]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Copyright (C) 2010 iZsh <izsh at fail0verflow.com> | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // Low frequency EM4x commands | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include <stdio.h> | |
12 | #include <string.h> | |
13 | #include <inttypes.h> | |
14 | #include "cmdlfem4x.h" | |
15 | #include "proxmark3.h" | |
16 | #include "ui.h" | |
17 | #include "util.h" | |
18 | #include "data.h" | |
19 | #include "graph.h" | |
20 | #include "cmdparser.h" | |
21 | #include "cmddata.h" | |
22 | #include "cmdlf.h" | |
23 | #include "cmdmain.h" | |
24 | #include "lfdemod.h" | |
25 | #include "protocols.h" | |
26 | ||
27 | uint64_t g_em410xId=0; | |
28 | ||
29 | static int CmdHelp(const char *Cmd); | |
30 | ||
31 | int CmdEMdemodASK(const char *Cmd) | |
32 | { | |
33 | char cmdp = param_getchar(Cmd, 0); | |
34 | int findone = (cmdp == '1') ? 1 : 0; | |
35 | UsbCommand c={CMD_EM410X_DEMOD}; | |
36 | c.arg[0]=findone; | |
37 | SendCommand(&c); | |
38 | return 0; | |
39 | } | |
40 | ||
41 | //by marshmellow | |
42 | //print 64 bit EM410x ID in multiple formats | |
43 | void printEM410x(uint32_t hi, uint64_t id) | |
44 | { | |
45 | if (id || hi){ | |
46 | uint64_t iii=1; | |
47 | uint64_t id2lo=0; | |
48 | uint32_t ii=0; | |
49 | uint32_t i=0; | |
50 | for (ii=5; ii>0;ii--){ | |
51 | for (i=0;i<8;i++){ | |
52 | id2lo=(id2lo<<1LL) | ((id & (iii << (i+((ii-1)*8)))) >> (i+((ii-1)*8))); | |
53 | } | |
54 | } | |
55 | if (hi){ | |
56 | //output 88 bit em id | |
57 | PrintAndLog("\nEM TAG ID : %06X%016" PRIX64, hi, id); | |
58 | } else{ | |
59 | //output 40 bit em id | |
60 | PrintAndLog("\nEM TAG ID : %010" PRIX64, id); | |
61 | PrintAndLog("\nPossible de-scramble patterns"); | |
62 | PrintAndLog("Unique TAG ID : %010" PRIX64, id2lo); | |
63 | PrintAndLog("HoneyWell IdentKey {"); | |
64 | PrintAndLog("DEZ 8 : %08" PRIu64,id & 0xFFFFFF); | |
65 | PrintAndLog("DEZ 10 : %010" PRIu64,id & 0xFFFFFFFF); | |
66 | PrintAndLog("DEZ 5.5 : %05lld.%05" PRIu64,(id>>16LL) & 0xFFFF,(id & 0xFFFF)); | |
67 | PrintAndLog("DEZ 3.5A : %03lld.%05" PRIu64,(id>>32ll),(id & 0xFFFF)); | |
68 | PrintAndLog("DEZ 3.5B : %03lld.%05" PRIu64,(id & 0xFF000000) >> 24,(id & 0xFFFF)); | |
69 | PrintAndLog("DEZ 3.5C : %03lld.%05" PRIu64,(id & 0xFF0000) >> 16,(id & 0xFFFF)); | |
70 | PrintAndLog("DEZ 14/IK2 : %014" PRIu64,id); | |
71 | PrintAndLog("DEZ 15/IK3 : %015" PRIu64,id2lo); | |
72 | PrintAndLog("DEZ 20/ZK : %02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64, | |
73 | (id2lo & 0xf000000000) >> 36, | |
74 | (id2lo & 0x0f00000000) >> 32, | |
75 | (id2lo & 0x00f0000000) >> 28, | |
76 | (id2lo & 0x000f000000) >> 24, | |
77 | (id2lo & 0x0000f00000) >> 20, | |
78 | (id2lo & 0x00000f0000) >> 16, | |
79 | (id2lo & 0x000000f000) >> 12, | |
80 | (id2lo & 0x0000000f00) >> 8, | |
81 | (id2lo & 0x00000000f0) >> 4, | |
82 | (id2lo & 0x000000000f) | |
83 | ); | |
84 | uint64_t paxton = (((id>>32) << 24) | (id & 0xffffff)) + 0x143e00; | |
85 | PrintAndLog("}\nOther : %05" PRIu64 "_%03" PRIu64 "_%08" PRIu64 "",(id&0xFFFF),((id>>16LL) & 0xFF),(id & 0xFFFFFF)); | |
86 | PrintAndLog("Pattern Paxton : %" PRIu64 " [0x%" PRIX64 "]", paxton, paxton); | |
87 | ||
88 | uint32_t p1id = (id & 0xFFFFFF); | |
89 | uint8_t arr[32] = {0x00}; | |
90 | int i =0; | |
91 | int j = 23; | |
92 | for (; i < 24; ++i, --j ){ | |
93 | arr[i] = (p1id >> i) & 1; | |
94 | } | |
95 | ||
96 | uint32_t p1 = 0; | |
97 | ||
98 | p1 |= arr[23] << 21; | |
99 | p1 |= arr[22] << 23; | |
100 | p1 |= arr[21] << 20; | |
101 | p1 |= arr[20] << 22; | |
102 | ||
103 | p1 |= arr[19] << 18; | |
104 | p1 |= arr[18] << 16; | |
105 | p1 |= arr[17] << 19; | |
106 | p1 |= arr[16] << 17; | |
107 | ||
108 | p1 |= arr[15] << 13; | |
109 | p1 |= arr[14] << 15; | |
110 | p1 |= arr[13] << 12; | |
111 | p1 |= arr[12] << 14; | |
112 | ||
113 | p1 |= arr[11] << 6; | |
114 | p1 |= arr[10] << 2; | |
115 | p1 |= arr[9] << 7; | |
116 | p1 |= arr[8] << 1; | |
117 | ||
118 | p1 |= arr[7] << 0; | |
119 | p1 |= arr[6] << 8; | |
120 | p1 |= arr[5] << 11; | |
121 | p1 |= arr[4] << 3; | |
122 | ||
123 | p1 |= arr[3] << 10; | |
124 | p1 |= arr[2] << 4; | |
125 | p1 |= arr[1] << 5; | |
126 | p1 |= arr[0] << 9; | |
127 | PrintAndLog("Pattern 1 : %d [0x%X]", p1, p1); | |
128 | ||
129 | uint16_t sebury1 = id & 0xFFFF; | |
130 | uint8_t sebury2 = (id >> 16) & 0x7F; | |
131 | uint32_t sebury3 = id & 0x7FFFFF; | |
132 | PrintAndLog("Pattern Sebury : %d %d %d [0x%X 0x%X 0x%X]", sebury1, sebury2, sebury3, sebury1, sebury2, sebury3); | |
133 | } | |
134 | } | |
135 | return; | |
136 | } | |
137 | ||
138 | /* Read the ID of an EM410x tag. | |
139 | * Format: | |
140 | * 1111 1111 1 <-- standard non-repeatable header | |
141 | * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID | |
142 | * .... | |
143 | * CCCC <-- each bit here is parity for the 10 bits above in corresponding column | |
144 | * 0 <-- stop bit, end of tag | |
145 | */ | |
146 | int AskEm410xDecode(bool verbose, uint32_t *hi, uint64_t *lo ) | |
147 | { | |
148 | size_t idx = 0; | |
149 | uint8_t BitStream[512]={0}; | |
150 | size_t BitLen = sizeof(BitStream); | |
151 | if ( !getDemodBuf(BitStream, &BitLen) ) return 0; | |
152 | ||
153 | if (Em410xDecode(BitStream, &BitLen, &idx, hi, lo)) { | |
154 | //set GraphBuffer for clone or sim command | |
155 | setDemodBuf(DemodBuffer, (BitLen==40) ? 64 : 128, idx+1); | |
156 | setClockGrid(g_DemodClock, g_DemodStartIdx + ((idx+1)*g_DemodClock)); | |
157 | ||
158 | if (g_debugMode) { | |
159 | PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, BitLen); | |
160 | printDemodBuff(); | |
161 | } | |
162 | if (verbose) { | |
163 | PrintAndLog("EM410x pattern found: "); | |
164 | printEM410x(*hi, *lo); | |
165 | g_em410xId = *lo; | |
166 | } | |
167 | return 1; | |
168 | } | |
169 | return 0; | |
170 | } | |
171 | ||
172 | //askdemod then call Em410xdecode | |
173 | int AskEm410xDemod(const char *Cmd, uint32_t *hi, uint64_t *lo, bool verbose) | |
174 | { | |
175 | bool st = true; | |
176 | if (!ASKDemod_ext(Cmd, false, false, 1, &st)) return 0; | |
177 | return AskEm410xDecode(verbose, hi, lo); | |
178 | } | |
179 | ||
180 | //by marshmellow | |
181 | //takes 3 arguments - clock, invert and maxErr as integers | |
182 | //attempts to demodulate ask while decoding manchester | |
183 | //prints binary found and saves in graphbuffer for further commands | |
184 | int CmdAskEM410xDemod(const char *Cmd) | |
185 | { | |
186 | char cmdp = param_getchar(Cmd, 0); | |
187 | if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') { | |
188 | PrintAndLog("Usage: lf em 410xdemod [clock] <0|1> [maxError]"); | |
189 | PrintAndLog(" [set clock as integer] optional, if not set, autodetect."); | |
190 | PrintAndLog(" <invert>, 1 for invert output"); | |
191 | PrintAndLog(" [set maximum allowed errors], default = 100."); | |
192 | PrintAndLog(""); | |
193 | PrintAndLog(" sample: lf em 410xdemod = demod an EM410x Tag ID from GraphBuffer"); | |
194 | PrintAndLog(" : lf em 410xdemod 32 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32"); | |
195 | PrintAndLog(" : lf em 410xdemod 32 1 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32 and inverting data"); | |
196 | PrintAndLog(" : lf em 410xdemod 1 = demod an EM410x Tag ID from GraphBuffer while inverting data"); | |
197 | PrintAndLog(" : lf em 410xdemod 64 1 0 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/64 and inverting data and allowing 0 demod errors"); | |
198 | return 0; | |
199 | } | |
200 | uint64_t lo = 0; | |
201 | uint32_t hi = 0; | |
202 | return AskEm410xDemod(Cmd, &hi, &lo, true); | |
203 | } | |
204 | ||
205 | int usage_lf_em410x_sim(void) { | |
206 | PrintAndLog("Simulating EM410x tag"); | |
207 | PrintAndLog(""); | |
208 | PrintAndLog("Usage: lf em 410xsim [h] <uid> <clock>"); | |
209 | PrintAndLog("Options:"); | |
210 | PrintAndLog(" h - this help"); | |
211 | PrintAndLog(" uid - uid (10 HEX symbols)"); | |
212 | PrintAndLog(" clock - clock (32|64) (optional)"); | |
213 | PrintAndLog("samples:"); | |
214 | PrintAndLog(" lf em 410xsim 0F0368568B"); | |
215 | PrintAndLog(" lf em 410xsim 0F0368568B 32"); | |
216 | return 0; | |
217 | } | |
218 | ||
219 | // emulate an EM410X tag | |
220 | int CmdEM410xSim(const char *Cmd) | |
221 | { | |
222 | int i, n, j, binary[4], parity[4]; | |
223 | ||
224 | char cmdp = param_getchar(Cmd, 0); | |
225 | uint8_t uid[5] = {0x00}; | |
226 | ||
227 | if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim(); | |
228 | /* clock is 64 in EM410x tags */ | |
229 | uint8_t clock = 64; | |
230 | ||
231 | if (param_gethex(Cmd, 0, uid, 10)) { | |
232 | PrintAndLog("UID must include 10 HEX symbols"); | |
233 | return 0; | |
234 | } | |
235 | param_getdec(Cmd,1, &clock); | |
236 | ||
237 | PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock); | |
238 | PrintAndLog("Press pm3-button to about simulation"); | |
239 | ||
240 | ||
241 | /* clear our graph */ | |
242 | ClearGraph(0); | |
243 | ||
244 | /* write 9 start bits */ | |
245 | for (i = 0; i < 9; i++) | |
246 | AppendGraph(0, clock, 1); | |
247 | ||
248 | /* for each hex char */ | |
249 | parity[0] = parity[1] = parity[2] = parity[3] = 0; | |
250 | for (i = 0; i < 10; i++) | |
251 | { | |
252 | /* read each hex char */ | |
253 | sscanf(&Cmd[i], "%1x", &n); | |
254 | for (j = 3; j >= 0; j--, n/= 2) | |
255 | binary[j] = n % 2; | |
256 | ||
257 | /* append each bit */ | |
258 | AppendGraph(0, clock, binary[0]); | |
259 | AppendGraph(0, clock, binary[1]); | |
260 | AppendGraph(0, clock, binary[2]); | |
261 | AppendGraph(0, clock, binary[3]); | |
262 | ||
263 | /* append parity bit */ | |
264 | AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]); | |
265 | ||
266 | /* keep track of column parity */ | |
267 | parity[0] ^= binary[0]; | |
268 | parity[1] ^= binary[1]; | |
269 | parity[2] ^= binary[2]; | |
270 | parity[3] ^= binary[3]; | |
271 | } | |
272 | ||
273 | /* parity columns */ | |
274 | AppendGraph(0, clock, parity[0]); | |
275 | AppendGraph(0, clock, parity[1]); | |
276 | AppendGraph(0, clock, parity[2]); | |
277 | AppendGraph(0, clock, parity[3]); | |
278 | ||
279 | /* stop bit */ | |
280 | AppendGraph(1, clock, 0); | |
281 | ||
282 | CmdLFSim("0"); //240 start_gap. | |
283 | return 0; | |
284 | } | |
285 | ||
286 | /* Function is equivalent of lf read + data samples + em410xread | |
287 | * looped until an EM410x tag is detected | |
288 | * | |
289 | * Why is CmdSamples("16000")? | |
290 | * TBD: Auto-grow sample size based on detected sample rate. IE: If the | |
291 | * rate gets lower, then grow the number of samples | |
292 | * Changed by martin, 4000 x 4 = 16000, | |
293 | * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235 | |
294 | * | |
295 | * EDIT -- capture enough to get 2 complete preambles at the slowest data rate known to be used (rf/64) (64*64*2+9 = 8201) marshmellow | |
296 | */ | |
297 | int CmdEM410xWatch(const char *Cmd) | |
298 | { | |
299 | do { | |
300 | if (ukbhit()) { | |
301 | printf("\naborted via keyboard!\n"); | |
302 | break; | |
303 | } | |
304 | lf_read(true, 8201); | |
305 | } while (!CmdAskEM410xDemod("")); | |
306 | ||
307 | return 0; | |
308 | } | |
309 | ||
310 | //currently only supports manchester modulations | |
311 | int CmdEM410xWatchnSpoof(const char *Cmd) | |
312 | { | |
313 | CmdEM410xWatch(Cmd); | |
314 | PrintAndLog("# Replaying captured ID: %010"PRIx64, g_em410xId); | |
315 | CmdLFaskSim(""); | |
316 | return 0; | |
317 | } | |
318 | ||
319 | int CmdEM410xWrite(const char *Cmd) | |
320 | { | |
321 | uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value | |
322 | int card = 0xFF; // invalid card value | |
323 | unsigned int clock = 0; // invalid clock value | |
324 | ||
325 | sscanf(Cmd, "%" SCNx64 " %d %d", &id, &card, &clock); | |
326 | ||
327 | // Check ID | |
328 | if (id == 0xFFFFFFFFFFFFFFFF) { | |
329 | PrintAndLog("Error! ID is required.\n"); | |
330 | return 0; | |
331 | } | |
332 | if (id >= 0x10000000000) { | |
333 | PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n"); | |
334 | return 0; | |
335 | } | |
336 | ||
337 | // Check Card | |
338 | if (card == 0xFF) { | |
339 | PrintAndLog("Error! Card type required.\n"); | |
340 | return 0; | |
341 | } | |
342 | if (card < 0) { | |
343 | PrintAndLog("Error! Bad card type selected.\n"); | |
344 | return 0; | |
345 | } | |
346 | ||
347 | // Check Clock | |
348 | // Default: 64 | |
349 | if (clock == 0) | |
350 | clock = 64; | |
351 | ||
352 | // Allowed clock rates: 16, 32, 40 and 64 | |
353 | if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) { | |
354 | PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock); | |
355 | return 0; | |
356 | } | |
357 | ||
358 | if (card == 1) { | |
359 | PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock); | |
360 | // NOTE: We really should pass the clock in as a separate argument, but to | |
361 | // provide for backwards-compatibility for older firmware, and to avoid | |
362 | // having to add another argument to CMD_EM410X_WRITE_TAG, we just store | |
363 | // the clock rate in bits 8-15 of the card value | |
364 | card = (card & 0xFF) | ((clock << 8) & 0xFF00); | |
365 | } else if (card == 0) { | |
366 | PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock); | |
367 | card = (card & 0xFF) | ((clock << 8) & 0xFF00); | |
368 | } else { | |
369 | PrintAndLog("Error! Bad card type selected.\n"); | |
370 | return 0; | |
371 | } | |
372 | ||
373 | UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}}; | |
374 | SendCommand(&c); | |
375 | ||
376 | return 0; | |
377 | } | |
378 | ||
379 | //**************** Start of EM4x50 Code ************************ | |
380 | bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType) | |
381 | { | |
382 | if (rows*cols>size) return false; | |
383 | uint8_t colP=0; | |
384 | //assume last col is a parity and do not test | |
385 | for (uint8_t colNum = 0; colNum < cols-1; colNum++) { | |
386 | for (uint8_t rowNum = 0; rowNum < rows; rowNum++) { | |
387 | colP ^= BitStream[(rowNum*cols)+colNum]; | |
388 | } | |
389 | if (colP != pType) return false; | |
390 | } | |
391 | return true; | |
392 | } | |
393 | ||
394 | bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType) | |
395 | { | |
396 | if (rows*cols>size) return false; | |
397 | uint8_t rowP=0; | |
398 | //assume last row is a parity row and do not test | |
399 | for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) { | |
400 | for (uint8_t colNum = 0; colNum < cols; colNum++) { | |
401 | rowP ^= BitStream[(rowNum*cols)+colNum]; | |
402 | } | |
403 | if (rowP != pType) return false; | |
404 | } | |
405 | return true; | |
406 | } | |
407 | ||
408 | uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest) | |
409 | { | |
410 | if (size<45) return 0; | |
411 | uint32_t code = bytebits_to_byte(BitStream,8); | |
412 | code = code<<8 | bytebits_to_byte(BitStream+9,8); | |
413 | code = code<<8 | bytebits_to_byte(BitStream+18,8); | |
414 | code = code<<8 | bytebits_to_byte(BitStream+27,8); | |
415 | if (verbose || g_debugMode){ | |
416 | for (uint8_t i = 0; i<5; i++){ | |
417 | if (i == 4) PrintAndLog(""); //parity byte spacer | |
418 | PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x", | |
419 | BitStream[i*9], | |
420 | BitStream[i*9+1], | |
421 | BitStream[i*9+2], | |
422 | BitStream[i*9+3], | |
423 | BitStream[i*9+4], | |
424 | BitStream[i*9+5], | |
425 | BitStream[i*9+6], | |
426 | BitStream[i*9+7], | |
427 | BitStream[i*9+8], | |
428 | bytebits_to_byte(BitStream+i*9,8) | |
429 | ); | |
430 | } | |
431 | if (pTest) | |
432 | PrintAndLog("Parity Passed"); | |
433 | else | |
434 | PrintAndLog("Parity Failed"); | |
435 | } | |
436 | return code; | |
437 | } | |
438 | /* Read the transmitted data of an EM4x50 tag from the graphbuffer | |
439 | * Format: | |
440 | * | |
441 | * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity | |
442 | * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity | |
443 | * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity | |
444 | * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity | |
445 | * CCCCCCCC <- column parity bits | |
446 | * 0 <- stop bit | |
447 | * LW <- Listen Window | |
448 | * | |
449 | * This pattern repeats for every block of data being transmitted. | |
450 | * Transmission starts with two Listen Windows (LW - a modulated | |
451 | * pattern of 320 cycles each (32/32/128/64/64)). | |
452 | * | |
453 | * Note that this data may or may not be the UID. It is whatever data | |
454 | * is stored in the blocks defined in the control word First and Last | |
455 | * Word Read values. UID is stored in block 32. | |
456 | */ | |
457 | //completed by Marshmellow | |
458 | int EM4x50Read(const char *Cmd, bool verbose) | |
459 | { | |
460 | uint8_t fndClk[] = {8,16,32,40,50,64,128}; | |
461 | int clk = 0; | |
462 | int invert = 0; | |
463 | int tol = 0; | |
464 | int i, j, startblock, skip, block, start, end, low, high, minClk; | |
465 | bool complete = false; | |
466 | int tmpbuff[MAX_GRAPH_TRACE_LEN / 64]; | |
467 | uint32_t Code[6]; | |
468 | char tmp[6]; | |
469 | char tmp2[20]; | |
470 | int phaseoff; | |
471 | high = low = 0; | |
472 | memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64); | |
473 | ||
474 | // get user entry if any | |
475 | sscanf(Cmd, "%i %i", &clk, &invert); | |
476 | ||
477 | // first get high and low values | |
478 | for (i = 0; i < GraphTraceLen; i++) { | |
479 | if (GraphBuffer[i] > high) | |
480 | high = GraphBuffer[i]; | |
481 | else if (GraphBuffer[i] < low) | |
482 | low = GraphBuffer[i]; | |
483 | } | |
484 | ||
485 | i = 0; | |
486 | j = 0; | |
487 | minClk = 255; | |
488 | // get to first full low to prime loop and skip incomplete first pulse | |
489 | while ((GraphBuffer[i] < high) && (i < GraphTraceLen)) | |
490 | ++i; | |
491 | while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) | |
492 | ++i; | |
493 | skip = i; | |
494 | ||
495 | // populate tmpbuff buffer with pulse lengths | |
496 | while (i < GraphTraceLen) { | |
497 | // measure from low to low | |
498 | while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) | |
499 | ++i; | |
500 | start= i; | |
501 | while ((GraphBuffer[i] < high) && (i < GraphTraceLen)) | |
502 | ++i; | |
503 | while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) | |
504 | ++i; | |
505 | if (j>=(MAX_GRAPH_TRACE_LEN/64)) { | |
506 | break; | |
507 | } | |
508 | tmpbuff[j++]= i - start; | |
509 | if (i-start < minClk && i < GraphTraceLen) { | |
510 | minClk = i - start; | |
511 | } | |
512 | } | |
513 | // set clock | |
514 | if (!clk) { | |
515 | for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { | |
516 | tol = fndClk[clkCnt]/8; | |
517 | if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) { | |
518 | clk=fndClk[clkCnt]; | |
519 | break; | |
520 | } | |
521 | } | |
522 | if (!clk) return 0; | |
523 | } else tol = clk/8; | |
524 | ||
525 | // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2) | |
526 | start = -1; | |
527 | for (i= 0; i < j - 4 ; ++i) { | |
528 | skip += tmpbuff[i]; | |
529 | if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks | |
530 | if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks | |
531 | if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks | |
532 | if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following | |
533 | { | |
534 | start= i + 4; | |
535 | break; | |
536 | } | |
537 | } | |
538 | startblock = i + 4; | |
539 | ||
540 | // skip over the remainder of LW | |
541 | skip += tmpbuff[i+1] + tmpbuff[i+2] + clk; | |
542 | if (tmpbuff[i+3]>clk) | |
543 | phaseoff = tmpbuff[i+3]-clk; | |
544 | else | |
545 | phaseoff = 0; | |
546 | // now do it again to find the end | |
547 | end = skip; | |
548 | for (i += 3; i < j - 4 ; ++i) { | |
549 | end += tmpbuff[i]; | |
550 | if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks | |
551 | if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks | |
552 | if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks | |
553 | if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following | |
554 | { | |
555 | complete= true; | |
556 | break; | |
557 | } | |
558 | } | |
559 | end = i; | |
560 | // report back | |
561 | if (verbose || g_debugMode) { | |
562 | if (start >= 0) { | |
563 | PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)"); | |
564 | } else { | |
565 | PrintAndLog("No data found!, clock tried:%d",clk); | |
566 | PrintAndLog("Try again with more samples."); | |
567 | PrintAndLog(" or after a 'data askedge' command to clean up the read"); | |
568 | return 0; | |
569 | } | |
570 | } else if (start < 0) return 0; | |
571 | start = skip; | |
572 | snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47); | |
573 | // save GraphBuffer - to restore it later | |
574 | save_restoreGB(GRAPH_SAVE); | |
575 | // get rid of leading crap | |
576 | snprintf(tmp, sizeof(tmp), "%i", skip); | |
577 | CmdLtrim(tmp); | |
578 | bool pTest; | |
579 | bool AllPTest = true; | |
580 | // now work through remaining buffer printing out data blocks | |
581 | block = 0; | |
582 | i = startblock; | |
583 | while (block < 6) { | |
584 | if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block); | |
585 | skip = phaseoff; | |
586 | ||
587 | // look for LW before start of next block | |
588 | for ( ; i < j - 4 ; ++i) { | |
589 | skip += tmpbuff[i]; | |
590 | if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) | |
591 | if (tmpbuff[i+1] >= clk-tol) | |
592 | break; | |
593 | } | |
594 | if (i >= j-4) break; //next LW not found | |
595 | skip += clk; | |
596 | if (tmpbuff[i+1]>clk) | |
597 | phaseoff = tmpbuff[i+1]-clk; | |
598 | else | |
599 | phaseoff = 0; | |
600 | i += 2; | |
601 | if (ASKDemod(tmp2, false, false, 1) < 1) { | |
602 | save_restoreGB(GRAPH_RESTORE); | |
603 | return 0; | |
604 | } | |
605 | //set DemodBufferLen to just one block | |
606 | DemodBufferLen = skip/clk; | |
607 | //test parities | |
608 | pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0); | |
609 | pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0); | |
610 | AllPTest &= pTest; | |
611 | //get output | |
612 | Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest); | |
613 | if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk); | |
614 | //skip to start of next block | |
615 | snprintf(tmp,sizeof(tmp),"%i",skip); | |
616 | CmdLtrim(tmp); | |
617 | block++; | |
618 | if (i >= end) break; //in case chip doesn't output 6 blocks | |
619 | } | |
620 | //print full code: | |
621 | if (verbose || g_debugMode || AllPTest){ | |
622 | if (!complete) { | |
623 | PrintAndLog("*** Warning!"); | |
624 | PrintAndLog("Partial data - no end found!"); | |
625 | PrintAndLog("Try again with more samples."); | |
626 | } | |
627 | PrintAndLog("Found data at sample: %i - using clock: %i", start, clk); | |
628 | end = block; | |
629 | for (block=0; block < end; block++){ | |
630 | PrintAndLog("Block %d: %08x",block,Code[block]); | |
631 | } | |
632 | if (AllPTest) { | |
633 | PrintAndLog("Parities Passed"); | |
634 | } else { | |
635 | PrintAndLog("Parities Failed"); | |
636 | PrintAndLog("Try cleaning the read samples with 'data askedge'"); | |
637 | } | |
638 | } | |
639 | ||
640 | //restore GraphBuffer | |
641 | save_restoreGB(GRAPH_RESTORE); | |
642 | return (int)AllPTest; | |
643 | } | |
644 | ||
645 | int CmdEM4x50Read(const char *Cmd) | |
646 | { | |
647 | return EM4x50Read(Cmd, true); | |
648 | } | |
649 | ||
650 | //**************** Start of EM4x05/EM4x69 Code ************************ | |
651 | int usage_lf_em_read(void) { | |
652 | PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. "); | |
653 | PrintAndLog(""); | |
654 | PrintAndLog("Usage: lf em 4x05readword [h] <address> <pwd>"); | |
655 | PrintAndLog("Options:"); | |
656 | PrintAndLog(" h - this help"); | |
657 | PrintAndLog(" address - memory address to read. (0-15)"); | |
658 | PrintAndLog(" pwd - password (hex) (optional)"); | |
659 | PrintAndLog("samples:"); | |
660 | PrintAndLog(" lf em 4x05readword 1"); | |
661 | PrintAndLog(" lf em 4x05readword 1 11223344"); | |
662 | return 0; | |
663 | } | |
664 | ||
665 | // for command responses from em4x05 or em4x69 | |
666 | // download samples from device and copy them to the Graphbuffer | |
667 | bool downloadSamplesEM() { | |
668 | // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples) | |
669 | uint8_t got[6000]; | |
670 | GetFromBigBuf(got, sizeof(got), 0); | |
671 | if ( !WaitForResponseTimeout(CMD_ACK, NULL, 4000) ) { | |
672 | PrintAndLog("command execution time out"); | |
673 | return false; | |
674 | } | |
675 | setGraphBuf(got, sizeof(got)); | |
676 | return true; | |
677 | } | |
678 | ||
679 | bool EM4x05testDemodReadData(uint32_t *word, bool readCmd) { | |
680 | // em4x05/em4x69 command response preamble is 00001010 | |
681 | // skip first two 0 bits as they might have been missed in the demod | |
682 | uint8_t preamble[] = {0,0,1,0,1,0}; | |
683 | size_t startIdx = 0; | |
684 | ||
685 | // set size to 20 to only test first 14 positions for the preamble or less if not a read command | |
686 | size_t size = (readCmd) ? 20 : 11; | |
687 | // sanity check | |
688 | size = (size > DemodBufferLen) ? DemodBufferLen : size; | |
689 | // test preamble | |
690 | if ( !preambleSearchEx(DemodBuffer, preamble, sizeof(preamble), &size, &startIdx, true) ) { | |
691 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", startIdx); | |
692 | return false; | |
693 | } | |
694 | // if this is a readword command, get the read bytes and test the parities | |
695 | if (readCmd) { | |
696 | if (!EM_EndParityTest(DemodBuffer + startIdx + sizeof(preamble), 45, 5, 9, 0)) { | |
697 | if (g_debugMode) PrintAndLog("DEBUG: Error - End Parity check failed"); | |
698 | return false; | |
699 | } | |
700 | // test for even parity bits and remove them. (leave out the end row of parities so 36 bits) | |
701 | if ( removeParity(DemodBuffer, startIdx + sizeof(preamble),9,0,36) == 0 ) { | |
702 | if (g_debugMode) PrintAndLog("DEBUG: Error - Parity not detected"); | |
703 | return false; | |
704 | } | |
705 | ||
706 | setDemodBuf(DemodBuffer, 32, 0); | |
707 | //setClockGrid(0,0); | |
708 | ||
709 | *word = bytebits_to_byteLSBF(DemodBuffer, 32); | |
710 | } | |
711 | return true; | |
712 | } | |
713 | ||
714 | // FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE | |
715 | // should cover 90% of known used configs | |
716 | // the rest will need to be manually demoded for now... | |
717 | int demodEM4x05resp(uint32_t *word, bool readCmd) { | |
718 | int ans = 0; | |
719 | ||
720 | // test for FSK wave (easiest to 99% ID) | |
721 | if (GetFskClock("", false, false)) { | |
722 | //valid fsk clocks found | |
723 | ans = FSKrawDemod("0 0", false); | |
724 | if (!ans) { | |
725 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: FSK Demod failed, ans: %d", ans); | |
726 | } else { | |
727 | if (EM4x05testDemodReadData(word, readCmd)) { | |
728 | return 1; | |
729 | } | |
730 | } | |
731 | } | |
732 | // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... ) | |
733 | ans = GetPskClock("", false, false); | |
734 | if (ans>0) { | |
735 | //try psk1 | |
736 | ans = PSKDemod("0 0 6", false); | |
737 | if (!ans) { | |
738 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans); | |
739 | } else { | |
740 | if (EM4x05testDemodReadData(word, readCmd)) { | |
741 | return 1; | |
742 | } else { | |
743 | //try psk2 | |
744 | psk1TOpsk2(DemodBuffer, DemodBufferLen); | |
745 | if (EM4x05testDemodReadData(word, readCmd)) { | |
746 | return 1; | |
747 | } | |
748 | } | |
749 | //try psk1 inverted | |
750 | ans = PSKDemod("0 1 6", false); | |
751 | if (!ans) { | |
752 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans); | |
753 | } else { | |
754 | if (EM4x05testDemodReadData(word, readCmd)) { | |
755 | return 1; | |
756 | } else { | |
757 | //try psk2 | |
758 | psk1TOpsk2(DemodBuffer, DemodBufferLen); | |
759 | if (EM4x05testDemodReadData(word, readCmd)) { | |
760 | return 1; | |
761 | } | |
762 | } | |
763 | } | |
764 | } | |
765 | } | |
766 | ||
767 | // manchester is more common than biphase... try first | |
768 | bool stcheck = false; | |
769 | // try manchester - NOTE: ST only applies to T55x7 tags. | |
770 | ans = ASKDemod_ext("0,0,1", false, false, 1, &stcheck); | |
771 | if (!ans) { | |
772 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/Manchester Demod failed, ans: %d", ans); | |
773 | } else { | |
774 | if (EM4x05testDemodReadData(word, readCmd)) { | |
775 | return 1; | |
776 | } | |
777 | } | |
778 | ||
779 | //try biphase | |
780 | ans = ASKbiphaseDemod("0 0 1", false); | |
781 | if (!ans) { | |
782 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans); | |
783 | } else { | |
784 | if (EM4x05testDemodReadData(word, readCmd)) { | |
785 | return 1; | |
786 | } | |
787 | } | |
788 | ||
789 | //try diphase (differential biphase or inverted) | |
790 | ans = ASKbiphaseDemod("0 1 1", false); | |
791 | if (!ans) { | |
792 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans); | |
793 | } else { | |
794 | if (EM4x05testDemodReadData(word, readCmd)) { | |
795 | return 1; | |
796 | } | |
797 | } | |
798 | ||
799 | return -1; | |
800 | } | |
801 | ||
802 | int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *wordData) { | |
803 | UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}}; | |
804 | clearCommandBuffer(); | |
805 | SendCommand(&c); | |
806 | UsbCommand resp; | |
807 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){ | |
808 | PrintAndLog("Command timed out"); | |
809 | return -1; | |
810 | } | |
811 | if ( !downloadSamplesEM() ) { | |
812 | return -1; | |
813 | } | |
814 | int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000; | |
815 | if (graphJustNoise(GraphBuffer, testLen)) { | |
816 | PrintAndLog("no tag not found"); | |
817 | return -1; | |
818 | } | |
819 | //attempt demod: | |
820 | return demodEM4x05resp(wordData, true); | |
821 | } | |
822 | ||
823 | int EM4x05ReadWord(uint8_t addr, uint32_t pwd, bool usePwd) { | |
824 | uint32_t wordData = 0; | |
825 | int success = EM4x05ReadWord_ext(addr, pwd, usePwd, &wordData); | |
826 | if (success == 1) | |
827 | PrintAndLog("%s Address %02d | %08X", (addr>13) ? "Lock":" Got",addr,wordData); | |
828 | else | |
829 | PrintAndLog("Read Address %02d | failed",addr); | |
830 | ||
831 | return success; | |
832 | } | |
833 | ||
834 | int CmdEM4x05ReadWord(const char *Cmd) { | |
835 | uint8_t addr; | |
836 | uint32_t pwd; | |
837 | bool usePwd = false; | |
838 | uint8_t ctmp = param_getchar(Cmd, 0); | |
839 | if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_read(); | |
840 | ||
841 | addr = param_get8ex(Cmd, 0, 50, 10); | |
842 | // for now use default input of 1 as invalid (unlikely 1 will be a valid password...) | |
843 | pwd = param_get32ex(Cmd, 1, 1, 16); | |
844 | ||
845 | if ( (addr > 15) ) { | |
846 | PrintAndLog("Address must be between 0 and 15"); | |
847 | return 1; | |
848 | } | |
849 | if ( pwd == 1 ) { | |
850 | PrintAndLog("Reading address %02u", addr); | |
851 | } else { | |
852 | usePwd = true; | |
853 | PrintAndLog("Reading address %02u | password %08X", addr, pwd); | |
854 | } | |
855 | ||
856 | return EM4x05ReadWord(addr, pwd, usePwd); | |
857 | } | |
858 | ||
859 | int usage_lf_em_dump(void) { | |
860 | PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. "); | |
861 | PrintAndLog(""); | |
862 | PrintAndLog("Usage: lf em 4x05dump [h] <pwd>"); | |
863 | PrintAndLog("Options:"); | |
864 | PrintAndLog(" h - this help"); | |
865 | PrintAndLog(" pwd - password (hex) (optional)"); | |
866 | PrintAndLog("samples:"); | |
867 | PrintAndLog(" lf em 4x05dump"); | |
868 | PrintAndLog(" lf em 4x05dump 11223344"); | |
869 | return 0; | |
870 | } | |
871 | ||
872 | int CmdEM4x05dump(const char *Cmd) { | |
873 | uint8_t addr = 0; | |
874 | uint32_t pwd; | |
875 | bool usePwd = false; | |
876 | uint8_t ctmp = param_getchar(Cmd, 0); | |
877 | if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump(); | |
878 | ||
879 | // for now use default input of 1 as invalid (unlikely 1 will be a valid password...) | |
880 | pwd = param_get32ex(Cmd, 0, 1, 16); | |
881 | ||
882 | if ( pwd != 1 ) { | |
883 | usePwd = true; | |
884 | } | |
885 | int success = 1; | |
886 | for (; addr < 16; addr++) { | |
887 | if (addr == 2) { | |
888 | if (usePwd) { | |
889 | PrintAndLog(" PWD Address %02u | %08X",addr,pwd); | |
890 | } else { | |
891 | PrintAndLog(" PWD Address 02 | cannot read"); | |
892 | } | |
893 | } else { | |
894 | success &= EM4x05ReadWord(addr, pwd, usePwd); | |
895 | } | |
896 | } | |
897 | ||
898 | return success; | |
899 | } | |
900 | ||
901 | ||
902 | int usage_lf_em_write(void) { | |
903 | PrintAndLog("Write EM4x05/EM4x69. Tag must be on antenna. "); | |
904 | PrintAndLog(""); | |
905 | PrintAndLog("Usage: lf em 4x05writeword [h] a <address> d <data> p <pwd> [s] [i]"); | |
906 | PrintAndLog("Options:"); | |
907 | PrintAndLog(" h - this help"); | |
908 | PrintAndLog(" a <address> - memory address to write to. (0-15)"); | |
909 | PrintAndLog(" d <data> - data to write (hex)"); | |
910 | PrintAndLog(" p <pwd> - password (hex) (optional)"); | |
911 | PrintAndLog(" s - swap the data bit order before write"); | |
912 | PrintAndLog(" i - invert the data bits before write"); | |
913 | PrintAndLog("samples:"); | |
914 | PrintAndLog(" lf em 4x05writeword a 5 d 11223344"); | |
915 | PrintAndLog(" lf em 4x05writeword a 5 p deadc0de d 11223344 s i"); | |
916 | return 0; | |
917 | } | |
918 | ||
919 | // note: em4x05 doesn't have a way to invert data output so we must invert the data prior to writing | |
920 | // it if invertion is needed. (example FSK2a vs FSK) | |
921 | // also em4x05 requires swapping word data when compared to the data used for t55xx chips. | |
922 | int EM4x05WriteWord(uint8_t addr, uint32_t data, uint32_t pwd, bool usePwd, bool swap, bool invert) { | |
923 | if (swap) data = SwapBits(data, 32); | |
924 | ||
925 | if (invert) data ^= 0xFFFFFFFF; | |
926 | ||
927 | if ( (addr > 15) ) { | |
928 | PrintAndLog("Address must be between 0 and 15"); | |
929 | return -1; | |
930 | } | |
931 | if ( !usePwd ) { | |
932 | PrintAndLog("Writing address %d data %08X", addr, data); | |
933 | } else { | |
934 | PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd); | |
935 | } | |
936 | ||
937 | uint16_t flag = (addr << 8 ) | usePwd; | |
938 | ||
939 | UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}}; | |
940 | clearCommandBuffer(); | |
941 | SendCommand(&c); | |
942 | UsbCommand resp; | |
943 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){ | |
944 | PrintAndLog("Error occurred, device did not respond during write operation."); | |
945 | return -1; | |
946 | } | |
947 | if ( !downloadSamplesEM() ) { | |
948 | return -1; | |
949 | } | |
950 | //check response for 00001010 for write confirmation! | |
951 | //attempt demod: | |
952 | uint32_t dummy = 0; | |
953 | int result = demodEM4x05resp(&dummy,false); | |
954 | if (result == 1) { | |
955 | PrintAndLog("Write Verified"); | |
956 | } else { | |
957 | PrintAndLog("Write could not be verified"); | |
958 | } | |
959 | return result; | |
960 | } | |
961 | ||
962 | int CmdEM4x05WriteWord(const char *Cmd) { | |
963 | bool errors = false; | |
964 | bool usePwd = false; | |
965 | uint32_t data = 0xFFFFFFFF; | |
966 | uint32_t pwd = 0xFFFFFFFF; | |
967 | bool swap = false; | |
968 | bool invert = false; | |
969 | uint8_t addr = 16; // default to invalid address | |
970 | bool gotData = false; | |
971 | char cmdp = 0; | |
972 | while(param_getchar(Cmd, cmdp) != 0x00) | |
973 | { | |
974 | switch(param_getchar(Cmd, cmdp)) | |
975 | { | |
976 | case 'h': | |
977 | case 'H': | |
978 | return usage_lf_em_write(); | |
979 | case 'a': | |
980 | case 'A': | |
981 | addr = param_get8ex(Cmd, cmdp+1, 16, 10); | |
982 | cmdp += 2; | |
983 | break; | |
984 | case 'd': | |
985 | case 'D': | |
986 | data = param_get32ex(Cmd, cmdp+1, 0, 16); | |
987 | gotData = true; | |
988 | cmdp += 2; | |
989 | break; | |
990 | case 'i': | |
991 | case 'I': | |
992 | invert = true; | |
993 | cmdp++; | |
994 | break; | |
995 | case 'p': | |
996 | case 'P': | |
997 | pwd = param_get32ex(Cmd, cmdp+1, 1, 16); | |
998 | if (pwd == 1) { | |
999 | PrintAndLog("invalid pwd"); | |
1000 | errors = true; | |
1001 | } | |
1002 | usePwd = true; | |
1003 | cmdp += 2; | |
1004 | break; | |
1005 | case 's': | |
1006 | case 'S': | |
1007 | swap = true; | |
1008 | cmdp++; | |
1009 | break; | |
1010 | default: | |
1011 | PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); | |
1012 | errors = true; | |
1013 | break; | |
1014 | } | |
1015 | if(errors) break; | |
1016 | } | |
1017 | //Validations | |
1018 | if(errors) return usage_lf_em_write(); | |
1019 | ||
1020 | if ( strlen(Cmd) == 0 ) return usage_lf_em_write(); | |
1021 | ||
1022 | if (!gotData) { | |
1023 | PrintAndLog("You must enter the data you want to write"); | |
1024 | return usage_lf_em_write(); | |
1025 | } | |
1026 | return EM4x05WriteWord(addr, data, pwd, usePwd, swap, invert); | |
1027 | } | |
1028 | ||
1029 | void printEM4x05config(uint32_t wordData) { | |
1030 | uint16_t datarate = EM4x05_GET_BITRATE(wordData); | |
1031 | uint8_t encoder = ((wordData >> 6) & 0xF); | |
1032 | char enc[14]; | |
1033 | memset(enc,0,sizeof(enc)); | |
1034 | ||
1035 | uint8_t PSKcf = (wordData >> 10) & 0x3; | |
1036 | char cf[10]; | |
1037 | memset(cf,0,sizeof(cf)); | |
1038 | uint8_t delay = (wordData >> 12) & 0x3; | |
1039 | char cdelay[33]; | |
1040 | memset(cdelay,0,sizeof(cdelay)); | |
1041 | uint8_t numblks = EM4x05_GET_NUM_BLOCKS(wordData); | |
1042 | uint8_t LWR = numblks+5-1; //last word read | |
1043 | switch (encoder) { | |
1044 | case 0: snprintf(enc,sizeof(enc),"NRZ"); break; | |
1045 | case 1: snprintf(enc,sizeof(enc),"Manchester"); break; | |
1046 | case 2: snprintf(enc,sizeof(enc),"Biphase"); break; | |
1047 | case 3: snprintf(enc,sizeof(enc),"Miller"); break; | |
1048 | case 4: snprintf(enc,sizeof(enc),"PSK1"); break; | |
1049 | case 5: snprintf(enc,sizeof(enc),"PSK2"); break; | |
1050 | case 6: snprintf(enc,sizeof(enc),"PSK3"); break; | |
1051 | case 7: snprintf(enc,sizeof(enc),"Unknown"); break; | |
1052 | case 8: snprintf(enc,sizeof(enc),"FSK1"); break; | |
1053 | case 9: snprintf(enc,sizeof(enc),"FSK2"); break; | |
1054 | default: snprintf(enc,sizeof(enc),"Unknown"); break; | |
1055 | } | |
1056 | ||
1057 | switch (PSKcf) { | |
1058 | case 0: snprintf(cf,sizeof(cf),"RF/2"); break; | |
1059 | case 1: snprintf(cf,sizeof(cf),"RF/8"); break; | |
1060 | case 2: snprintf(cf,sizeof(cf),"RF/4"); break; | |
1061 | case 3: snprintf(cf,sizeof(cf),"unknown"); break; | |
1062 | } | |
1063 | ||
1064 | switch (delay) { | |
1065 | case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break; | |
1066 | case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break; | |
1067 | case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break; | |
1068 | case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break; | |
1069 | } | |
1070 | uint8_t readLogin = (wordData & EM4x05_READ_LOGIN_REQ)>>18; | |
1071 | uint8_t readHKL = (wordData & EM4x05_READ_HK_LOGIN_REQ)>>19; | |
1072 | uint8_t writeLogin = (wordData & EM4x05_WRITE_LOGIN_REQ)>>20; | |
1073 | uint8_t writeHKL = (wordData & EM4x05_WRITE_HK_LOGIN_REQ)>>21; | |
1074 | uint8_t raw = (wordData & EM4x05_READ_AFTER_WRITE)>>22; | |
1075 | uint8_t disable = (wordData & EM4x05_DISABLE_ALLOWED)>>23; | |
1076 | uint8_t rtf = (wordData & EM4x05_READER_TALK_FIRST)>>24; | |
1077 | uint8_t pigeon = (wordData & (1<<26))>>26; | |
1078 | PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData); | |
1079 | PrintAndLog("Config Breakdown:"); | |
1080 | PrintAndLog(" Data Rate: %02u | RF/%u", wordData & 0x3F, datarate); | |
1081 | PrintAndLog(" Encoder: %u | %s", encoder, enc); | |
1082 | PrintAndLog(" PSK CF: %u | %s", PSKcf, cf); | |
1083 | PrintAndLog(" Delay: %u | %s", delay, cdelay); | |
1084 | PrintAndLog(" LastWordR: %02u | Address of last word for default read - meaning %u blocks are output", LWR, numblks); | |
1085 | PrintAndLog(" ReadLogin: %u | Read Login is %s", readLogin, readLogin ? "Required" : "Not Required"); | |
1086 | PrintAndLog(" ReadHKL: %u | Read Housekeeping Words Login is %s", readHKL, readHKL ? "Required" : "Not Required"); | |
1087 | PrintAndLog("WriteLogin: %u | Write Login is %s", writeLogin, writeLogin ? "Required" : "Not Required"); | |
1088 | PrintAndLog(" WriteHKL: %u | Write Housekeeping Words Login is %s", writeHKL, writeHKL ? "Required" : "Not Required"); | |
1089 | PrintAndLog(" R.A.W.: %u | Read After Write is %s", raw, raw ? "On" : "Off"); | |
1090 | PrintAndLog(" Disable: %u | Disable Command is %s", disable, disable ? "Accepted" : "Not Accepted"); | |
1091 | PrintAndLog(" R.T.F.: %u | Reader Talk First is %s", rtf, rtf ? "Enabled" : "Disabled"); | |
1092 | PrintAndLog(" Pigeon: %u | Pigeon Mode is %s\n", pigeon, pigeon ? "Enabled" : "Disabled"); | |
1093 | } | |
1094 | ||
1095 | void printEM4x05info(uint8_t chipType, uint8_t cap, uint16_t custCode, uint32_t serial) { | |
1096 | switch (chipType) { | |
1097 | case 9: PrintAndLog("\n Chip Type: %u | EM4305", chipType); break; | |
1098 | case 4: PrintAndLog(" Chip Type: %u | Unknown", chipType); break; | |
1099 | case 2: PrintAndLog(" Chip Type: %u | EM4469", chipType); break; | |
1100 | //add more here when known | |
1101 | default: PrintAndLog(" Chip Type: %u Unknown", chipType); break; | |
1102 | } | |
1103 | ||
1104 | switch (cap) { | |
1105 | case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break; | |
1106 | case 2: PrintAndLog(" Cap Type: %u | %spF",cap, (chipType==2)? "75":"210"); break; | |
1107 | case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break; | |
1108 | case 0: PrintAndLog(" Cap Type: %u | no resonant capacitor",cap); break; | |
1109 | default: PrintAndLog(" Cap Type: %u | unknown",cap); break; | |
1110 | } | |
1111 | ||
1112 | PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown"); | |
1113 | if (serial != 0) { | |
1114 | PrintAndLog("\n Serial #: %08X\n", serial); | |
1115 | } | |
1116 | } | |
1117 | ||
1118 | void printEM4x05ProtectionBits(uint32_t wordData) { | |
1119 | for (uint8_t i = 0; i < 15; i++) { | |
1120 | PrintAndLog(" Word: %02u | %s", i, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked"); | |
1121 | if (i==14) { | |
1122 | PrintAndLog(" Word: %02u | %s", i+1, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked"); | |
1123 | } | |
1124 | } | |
1125 | } | |
1126 | ||
1127 | //quick test for EM4x05/EM4x69 tag | |
1128 | bool EM4x05Block0Test(uint32_t *wordData) { | |
1129 | if (EM4x05ReadWord_ext(0,0,false,wordData) == 1) { | |
1130 | return true; | |
1131 | } | |
1132 | return false; | |
1133 | } | |
1134 | ||
1135 | int CmdEM4x05info(const char *Cmd) { | |
1136 | //uint8_t addr = 0; | |
1137 | uint32_t pwd; | |
1138 | uint32_t wordData = 0; | |
1139 | bool usePwd = false; | |
1140 | uint8_t ctmp = param_getchar(Cmd, 0); | |
1141 | if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump(); | |
1142 | ||
1143 | // for now use default input of 1 as invalid (unlikely 1 will be a valid password...) | |
1144 | pwd = param_get32ex(Cmd, 0, 1, 16); | |
1145 | ||
1146 | if ( pwd != 1 ) { | |
1147 | usePwd = true; | |
1148 | } | |
1149 | ||
1150 | // read word 0 (chip info) | |
1151 | // block 0 can be read even without a password. | |
1152 | if ( !EM4x05Block0Test(&wordData) ) | |
1153 | return -1; | |
1154 | ||
1155 | uint8_t chipType = (wordData >> 1) & 0xF; | |
1156 | uint8_t cap = (wordData >> 5) & 3; | |
1157 | uint16_t custCode = (wordData >> 9) & 0x3FF; | |
1158 | ||
1159 | // read word 1 (serial #) doesn't need pwd | |
1160 | wordData = 0; | |
1161 | if (EM4x05ReadWord_ext(1, 0, false, &wordData) != 1) { | |
1162 | //failed, but continue anyway... | |
1163 | } | |
1164 | printEM4x05info(chipType, cap, custCode, wordData); | |
1165 | ||
1166 | // read word 4 (config block) | |
1167 | // needs password if one is set | |
1168 | wordData = 0; | |
1169 | if ( EM4x05ReadWord_ext(4, pwd, usePwd, &wordData) != 1 ) { | |
1170 | //failed | |
1171 | PrintAndLog("Config block read failed - might be password protected."); | |
1172 | return 0; | |
1173 | } | |
1174 | printEM4x05config(wordData); | |
1175 | ||
1176 | // read word 14 and 15 to see which is being used for the protection bits | |
1177 | wordData = 0; | |
1178 | if ( EM4x05ReadWord_ext(14, pwd, usePwd, &wordData) != 1 ) { | |
1179 | //failed | |
1180 | return 0; | |
1181 | } | |
1182 | // if status bit says this is not the used protection word | |
1183 | if (!(wordData & 0x8000)) { | |
1184 | if ( EM4x05ReadWord_ext(15, pwd, usePwd, &wordData) != 1 ) { | |
1185 | //failed | |
1186 | return 0; | |
1187 | } | |
1188 | } | |
1189 | if (!(wordData & 0x8000)) { | |
1190 | //something went wrong | |
1191 | return 0; | |
1192 | } | |
1193 | printEM4x05ProtectionBits(wordData); | |
1194 | ||
1195 | return 1; | |
1196 | } | |
1197 | ||
1198 | ||
1199 | static command_t CommandTable[] = | |
1200 | { | |
1201 | {"help", CmdHelp, 1, "This help"}, | |
1202 | {"410xread", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"}, | |
1203 | {"410xdemod", CmdAskEM410xDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Demodulate an EM410x tag from GraphBuffer (args optional)"}, | |
1204 | {"410xsim", CmdEM410xSim, 0, "<UID> [clock rate] -- Simulate EM410x tag"}, | |
1205 | {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"}, | |
1206 | {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" }, | |
1207 | {"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"}, | |
1208 | {"4x05dump", CmdEM4x05dump, 0, "(pwd) -- Read EM4x05/EM4x69 all word data"}, | |
1209 | {"4x05info", CmdEM4x05info, 0, "(pwd) -- Get info from EM4x05/EM4x69 tag"}, | |
1210 | {"4x05readword", CmdEM4x05ReadWord, 0, "<Word> (pwd) -- Read EM4x05/EM4x69 word data"}, | |
1211 | {"4x05writeword", CmdEM4x05WriteWord, 0, "<Word> <data> (pwd) -- Write EM4x05/EM4x69 word data"}, | |
1212 | {"4x50read", CmdEM4x50Read, 1, "demod data from EM4x50 tag from the graph buffer"}, | |
1213 | {NULL, NULL, 0, NULL} | |
1214 | }; | |
1215 | ||
1216 | int CmdLFEM4X(const char *Cmd) | |
1217 | { | |
1218 | CmdsParse(CommandTable, Cmd); | |
1219 | return 0; | |
1220 | } | |
1221 | ||
1222 | int CmdHelp(const char *Cmd) | |
1223 | { | |
1224 | CmdsHelp(CommandTable); | |
1225 | return 0; | |
1226 | } |