| 1 | //----------------------------------------------------------------------------- |
| 2 | // Copyright (C) 2009 Michael Gernoth <michael at gernoth.net> |
| 3 | // Copyright (C) 2010 iZsh <izsh at fail0verflow.com> |
| 4 | // |
| 5 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
| 6 | // at your option, any later version. See the LICENSE.txt file for the text of |
| 7 | // the license. |
| 8 | //----------------------------------------------------------------------------- |
| 9 | // UI utilities |
| 10 | //----------------------------------------------------------------------------- |
| 11 | |
| 12 | #include <stdarg.h> |
| 13 | #include <stdlib.h> |
| 14 | #include <stdio.h> |
| 15 | #include <stdbool.h> |
| 16 | #include <time.h> |
| 17 | #include <readline/readline.h> |
| 18 | #include <pthread.h> |
| 19 | #include "loclass/cipherutils.h" |
| 20 | #include "ui.h" |
| 21 | #include "cmdmain.h" |
| 22 | #include "cmddata.h" |
| 23 | #include "graph.h" |
| 24 | //#include <liquid/liquid.h> |
| 25 | #define M_PI 3.14159265358979323846264338327 |
| 26 | |
| 27 | double CursorScaleFactor; |
| 28 | int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64; |
| 29 | int offline; |
| 30 | int flushAfterWrite = 0; |
| 31 | extern pthread_mutex_t print_lock; |
| 32 | |
| 33 | static char *logfilename = "proxmark3.log"; |
| 34 | |
| 35 | void PrintAndLog(char *fmt, ...) |
| 36 | { |
| 37 | char *saved_line; |
| 38 | int saved_point; |
| 39 | va_list argptr, argptr2; |
| 40 | static FILE *logfile = NULL; |
| 41 | static int logging = 1; |
| 42 | |
| 43 | // lock this section to avoid interlacing prints from different threats |
| 44 | pthread_mutex_lock(&print_lock); |
| 45 | |
| 46 | if (logging && !logfile) { |
| 47 | logfile = fopen(logfilename, "a"); |
| 48 | if (!logfile) { |
| 49 | fprintf(stderr, "Can't open logfile, logging disabled!\n"); |
| 50 | logging=0; |
| 51 | } |
| 52 | } |
| 53 | |
| 54 | int need_hack = (rl_readline_state & RL_STATE_READCMD) > 0; |
| 55 | |
| 56 | if (need_hack) { |
| 57 | saved_point = rl_point; |
| 58 | saved_line = rl_copy_text(0, rl_end); |
| 59 | rl_save_prompt(); |
| 60 | rl_replace_line("", 0); |
| 61 | rl_redisplay(); |
| 62 | } |
| 63 | |
| 64 | va_start(argptr, fmt); |
| 65 | va_copy(argptr2, argptr); |
| 66 | vprintf(fmt, argptr); |
| 67 | printf(" "); // cleaning prompt |
| 68 | va_end(argptr); |
| 69 | printf("\n"); |
| 70 | |
| 71 | if (need_hack) { |
| 72 | rl_restore_prompt(); |
| 73 | rl_replace_line(saved_line, 0); |
| 74 | rl_point = saved_point; |
| 75 | rl_redisplay(); |
| 76 | free(saved_line); |
| 77 | } |
| 78 | |
| 79 | if (logging && logfile) { |
| 80 | vfprintf(logfile, fmt, argptr2); |
| 81 | fprintf(logfile,"\n"); |
| 82 | fflush(logfile); |
| 83 | } |
| 84 | va_end(argptr2); |
| 85 | |
| 86 | if (flushAfterWrite == 1) { |
| 87 | fflush(NULL); |
| 88 | } |
| 89 | //release lock |
| 90 | pthread_mutex_unlock(&print_lock); |
| 91 | } |
| 92 | |
| 93 | void SetLogFilename(char *fn) |
| 94 | { |
| 95 | logfilename = fn; |
| 96 | } |
| 97 | |
| 98 | int manchester_decode( int * data, const size_t len, uint8_t * dataout, size_t dataoutlen){ |
| 99 | |
| 100 | int bitlength = 0; |
| 101 | int clock, high, low, startindex; |
| 102 | low = startindex = 0; |
| 103 | high = 1; |
| 104 | uint8_t * bitStream = (uint8_t* ) malloc(sizeof(uint8_t) * dataoutlen); |
| 105 | memset(bitStream, 0x00, dataoutlen); |
| 106 | |
| 107 | /* Detect high and lows */ |
| 108 | DetectHighLowInGraph(&high, &low, TRUE); |
| 109 | |
| 110 | /* get clock */ |
| 111 | clock = GetAskClock("",false, false); |
| 112 | |
| 113 | startindex = DetectFirstTransition(data, len, high); |
| 114 | |
| 115 | if (high != 1) |
| 116 | // decode "raw" |
| 117 | bitlength = ManchesterConvertFrom255(data, len, bitStream, dataoutlen, high, low, clock, startindex); |
| 118 | else |
| 119 | // decode manchester |
| 120 | bitlength = ManchesterConvertFrom1(data, len, bitStream, dataoutlen, clock, startindex); |
| 121 | |
| 122 | memcpy(dataout, bitStream, bitlength); |
| 123 | free(bitStream); |
| 124 | return bitlength; |
| 125 | } |
| 126 | |
| 127 | int DetectFirstTransition(const int * data, const size_t len, int threshold){ |
| 128 | |
| 129 | int i = 0; |
| 130 | /* now look for the first threshold */ |
| 131 | for (; i < len; ++i) { |
| 132 | if (data[i] == threshold) { |
| 133 | break; |
| 134 | } |
| 135 | } |
| 136 | return i; |
| 137 | } |
| 138 | |
| 139 | int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int dataoutlen, int high, int low, int clock, int startIndex){ |
| 140 | |
| 141 | int i, j, z, hithigh, hitlow, bitIndex, startType; |
| 142 | i = 0; |
| 143 | bitIndex = 0; |
| 144 | |
| 145 | int isDamp = 0; |
| 146 | int damplimit = (int)((high / 2) * 0.3); |
| 147 | int dampHi = (high/2)+damplimit; |
| 148 | int dampLow = (high/2)-damplimit; |
| 149 | int firstST = 0; |
| 150 | |
| 151 | // i = clock frame of data |
| 152 | for (; i < (int)(len/clock); i++) |
| 153 | { |
| 154 | hithigh = 0; |
| 155 | hitlow = 0; |
| 156 | startType = -1; |
| 157 | z = startIndex + (i*clock); |
| 158 | isDamp = 0; |
| 159 | |
| 160 | /* Find out if we hit both high and low peaks */ |
| 161 | for (j = 0; j < clock; j++) |
| 162 | { |
| 163 | if (data[z+j] == high){ |
| 164 | hithigh = 1; |
| 165 | if ( startType == -1) |
| 166 | startType = 1; |
| 167 | } |
| 168 | |
| 169 | if (data[z+j] == low ){ |
| 170 | hitlow = 1; |
| 171 | if ( startType == -1) |
| 172 | startType = 0; |
| 173 | } |
| 174 | |
| 175 | if (hithigh && hitlow) |
| 176 | break; |
| 177 | } |
| 178 | |
| 179 | // No high value found, are we in a dampening field? |
| 180 | if ( !hithigh ) { |
| 181 | //PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j); |
| 182 | for (j = 0; j < clock; j++) { |
| 183 | if ( |
| 184 | (data[z+j] <= dampHi && data[z+j] >= dampLow) |
| 185 | ){ |
| 186 | isDamp++; |
| 187 | } |
| 188 | } |
| 189 | } |
| 190 | |
| 191 | /* Manchester Switching.. |
| 192 | 0: High -> Low |
| 193 | 1: Low -> High |
| 194 | */ |
| 195 | if (startType == 0) |
| 196 | dataout[bitIndex++] = 1; |
| 197 | else if (startType == 1) |
| 198 | dataout[bitIndex++] = 0; |
| 199 | else |
| 200 | dataout[bitIndex++] = 2; |
| 201 | |
| 202 | if ( isDamp > clock/2 ) { |
| 203 | firstST++; |
| 204 | } |
| 205 | |
| 206 | if ( firstST == 4) |
| 207 | break; |
| 208 | if ( bitIndex >= dataoutlen-1 ) |
| 209 | break; |
| 210 | } |
| 211 | return bitIndex; |
| 212 | } |
| 213 | |
| 214 | int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout,int dataoutlen, int clock, int startIndex){ |
| 215 | |
| 216 | int i,j, bitindex, lc, tolerance, warnings; |
| 217 | warnings = 0; |
| 218 | int upperlimit = len*2/clock+8; |
| 219 | i = startIndex; |
| 220 | j = 0; |
| 221 | tolerance = clock/4; |
| 222 | uint8_t decodedArr[len]; |
| 223 | |
| 224 | /* Detect duration between 2 successive transitions */ |
| 225 | for (bitindex = 1; i < len; i++) { |
| 226 | |
| 227 | if (data[i-1] != data[i]) { |
| 228 | lc = i - startIndex; |
| 229 | startIndex = i; |
| 230 | |
| 231 | // Error check: if bitindex becomes too large, we do not |
| 232 | // have a Manchester encoded bitstream or the clock is really wrong! |
| 233 | if (bitindex > upperlimit ) { |
| 234 | PrintAndLog("Error: the clock you gave is probably wrong, aborting."); |
| 235 | return 0; |
| 236 | } |
| 237 | // Then switch depending on lc length: |
| 238 | // Tolerance is 1/4 of clock rate (arbitrary) |
| 239 | if (abs((lc-clock)/2) < tolerance) { |
| 240 | // Short pulse : either "1" or "0" |
| 241 | decodedArr[bitindex++] = data[i-1]; |
| 242 | } else if (abs(lc-clock) < tolerance) { |
| 243 | // Long pulse: either "11" or "00" |
| 244 | decodedArr[bitindex++] = data[i-1]; |
| 245 | decodedArr[bitindex++] = data[i-1]; |
| 246 | } else { |
| 247 | ++warnings; |
| 248 | PrintAndLog("Warning: Manchester decode error for pulse width detection."); |
| 249 | if (warnings > 10) { |
| 250 | PrintAndLog("Error: too many detection errors, aborting."); |
| 251 | return 0; |
| 252 | } |
| 253 | } |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | /* |
| 258 | * We have a decodedArr of "01" ("1") or "10" ("0") |
| 259 | * parse it into final decoded dataout |
| 260 | */ |
| 261 | for (i = 0; i < bitindex; i += 2) { |
| 262 | |
| 263 | if ((decodedArr[i] == 0) && (decodedArr[i+1] == 1)) { |
| 264 | dataout[j++] = 1; |
| 265 | } else if ((decodedArr[i] == 1) && (decodedArr[i+1] == 0)) { |
| 266 | dataout[j++] = 0; |
| 267 | } else { |
| 268 | i++; |
| 269 | warnings++; |
| 270 | PrintAndLog("Unsynchronized, resync..."); |
| 271 | PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)"); |
| 272 | |
| 273 | if (warnings > 10) { |
| 274 | PrintAndLog("Error: too many decode errors, aborting."); |
| 275 | return 0; |
| 276 | } |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | PrintAndLog("%s", sprint_hex(dataout, j)); |
| 281 | return j; |
| 282 | } |
| 283 | |
| 284 | void ManchesterDiffDecodedString(const uint8_t* bitstream, size_t len, uint8_t invert){ |
| 285 | /* |
| 286 | * We have a bitstream of "01" ("1") or "10" ("0") |
| 287 | * parse it into final decoded bitstream |
| 288 | */ |
| 289 | int i, j, warnings; |
| 290 | uint8_t decodedArr[(len/2)+1]; |
| 291 | |
| 292 | j = warnings = 0; |
| 293 | |
| 294 | uint8_t lastbit = 0; |
| 295 | |
| 296 | for (i = 0; i < len; i += 2) { |
| 297 | |
| 298 | uint8_t first = bitstream[i]; |
| 299 | uint8_t second = bitstream[i+1]; |
| 300 | |
| 301 | if ( first == second ) { |
| 302 | ++i; |
| 303 | ++warnings; |
| 304 | if (warnings > 10) { |
| 305 | PrintAndLog("Error: too many decode errors, aborting."); |
| 306 | return; |
| 307 | } |
| 308 | } |
| 309 | else if ( lastbit != first ) { |
| 310 | decodedArr[j++] = 0 ^ invert; |
| 311 | } |
| 312 | else { |
| 313 | decodedArr[j++] = 1 ^ invert; |
| 314 | } |
| 315 | lastbit = second; |
| 316 | } |
| 317 | |
| 318 | PrintAndLog("%s", sprint_hex(decodedArr, j)); |
| 319 | } |
| 320 | |
| 321 | void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){ |
| 322 | |
| 323 | PrintAndLog(" Manchester decoded : %d bits", len); |
| 324 | |
| 325 | uint8_t mod = len % blocksize; |
| 326 | uint8_t div = len / blocksize; |
| 327 | int i; |
| 328 | |
| 329 | // Now output the bitstream to the scrollback by line of 16 bits |
| 330 | for (i = 0; i < div*blocksize; i+=blocksize) { |
| 331 | PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) ); |
| 332 | } |
| 333 | |
| 334 | if ( mod > 0 ) |
| 335 | PrintAndLog(" %s", sprint_bin(bitStream+i, mod) ); |
| 336 | } |
| 337 | |
| 338 | /* Sliding DFT |
| 339 | Smooths out |
| 340 | */ |
| 341 | void iceFsk2(int * data, const size_t len){ |
| 342 | |
| 343 | int i, j; |
| 344 | int * output = (int* ) malloc(sizeof(int) * len); |
| 345 | memset(output, 0x00, len); |
| 346 | |
| 347 | // for (i=0; i<len-5; ++i){ |
| 348 | // for ( j=1; j <=5; ++j) { |
| 349 | // output[i] += data[i*j]; |
| 350 | // } |
| 351 | // output[i] /= 5; |
| 352 | // } |
| 353 | int rest = 127; |
| 354 | int tmp =0; |
| 355 | for (i=0; i<len; ++i){ |
| 356 | if ( data[i] < 127) |
| 357 | output[i] = 0; |
| 358 | else { |
| 359 | tmp = (100 * (data[i]-rest)) / rest; |
| 360 | output[i] = (tmp > 60)? 100:0; |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | for (j=0; j<len; ++j) |
| 365 | data[j] = output[j]; |
| 366 | |
| 367 | free(output); |
| 368 | } |
| 369 | |
| 370 | void iceFsk3(int * data, const size_t len){ |
| 371 | |
| 372 | int i,j; |
| 373 | |
| 374 | int * output = (int* ) malloc(sizeof(int) * len); |
| 375 | memset(output, 0x00, len); |
| 376 | float fc = 0.1125f; // center frequency |
| 377 | size_t adjustedLen = len; |
| 378 | |
| 379 | // create very simple low-pass filter to remove images (2nd-order Butterworth) |
| 380 | float complex iir_buf[3] = {0,0,0}; |
| 381 | float b[3] = {0.003621681514929, 0.007243363029857, 0.003621681514929}; |
| 382 | float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023}; |
| 383 | |
| 384 | float sample = 0; // input sample read from file |
| 385 | float complex x_prime = 1.0f; // save sample for estimating frequency |
| 386 | float complex x; |
| 387 | |
| 388 | for (i=0; i<adjustedLen; ++i) { |
| 389 | |
| 390 | sample = data[i]+128; |
| 391 | |
| 392 | // remove DC offset and mix to complex baseband |
| 393 | x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i ); |
| 394 | |
| 395 | // apply low-pass filter, removing spectral image (IIR using direct-form II) |
| 396 | iir_buf[2] = iir_buf[1]; |
| 397 | iir_buf[1] = iir_buf[0]; |
| 398 | iir_buf[0] = x - a[1]*iir_buf[1] - a[2]*iir_buf[2]; |
| 399 | x = b[0]*iir_buf[0] + |
| 400 | b[1]*iir_buf[1] + |
| 401 | b[2]*iir_buf[2]; |
| 402 | |
| 403 | // compute instantaneous frequency by looking at phase difference |
| 404 | // between adjacent samples |
| 405 | float freq = cargf(x*conjf(x_prime)); |
| 406 | x_prime = x; // retain this sample for next iteration |
| 407 | |
| 408 | output[i] =(freq > 0)? 10 : -10; |
| 409 | } |
| 410 | |
| 411 | // show data |
| 412 | for (j=0; j<adjustedLen; ++j) |
| 413 | data[j] = output[j]; |
| 414 | |
| 415 | CmdLtrim("30"); |
| 416 | adjustedLen -= 30; |
| 417 | |
| 418 | // zero crossings. |
| 419 | for (j=0; j<adjustedLen; ++j){ |
| 420 | if ( data[j] == 10) break; |
| 421 | } |
| 422 | int startOne =j; |
| 423 | |
| 424 | for (;j<adjustedLen; ++j){ |
| 425 | if ( data[j] == -10 ) break; |
| 426 | } |
| 427 | int stopOne = j-1; |
| 428 | |
| 429 | int fieldlen = stopOne-startOne; |
| 430 | |
| 431 | fieldlen = (fieldlen == 39 || fieldlen == 41)? 40 : fieldlen; |
| 432 | fieldlen = (fieldlen == 59 || fieldlen == 51)? 50 : fieldlen; |
| 433 | if ( fieldlen != 40 && fieldlen != 50){ |
| 434 | printf("Detected field Length: %d \n", fieldlen); |
| 435 | printf("Can only handle 40 or 50. Aborting...\n"); |
| 436 | return; |
| 437 | } |
| 438 | |
| 439 | // FSK sequence start == 000111 |
| 440 | int startPos = 0; |
| 441 | for (i =0; i<adjustedLen; ++i){ |
| 442 | int dec = 0; |
| 443 | for ( j = 0; j < 6*fieldlen; ++j){ |
| 444 | dec += data[i + j]; |
| 445 | } |
| 446 | if (dec == 0) { |
| 447 | startPos = i; |
| 448 | break; |
| 449 | } |
| 450 | } |
| 451 | |
| 452 | printf("000111 position: %d \n", startPos); |
| 453 | |
| 454 | startPos += 6*fieldlen+5; |
| 455 | |
| 456 | int bit =0; |
| 457 | printf("BINARY\n"); |
| 458 | printf("R/40 : "); |
| 459 | for (i =startPos ; i < adjustedLen; i += 40){ |
| 460 | bit = data[i]>0 ? 1:0; |
| 461 | printf("%d", bit ); |
| 462 | } |
| 463 | printf("\n"); |
| 464 | |
| 465 | printf("R/50 : "); |
| 466 | for (i =startPos ; i < adjustedLen; i += 50){ |
| 467 | bit = data[i]>0 ? 1:0; |
| 468 | printf("%d", bit ); } |
| 469 | printf("\n"); |
| 470 | |
| 471 | free(output); |
| 472 | } |
| 473 | |
| 474 | float complex cexpf (float complex Z) |
| 475 | { |
| 476 | float complex Res; |
| 477 | double rho = exp (__real__ Z); |
| 478 | __real__ Res = rho * cosf(__imag__ Z); |
| 479 | __imag__ Res = rho * sinf(__imag__ Z); |
| 480 | return Res; |
| 481 | } |