ascii[l]=0; | |
138 | ||
139 | // filter safe ascii | |
140 | for (i=0;i<l;i++) | |
141 | if (ascii[i]<32 || ascii[i]>126) ascii[i]='.'; | |
142 | ||
143 | Dbprintf("%-8s %*D",ascii,l,d," "); | |
144 | ||
145 | len-=8; | |
146 | d+=8; | |
147 | } | |
148 | } | |
149 | ||
150 | //----------------------------------------------------------------------------- | |
151 | // Read an ADC channel and block till it completes, then return the result | |
152 | // in ADC units (0 to 1023). Also a routine to average 32 samples and | |
153 | // return that. | |
154 | //----------------------------------------------------------------------------- | |
155 | static int ReadAdc(int ch) | |
156 | { | |
157 | uint32_t d; | |
158 | ||
159 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; | |
160 | AT91C_BASE_ADC->ADC_MR = | |
161 | ADC_MODE_PRESCALE(32) | | |
162 | ADC_MODE_STARTUP_TIME(16) | | |
163 | ADC_MODE_SAMPLE_HOLD_TIME(8); | |
164 | AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch); | |
165 | ||
166 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
167 | while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) | |
168 | ; | |
169 | d = AT91C_BASE_ADC->ADC_CDR[ch]; | |
170 | ||
171 | return d; | |
172 | } | |
173 | ||
174 | int AvgAdc(int ch) // was static - merlok | |
175 | { | |
176 | int i; | |
177 | int a = 0; | |
178 | ||
179 | for(i = 0; i < 32; i++) { | |
180 | a += ReadAdc(ch); | |
181 | } | |
182 | ||
183 | return (a + 15) >> 5; | |
184 | } | |
185 | ||
186 | void MeasureAntennaTuning(void) | |
187 | { | |
188 | uint8_t *dest = (uint8_t *)BigBuf; | |
189 | int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0 | |
190 | int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV | |
191 | ||
192 | UsbCommand c; | |
193 | ||
194 | DbpString("Measuring antenna characteristics, please wait."); | |
195 | memset(BigBuf,0,sizeof(BigBuf)); | |
196 | ||
197 | /* | |
198 | * Sweeps the useful LF range of the proxmark from | |
199 | * 46.8kHz (divisor=255) to 600kHz (divisor=19) and | |
200 | * read the voltage in the antenna, the result left | |
201 | * in the buffer is a graph which should clearly show | |
202 | * the resonating frequency of your LF antenna | |
203 | * ( hopefully around 95 if it is tuned to 125kHz!) | |
204 | */ | |
205 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); | |
206 | for (i=255; i>19; i--) { | |
207 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); | |
208 | SpinDelay(20); | |
209 | // Vref = 3.3V, and a 10000:240 voltage divider on the input | |
210 | // can measure voltages up to 137500 mV | |
211 | adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10); | |
212 | if (i==95) vLf125 = adcval; // voltage at 125Khz | |
213 | if (i==89) vLf134 = adcval; // voltage at 134Khz | |
214 | ||
215 | dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes | |
216 | if(dest[i] > peak) { | |
217 | peakv = adcval; | |
218 | peak = dest[i]; | |
219 | peakf = i; | |
220 | //ptr = i; | |
221 | } | |
222 | } | |
223 | ||
224 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. | |
225 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); | |
226 | SpinDelay(20); | |
227 | // Vref = 3300mV, and an 10:1 voltage divider on the input | |
228 | // can measure voltages up to 33000 mV | |
229 | vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; | |
230 | ||
231 | c.cmd = CMD_MEASURED_ANTENNA_TUNING; | |
232 | c.arg[0] = (vLf125 << 0) | (vLf134 << 16); | |
233 | c.arg[1] = vHf; | |
234 | c.arg[2] = peakf | (peakv << 16); | |
235 | UsbSendPacket((uint8_t *)&c, sizeof(c)); | |
236 | } | |
237 | ||
238 | void MeasureAntennaTuningHf(void) | |
239 | { | |
240 | int vHf = 0; // in mV | |
241 | ||
242 | DbpString("Measuring HF antenna, press button to exit"); | |
243 | ||
244 | for (;;) { | |
245 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. | |
246 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); | |
247 | SpinDelay(20); | |
248 | // Vref = 3300mV, and an 10:1 voltage divider on the input | |
249 | // can measure voltages up to 33000 mV | |
250 | vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; | |
251 | ||
252 | Dbprintf("%d mV",vHf); | |
253 | if (BUTTON_PRESS()) break; | |
254 | } | |
255 | DbpString("cancelled"); | |
256 | } | |
257 | ||
258 | ||
259 | void SimulateTagHfListen(void) | |
260 | { | |
261 | uint8_t *dest = (uint8_t *)BigBuf; | |
262 | int n = sizeof(BigBuf); | |
263 | uint8_t v = 0; | |
264 | int i; | |
265 | int p = 0; | |
266 | ||
267 | // We're using this mode just so that I can test it out; the simulated | |
268 | // tag mode would work just as well and be simpler. | |
269 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); | |
270 | ||
271 | // We need to listen to the high-frequency, peak-detected path. | |
272 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
273 | ||
274 | FpgaSetupSsc(); | |
275 | ||
276 | i = 0; | |
277 | for(;;) { | |
278 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
279 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
280 | } | |
281 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
282 | uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
283 | ||
284 | v <<= 1; | |
285 | if(r & 1) { | |
286 | v |= 1; | |
287 | } | |
288 | p++; | |
289 | ||
290 | if(p >= 8) { | |
291 | dest[i] = v; | |
292 | v = 0; | |
293 | p = 0; | |
294 | i++; | |
295 | ||
296 | if(i >= n) { | |
297 | break; | |
298 | } | |
299 | } | |
300 | } | |
301 | } | |
302 | DbpString("simulate tag (now type bitsamples)"); | |
303 | } | |
304 | ||
305 | void ReadMem(int addr) | |
306 | { | |
307 | const uint8_t *data = ((uint8_t *)addr); | |
308 | ||
309 | Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x", | |
310 | addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); | |
311 | } | |
312 | ||
313 | /* osimage version information is linked in */ | |
314 | extern struct version_information version_information; | |
315 | /* bootrom version information is pointed to from _bootphase1_version_pointer */ | |
316 | extern char *_bootphase1_version_pointer, _flash_start, _flash_end; | |
317 | void SendVersion(void) | |
318 | { | |
319 | char temp[48]; /* Limited data payload in USB packets */ | |
320 | DbpString("Prox/RFID mark3 RFID instrument"); | |
321 | ||
322 | /* Try to find the bootrom version information. Expect to find a pointer at | |
323 | * symbol _bootphase1_version_pointer, perform slight sanity checks on the | |
324 | * pointer, then use it. | |
325 | */ | |
326 | char *bootrom_version = *(char**)&_bootphase1_version_pointer; | |
327 | if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) { | |
328 | DbpString("bootrom version information appears invalid"); | |
329 | } else { | |
330 | FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version); | |
331 | DbpString(temp); | |
332 | } | |
333 | ||
334 | FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information); | |
335 | DbpString(temp); | |
336 | ||
337 | FpgaGatherVersion(temp, sizeof(temp)); | |
338 | DbpString(temp); | |
339 | } | |
340 | ||
341 | #ifdef WITH_LF | |
342 | // samy's sniff and repeat routine | |
343 | void SamyRun() | |
344 | { | |
345 | DbpString("Stand-alone mode! No PC necessary."); | |
346 | ||
347 | // 3 possible options? no just 2 for now | |
348 | #define OPTS 2 | |
349 | ||
350 | int high[OPTS], low[OPTS]; | |
351 | ||
352 | // Oooh pretty -- notify user we're in elite samy mode now | |
353 | LED(LED_RED, 200); | |
354 | LED(LED_ORANGE, 200); | |
355 | LED(LED_GREEN, 200); | |
356 | LED(LED_ORANGE, 200); | |
357 | LED(LED_RED, 200); | |
358 | LED(LED_ORANGE, 200); | |
359 | LED(LED_GREEN, 200); | |
360 | LED(LED_ORANGE, 200); | |
361 | LED(LED_RED, 200); | |
362 | ||
363 | int selected = 0; | |
364 | int playing = 0; | |
365 | ||
366 | // Turn on selected LED | |
367 | LED(selected + 1, 0); | |
368 | ||
369 | for (;;) | |
370 | { | |
371 | UsbPoll(FALSE); | |
372 | WDT_HIT(); | |
373 | ||
374 | // Was our button held down or pressed? | |
375 | int button_pressed = BUTTON_HELD(1000); | |
376 | SpinDelay(300); | |
377 | ||
378 | // Button was held for a second, begin recording | |
379 | if (button_pressed > 0) | |
380 | { | |
381 | LEDsoff(); | |
382 | LED(selected + 1, 0); | |
383 | LED(LED_RED2, 0); | |
384 | ||
385 | // record | |
386 | DbpString("Starting recording"); | |
387 | ||
388 | // wait for button to be released | |
389 | while(BUTTON_PRESS()) | |
390 | WDT_HIT(); | |
391 | ||
392 | /* need this delay to prevent catching some weird data */ | |
393 | SpinDelay(500); | |
394 | ||
395 | CmdHIDdemodFSK(1, &high[selected], &low[selected], 0); | |
396 | Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]); | |
397 | ||
398 | LEDsoff(); | |
399 | LED(selected + 1, 0); | |
400 | // Finished recording | |
401 | ||
402 | // If we were previously playing, set playing off | |
403 | // so next button push begins playing what we recorded | |
404 | playing = 0; | |
405 | } | |
406 | ||
407 | // Change where to record (or begin playing) | |
408 | else if (button_pressed) | |
409 | { | |
410 | // Next option if we were previously playing | |
411 | if (playing) | |
412 | selected = (selected + 1) % OPTS; | |
413 | playing = !playing; | |
414 | ||
415 | LEDsoff(); | |
416 | LED(selected + 1, 0); | |
417 | ||
418 | // Begin transmitting | |
419 | if (playing) | |
420 | { | |
421 | LED(LED_GREEN, 0); | |
422 | DbpString("Playing"); | |
423 | // wait for button to be released | |
424 | while(BUTTON_PRESS()) | |
425 | WDT_HIT(); | |
426 | Dbprintf("%x %x %x", selected, high[selected], low[selected]); | |
427 | CmdHIDsimTAG(high[selected], low[selected], 0); | |
428 | DbpString("Done playing"); | |
429 | if (BUTTON_HELD(1000) > 0) | |
430 | { | |
431 | DbpString("Exiting"); | |
432 | LEDsoff(); | |
433 | return; | |
434 | } | |
435 | ||
436 | /* We pressed a button so ignore it here with a delay */ | |
437 | SpinDelay(300); | |
438 | ||
439 | // when done, we're done playing, move to next option | |
440 | selected = (selected + 1) % OPTS; | |
441 | playing = !playing; | |
442 | LEDsoff(); | |
443 | LED(selected + 1, 0); | |
444 | } | |
445 | else | |
446 | while(BUTTON_PRESS()) | |
447 | WDT_HIT(); | |
448 | } | |
449 | } | |
450 | } | |
451 | #endif | |
452 | ||
453 | /* | |
454 | OBJECTIVE | |
455 | Listen and detect an external reader. Determine the best location | |
456 | for the antenna. | |
457 | ||
458 | INSTRUCTIONS: | |
459 | Inside the ListenReaderField() function, there is two mode. | |
460 | By default, when you call the function, you will enter mode 1. | |
461 | If you press the PM3 button one time, you will enter mode 2. | |
462 | If you press the PM3 button a second time, you will exit the function. | |
463 | ||
464 | DESCRIPTION OF MODE 1: | |
465 | This mode just listens for an external reader field and lights up green | |
466 | for HF and/or red for LF. This is the original mode of the detectreader | |
467 | function. | |
468 | ||
469 | DESCRIPTION OF MODE 2: | |
470 | This mode will visually represent, using the LEDs, the actual strength of the | |
471 | current compared to the maximum current detected. Basically, once you know | |
472 | what kind of external reader is present, it will help you spot the best location to place | |
473 | your antenna. You will probably not get some good results if there is a LF and a HF reader | |
474 | at the same place! :-) | |
475 | ||
476 | LIGHT SCHEME USED: | |
477 | */ | |
478 | static const char LIGHT_SCHEME[] = { | |
479 | 0x0, /* ---- | No field detected */ | |
480 | 0x1, /* X--- | 14% of maximum current detected */ | |
481 | 0x2, /* -X-- | 29% of maximum current detected */ | |
482 | 0x4, /* --X- | 43% of maximum current detected */ | |
483 | 0x8, /* ---X | 57% of maximum current detected */ | |
484 | 0xC, /* --XX | 71% of maximum current detected */ | |
485 | 0xE, /* -XXX | 86% of maximum current detected */ | |
486 | 0xF, /* XXXX | 100% of maximum current detected */ | |
487 | }; | |
488 | static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]); | |
489 | ||
490 | void ListenReaderField(int limit) | |
491 | { | |
492 | int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max; | |
493 | int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max; | |
494 | int mode=1, display_val, display_max, i; | |
495 | ||
496 | #define LF_ONLY 1 | |
497 | #define HF_ONLY 2 | |
498 | ||
499 | LEDsoff(); | |
500 | ||
501 | lf_av=lf_max=ReadAdc(ADC_CHAN_LF); | |
502 | ||
503 | if(limit != HF_ONLY) { | |
504 | Dbprintf("LF 125/134 Baseline: %d", lf_av); | |
505 | lf_baseline = lf_av; | |
506 | } | |
507 | ||
508 | hf_av=hf_max=ReadAdc(ADC_CHAN_HF); | |
509 | ||
510 | if (limit != LF_ONLY) { | |
511 | Dbprintf("HF 13.56 Baseline: %d", hf_av); | |
512 | hf_baseline = hf_av; | |
513 | } | |
514 | ||
515 | for(;;) { | |
516 | if (BUTTON_PRESS()) { | |
517 | SpinDelay(500); | |
518 | switch (mode) { | |
519 | case 1: | |
520 | mode=2; | |
521 | DbpString("Signal Strength Mode"); | |
522 | break; | |
523 | case 2: | |
524 | default: | |
525 | DbpString("Stopped"); | |
526 | LEDsoff(); | |
527 | return; | |
528 | break; | |
529 | } | |
530 | } | |
531 | WDT_HIT(); | |
532 | ||
533 | if (limit != HF_ONLY) { | |
534 | if(mode==1) { | |
535 | if (abs(lf_av - lf_baseline) > 10) LED_D_ON(); | |
536 | else LED_D_OFF(); | |
537 | } | |
538 | ||
539 | ++lf_count; | |
540 | lf_av_new= ReadAdc(ADC_CHAN_LF); | |
541 | // see if there's a significant change | |
542 | if(abs(lf_av - lf_av_new) > 10) { | |
543 | Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count); | |
544 | lf_av = lf_av_new; | |
545 | if (lf_av > lf_max) | |
546 | lf_max = lf_av; | |
547 | lf_count= 0; | |
548 | } | |
549 | } | |
550 | ||
551 | if (limit != LF_ONLY) { | |
552 | if (mode == 1){ | |
553 | if (abs(hf_av - hf_baseline) > 10) LED_B_ON(); | |
554 | else LED_B_OFF(); | |
555 | } | |
556 | ||
557 | ++hf_count; | |
558 | hf_av_new= ReadAdc(ADC_CHAN_HF); | |
559 | // see if there's a significant change | |
560 | if(abs(hf_av - hf_av_new) > 10) { | |
561 | Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count); | |
562 | hf_av = hf_av_new; | |
563 | if (hf_av > hf_max) | |
564 | hf_max = hf_av; | |
565 | hf_count= 0; | |
566 | } | |
567 | } | |
568 | ||
569 | if(mode == 2) { | |
570 | if (limit == LF_ONLY) { | |
571 | display_val = lf_av; | |
572 | display_max = lf_max; | |
573 | } else if (limit == HF_ONLY) { | |
574 | display_val = hf_av; | |
575 | display_max = hf_max; | |
576 | } else { /* Pick one at random */ | |
577 | if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) { | |
578 | display_val = hf_av; | |
579 | display_max = hf_max; | |
580 | } else { | |
581 | display_val = lf_av; | |
582 | display_max = lf_max; | |
583 | } | |
584 | } | |
585 | for (i=0; i<LIGHT_LEN; i++) { | |
586 | if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) { | |
587 | if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF(); | |
588 | if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF(); | |
589 | if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF(); | |
590 | if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF(); | |
591 | break; | |
592 | } | |
593 | } | |
594 | } | |
595 | } | |
596 | } | |
597 | ||
598 | void UsbPacketReceived(uint8_t *packet, int len) | |
599 | { | |
600 | UsbCommand *c = (UsbCommand *)packet; | |
601 | UsbCommand ack; | |
602 | ack.cmd = CMD_ACK; | |
603 | ||
604 | switch(c->cmd) { | |
605 | #ifdef WITH_LF | |
606 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
607 | AcquireRawAdcSamples125k(c->arg[0]); | |
608 | UsbSendPacket((uint8_t*)&ack, sizeof(ack)); | |
609 | break; | |
610 | case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
611 | ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); | |
612 | break; | |
613 | case CMD_HID_DEMOD_FSK: | |
614 | CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag | |
615 | break; | |
616 | case CMD_HID_SIM_TAG: | |
617 | CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID | |
618 | break; | |
619 | case CMD_HID_CLONE_TAG: | |
620 | CopyHIDtoT55x7(c->arg[0], c->arg[1]); // Clone HID tag by ID to T55x7 | |
621 | break; | |
622 | case CMD_EM410X_WRITE_TAG: | |
623 | WriteEM410x(c->arg[0], c->arg[1], c->arg[2]); | |
624 | break; | |
625 | case CMD_READ_TI_TYPE: | |
626 | ReadTItag(); | |
627 | break; | |
628 | case CMD_WRITE_TI_TYPE: | |
629 | WriteTItag(c->arg[0],c->arg[1],c->arg[2]); | |
630 | break; | |
631 | case CMD_SIMULATE_TAG_125K: | |
632 | LED_A_ON(); | |
633 | SimulateTagLowFrequency(c->arg[0], c->arg[1], 1); | |
634 | LED_A_OFF(); | |
635 | break; | |
636 | case CMD_LF_SIMULATE_BIDIR: | |
637 | SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]); | |
638 | break; | |
639 | case CMD_INDALA_CLONE_TAG: // Clone Indala 64-bit tag by UID to T55x7 | |
640 | CopyIndala64toT55x7(c->arg[0], c->arg[1]); | |
641 | break; | |
642 | case CMD_INDALA_CLONE_TAG_L: // Clone Indala 224-bit tag by UID to T55x7 | |
643 | CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]); | |
644 | break; | |
645 | #endif | |
646 | ||
647 | #ifdef WITH_ISO15693 | |
648 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: | |
649 | AcquireRawAdcSamplesIso15693(); | |
650 | break; | |
651 | case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693: | |
652 | RecordRawAdcSamplesIso15693(); | |
653 | break; | |
654 | ||
655 | case CMD_ISO_15693_COMMAND: | |
656 | DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); | |
657 | break; | |
658 | ||
659 | case CMD_ISO_15693_FIND_AFI: | |
660 | BruteforceIso15693Afi(c->arg[0]); | |
661 | break; | |
662 | ||
663 | case CMD_ISO_15693_DEBUG: | |
664 | SetDebugIso15693(c->arg[0]); | |
665 | break; | |
666 | ||
667 | case CMD_READER_ISO_15693: | |
668 | ReaderIso15693(c->arg[0]); | |
669 | break; | |
670 | case CMD_SIMTAG_ISO_15693: | |
671 | SimTagIso15693(c->arg[0]); | |
672 | break; | |
673 | #endif | |
674 | ||
675 | #ifdef WITH_LEGICRF | |
676 | case CMD_SIMULATE_TAG_LEGIC_RF: | |
677 | LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]); | |
678 | break; | |
679 | ||
680 | case CMD_WRITER_LEGIC_RF: | |
681 | LegicRfWriter(c->arg[1], c->arg[0]); | |
682 | break; | |
683 | ||
684 | case CMD_READER_LEGIC_RF: | |
685 | LegicRfReader(c->arg[0], c->arg[1]); | |
686 | break; | |
687 | #endif | |
688 | ||
689 | #ifdef WITH_ISO14443b | |
690 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443: | |
691 | AcquireRawAdcSamplesIso14443(c->arg[0]); | |
692 | break; | |
693 | case CMD_READ_SRI512_TAG: | |
694 | ReadSRI512Iso14443(c->arg[0]); | |
695 | break; | |
696 | case CMD_READ_SRIX4K_TAG: | |
697 | ReadSRIX4KIso14443(c->arg[0]); | |
698 | break; | |
699 | case CMD_SNOOP_ISO_14443: | |
700 | SnoopIso14443(); | |
701 | break; | |
702 | case CMD_SIMULATE_TAG_ISO_14443: | |
703 | SimulateIso14443Tag(); | |
704 | break; | |
705 | #endif | |
706 | ||
707 | #ifdef WITH_ISO14443a | |
708 | case CMD_SNOOP_ISO_14443a: | |
709 | SnoopIso14443a(); | |
710 | break; | |
711 | case CMD_READER_ISO_14443a: | |
712 | ReaderIso14443a(c, &ack); | |
713 | break; | |
714 | case CMD_SIMULATE_TAG_ISO_14443a: | |
715 | SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2]); // ## Simulate iso14443a tag - pass tag type & UID | |
716 | break; | |
717 | ||
718 | case CMD_READER_MIFARE: | |
719 | ReaderMifare(c->arg[0]); | |
720 | break; | |
721 | case CMD_MIFARE_READBL: | |
722 | MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
723 | break; | |
724 | case CMD_MIFARE_READSC: | |
725 | MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
726 | break; | |
727 | case CMD_MIFARE_WRITEBL: | |
728 | MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
729 | break; | |
730 | case CMD_MIFARE_NESTED: | |
731 | MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
732 | break; | |
733 | case CMD_MIFARE_CHKKEYS: | |
734 | MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
735 | break; | |
736 | case CMD_SIMULATE_MIFARE_CARD: | |
737 | Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
738 | break; | |
739 | ||
740 | // emulator | |
741 | case CMD_MIFARE_SET_DBGMODE: | |
742 | MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
743 | break; | |
744 | case CMD_MIFARE_EML_MEMCLR: | |
745 | MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
746 | break; | |
747 | case CMD_MIFARE_EML_MEMSET: | |
748 | MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
749 | break; | |
750 | case CMD_MIFARE_EML_MEMGET: | |
751 | MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
752 | break; | |
753 | case CMD_MIFARE_EML_CARDLOAD: | |
754 | MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
755 | break; | |
756 | ||
757 | // Work with "magic Chinese" card | |
758 | case CMD_MIFARE_EML_CSETBLOCK: | |
759 | MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
760 | break; | |
761 | case CMD_MIFARE_EML_CGETBLOCK: | |
762 | MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
763 | break; | |
764 | ||
765 | // mifare sniffer | |
766 | case CMD_MIFARE_SNIFFER: | |
767 | SniffMifare(); | |
768 | break; | |
769 | #endif | |
770 | ||
771 | #ifdef WITH_ICLASS | |
772 | // Makes use of ISO14443a FPGA Firmware | |
773 | case CMD_SNOOP_ICLASS: | |
774 | SnoopIClass(); | |
775 | break; | |
776 | case CMD_SIMULATE_TAG_ICLASS: | |
777 | SimulateIClass(c->arg[0], c->d.asBytes); | |
778 | break; | |
779 | case CMD_READER_ICLASS: | |
780 | ReaderIClass(c->arg[0]); | |
781 | break; | |
782 | #endif | |
783 | ||
784 | case CMD_SIMULATE_TAG_HF_LISTEN: | |
785 | SimulateTagHfListen(); | |
786 | break; | |
787 | ||
788 | case CMD_BUFF_CLEAR: | |
789 | BufferClear(); | |
790 | break; | |
791 | ||
792 | case CMD_MEASURE_ANTENNA_TUNING: | |
793 | MeasureAntennaTuning(); | |
794 | break; | |
795 | ||
796 | case CMD_MEASURE_ANTENNA_TUNING_HF: | |
797 | MeasureAntennaTuningHf(); | |
798 | break; | |
799 | ||
800 | case CMD_LISTEN_READER_FIELD: | |
801 | ListenReaderField(c->arg[0]); | |
802 | break; | |
803 | ||
804 | case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control | |
805 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
806 | SpinDelay(200); | |
807 | LED_D_OFF(); // LED D indicates field ON or OFF | |
808 | break; | |
809 | ||
810 | case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: { | |
811 | UsbCommand n; | |
812 | if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) { | |
813 | n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K; | |
814 | } else { | |
815 | n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE; | |
816 | } | |
817 | n.arg[0] = c->arg[0]; | |
818 | memcpy(n.d.asDwords, BigBuf+c->arg[0], 12*sizeof(uint32_t)); | |
819 | LED_B_ON(); | |
820 | UsbSendPacket((uint8_t *)&n, sizeof(n)); | |
821 | LED_B_OFF(); | |
822 | break; | |
823 | } | |
824 | ||
825 | case CMD_DOWNLOADED_SIM_SAMPLES_125K: { | |
826 | uint8_t *b = (uint8_t *)BigBuf; | |
827 | memcpy(b+c->arg[0], c->d.asBytes, 48); | |
828 | //Dbprintf("copied 48 bytes to %i",b+c->arg[0]); | |
829 | UsbSendPacket((uint8_t*)&ack, sizeof(ack)); | |
830 | break; | |
831 | } | |
832 | ||
833 | case CMD_READ_MEM: | |
834 | ReadMem(c->arg[0]); | |
835 | break; | |
836 | ||
837 | case CMD_SET_LF_DIVISOR: | |
838 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]); | |
839 | break; | |
840 | ||
841 | case CMD_SET_ADC_MUX: | |
842 | switch(c->arg[0]) { | |
843 | case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break; | |
844 | case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break; | |
845 | case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break; | |
846 | case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break; | |
847 | } | |
848 | break; | |
849 | ||
850 | case CMD_VERSION: | |
851 | SendVersion(); | |
852 | break; | |
853 | ||
854 | #ifdef WITH_LF | |
855 | ||
856 | #endif | |
857 | ||
858 | #ifdef WITH_LCD | |
859 | case CMD_LCD_RESET: | |
860 | LCDReset(); | |
861 | break; | |
862 | case CMD_LCD: | |
863 | LCDSend(c->arg[0]); | |
864 | break; | |
865 | #endif | |
866 | case CMD_SETUP_WRITE: | |
867 | case CMD_FINISH_WRITE: | |
868 | case CMD_HARDWARE_RESET: | |
869 | USB_D_PLUS_PULLUP_OFF(); | |
870 | SpinDelay(1000); | |
871 | SpinDelay(1000); | |
872 | AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; | |
873 | for(;;) { | |
874 | // We're going to reset, and the bootrom will take control. | |
875 | } | |
876 | break; | |
877 | ||
878 | case CMD_START_FLASH: | |
879 | if(common_area.flags.bootrom_present) { | |
880 | common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE; | |
881 | } | |
882 | USB_D_PLUS_PULLUP_OFF(); | |
883 | AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; | |
884 | for(;;); | |
885 | break; | |
886 | ||
887 | case CMD_DEVICE_INFO: { | |
888 | UsbCommand c; | |
889 | c.cmd = CMD_DEVICE_INFO; | |
890 | c.arg[0] = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS; | |
891 | if(common_area.flags.bootrom_present) c.arg[0] |= DEVICE_INFO_FLAG_BOOTROM_PRESENT; | |
892 | UsbSendPacket((uint8_t*)&c, sizeof(c)); | |
893 | } | |
894 | break; | |
895 | default: | |
896 | Dbprintf("%s: 0x%04x","unknown command:",c->cmd); | |
897 | break; | |
898 | } | |
899 | } | |
900 | ||
901 | void __attribute__((noreturn)) AppMain(void) | |
902 | { | |
903 | SpinDelay(100); | |
904 | ||
905 | if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) { | |
906 | /* Initialize common area */ | |
907 | memset(&common_area, 0, sizeof(common_area)); | |
908 | common_area.magic = COMMON_AREA_MAGIC; | |
909 | common_area.version = 1; | |
910 | } | |
911 | common_area.flags.osimage_present = 1; | |
912 | ||
913 | LED_D_OFF(); | |
914 | LED_C_OFF(); | |
915 | LED_B_OFF(); | |
916 | LED_A_OFF(); | |
917 | ||
918 | UsbStart(); | |
919 | ||
920 | // The FPGA gets its clock from us from PCK0 output, so set that up. | |
921 | AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0; | |
922 | AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0; | |
923 | AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0; | |
924 | // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz | |
925 | AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | | |
926 | AT91C_PMC_PRES_CLK_4; | |
927 | AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0; | |
928 | ||
929 | // Reset SPI | |
930 | AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST; | |
931 | // Reset SSC | |
932 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
933 | ||
934 | // Load the FPGA image, which we have stored in our flash. | |
935 | FpgaDownloadAndGo(); | |
936 | ||
937 | StartTickCount(); | |
938 | ||
939 | #ifdef WITH_LCD | |
940 | ||
941 | LCDInit(); | |
942 | ||
943 | // test text on different colored backgrounds | |
944 | LCDString(" The quick brown fox ", (char *)&FONT6x8,1,1+8*0,WHITE ,BLACK ); | |
945 | LCDString(" jumped over the ", (char *)&FONT6x8,1,1+8*1,BLACK ,WHITE ); | |
946 | LCDString(" lazy dog. ", (char *)&FONT6x8,1,1+8*2,YELLOW ,RED ); | |
947 | LCDString(" AaBbCcDdEeFfGgHhIiJj ", (char *)&FONT6x8,1,1+8*3,RED ,GREEN ); | |
948 | LCDString(" KkLlMmNnOoPpQqRrSsTt ", (char *)&FONT6x8,1,1+8*4,MAGENTA,BLUE ); | |
949 | LCDString("UuVvWwXxYyZz0123456789", (char *)&FONT6x8,1,1+8*5,BLUE ,YELLOW); | |
950 | LCDString("`-=[]_;',./~!@#$%^&*()", (char *)&FONT6x8,1,1+8*6,BLACK ,CYAN ); | |
951 | LCDString(" _+{}|:\\\"<>? ",(char *)&FONT6x8,1,1+8*7,BLUE ,MAGENTA); | |
952 | ||
953 | // color bands | |
954 | LCDFill(0, 1+8* 8, 132, 8, BLACK); | |
955 | LCDFill(0, 1+8* 9, 132, 8, WHITE); | |
956 | LCDFill(0, 1+8*10, 132, 8, RED); | |
957 | LCDFill(0, 1+8*11, 132, 8, GREEN); | |
958 | LCDFill(0, 1+8*12, 132, 8, BLUE); | |
959 | LCDFill(0, 1+8*13, 132, 8, YELLOW); | |
960 | LCDFill(0, 1+8*14, 132, 8, CYAN); | |
961 | LCDFill(0, 1+8*15, 132, 8, MAGENTA); | |
962 | ||
963 | #endif | |
964 | ||
965 | for(;;) { | |
966 | UsbPoll(FALSE); | |
967 | WDT_HIT(); | |
968 | ||
969 | #ifdef WITH_LF | |
970 | if (BUTTON_HELD(1000) > 0) | |
971 | SamyRun(); | |
972 | #endif | |
973 | } | |
974 | } |