]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Merlok - June 2011, 2012 | |
3 | // Gerhard de Koning Gans - May 2008 | |
4 | // Hagen Fritsch - June 2010 | |
5 | // | |
6 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
7 | // at your option, any later version. See the LICENSE.txt file for the text of | |
8 | // the license. | |
9 | //----------------------------------------------------------------------------- | |
10 | // Mifare Classic Card Simulation | |
11 | //----------------------------------------------------------------------------- | |
12 | ||
13 | #include "mifaresim.h" | |
14 | #include "iso14443a.h" | |
15 | #include "iso14443crc.h" | |
16 | #include "crapto1/crapto1.h" | |
17 | #include "BigBuf.h" | |
18 | #include "string.h" | |
19 | #include "mifareutil.h" | |
20 | #include "fpgaloader.h" | |
21 | #include "proxmark3.h" | |
22 | #include "usb_cdc.h" | |
23 | #include "cmd.h" | |
24 | #include "protocols.h" | |
25 | #include "apps.h" | |
26 | ||
27 | //mifare emulator states | |
28 | #define MFEMUL_NOFIELD 0 | |
29 | #define MFEMUL_IDLE 1 | |
30 | #define MFEMUL_SELECT1 2 | |
31 | #define MFEMUL_SELECT2 3 | |
32 | #define MFEMUL_SELECT3 4 | |
33 | #define MFEMUL_AUTH1 5 | |
34 | #define MFEMUL_AUTH2 6 | |
35 | #define MFEMUL_WORK 7 | |
36 | #define MFEMUL_WRITEBL2 8 | |
37 | #define MFEMUL_INTREG_INC 9 | |
38 | #define MFEMUL_INTREG_DEC 10 | |
39 | #define MFEMUL_INTREG_REST 11 | |
40 | #define MFEMUL_HALTED 12 | |
41 | ||
42 | #define cardSTATE_TO_IDLE() { cardSTATE = MFEMUL_IDLE; LED_B_OFF(); LED_C_OFF(); } | |
43 | ||
44 | #define AC_DATA_READ 0 | |
45 | #define AC_DATA_WRITE 1 | |
46 | #define AC_DATA_INC 2 | |
47 | #define AC_DATA_DEC_TRANS_REST 3 | |
48 | #define AC_KEYA_READ 0 | |
49 | #define AC_KEYA_WRITE 1 | |
50 | #define AC_KEYB_READ 2 | |
51 | #define AC_KEYB_WRITE 3 | |
52 | #define AC_AC_READ 4 | |
53 | #define AC_AC_WRITE 5 | |
54 | ||
55 | #define AUTHKEYA 0 | |
56 | #define AUTHKEYB 1 | |
57 | #define AUTHKEYNONE 0xff | |
58 | ||
59 | ||
60 | static bool IsTrailerAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) { | |
61 | uint8_t sector_trailer[16]; | |
62 | emlGetMem(sector_trailer, blockNo, 1); | |
63 | uint8_t AC = ((sector_trailer[7] >> 5) & 0x04) | |
64 | | ((sector_trailer[8] >> 2) & 0x02) | |
65 | | ((sector_trailer[8] >> 7) & 0x01); | |
66 | switch (action) { | |
67 | case AC_KEYA_READ: { | |
68 | return false; | |
69 | break; | |
70 | } | |
71 | case AC_KEYA_WRITE: { | |
72 | return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x01)) | |
73 | || (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03))); | |
74 | break; | |
75 | } | |
76 | case AC_KEYB_READ: { | |
77 | return (keytype == AUTHKEYA && (AC == 0x00 || AC == 0x02 || AC == 0x01)); | |
78 | break; | |
79 | } | |
80 | case AC_KEYB_WRITE: { | |
81 | return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x04)) | |
82 | || (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03))); | |
83 | break; | |
84 | } | |
85 | case AC_AC_READ: { | |
86 | return ((keytype == AUTHKEYA) | |
87 | || (keytype == AUTHKEYB && !(AC == 0x00 || AC == 0x02 || AC == 0x01))); | |
88 | break; | |
89 | } | |
90 | case AC_AC_WRITE: { | |
91 | return ((keytype == AUTHKEYA && (AC == 0x01)) | |
92 | || (keytype == AUTHKEYB && (AC == 0x03 || AC == 0x05))); | |
93 | break; | |
94 | } | |
95 | default: return false; | |
96 | } | |
97 | } | |
98 | ||
99 | ||
100 | static bool IsDataAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) | |
101 | { | |
102 | uint8_t sector_trailer[16]; | |
103 | emlGetMem(sector_trailer, SectorTrailer(blockNo), 1); | |
104 | ||
105 | uint8_t sector_block; | |
106 | if (blockNo < 32*4) { | |
107 | sector_block = blockNo & 0x03; | |
108 | } else { | |
109 | sector_block = (blockNo & 0x0f) / 5; | |
110 | } | |
111 | ||
112 | uint8_t AC; | |
113 | switch (sector_block) { | |
114 | case 0x00: { | |
115 | AC = ((sector_trailer[7] >> 2) & 0x04) | |
116 | | ((sector_trailer[8] << 1) & 0x02) | |
117 | | ((sector_trailer[8] >> 4) & 0x01); | |
118 | break; | |
119 | } | |
120 | case 0x01: { | |
121 | AC = ((sector_trailer[7] >> 3) & 0x04) | |
122 | | ((sector_trailer[8] >> 0) & 0x02) | |
123 | | ((sector_trailer[8] >> 5) & 0x01); | |
124 | break; | |
125 | } | |
126 | case 0x02: { | |
127 | AC = ((sector_trailer[7] >> 4) & 0x04) | |
128 | | ((sector_trailer[8] >> 1) & 0x02) | |
129 | | ((sector_trailer[8] >> 6) & 0x01); | |
130 | break; | |
131 | } | |
132 | default: | |
133 | return false; | |
134 | } | |
135 | ||
136 | switch (action) { | |
137 | case AC_DATA_READ: { | |
138 | return ((keytype == AUTHKEYA && !(AC == 0x03 || AC == 0x05 || AC == 0x07)) | |
139 | || (keytype == AUTHKEYB && !(AC == 0x07))); | |
140 | break; | |
141 | } | |
142 | case AC_DATA_WRITE: { | |
143 | return ((keytype == AUTHKEYA && (AC == 0x00)) | |
144 | || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x04 || AC == 0x06 || AC == 0x03))); | |
145 | break; | |
146 | } | |
147 | case AC_DATA_INC: { | |
148 | return ((keytype == AUTHKEYA && (AC == 0x00)) | |
149 | || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06))); | |
150 | break; | |
151 | } | |
152 | case AC_DATA_DEC_TRANS_REST: { | |
153 | return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x06 || AC == 0x01)) | |
154 | || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06 || AC == 0x01))); | |
155 | break; | |
156 | } | |
157 | } | |
158 | ||
159 | return false; | |
160 | } | |
161 | ||
162 | ||
163 | static bool IsAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) { | |
164 | if (IsSectorTrailer(blockNo)) { | |
165 | return IsTrailerAccessAllowed(blockNo, keytype, action); | |
166 | } else { | |
167 | return IsDataAccessAllowed(blockNo, keytype, action); | |
168 | } | |
169 | } | |
170 | ||
171 | ||
172 | static void MifareSimInit(uint8_t flags, uint8_t *datain, tag_response_info_t **responses, uint32_t *cuid, uint8_t *uid_len) { | |
173 | ||
174 | #define TAG_RESPONSE_COUNT 5 // number of precompiled responses | |
175 | static uint8_t rATQA[] = {0x04, 0x00}; // indicate Mifare classic 1k 4Byte UID | |
176 | static uint8_t rUIDBCC1[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level | |
177 | static uint8_t rUIDBCC2[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 2nd cascade level | |
178 | static uint8_t rSAKfinal[]= {0x08, 0xb6, 0xdd}; // mifare 1k indicated | |
179 | static uint8_t rSAK1[] = {0x04, 0xda, 0x17}; // indicate UID not finished | |
180 | ||
181 | *uid_len = 4; | |
182 | // UID can be set from emulator memory or incoming data and can be 4 or 7 bytes long | |
183 | if (flags & FLAG_4B_UID_IN_DATA) { // get UID from datain | |
184 | memcpy(rUIDBCC1, datain, 4); | |
185 | } else if (flags & FLAG_7B_UID_IN_DATA) { | |
186 | rUIDBCC1[0] = 0x88; | |
187 | memcpy(rUIDBCC1+1, datain, 3); | |
188 | memcpy(rUIDBCC2, datain+3, 4); | |
189 | *uid_len = 7; | |
190 | } else { | |
191 | uint8_t probable_atqa; | |
192 | emlGetMemBt(&probable_atqa, 7, 1); // get UID from emul memory - weak guess at length | |
193 | if (probable_atqa == 0x00) { // ---------- 4BUID | |
194 | emlGetMemBt(rUIDBCC1, 0, 4); | |
195 | } else { // ---------- 7BUID | |
196 | rUIDBCC1[0] = 0x88; | |
197 | emlGetMemBt(rUIDBCC1+1, 0, 3); | |
198 | emlGetMemBt(rUIDBCC2, 3, 4); | |
199 | *uid_len = 7; | |
200 | } | |
201 | } | |
202 | ||
203 | switch (*uid_len) { | |
204 | case 4: | |
205 | *cuid = bytes_to_num(rUIDBCC1, 4); | |
206 | rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; | |
207 | if (MF_DBGLEVEL >= 2) { | |
208 | Dbprintf("4B UID: %02x%02x%02x%02x", | |
209 | rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3] ); | |
210 | } | |
211 | break; | |
212 | case 7: | |
213 | rATQA[0] |= 0x40; | |
214 | *cuid = bytes_to_num(rUIDBCC2, 4); | |
215 | rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; | |
216 | rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; | |
217 | if (MF_DBGLEVEL >= 2) { | |
218 | Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x", | |
219 | rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], rUIDBCC2[0], rUIDBCC2[1], rUIDBCC2[2], rUIDBCC2[3] ); | |
220 | } | |
221 | break; | |
222 | default: | |
223 | break; | |
224 | } | |
225 | ||
226 | static tag_response_info_t responses_init[TAG_RESPONSE_COUNT] = { | |
227 | { .response = rATQA, .response_n = sizeof(rATQA) }, // Answer to request - respond with card type | |
228 | { .response = rUIDBCC1, .response_n = sizeof(rUIDBCC1) }, // Anticollision cascade1 - respond with first part of uid | |
229 | { .response = rUIDBCC2, .response_n = sizeof(rUIDBCC2) }, // Anticollision cascade2 - respond with 2nd part of uid | |
230 | { .response = rSAKfinal, .response_n = sizeof(rSAKfinal) }, // Acknowledge select - last cascade | |
231 | { .response = rSAK1, .response_n = sizeof(rSAK1) } // Acknowledge select - previous cascades | |
232 | }; | |
233 | ||
234 | // Prepare ("precompile") the responses of the anticollision phase. There will be not enough time to do this at the moment the reader sends its REQA or SELECT | |
235 | // There are 7 predefined responses with a total of 18 bytes data to transmit. Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) | |
236 | // 18 * 8 data bits, 18 * 1 parity bits, 5 start bits, 5 stop bits, 5 correction bits -> need 177 bytes buffer | |
237 | #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 177 // number of bytes required for precompiled responses | |
238 | ||
239 | uint8_t *free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE); | |
240 | size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE; | |
241 | for (size_t i = 0; i < TAG_RESPONSE_COUNT; i++) { | |
242 | prepare_allocated_tag_modulation(&responses_init[i], &free_buffer_pointer, &free_buffer_size); | |
243 | } | |
244 | ||
245 | *responses = responses_init; | |
246 | ||
247 | // indices into responses array: | |
248 | #define ATQA 0 | |
249 | #define UIDBCC1 1 | |
250 | #define UIDBCC2 2 | |
251 | #define SAKfinal 3 | |
252 | #define SAK1 4 | |
253 | ||
254 | } | |
255 | ||
256 | ||
257 | static bool HasValidCRC(uint8_t *receivedCmd, uint16_t receivedCmd_len) { | |
258 | uint8_t CRC_byte_1, CRC_byte_2; | |
259 | ComputeCrc14443(CRC_14443_A, receivedCmd, receivedCmd_len-2, &CRC_byte_1, &CRC_byte_2); | |
260 | return (receivedCmd[receivedCmd_len-2] == CRC_byte_1 && receivedCmd[receivedCmd_len-1] == CRC_byte_2); | |
261 | } | |
262 | ||
263 | ||
264 | /** | |
265 | *MIFARE 1K simulate. | |
266 | * | |
267 | *@param flags : | |
268 | * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK | |
269 | * FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that | |
270 | * FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that | |
271 | * FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section not finished | |
272 | * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later | |
273 | * FLAG_RANDOM_NONCE - means we should generate some pseudo-random nonce data (only allows moebius attack) | |
274 | *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ... | |
275 | * (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted) | |
276 | */ | |
277 | void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain) | |
278 | { | |
279 | tag_response_info_t *responses; | |
280 | uint8_t uid_len = 4; | |
281 | uint32_t cuid = 0; | |
282 | uint8_t cardWRBL = 0; | |
283 | uint8_t cardAUTHSC = 0; | |
284 | uint8_t cardAUTHKEY = AUTHKEYNONE; // no authentication | |
285 | uint32_t cardRr = 0; | |
286 | //uint32_t rn_enc = 0; | |
287 | uint32_t ans = 0; | |
288 | uint32_t cardINTREG = 0; | |
289 | uint8_t cardINTBLOCK = 0; | |
290 | struct Crypto1State mpcs = {0, 0}; | |
291 | struct Crypto1State *pcs; | |
292 | pcs = &mpcs; | |
293 | uint32_t numReads = 0;//Counts numer of times reader reads a block | |
294 | uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; | |
295 | uint8_t receivedCmd_dec[MAX_MIFARE_FRAME_SIZE]; | |
296 | uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE]; | |
297 | uint16_t receivedCmd_len; | |
298 | uint8_t response[MAX_MIFARE_FRAME_SIZE]; | |
299 | uint8_t response_par[MAX_MIFARE_PARITY_SIZE]; | |
300 | ||
301 | uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04}; | |
302 | uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00}; | |
303 | ||
304 | //Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2 | |
305 | // This will be used in the reader-only attack. | |
306 | ||
307 | //allow collecting up to 7 sets of nonces to allow recovery of up to 7 keys | |
308 | #define ATTACK_KEY_COUNT 7 // keep same as define in cmdhfmf.c -> readerAttack() (Cannot be more than 7) | |
309 | nonces_t ar_nr_resp[ATTACK_KEY_COUNT*2]; //*2 for 2 separate attack types (nml, moebius) 36 * 7 * 2 bytes = 504 bytes | |
310 | memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp)); | |
311 | ||
312 | uint8_t ar_nr_collected[ATTACK_KEY_COUNT*2]; //*2 for 2nd attack type (moebius) | |
313 | memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected)); | |
314 | uint8_t nonce1_count = 0; | |
315 | uint8_t nonce2_count = 0; | |
316 | uint8_t moebius_n_count = 0; | |
317 | bool gettingMoebius = false; | |
318 | uint8_t mM = 0; //moebius_modifier for collection storage | |
319 | ||
320 | // Authenticate response - nonce | |
321 | uint32_t nonce; | |
322 | if (flags & FLAG_RANDOM_NONCE) { | |
323 | nonce = prand(); | |
324 | } else { | |
325 | nonce = bytes_to_num(rAUTH_NT, 4); | |
326 | } | |
327 | ||
328 | // free eventually allocated BigBuf memory but keep Emulator Memory | |
329 | BigBuf_free_keep_EM(); | |
330 | ||
331 | MifareSimInit(flags, datain, &responses, &cuid, &uid_len); | |
332 | ||
333 | // We need to listen to the high-frequency, peak-detected path. | |
334 | iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
335 | ||
336 | // clear trace | |
337 | clear_trace(); | |
338 | set_tracing(true); | |
339 | ResetSspClk(); | |
340 | ||
341 | bool finished = false; | |
342 | bool button_pushed = BUTTON_PRESS(); | |
343 | int cardSTATE = MFEMUL_NOFIELD; | |
344 | ||
345 | while (!button_pushed && !finished && !usb_poll_validate_length()) { | |
346 | WDT_HIT(); | |
347 | ||
348 | // find reader field | |
349 | if (cardSTATE == MFEMUL_NOFIELD) { | |
350 | int vHf = (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10; | |
351 | if (vHf > MF_MINFIELDV) { | |
352 | LED_A_ON(); | |
353 | cardSTATE_TO_IDLE(); | |
354 | } | |
355 | button_pushed = BUTTON_PRESS(); | |
356 | continue; | |
357 | } | |
358 | ||
359 | //Now, get data | |
360 | int res = EmGetCmd(receivedCmd, &receivedCmd_len, receivedCmd_par); | |
361 | ||
362 | if (res == 2) { //Field is off! | |
363 | LEDsoff(); | |
364 | cardSTATE = MFEMUL_NOFIELD; | |
365 | continue; | |
366 | } else if (res == 1) { // button pressed | |
367 | button_pushed = true; | |
368 | break; | |
369 | } | |
370 | ||
371 | // WUPA in HALTED state or REQA or WUPA in any other state | |
372 | if (receivedCmd_len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) { | |
373 | EmSendPrecompiledCmd(&responses[ATQA]); | |
374 | ||
375 | // init crypto block | |
376 | crypto1_destroy(pcs); | |
377 | cardAUTHKEY = AUTHKEYNONE; | |
378 | if (flags & FLAG_RANDOM_NONCE) { | |
379 | nonce = prand(); | |
380 | } | |
381 | LED_B_OFF(); | |
382 | LED_C_OFF(); | |
383 | cardSTATE = MFEMUL_SELECT1; | |
384 | continue; | |
385 | } | |
386 | ||
387 | switch (cardSTATE) { | |
388 | case MFEMUL_NOFIELD: | |
389 | case MFEMUL_HALTED: | |
390 | case MFEMUL_IDLE:{ | |
391 | break; | |
392 | } | |
393 | case MFEMUL_SELECT1:{ | |
394 | // select all - 0x93 0x20 | |
395 | if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) { | |
396 | if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL CL1 received"); | |
397 | EmSendPrecompiledCmd(&responses[UIDBCC1]); | |
398 | break; | |
399 | } | |
400 | // select card - 0x93 0x70 ... | |
401 | if (receivedCmd_len == 9 && | |
402 | (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC1].response, 4) == 0)) { | |
403 | if (MF_DBGLEVEL >= 4) Dbprintf("SELECT CL1 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]); | |
404 | if (uid_len == 4) { | |
405 | EmSendPrecompiledCmd(&responses[SAKfinal]); | |
406 | LED_B_ON(); | |
407 | cardSTATE = MFEMUL_WORK; | |
408 | break; | |
409 | } else if (uid_len == 7) { | |
410 | EmSendPrecompiledCmd(&responses[SAK1]); | |
411 | cardSTATE = MFEMUL_SELECT2; | |
412 | break; | |
413 | } | |
414 | } | |
415 | cardSTATE_TO_IDLE(); | |
416 | break; | |
417 | } | |
418 | case MFEMUL_SELECT2:{ | |
419 | // select all cl2 - 0x95 0x20 | |
420 | if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) { | |
421 | if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL CL2 received"); | |
422 | EmSendPrecompiledCmd(&responses[UIDBCC2]); | |
423 | break; | |
424 | } | |
425 | // select cl2 card - 0x95 0x70 xxxxxxxxxxxx | |
426 | if (receivedCmd_len == 9 && | |
427 | (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC2].response, 4) == 0)) { | |
428 | if (uid_len == 7) { | |
429 | if (MF_DBGLEVEL >= 4) Dbprintf("SELECT CL2 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]); | |
430 | EmSendPrecompiledCmd(&responses[SAKfinal]); | |
431 | LED_B_ON(); | |
432 | cardSTATE = MFEMUL_WORK; | |
433 | break; | |
434 | } | |
435 | } | |
436 | cardSTATE_TO_IDLE(); | |
437 | break; | |
438 | } | |
439 | case MFEMUL_WORK:{ | |
440 | if (receivedCmd_len != 4) { // all commands must have exactly 4 bytes | |
441 | break; | |
442 | } | |
443 | bool encrypted_data = (cardAUTHKEY != AUTHKEYNONE) ; | |
444 | if (encrypted_data) { | |
445 | // decrypt seqence | |
446 | mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec); | |
447 | } else { | |
448 | memcpy(receivedCmd_dec, receivedCmd, receivedCmd_len); | |
449 | } | |
450 | if (!HasValidCRC(receivedCmd_dec, receivedCmd_len)) { // all commands must have a valid CRC | |
451 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
452 | break; | |
453 | } | |
454 | if (receivedCmd_dec[0] == MIFARE_AUTH_KEYA || receivedCmd_dec[0] == MIFARE_AUTH_KEYB) { | |
455 | // if authenticating to a block that shouldn't exist - as long as we are not doing the reader attack | |
456 | if (receivedCmd_dec[1] >= 16 * 4 && !(flags & FLAG_NR_AR_ATTACK)) { | |
457 | //is this the correct response to an auth on a out of range block? marshmellow | |
458 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
459 | if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],receivedCmd_dec[1]); | |
460 | break; | |
461 | } | |
462 | cardAUTHSC = receivedCmd_dec[1] / 4; // received block num | |
463 | cardAUTHKEY = receivedCmd_dec[0] & 0x01; | |
464 | crypto1_destroy(pcs);//Added by martin | |
465 | crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); | |
466 | if (!encrypted_data) { // first authentication | |
467 | if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY); | |
468 | crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state | |
469 | num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce | |
470 | } else { // nested authentication | |
471 | if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d", receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY); | |
472 | ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); | |
473 | num_to_bytes(ans, 4, rAUTH_AT); | |
474 | } | |
475 | EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); | |
476 | cardSTATE = MFEMUL_AUTH1; | |
477 | break; | |
478 | } | |
479 | if (!encrypted_data) { // all other commands must be encrypted (authenticated) | |
480 | break; | |
481 | } | |
482 | if(receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK | |
483 | || receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK | |
484 | || receivedCmd_dec[0] == MIFARE_CMD_INC | |
485 | || receivedCmd_dec[0] == MIFARE_CMD_DEC | |
486 | || receivedCmd_dec[0] == MIFARE_CMD_RESTORE | |
487 | || receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) { | |
488 | if (receivedCmd_dec[1] >= 16 * 4) { | |
489 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
490 | if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],receivedCmd_dec[1]); | |
491 | break; | |
492 | } | |
493 | if (receivedCmd_dec[1] / 4 != cardAUTHSC) { | |
494 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
495 | if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],cardAUTHSC); | |
496 | break; | |
497 | } | |
498 | } | |
499 | if (receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK) { | |
500 | uint8_t blockNo = receivedCmd_dec[1]; | |
501 | if (MF_DBGLEVEL >= 4) { | |
502 | Dbprintf("Reader reading block %d (0x%02x)", blockNo, blockNo); | |
503 | } | |
504 | emlGetMem(response, blockNo, 1); | |
505 | if (IsSectorTrailer(blockNo)) { | |
506 | memset(response, 0x00, 6); // keyA can never be read | |
507 | if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_KEYB_READ)) { | |
508 | memset(response+10, 0x00, 6); // keyB cannot be read | |
509 | } | |
510 | if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_AC_READ)) { | |
511 | memset(response+6, 0x00, 4); // AC bits cannot be read | |
512 | } | |
513 | } else { | |
514 | if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_DATA_READ)) { | |
515 | memset(response, 0x00, 16); // datablock cannot be read | |
516 | } | |
517 | } | |
518 | AppendCrc14443a(response, 16); | |
519 | mf_crypto1_encrypt(pcs, response, 18, response_par); | |
520 | EmSendCmdPar(response, 18, response_par); | |
521 | numReads++; | |
522 | if(exitAfterNReads > 0 && numReads == exitAfterNReads) { | |
523 | Dbprintf("%d reads done, exiting", numReads); | |
524 | finished = true; | |
525 | } | |
526 | break; | |
527 | } | |
528 | if (receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK) { | |
529 | uint8_t blockNo = receivedCmd_dec[1]; | |
530 | if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)", blockNo, blockNo); | |
531 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
532 | cardWRBL = blockNo; | |
533 | cardSTATE = MFEMUL_WRITEBL2; | |
534 | break; | |
535 | } | |
536 | if (receivedCmd_dec[0] == MIFARE_CMD_INC || receivedCmd_dec[0] == MIFARE_CMD_DEC || receivedCmd_dec[0] == MIFARE_CMD_RESTORE) { | |
537 | uint8_t blockNo = receivedCmd_dec[1]; | |
538 | if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo); | |
539 | if (emlCheckValBl(blockNo)) { | |
540 | if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking"); | |
541 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
542 | break; | |
543 | } | |
544 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
545 | cardWRBL = blockNo; | |
546 | if (receivedCmd_dec[0] == MIFARE_CMD_INC) | |
547 | cardSTATE = MFEMUL_INTREG_INC; | |
548 | if (receivedCmd_dec[0] == MIFARE_CMD_DEC) | |
549 | cardSTATE = MFEMUL_INTREG_DEC; | |
550 | if (receivedCmd_dec[0] == MIFARE_CMD_RESTORE) | |
551 | cardSTATE = MFEMUL_INTREG_REST; | |
552 | break; | |
553 | } | |
554 | if (receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) { | |
555 | uint8_t blockNo = receivedCmd_dec[1]; | |
556 | if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo); | |
557 | if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd_dec[1])) | |
558 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
559 | else | |
560 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
561 | break; | |
562 | } | |
563 | // halt | |
564 | if (receivedCmd_dec[0] == ISO14443A_CMD_HALT && receivedCmd_dec[1] == 0x00) { | |
565 | if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED."); | |
566 | LED_B_OFF(); | |
567 | LED_C_OFF(); | |
568 | cardSTATE = MFEMUL_HALTED; | |
569 | break; | |
570 | } | |
571 | // command not allowed | |
572 | if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking"); | |
573 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
574 | break; | |
575 | } | |
576 | case MFEMUL_AUTH1:{ | |
577 | if (receivedCmd_len != 8) { | |
578 | cardSTATE_TO_IDLE(); | |
579 | break; | |
580 | } | |
581 | ||
582 | uint32_t nr = bytes_to_num(receivedCmd, 4); | |
583 | uint32_t ar = bytes_to_num(&receivedCmd[4], 4); | |
584 | ||
585 | // Collect AR/NR per keytype & sector | |
586 | if(flags & FLAG_NR_AR_ATTACK) { | |
587 | for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) { | |
588 | if ( ar_nr_collected[i+mM]==0 || ((cardAUTHSC == ar_nr_resp[i+mM].sector) && (cardAUTHKEY == ar_nr_resp[i+mM].keytype) && (ar_nr_collected[i+mM] > 0)) ) { | |
589 | // if first auth for sector, or matches sector and keytype of previous auth | |
590 | if (ar_nr_collected[i+mM] < 2) { | |
591 | // if we haven't already collected 2 nonces for this sector | |
592 | if (ar_nr_resp[ar_nr_collected[i+mM]].ar != ar) { | |
593 | // Avoid duplicates... probably not necessary, ar should vary. | |
594 | if (ar_nr_collected[i+mM]==0) { | |
595 | // first nonce collect | |
596 | ar_nr_resp[i+mM].cuid = cuid; | |
597 | ar_nr_resp[i+mM].sector = cardAUTHSC; | |
598 | ar_nr_resp[i+mM].keytype = cardAUTHKEY; | |
599 | ar_nr_resp[i+mM].nonce = nonce; | |
600 | ar_nr_resp[i+mM].nr = nr; | |
601 | ar_nr_resp[i+mM].ar = ar; | |
602 | nonce1_count++; | |
603 | // add this nonce to first moebius nonce | |
604 | ar_nr_resp[i+ATTACK_KEY_COUNT].cuid = cuid; | |
605 | ar_nr_resp[i+ATTACK_KEY_COUNT].sector = cardAUTHSC; | |
606 | ar_nr_resp[i+ATTACK_KEY_COUNT].keytype = cardAUTHKEY; | |
607 | ar_nr_resp[i+ATTACK_KEY_COUNT].nonce = nonce; | |
608 | ar_nr_resp[i+ATTACK_KEY_COUNT].nr = nr; | |
609 | ar_nr_resp[i+ATTACK_KEY_COUNT].ar = ar; | |
610 | ar_nr_collected[i+ATTACK_KEY_COUNT]++; | |
611 | } else { // second nonce collect (std and moebius) | |
612 | ar_nr_resp[i+mM].nonce2 = nonce; | |
613 | ar_nr_resp[i+mM].nr2 = nr; | |
614 | ar_nr_resp[i+mM].ar2 = ar; | |
615 | if (!gettingMoebius) { | |
616 | nonce2_count++; | |
617 | // check if this was the last second nonce we need for std attack | |
618 | if ( nonce2_count == nonce1_count ) { | |
619 | // done collecting std test switch to moebius | |
620 | // first finish incrementing last sample | |
621 | ar_nr_collected[i+mM]++; | |
622 | // switch to moebius collection | |
623 | gettingMoebius = true; | |
624 | mM = ATTACK_KEY_COUNT; | |
625 | if (flags & FLAG_RANDOM_NONCE) { | |
626 | nonce = prand(); | |
627 | } else { | |
628 | nonce = nonce*7; | |
629 | } | |
630 | break; | |
631 | } | |
632 | } else { | |
633 | moebius_n_count++; | |
634 | // if we've collected all the nonces we need - finish. | |
635 | if (nonce1_count == moebius_n_count) finished = true; | |
636 | } | |
637 | } | |
638 | ar_nr_collected[i+mM]++; | |
639 | } | |
640 | } | |
641 | // we found right spot for this nonce stop looking | |
642 | break; | |
643 | } | |
644 | } | |
645 | } | |
646 | ||
647 | // --- crypto | |
648 | crypto1_word(pcs, nr , 1); | |
649 | cardRr = ar ^ crypto1_word(pcs, 0, 0); | |
650 | ||
651 | // test if auth OK | |
652 | if (cardRr != prng_successor(nonce, 64)){ | |
653 | if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x", | |
654 | cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B', | |
655 | cardRr, prng_successor(nonce, 64)); | |
656 | // Shouldn't we respond anything here? | |
657 | // Right now, we don't nack or anything, which causes the | |
658 | // reader to do a WUPA after a while. /Martin | |
659 | // -- which is the correct response. /piwi | |
660 | cardAUTHKEY = AUTHKEYNONE; // not authenticated | |
661 | cardSTATE_TO_IDLE(); | |
662 | break; | |
663 | } | |
664 | ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0); | |
665 | num_to_bytes(ans, 4, rAUTH_AT); | |
666 | EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); | |
667 | if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c.", cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B'); | |
668 | LED_C_ON(); | |
669 | cardSTATE = MFEMUL_WORK; | |
670 | break; | |
671 | } | |
672 | case MFEMUL_WRITEBL2:{ | |
673 | if (receivedCmd_len == 18) { | |
674 | mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec); | |
675 | if (HasValidCRC(receivedCmd_dec, receivedCmd_len)) { | |
676 | if (IsSectorTrailer(cardWRBL)) { | |
677 | emlGetMem(response, cardWRBL, 1); | |
678 | if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYA_WRITE)) { | |
679 | memcpy(receivedCmd_dec, response, 6); // don't change KeyA | |
680 | } | |
681 | if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYB_WRITE)) { | |
682 | memcpy(receivedCmd_dec+10, response+10, 6); // don't change KeyA | |
683 | } | |
684 | if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_AC_WRITE)) { | |
685 | memcpy(receivedCmd_dec+6, response+6, 4); // don't change AC bits | |
686 | } | |
687 | } else { | |
688 | if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_DATA_WRITE)) { | |
689 | memcpy(receivedCmd_dec, response, 16); // don't change anything | |
690 | } | |
691 | } | |
692 | emlSetMem(receivedCmd_dec, cardWRBL, 1); | |
693 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); // always ACK? | |
694 | cardSTATE = MFEMUL_WORK; | |
695 | break; | |
696 | } | |
697 | } | |
698 | cardSTATE_TO_IDLE(); | |
699 | break; | |
700 | } | |
701 | case MFEMUL_INTREG_INC:{ | |
702 | if (receivedCmd_len == 6) { | |
703 | mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans); | |
704 | if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { | |
705 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
706 | cardSTATE_TO_IDLE(); | |
707 | break; | |
708 | } | |
709 | cardINTREG = cardINTREG + ans; | |
710 | } | |
711 | cardSTATE = MFEMUL_WORK; | |
712 | break; | |
713 | } | |
714 | case MFEMUL_INTREG_DEC:{ | |
715 | if (receivedCmd_len == 6) { | |
716 | mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans); | |
717 | if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { | |
718 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
719 | cardSTATE_TO_IDLE(); | |
720 | break; | |
721 | } | |
722 | } | |
723 | cardINTREG = cardINTREG - ans; | |
724 | cardSTATE = MFEMUL_WORK; | |
725 | break; | |
726 | } | |
727 | case MFEMUL_INTREG_REST:{ | |
728 | mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans); | |
729 | if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { | |
730 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
731 | cardSTATE_TO_IDLE(); | |
732 | break; | |
733 | } | |
734 | cardSTATE = MFEMUL_WORK; | |
735 | break; | |
736 | } | |
737 | } | |
738 | button_pushed = BUTTON_PRESS(); | |
739 | } | |
740 | ||
741 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
742 | LEDsoff(); | |
743 | ||
744 | if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1) { | |
745 | for ( uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) { | |
746 | if (ar_nr_collected[i] == 2) { | |
747 | Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector); | |
748 | Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x", | |
749 | ar_nr_resp[i].cuid, //UID | |
750 | ar_nr_resp[i].nonce, //NT | |
751 | ar_nr_resp[i].nr, //NR1 | |
752 | ar_nr_resp[i].ar, //AR1 | |
753 | ar_nr_resp[i].nr2, //NR2 | |
754 | ar_nr_resp[i].ar2 //AR2 | |
755 | ); | |
756 | } | |
757 | } | |
758 | for ( uint8_t i = ATTACK_KEY_COUNT; i < ATTACK_KEY_COUNT*2; i++) { | |
759 | if (ar_nr_collected[i] == 2) { | |
760 | Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector); | |
761 | Dbprintf("../tools/mfkey/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x", | |
762 | ar_nr_resp[i].cuid, //UID | |
763 | ar_nr_resp[i].nonce, //NT | |
764 | ar_nr_resp[i].nr, //NR1 | |
765 | ar_nr_resp[i].ar, //AR1 | |
766 | ar_nr_resp[i].nonce2,//NT2 | |
767 | ar_nr_resp[i].nr2, //NR2 | |
768 | ar_nr_resp[i].ar2 //AR2 | |
769 | ); | |
770 | } | |
771 | } | |
772 | } | |
773 | if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", get_tracing(), BigBuf_get_traceLen()); | |
774 | ||
775 | if(flags & FLAG_INTERACTIVE) { // Interactive mode flag, means we need to send ACK | |
776 | //Send the collected ar_nr in the response | |
777 | cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,button_pushed,0,&ar_nr_resp,sizeof(ar_nr_resp)); | |
778 | } | |
779 | } |