]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Jonathan Westhues, split Nov 2006 | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // Routines to support ISO 14443B. This includes both the reader software and | |
9 | // the `fake tag' modes. | |
10 | //----------------------------------------------------------------------------- | |
11 | ||
12 | #include "proxmark3.h" | |
13 | #include "apps.h" | |
14 | #include "util.h" | |
15 | #include "string.h" | |
16 | ||
17 | #include "iso14443crc.h" | |
18 | ||
19 | #define RECEIVE_SAMPLES_TIMEOUT 2000 | |
20 | #define ISO14443B_DMA_BUFFER_SIZE 256 | |
21 | ||
22 | //============================================================================= | |
23 | // An ISO 14443 Type B tag. We listen for commands from the reader, using | |
24 | // a UART kind of thing that's implemented in software. When we get a | |
25 | // frame (i.e., a group of bytes between SOF and EOF), we check the CRC. | |
26 | // If it's good, then we can do something appropriate with it, and send | |
27 | // a response. | |
28 | //============================================================================= | |
29 | ||
30 | //----------------------------------------------------------------------------- | |
31 | // Code up a string of octets at layer 2 (including CRC, we don't generate | |
32 | // that here) so that they can be transmitted to the reader. Doesn't transmit | |
33 | // them yet, just leaves them ready to send in ToSend[]. | |
34 | //----------------------------------------------------------------------------- | |
35 | static void CodeIso14443bAsTag(const uint8_t *cmd, int len) | |
36 | { | |
37 | int i; | |
38 | ||
39 | ToSendReset(); | |
40 | ||
41 | // Transmit a burst of ones, as the initial thing that lets the | |
42 | // reader get phase sync. This (TR1) must be > 80/fs, per spec, | |
43 | // but tag that I've tried (a Paypass) exceeds that by a fair bit, | |
44 | // so I will too. | |
45 | for(i = 0; i < 20; i++) { | |
46 | ToSendStuffBit(1); | |
47 | ToSendStuffBit(1); | |
48 | ToSendStuffBit(1); | |
49 | ToSendStuffBit(1); | |
50 | } | |
51 | ||
52 | // Send SOF. | |
53 | for(i = 0; i < 10; i++) { | |
54 | ToSendStuffBit(0); | |
55 | ToSendStuffBit(0); | |
56 | ToSendStuffBit(0); | |
57 | ToSendStuffBit(0); | |
58 | } | |
59 | for(i = 0; i < 2; i++) { | |
60 | ToSendStuffBit(1); | |
61 | ToSendStuffBit(1); | |
62 | ToSendStuffBit(1); | |
63 | ToSendStuffBit(1); | |
64 | } | |
65 | ||
66 | for(i = 0; i < len; i++) { | |
67 | int j; | |
68 | uint8_t b = cmd[i]; | |
69 | ||
70 | // Start bit | |
71 | ToSendStuffBit(0); | |
72 | ToSendStuffBit(0); | |
73 | ToSendStuffBit(0); | |
74 | ToSendStuffBit(0); | |
75 | ||
76 | // Data bits | |
77 | for(j = 0; j < 8; j++) { | |
78 | if(b & 1) { | |
79 | ToSendStuffBit(1); | |
80 | ToSendStuffBit(1); | |
81 | ToSendStuffBit(1); | |
82 | ToSendStuffBit(1); | |
83 | } else { | |
84 | ToSendStuffBit(0); | |
85 | ToSendStuffBit(0); | |
86 | ToSendStuffBit(0); | |
87 | ToSendStuffBit(0); | |
88 | } | |
89 | b >>= 1; | |
90 | } | |
91 | ||
92 | // Stop bit | |
93 | ToSendStuffBit(1); | |
94 | ToSendStuffBit(1); | |
95 | ToSendStuffBit(1); | |
96 | ToSendStuffBit(1); | |
97 | } | |
98 | ||
99 | // Send EOF. | |
100 | for(i = 0; i < 10; i++) { | |
101 | ToSendStuffBit(0); | |
102 | ToSendStuffBit(0); | |
103 | ToSendStuffBit(0); | |
104 | ToSendStuffBit(0); | |
105 | } | |
106 | for(i = 0; i < 2; i++) { | |
107 | ToSendStuffBit(1); | |
108 | ToSendStuffBit(1); | |
109 | ToSendStuffBit(1); | |
110 | ToSendStuffBit(1); | |
111 | } | |
112 | ||
113 | // Convert from last byte pos to length | |
114 | ToSendMax++; | |
115 | } | |
116 | ||
117 | //----------------------------------------------------------------------------- | |
118 | // The software UART that receives commands from the reader, and its state | |
119 | // variables. | |
120 | //----------------------------------------------------------------------------- | |
121 | static struct { | |
122 | enum { | |
123 | STATE_UNSYNCD, | |
124 | STATE_GOT_FALLING_EDGE_OF_SOF, | |
125 | STATE_AWAITING_START_BIT, | |
126 | STATE_RECEIVING_DATA | |
127 | } state; | |
128 | uint16_t shiftReg; | |
129 | int bitCnt; | |
130 | int byteCnt; | |
131 | int byteCntMax; | |
132 | int posCnt; | |
133 | uint8_t *output; | |
134 | } Uart; | |
135 | ||
136 | /* Receive & handle a bit coming from the reader. | |
137 | * | |
138 | * This function is called 4 times per bit (every 2 subcarrier cycles). | |
139 | * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us | |
140 | * | |
141 | * LED handling: | |
142 | * LED A -> ON once we have received the SOF and are expecting the rest. | |
143 | * LED A -> OFF once we have received EOF or are in error state or unsynced | |
144 | * | |
145 | * Returns: true if we received a EOF | |
146 | * false if we are still waiting for some more | |
147 | */ | |
148 | static RAMFUNC int Handle14443bUartBit(uint8_t bit) | |
149 | { | |
150 | switch(Uart.state) { | |
151 | case STATE_UNSYNCD: | |
152 | if(!bit) { | |
153 | // we went low, so this could be the beginning | |
154 | // of an SOF | |
155 | Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; | |
156 | Uart.posCnt = 0; | |
157 | Uart.bitCnt = 0; | |
158 | } | |
159 | break; | |
160 | ||
161 | case STATE_GOT_FALLING_EDGE_OF_SOF: | |
162 | Uart.posCnt++; | |
163 | if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit | |
164 | if(bit) { | |
165 | if(Uart.bitCnt > 9) { | |
166 | // we've seen enough consecutive | |
167 | // zeros that it's a valid SOF | |
168 | Uart.posCnt = 0; | |
169 | Uart.byteCnt = 0; | |
170 | Uart.state = STATE_AWAITING_START_BIT; | |
171 | LED_A_ON(); // Indicate we got a valid SOF | |
172 | } else { | |
173 | // didn't stay down long enough | |
174 | // before going high, error | |
175 | Uart.state = STATE_UNSYNCD; | |
176 | } | |
177 | } else { | |
178 | // do nothing, keep waiting | |
179 | } | |
180 | Uart.bitCnt++; | |
181 | } | |
182 | if(Uart.posCnt >= 4) Uart.posCnt = 0; | |
183 | if(Uart.bitCnt > 12) { | |
184 | // Give up if we see too many zeros without | |
185 | // a one, too. | |
186 | LED_A_OFF(); | |
187 | Uart.state = STATE_UNSYNCD; | |
188 | } | |
189 | break; | |
190 | ||
191 | case STATE_AWAITING_START_BIT: | |
192 | Uart.posCnt++; | |
193 | if(bit) { | |
194 | if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs | |
195 | // stayed high for too long between | |
196 | // characters, error | |
197 | Uart.state = STATE_UNSYNCD; | |
198 | } | |
199 | } else { | |
200 | // falling edge, this starts the data byte | |
201 | Uart.posCnt = 0; | |
202 | Uart.bitCnt = 0; | |
203 | Uart.shiftReg = 0; | |
204 | Uart.state = STATE_RECEIVING_DATA; | |
205 | } | |
206 | break; | |
207 | ||
208 | case STATE_RECEIVING_DATA: | |
209 | Uart.posCnt++; | |
210 | if(Uart.posCnt == 2) { | |
211 | // time to sample a bit | |
212 | Uart.shiftReg >>= 1; | |
213 | if(bit) { | |
214 | Uart.shiftReg |= 0x200; | |
215 | } | |
216 | Uart.bitCnt++; | |
217 | } | |
218 | if(Uart.posCnt >= 4) { | |
219 | Uart.posCnt = 0; | |
220 | } | |
221 | if(Uart.bitCnt == 10) { | |
222 | if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) | |
223 | { | |
224 | // this is a data byte, with correct | |
225 | // start and stop bits | |
226 | Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; | |
227 | Uart.byteCnt++; | |
228 | ||
229 | if(Uart.byteCnt >= Uart.byteCntMax) { | |
230 | // Buffer overflowed, give up | |
231 | LED_A_OFF(); | |
232 | Uart.state = STATE_UNSYNCD; | |
233 | } else { | |
234 | // so get the next byte now | |
235 | Uart.posCnt = 0; | |
236 | Uart.state = STATE_AWAITING_START_BIT; | |
237 | } | |
238 | } else if (Uart.shiftReg == 0x000) { | |
239 | // this is an EOF byte | |
240 | LED_A_OFF(); // Finished receiving | |
241 | Uart.state = STATE_UNSYNCD; | |
242 | if (Uart.byteCnt != 0) { | |
243 | return TRUE; | |
244 | } | |
245 | } else { | |
246 | // this is an error | |
247 | LED_A_OFF(); | |
248 | Uart.state = STATE_UNSYNCD; | |
249 | } | |
250 | } | |
251 | break; | |
252 | ||
253 | default: | |
254 | LED_A_OFF(); | |
255 | Uart.state = STATE_UNSYNCD; | |
256 | break; | |
257 | } | |
258 | ||
259 | return FALSE; | |
260 | } | |
261 | ||
262 | ||
263 | static void UartReset() | |
264 | { | |
265 | Uart.byteCntMax = MAX_FRAME_SIZE; | |
266 | Uart.state = STATE_UNSYNCD; | |
267 | Uart.byteCnt = 0; | |
268 | Uart.bitCnt = 0; | |
269 | } | |
270 | ||
271 | ||
272 | static void UartInit(uint8_t *data) | |
273 | { | |
274 | Uart.output = data; | |
275 | UartReset(); | |
276 | } | |
277 | ||
278 | ||
279 | //----------------------------------------------------------------------------- | |
280 | // Receive a command (from the reader to us, where we are the simulated tag), | |
281 | // and store it in the given buffer, up to the given maximum length. Keeps | |
282 | // spinning, waiting for a well-framed command, until either we get one | |
283 | // (returns TRUE) or someone presses the pushbutton on the board (FALSE). | |
284 | // | |
285 | // Assume that we're called with the SSC (to the FPGA) and ADC path set | |
286 | // correctly. | |
287 | //----------------------------------------------------------------------------- | |
288 | static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len) | |
289 | { | |
290 | // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen | |
291 | // only, since we are receiving, not transmitting). | |
292 | // Signal field is off with the appropriate LED | |
293 | LED_D_OFF(); | |
294 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); | |
295 | ||
296 | // Now run a `software UART' on the stream of incoming samples. | |
297 | UartInit(received); | |
298 | ||
299 | for(;;) { | |
300 | WDT_HIT(); | |
301 | ||
302 | if(BUTTON_PRESS()) return FALSE; | |
303 | ||
304 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
305 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
306 | for(uint8_t mask = 0x80; mask != 0x00; mask >>= 1) { | |
307 | if(Handle14443bUartBit(b & mask)) { | |
308 | *len = Uart.byteCnt; | |
309 | return TRUE; | |
310 | } | |
311 | } | |
312 | } | |
313 | } | |
314 | ||
315 | return FALSE; | |
316 | } | |
317 | ||
318 | //----------------------------------------------------------------------------- | |
319 | // Main loop of simulated tag: receive commands from reader, decide what | |
320 | // response to send, and send it. | |
321 | //----------------------------------------------------------------------------- | |
322 | void SimulateIso14443bTag(void) | |
323 | { | |
324 | // the only commands we understand is WUPB, AFI=0, Select All, N=1: | |
325 | static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; // WUPB | |
326 | // ... and REQB, AFI=0, Normal Request, N=1: | |
327 | static const uint8_t cmd2[] = { 0x05, 0x00, 0x00, 0x71, 0xFF }; // REQB | |
328 | // ... and HLTB | |
329 | static const uint8_t cmd3[] = { 0x50, 0xff, 0xff, 0xff, 0xff }; // HLTB | |
330 | // ... and ATTRIB | |
331 | static const uint8_t cmd4[] = { 0x1D, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB | |
332 | ||
333 | // ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922, | |
334 | // supports only 106kBit/s in both directions, max frame size = 32Bytes, | |
335 | // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported: | |
336 | static const uint8_t response1[] = { | |
337 | 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22, | |
338 | 0x00, 0x21, 0x85, 0x5e, 0xd7 | |
339 | }; | |
340 | // response to HLTB and ATTRIB | |
341 | static const uint8_t response2[] = {0x00, 0x78, 0xF0}; | |
342 | ||
343 | ||
344 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
345 | ||
346 | clear_trace(); | |
347 | set_tracing(TRUE); | |
348 | ||
349 | const uint8_t *resp; | |
350 | uint8_t *respCode; | |
351 | uint16_t respLen, respCodeLen; | |
352 | ||
353 | // allocate command receive buffer | |
354 | BigBuf_free(); | |
355 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); | |
356 | ||
357 | uint16_t len; | |
358 | uint16_t cmdsRecvd = 0; | |
359 | ||
360 | // prepare the (only one) tag answer: | |
361 | CodeIso14443bAsTag(response1, sizeof(response1)); | |
362 | uint8_t *resp1Code = BigBuf_malloc(ToSendMax); | |
363 | memcpy(resp1Code, ToSend, ToSendMax); | |
364 | uint16_t resp1CodeLen = ToSendMax; | |
365 | ||
366 | // prepare the (other) tag answer: | |
367 | CodeIso14443bAsTag(response2, sizeof(response2)); | |
368 | uint8_t *resp2Code = BigBuf_malloc(ToSendMax); | |
369 | memcpy(resp2Code, ToSend, ToSendMax); | |
370 | uint16_t resp2CodeLen = ToSendMax; | |
371 | ||
372 | // We need to listen to the high-frequency, peak-detected path. | |
373 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
374 | FpgaSetupSsc(); | |
375 | ||
376 | cmdsRecvd = 0; | |
377 | ||
378 | for(;;) { | |
379 | ||
380 | if(!GetIso14443bCommandFromReader(receivedCmd, &len)) { | |
381 | Dbprintf("button pressed, received %d commands", cmdsRecvd); | |
382 | break; | |
383 | } | |
384 | ||
385 | if (tracing) { | |
386 | uint8_t parity[MAX_PARITY_SIZE]; | |
387 | LogTrace(receivedCmd, len, 0, 0, parity, TRUE); | |
388 | } | |
389 | ||
390 | // Good, look at the command now. | |
391 | if ( (len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len) == 0) | |
392 | || (len == sizeof(cmd2) && memcmp(receivedCmd, cmd2, len) == 0) ) { | |
393 | resp = response1; | |
394 | respLen = sizeof(response1); | |
395 | respCode = resp1Code; | |
396 | respCodeLen = resp1CodeLen; | |
397 | } else if ( (len == sizeof(cmd3) && receivedCmd[0] == cmd3[0]) | |
398 | || (len == sizeof(cmd4) && receivedCmd[0] == cmd4[0]) ) { | |
399 | resp = response2; | |
400 | respLen = sizeof(response2); | |
401 | respCode = resp2Code; | |
402 | respCodeLen = resp2CodeLen; | |
403 | } else { | |
404 | Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd); | |
405 | // And print whether the CRC fails, just for good measure | |
406 | uint8_t b1, b2; | |
407 | if (len >= 3){ // if crc exists | |
408 | ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2); | |
409 | if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) { | |
410 | // Not so good, try again. | |
411 | DbpString("+++CRC fail"); | |
412 | ||
413 | } else { | |
414 | DbpString("CRC passes"); | |
415 | } | |
416 | } | |
417 | //get rid of compiler warning | |
418 | respCodeLen = 0; | |
419 | resp = response1; | |
420 | respLen = 0; | |
421 | respCode = resp1Code; | |
422 | //don't crash at new command just wait and see if reader will send other new cmds. | |
423 | //break; | |
424 | } | |
425 | ||
426 | cmdsRecvd++; | |
427 | ||
428 | if(cmdsRecvd > 0x30) { | |
429 | DbpString("many commands later..."); | |
430 | break; | |
431 | } | |
432 | ||
433 | if(respCodeLen <= 0) continue; | |
434 | ||
435 | // Modulate BPSK | |
436 | // Signal field is off with the appropriate LED | |
437 | LED_D_OFF(); | |
438 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK); | |
439 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
440 | FpgaSetupSsc(); | |
441 | ||
442 | // Transmit the response. | |
443 | uint16_t i = 0; | |
444 | for(;;) { | |
445 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
446 | uint8_t b = respCode[i]; | |
447 | ||
448 | AT91C_BASE_SSC->SSC_THR = b; | |
449 | ||
450 | i++; | |
451 | if(i > respCodeLen) { | |
452 | break; | |
453 | } | |
454 | } | |
455 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
456 | volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
457 | (void)b; | |
458 | } | |
459 | } | |
460 | ||
461 | // trace the response: | |
462 | if (tracing) { | |
463 | uint8_t parity[MAX_PARITY_SIZE]; | |
464 | LogTrace(resp, respLen, 0, 0, parity, FALSE); | |
465 | } | |
466 | ||
467 | } | |
468 | } | |
469 | ||
470 | //============================================================================= | |
471 | // An ISO 14443 Type B reader. We take layer two commands, code them | |
472 | // appropriately, and then send them to the tag. We then listen for the | |
473 | // tag's response, which we leave in the buffer to be demodulated on the | |
474 | // PC side. | |
475 | //============================================================================= | |
476 | ||
477 | static struct { | |
478 | enum { | |
479 | DEMOD_UNSYNCD, | |
480 | DEMOD_PHASE_REF_TRAINING, | |
481 | DEMOD_AWAITING_FALLING_EDGE_OF_SOF, | |
482 | DEMOD_GOT_FALLING_EDGE_OF_SOF, | |
483 | DEMOD_AWAITING_START_BIT, | |
484 | DEMOD_RECEIVING_DATA | |
485 | } state; | |
486 | int bitCount; | |
487 | int posCount; | |
488 | int thisBit; | |
489 | /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented. | |
490 | int metric; | |
491 | int metricN; | |
492 | */ | |
493 | uint16_t shiftReg; | |
494 | uint8_t *output; | |
495 | int len; | |
496 | int sumI; | |
497 | int sumQ; | |
498 | } Demod; | |
499 | ||
500 | /* | |
501 | * Handles reception of a bit from the tag | |
502 | * | |
503 | * This function is called 2 times per bit (every 4 subcarrier cycles). | |
504 | * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us | |
505 | * | |
506 | * LED handling: | |
507 | * LED C -> ON once we have received the SOF and are expecting the rest. | |
508 | * LED C -> OFF once we have received EOF or are unsynced | |
509 | * | |
510 | * Returns: true if we received a EOF | |
511 | * false if we are still waiting for some more | |
512 | * | |
513 | */ | |
514 | static RAMFUNC int Handle14443bSamplesDemod(int ci, int cq) | |
515 | { | |
516 | int v; | |
517 | ||
518 | // The soft decision on the bit uses an estimate of just the | |
519 | // quadrant of the reference angle, not the exact angle. | |
520 | #define MAKE_SOFT_DECISION() { \ | |
521 | if(Demod.sumI > 0) { \ | |
522 | v = ci; \ | |
523 | } else { \ | |
524 | v = -ci; \ | |
525 | } \ | |
526 | if(Demod.sumQ > 0) { \ | |
527 | v += cq; \ | |
528 | } else { \ | |
529 | v -= cq; \ | |
530 | } \ | |
531 | } | |
532 | ||
533 | #define SUBCARRIER_DETECT_THRESHOLD 8 | |
534 | ||
535 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by abs(ci) + abs(cq) | |
536 | /* #define CHECK_FOR_SUBCARRIER() { \ | |
537 | v = ci; \ | |
538 | if(v < 0) v = -v; \ | |
539 | if(cq > 0) { \ | |
540 | v += cq; \ | |
541 | } else { \ | |
542 | v -= cq; \ | |
543 | } \ | |
544 | } | |
545 | */ | |
546 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) | |
547 | #define CHECK_FOR_SUBCARRIER() { \ | |
548 | if(ci < 0) { \ | |
549 | if(cq < 0) { /* ci < 0, cq < 0 */ \ | |
550 | if (cq < ci) { \ | |
551 | v = -cq - (ci >> 1); \ | |
552 | } else { \ | |
553 | v = -ci - (cq >> 1); \ | |
554 | } \ | |
555 | } else { /* ci < 0, cq >= 0 */ \ | |
556 | if (cq < -ci) { \ | |
557 | v = -ci + (cq >> 1); \ | |
558 | } else { \ | |
559 | v = cq - (ci >> 1); \ | |
560 | } \ | |
561 | } \ | |
562 | } else { \ | |
563 | if(cq < 0) { /* ci >= 0, cq < 0 */ \ | |
564 | if (-cq < ci) { \ | |
565 | v = ci - (cq >> 1); \ | |
566 | } else { \ | |
567 | v = -cq + (ci >> 1); \ | |
568 | } \ | |
569 | } else { /* ci >= 0, cq >= 0 */ \ | |
570 | if (cq < ci) { \ | |
571 | v = ci + (cq >> 1); \ | |
572 | } else { \ | |
573 | v = cq + (ci >> 1); \ | |
574 | } \ | |
575 | } \ | |
576 | } \ | |
577 | } | |
578 | ||
579 | switch(Demod.state) { | |
580 | case DEMOD_UNSYNCD: | |
581 | CHECK_FOR_SUBCARRIER(); | |
582 | if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected | |
583 | Demod.state = DEMOD_PHASE_REF_TRAINING; | |
584 | Demod.sumI = ci; | |
585 | Demod.sumQ = cq; | |
586 | Demod.posCount = 1; | |
587 | } | |
588 | break; | |
589 | ||
590 | case DEMOD_PHASE_REF_TRAINING: | |
591 | if(Demod.posCount < 8) { | |
592 | CHECK_FOR_SUBCARRIER(); | |
593 | if (v > SUBCARRIER_DETECT_THRESHOLD) { | |
594 | // set the reference phase (will code a logic '1') by averaging over 32 1/fs. | |
595 | // note: synchronization time > 80 1/fs | |
596 | Demod.sumI += ci; | |
597 | Demod.sumQ += cq; | |
598 | Demod.posCount++; | |
599 | } else { // subcarrier lost | |
600 | Demod.state = DEMOD_UNSYNCD; | |
601 | } | |
602 | } else { | |
603 | Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; | |
604 | } | |
605 | break; | |
606 | ||
607 | case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: | |
608 | MAKE_SOFT_DECISION(); | |
609 | if(v < 0) { // logic '0' detected | |
610 | Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; | |
611 | Demod.posCount = 0; // start of SOF sequence | |
612 | } else { | |
613 | if(Demod.posCount > 200/4) { // maximum length of TR1 = 200 1/fs | |
614 | Demod.state = DEMOD_UNSYNCD; | |
615 | } | |
616 | } | |
617 | Demod.posCount++; | |
618 | break; | |
619 | ||
620 | case DEMOD_GOT_FALLING_EDGE_OF_SOF: | |
621 | Demod.posCount++; | |
622 | MAKE_SOFT_DECISION(); | |
623 | if(v > 0) { | |
624 | if(Demod.posCount < 9*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges | |
625 | Demod.state = DEMOD_UNSYNCD; | |
626 | } else { | |
627 | LED_C_ON(); // Got SOF | |
628 | Demod.state = DEMOD_AWAITING_START_BIT; | |
629 | Demod.posCount = 0; | |
630 | Demod.len = 0; | |
631 | /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented. | |
632 | Demod.metricN = 0; | |
633 | Demod.metric = 0; | |
634 | */ | |
635 | } | |
636 | } else { | |
637 | if(Demod.posCount > 12*2) { // low phase of SOF too long (> 12 etu) | |
638 | Demod.state = DEMOD_UNSYNCD; | |
639 | LED_C_OFF(); | |
640 | } | |
641 | } | |
642 | break; | |
643 | ||
644 | case DEMOD_AWAITING_START_BIT: | |
645 | Demod.posCount++; | |
646 | MAKE_SOFT_DECISION(); | |
647 | if(v > 0) { | |
648 | if(Demod.posCount > 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs | |
649 | Demod.state = DEMOD_UNSYNCD; | |
650 | LED_C_OFF(); | |
651 | } | |
652 | } else { // start bit detected | |
653 | Demod.bitCount = 0; | |
654 | Demod.posCount = 1; // this was the first half | |
655 | Demod.thisBit = v; | |
656 | Demod.shiftReg = 0; | |
657 | Demod.state = DEMOD_RECEIVING_DATA; | |
658 | } | |
659 | break; | |
660 | ||
661 | case DEMOD_RECEIVING_DATA: | |
662 | MAKE_SOFT_DECISION(); | |
663 | if(Demod.posCount == 0) { // first half of bit | |
664 | Demod.thisBit = v; | |
665 | Demod.posCount = 1; | |
666 | } else { // second half of bit | |
667 | Demod.thisBit += v; | |
668 | ||
669 | /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented. | |
670 | if(Demod.thisBit > 0) { | |
671 | Demod.metric += Demod.thisBit; | |
672 | } else { | |
673 | Demod.metric -= Demod.thisBit; | |
674 | } | |
675 | (Demod.metricN)++; | |
676 | */ | |
677 | ||
678 | Demod.shiftReg >>= 1; | |
679 | if(Demod.thisBit > 0) { // logic '1' | |
680 | Demod.shiftReg |= 0x200; | |
681 | } | |
682 | ||
683 | Demod.bitCount++; | |
684 | if(Demod.bitCount == 10) { | |
685 | uint16_t s = Demod.shiftReg; | |
686 | if((s & 0x200) && !(s & 0x001)) { // stop bit == '1', start bit == '0' | |
687 | uint8_t b = (s >> 1); | |
688 | Demod.output[Demod.len] = b; | |
689 | Demod.len++; | |
690 | Demod.state = DEMOD_AWAITING_START_BIT; | |
691 | } else { | |
692 | Demod.state = DEMOD_UNSYNCD; | |
693 | LED_C_OFF(); | |
694 | if(s == 0x000) { | |
695 | // This is EOF (start, stop and all data bits == '0' | |
696 | return TRUE; | |
697 | } | |
698 | } | |
699 | } | |
700 | Demod.posCount = 0; | |
701 | } | |
702 | break; | |
703 | ||
704 | default: | |
705 | Demod.state = DEMOD_UNSYNCD; | |
706 | LED_C_OFF(); | |
707 | break; | |
708 | } | |
709 | ||
710 | return FALSE; | |
711 | } | |
712 | ||
713 | ||
714 | static void DemodReset() | |
715 | { | |
716 | // Clear out the state of the "UART" that receives from the tag. | |
717 | Demod.len = 0; | |
718 | Demod.state = DEMOD_UNSYNCD; | |
719 | Demod.posCount = 0; | |
720 | memset(Demod.output, 0x00, MAX_FRAME_SIZE); | |
721 | } | |
722 | ||
723 | ||
724 | static void DemodInit(uint8_t *data) | |
725 | { | |
726 | Demod.output = data; | |
727 | DemodReset(); | |
728 | } | |
729 | ||
730 | ||
731 | /* | |
732 | * Demodulate the samples we received from the tag, also log to tracebuffer | |
733 | * quiet: set to 'TRUE' to disable debug output | |
734 | */ | |
735 | static void GetSamplesFor14443bDemod(int n, bool quiet) | |
736 | { | |
737 | int max = 0; | |
738 | bool gotFrame = FALSE; | |
739 | int lastRxCounter, ci, cq, samples = 0; | |
740 | ||
741 | // Allocate memory from BigBuf for some buffers | |
742 | // free all previous allocations first | |
743 | BigBuf_free(); | |
744 | ||
745 | // The response (tag -> reader) that we're receiving. | |
746 | uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE); | |
747 | ||
748 | // The DMA buffer, used to stream samples from the FPGA | |
749 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE); | |
750 | ||
751 | // Set up the demodulator for tag -> reader responses. | |
752 | DemodInit(receivedResponse); | |
753 | ||
754 | // Setup and start DMA. | |
755 | FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE); | |
756 | ||
757 | int8_t *upTo = dmaBuf; | |
758 | lastRxCounter = ISO14443B_DMA_BUFFER_SIZE; | |
759 | ||
760 | // Signal field is ON with the appropriate LED: | |
761 | LED_D_ON(); | |
762 | // And put the FPGA in the appropriate mode | |
763 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ); | |
764 | ||
765 | for(;;) { | |
766 | int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR; | |
767 | if(behindBy > max) max = behindBy; | |
768 | ||
769 | while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1)) > 2) { | |
770 | ci = upTo[0]; | |
771 | cq = upTo[1]; | |
772 | upTo += 2; | |
773 | if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) { | |
774 | upTo = dmaBuf; | |
775 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
776 | AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE; | |
777 | } | |
778 | lastRxCounter -= 2; | |
779 | if(lastRxCounter <= 0) { | |
780 | lastRxCounter += ISO14443B_DMA_BUFFER_SIZE; | |
781 | } | |
782 | ||
783 | samples += 2; | |
784 | ||
785 | if(Handle14443bSamplesDemod(ci, cq)) { | |
786 | gotFrame = TRUE; | |
787 | break; | |
788 | } | |
789 | } | |
790 | ||
791 | if(samples > n || gotFrame) { | |
792 | break; | |
793 | } | |
794 | } | |
795 | ||
796 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; | |
797 | ||
798 | if (!quiet) Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", max, samples, gotFrame, Demod.len, Demod.sumI, Demod.sumQ); | |
799 | //Tracing | |
800 | if (tracing && Demod.len > 0) { | |
801 | uint8_t parity[MAX_PARITY_SIZE]; | |
802 | LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE); | |
803 | } | |
804 | } | |
805 | ||
806 | ||
807 | //----------------------------------------------------------------------------- | |
808 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
809 | //----------------------------------------------------------------------------- | |
810 | static void TransmitFor14443b(void) | |
811 | { | |
812 | int c; | |
813 | ||
814 | FpgaSetupSsc(); | |
815 | ||
816 | while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
817 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
818 | } | |
819 | ||
820 | // Signal field is ON with the appropriate Red LED | |
821 | LED_D_ON(); | |
822 | // Signal we are transmitting with the Green LED | |
823 | LED_B_ON(); | |
824 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
825 | ||
826 | for(c = 0; c < 10;) { | |
827 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
828 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
829 | c++; | |
830 | } | |
831 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
832 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
833 | (void)r; | |
834 | } | |
835 | WDT_HIT(); | |
836 | } | |
837 | ||
838 | c = 0; | |
839 | for(;;) { | |
840 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
841 | AT91C_BASE_SSC->SSC_THR = ToSend[c]; | |
842 | c++; | |
843 | if(c >= ToSendMax) { | |
844 | break; | |
845 | } | |
846 | } | |
847 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
848 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
849 | (void)r; | |
850 | } | |
851 | WDT_HIT(); | |
852 | } | |
853 | LED_B_OFF(); // Finished sending | |
854 | } | |
855 | ||
856 | ||
857 | //----------------------------------------------------------------------------- | |
858 | // Code a layer 2 command (string of octets, including CRC) into ToSend[], | |
859 | // so that it is ready to transmit to the tag using TransmitFor14443b(). | |
860 | //----------------------------------------------------------------------------- | |
861 | static void CodeIso14443bAsReader(const uint8_t *cmd, int len) | |
862 | { | |
863 | int i, j; | |
864 | uint8_t b; | |
865 | ||
866 | ToSendReset(); | |
867 | ||
868 | // Establish initial reference level | |
869 | for(i = 0; i < 40; i++) { | |
870 | ToSendStuffBit(1); | |
871 | } | |
872 | // Send SOF | |
873 | for(i = 0; i < 10; i++) { | |
874 | ToSendStuffBit(0); | |
875 | } | |
876 | ||
877 | for(i = 0; i < len; i++) { | |
878 | // Stop bits/EGT | |
879 | ToSendStuffBit(1); | |
880 | ToSendStuffBit(1); | |
881 | // Start bit | |
882 | ToSendStuffBit(0); | |
883 | // Data bits | |
884 | b = cmd[i]; | |
885 | for(j = 0; j < 8; j++) { | |
886 | if(b & 1) { | |
887 | ToSendStuffBit(1); | |
888 | } else { | |
889 | ToSendStuffBit(0); | |
890 | } | |
891 | b >>= 1; | |
892 | } | |
893 | } | |
894 | // Send EOF | |
895 | ToSendStuffBit(1); | |
896 | for(i = 0; i < 10; i++) { | |
897 | ToSendStuffBit(0); | |
898 | } | |
899 | for(i = 0; i < 8; i++) { | |
900 | ToSendStuffBit(1); | |
901 | } | |
902 | ||
903 | // And then a little more, to make sure that the last character makes | |
904 | // it out before we switch to rx mode. | |
905 | for(i = 0; i < 24; i++) { | |
906 | ToSendStuffBit(1); | |
907 | } | |
908 | ||
909 | // Convert from last character reference to length | |
910 | ToSendMax++; | |
911 | } | |
912 | ||
913 | ||
914 | /** | |
915 | Convenience function to encode, transmit and trace iso 14443b comms | |
916 | **/ | |
917 | static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len) | |
918 | { | |
919 | CodeIso14443bAsReader(cmd, len); | |
920 | TransmitFor14443b(); | |
921 | if (tracing) { | |
922 | uint8_t parity[MAX_PARITY_SIZE]; | |
923 | LogTrace(cmd,len, 0, 0, parity, TRUE); | |
924 | } | |
925 | } | |
926 | ||
927 | ||
928 | //----------------------------------------------------------------------------- | |
929 | // Read a SRI512 ISO 14443B tag. | |
930 | // | |
931 | // SRI512 tags are just simple memory tags, here we're looking at making a dump | |
932 | // of the contents of the memory. No anticollision algorithm is done, we assume | |
933 | // we have a single tag in the field. | |
934 | // | |
935 | // I tried to be systematic and check every answer of the tag, every CRC, etc... | |
936 | //----------------------------------------------------------------------------- | |
937 | void ReadSTMemoryIso14443b(uint32_t dwLast) | |
938 | { | |
939 | uint8_t i = 0x00; | |
940 | ||
941 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
942 | // Make sure that we start from off, since the tags are stateful; | |
943 | // confusing things will happen if we don't reset them between reads. | |
944 | LED_D_OFF(); | |
945 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
946 | SpinDelay(200); | |
947 | ||
948 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
949 | FpgaSetupSsc(); | |
950 | ||
951 | // Now give it time to spin up. | |
952 | // Signal field is on with the appropriate LED | |
953 | LED_D_ON(); | |
954 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ); | |
955 | SpinDelay(200); | |
956 | ||
957 | clear_trace(); | |
958 | set_tracing(TRUE); | |
959 | ||
960 | // First command: wake up the tag using the INITIATE command | |
961 | uint8_t cmd1[] = {0x06, 0x00, 0x97, 0x5b}; | |
962 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); | |
963 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); | |
964 | ||
965 | if (Demod.len == 0) { | |
966 | DbpString("No response from tag"); | |
967 | return; | |
968 | } else { | |
969 | Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x", | |
970 | Demod.output[0], Demod.output[1], Demod.output[2]); | |
971 | } | |
972 | ||
973 | // There is a response, SELECT the uid | |
974 | DbpString("Now SELECT tag:"); | |
975 | cmd1[0] = 0x0E; // 0x0E is SELECT | |
976 | cmd1[1] = Demod.output[0]; | |
977 | ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]); | |
978 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); | |
979 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); | |
980 | if (Demod.len != 3) { | |
981 | Dbprintf("Expected 3 bytes from tag, got %d", Demod.len); | |
982 | return; | |
983 | } | |
984 | // Check the CRC of the answer: | |
985 | ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]); | |
986 | if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) { | |
987 | DbpString("CRC Error reading select response."); | |
988 | return; | |
989 | } | |
990 | // Check response from the tag: should be the same UID as the command we just sent: | |
991 | if (cmd1[1] != Demod.output[0]) { | |
992 | Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1[1], Demod.output[0]); | |
993 | return; | |
994 | } | |
995 | ||
996 | // Tag is now selected, | |
997 | // First get the tag's UID: | |
998 | cmd1[0] = 0x0B; | |
999 | ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]); | |
1000 | CodeAndTransmit14443bAsReader(cmd1, 3); // Only first three bytes for this one | |
1001 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); | |
1002 | if (Demod.len != 10) { | |
1003 | Dbprintf("Expected 10 bytes from tag, got %d", Demod.len); | |
1004 | return; | |
1005 | } | |
1006 | // The check the CRC of the answer (use cmd1 as temporary variable): | |
1007 | ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]); | |
1008 | if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) { | |
1009 | Dbprintf("CRC Error reading block! Expected: %04x got: %04x", | |
1010 | (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]); | |
1011 | // Do not return;, let's go on... (we should retry, maybe ?) | |
1012 | } | |
1013 | Dbprintf("Tag UID (64 bits): %08x %08x", | |
1014 | (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4], | |
1015 | (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]); | |
1016 | ||
1017 | // Now loop to read all 16 blocks, address from 0 to last block | |
1018 | Dbprintf("Tag memory dump, block 0 to %d", dwLast); | |
1019 | cmd1[0] = 0x08; | |
1020 | i = 0x00; | |
1021 | dwLast++; | |
1022 | for (;;) { | |
1023 | if (i == dwLast) { | |
1024 | DbpString("System area block (0xff):"); | |
1025 | i = 0xff; | |
1026 | } | |
1027 | cmd1[1] = i; | |
1028 | ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]); | |
1029 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); | |
1030 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); | |
1031 | if (Demod.len != 6) { // Check if we got an answer from the tag | |
1032 | DbpString("Expected 6 bytes from tag, got less..."); | |
1033 | return; | |
1034 | } | |
1035 | // The check the CRC of the answer (use cmd1 as temporary variable): | |
1036 | ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]); | |
1037 | if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) { | |
1038 | Dbprintf("CRC Error reading block! Expected: %04x got: %04x", | |
1039 | (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]); | |
1040 | // Do not return;, let's go on... (we should retry, maybe ?) | |
1041 | } | |
1042 | // Now print out the memory location: | |
1043 | Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i, | |
1044 | (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0], | |
1045 | (Demod.output[4]<<8)+Demod.output[5]); | |
1046 | if (i == 0xff) { | |
1047 | break; | |
1048 | } | |
1049 | i++; | |
1050 | } | |
1051 | } | |
1052 | ||
1053 | ||
1054 | //============================================================================= | |
1055 | // Finally, the `sniffer' combines elements from both the reader and | |
1056 | // simulated tag, to show both sides of the conversation. | |
1057 | //============================================================================= | |
1058 | ||
1059 | //----------------------------------------------------------------------------- | |
1060 | // Record the sequence of commands sent by the reader to the tag, with | |
1061 | // triggering so that we start recording at the point that the tag is moved | |
1062 | // near the reader. | |
1063 | //----------------------------------------------------------------------------- | |
1064 | /* | |
1065 | * Memory usage for this function, (within BigBuf) | |
1066 | * Last Received command (reader->tag) - MAX_FRAME_SIZE | |
1067 | * Last Received command (tag->reader) - MAX_FRAME_SIZE | |
1068 | * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE | |
1069 | * Demodulated samples received - all the rest | |
1070 | */ | |
1071 | void RAMFUNC SnoopIso14443b(void) | |
1072 | { | |
1073 | // We won't start recording the frames that we acquire until we trigger; | |
1074 | // a good trigger condition to get started is probably when we see a | |
1075 | // response from the tag. | |
1076 | int triggered = TRUE; // TODO: set and evaluate trigger condition | |
1077 | ||
1078 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1079 | BigBuf_free(); | |
1080 | ||
1081 | clear_trace(); | |
1082 | set_tracing(TRUE); | |
1083 | ||
1084 | // The DMA buffer, used to stream samples from the FPGA | |
1085 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE); | |
1086 | int lastRxCounter; | |
1087 | int8_t *upTo; | |
1088 | int ci, cq; | |
1089 | int maxBehindBy = 0; | |
1090 | ||
1091 | // Count of samples received so far, so that we can include timing | |
1092 | // information in the trace buffer. | |
1093 | int samples = 0; | |
1094 | ||
1095 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1096 | UartInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1097 | ||
1098 | // Print some debug information about the buffer sizes | |
1099 | Dbprintf("Snooping buffers initialized:"); | |
1100 | Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen()); | |
1101 | Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE); | |
1102 | Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE); | |
1103 | Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE); | |
1104 | ||
1105 | // Signal field is off, no reader signal, no tag signal | |
1106 | LEDsoff(); | |
1107 | ||
1108 | // And put the FPGA in the appropriate mode | |
1109 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); | |
1110 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1111 | ||
1112 | // Setup for the DMA. | |
1113 | FpgaSetupSsc(); | |
1114 | upTo = dmaBuf; | |
1115 | lastRxCounter = ISO14443B_DMA_BUFFER_SIZE; | |
1116 | FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE); | |
1117 | uint8_t parity[MAX_PARITY_SIZE]; | |
1118 | ||
1119 | bool TagIsActive = FALSE; | |
1120 | bool ReaderIsActive = FALSE; | |
1121 | ||
1122 | // And now we loop, receiving samples. | |
1123 | for(;;) { | |
1124 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & | |
1125 | (ISO14443B_DMA_BUFFER_SIZE-1); | |
1126 | if(behindBy > maxBehindBy) { | |
1127 | maxBehindBy = behindBy; | |
1128 | } | |
1129 | ||
1130 | if(behindBy < 2) continue; | |
1131 | ||
1132 | ci = upTo[0]; | |
1133 | cq = upTo[1]; | |
1134 | upTo += 2; | |
1135 | lastRxCounter -= 2; | |
1136 | if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) { | |
1137 | upTo = dmaBuf; | |
1138 | lastRxCounter += ISO14443B_DMA_BUFFER_SIZE; | |
1139 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; | |
1140 | AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE; | |
1141 | WDT_HIT(); | |
1142 | if(behindBy > (9*ISO14443B_DMA_BUFFER_SIZE/10)) { // TODO: understand whether we can increase/decrease as we want or not? | |
1143 | Dbprintf("blew circular buffer! behindBy=%d", behindBy); | |
1144 | break; | |
1145 | } | |
1146 | if(!tracing) { | |
1147 | DbpString("Reached trace limit"); | |
1148 | break; | |
1149 | } | |
1150 | if(BUTTON_PRESS()) { | |
1151 | DbpString("cancelled"); | |
1152 | break; | |
1153 | } | |
1154 | } | |
1155 | ||
1156 | samples += 2; | |
1157 | ||
1158 | if (!TagIsActive) { // no need to try decoding reader data if the tag is sending | |
1159 | if(Handle14443bUartBit(ci & 0x01)) { | |
1160 | if(triggered && tracing) { | |
1161 | LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE); | |
1162 | } | |
1163 | /* And ready to receive another command. */ | |
1164 | UartReset(); | |
1165 | /* And also reset the demod code, which might have been */ | |
1166 | /* false-triggered by the commands from the reader. */ | |
1167 | DemodReset(); | |
1168 | } | |
1169 | if(Handle14443bUartBit(cq & 0x01)) { | |
1170 | if(triggered && tracing) { | |
1171 | LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE); | |
1172 | } | |
1173 | /* And ready to receive another command. */ | |
1174 | UartReset(); | |
1175 | /* And also reset the demod code, which might have been */ | |
1176 | /* false-triggered by the commands from the reader. */ | |
1177 | DemodReset(); | |
1178 | } | |
1179 | ReaderIsActive = (Uart.state > STATE_GOT_FALLING_EDGE_OF_SOF); | |
1180 | } | |
1181 | ||
1182 | if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time | |
1183 | if(Handle14443bSamplesDemod(ci | 0x01, cq | 0x01)) { | |
1184 | ||
1185 | //Use samples as a time measurement | |
1186 | if(tracing) | |
1187 | { | |
1188 | uint8_t parity[MAX_PARITY_SIZE]; | |
1189 | LogTrace(Demod.output, Demod.len, samples, samples, parity, FALSE); | |
1190 | } | |
1191 | triggered = TRUE; | |
1192 | ||
1193 | // And ready to receive another response. | |
1194 | DemodReset(); | |
1195 | } | |
1196 | TagIsActive = (Demod.state > DEMOD_GOT_FALLING_EDGE_OF_SOF); | |
1197 | } | |
1198 | ||
1199 | } | |
1200 | ||
1201 | FpgaDisableSscDma(); | |
1202 | LEDsoff(); | |
1203 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; | |
1204 | DbpString("Snoop statistics:"); | |
1205 | Dbprintf(" Max behind by: %i", maxBehindBy); | |
1206 | Dbprintf(" Uart State: %x", Uart.state); | |
1207 | Dbprintf(" Uart ByteCnt: %i", Uart.byteCnt); | |
1208 | Dbprintf(" Uart ByteCntMax: %i", Uart.byteCntMax); | |
1209 | Dbprintf(" Trace length: %i", BigBuf_get_traceLen()); | |
1210 | } | |
1211 | ||
1212 | ||
1213 | /* | |
1214 | * Send raw command to tag ISO14443B | |
1215 | * @Input | |
1216 | * datalen len of buffer data | |
1217 | * recv bool when true wait for data from tag and send to client | |
1218 | * powerfield bool leave the field on when true | |
1219 | * data buffer with byte to send | |
1220 | * | |
1221 | * @Output | |
1222 | * none | |
1223 | * | |
1224 | */ | |
1225 | void SendRawCommand14443B(uint32_t datalen, uint32_t recv, uint8_t powerfield, uint8_t data[]) | |
1226 | { | |
1227 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1228 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1229 | FpgaSetupSsc(); | |
1230 | ||
1231 | if (datalen){ | |
1232 | set_tracing(TRUE); | |
1233 | ||
1234 | CodeAndTransmit14443bAsReader(data, datalen); | |
1235 | ||
1236 | if(recv) { | |
1237 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); | |
1238 | uint16_t iLen = MIN(Demod.len, USB_CMD_DATA_SIZE); | |
1239 | cmd_send(CMD_ACK, iLen, 0, 0, Demod.output, iLen); | |
1240 | } | |
1241 | } | |
1242 | ||
1243 | if(!powerfield) { | |
1244 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1245 | LED_D_OFF(); | |
1246 | } | |
1247 | } | |
1248 |