]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Copyright (C) 2009 Michael Gernoth <michael at gernoth.net> | |
3 | // Copyright (C) 2010 iZsh <izsh at fail0verflow.com> | |
4 | // | |
5 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
6 | // at your option, any later version. See the LICENSE.txt file for the text of | |
7 | // the license. | |
8 | //----------------------------------------------------------------------------- | |
9 | // UI utilities | |
10 | //----------------------------------------------------------------------------- | |
11 | ||
12 | #include <stdarg.h> | |
13 | #include <stdlib.h> | |
14 | #include <stdio.h> | |
15 | #include <stdbool.h> | |
16 | #include <time.h> | |
17 | #include <readline/readline.h> | |
18 | #include <pthread.h> | |
19 | #include "loclass/cipherutils.h" | |
20 | #include "ui.h" | |
21 | #include "cmdmain.h" | |
22 | #include "cmddata.h" | |
23 | #include "graph.h" | |
24 | //#include <liquid/liquid.h> | |
25 | #define M_PI 3.14159265358979323846264338327 | |
26 | ||
27 | double CursorScaleFactor; | |
28 | int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64; | |
29 | int offline; | |
30 | int flushAfterWrite = 0; | |
31 | extern pthread_mutex_t print_lock; | |
32 | ||
33 | static char *logfilename = "proxmark3.log"; | |
34 | ||
35 | void PrintAndLog(char *fmt, ...) | |
36 | { | |
37 | char *saved_line; | |
38 | int saved_point; | |
39 | va_list argptr, argptr2; | |
40 | static FILE *logfile = NULL; | |
41 | static int logging = 1; | |
42 | ||
43 | // lock this section to avoid interlacing prints from different threats | |
44 | pthread_mutex_lock(&print_lock); | |
45 | ||
46 | if (logging && !logfile) { | |
47 | logfile = fopen(logfilename, "a"); | |
48 | if (!logfile) { | |
49 | fprintf(stderr, "Can't open logfile, logging disabled!\n"); | |
50 | logging=0; | |
51 | } | |
52 | } | |
53 | ||
54 | int need_hack = (rl_readline_state & RL_STATE_READCMD) > 0; | |
55 | ||
56 | if (need_hack) { | |
57 | saved_point = rl_point; | |
58 | saved_line = rl_copy_text(0, rl_end); | |
59 | rl_save_prompt(); | |
60 | rl_replace_line("", 0); | |
61 | rl_redisplay(); | |
62 | } | |
63 | ||
64 | va_start(argptr, fmt); | |
65 | va_copy(argptr2, argptr); | |
66 | vprintf(fmt, argptr); | |
67 | printf(" "); // cleaning prompt | |
68 | va_end(argptr); | |
69 | printf("\n"); | |
70 | ||
71 | if (need_hack) { | |
72 | rl_restore_prompt(); | |
73 | rl_replace_line(saved_line, 0); | |
74 | rl_point = saved_point; | |
75 | rl_redisplay(); | |
76 | free(saved_line); | |
77 | } | |
78 | ||
79 | if (logging && logfile) { | |
80 | vfprintf(logfile, fmt, argptr2); | |
81 | fprintf(logfile,"\n"); | |
82 | fflush(logfile); | |
83 | } | |
84 | va_end(argptr2); | |
85 | ||
86 | if (flushAfterWrite == 1) { | |
87 | fflush(NULL); | |
88 | } | |
89 | //release lock | |
90 | pthread_mutex_unlock(&print_lock); | |
91 | } | |
92 | ||
93 | void SetLogFilename(char *fn) | |
94 | { | |
95 | logfilename = fn; | |
96 | } | |
97 | ||
98 | int manchester_decode( int * data, const size_t len, uint8_t * dataout, size_t dataoutlen){ | |
99 | ||
100 | int bitlength = 0; | |
101 | int clock, high, low, startindex; | |
102 | low = startindex = 0; | |
103 | high = 1; | |
104 | uint8_t * bitStream = (uint8_t* ) malloc(sizeof(uint8_t) * dataoutlen); | |
105 | memset(bitStream, 0x00, dataoutlen); | |
106 | ||
107 | /* Detect high and lows */ | |
108 | DetectHighLowInGraph(&high, &low, TRUE); | |
109 | ||
110 | /* get clock */ | |
111 | clock = GetClock("",0, 0); | |
112 | ||
113 | startindex = DetectFirstTransition(data, len, high); | |
114 | ||
115 | if (high != 1) | |
116 | // decode "raw" | |
117 | bitlength = ManchesterConvertFrom255(data, len, bitStream, dataoutlen, high, low, clock, startindex); | |
118 | else | |
119 | // decode manchester | |
120 | bitlength = ManchesterConvertFrom1(data, len, bitStream, dataoutlen, clock, startindex); | |
121 | ||
122 | memcpy(dataout, bitStream, bitlength); | |
123 | free(bitStream); | |
124 | return bitlength; | |
125 | } | |
126 | ||
127 | int DetectFirstTransition(const int * data, const size_t len, int threshold){ | |
128 | ||
129 | int i = 0; | |
130 | /* now look for the first threshold */ | |
131 | for (; i < len; ++i) { | |
132 | if (data[i] == threshold) { | |
133 | break; | |
134 | } | |
135 | } | |
136 | return i; | |
137 | } | |
138 | ||
139 | int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int dataoutlen, int high, int low, int clock, int startIndex){ | |
140 | ||
141 | int i, j, z, hithigh, hitlow, bitIndex, startType; | |
142 | i = 0; | |
143 | bitIndex = 0; | |
144 | ||
145 | int isDamp = 0; | |
146 | int damplimit = (int)((high / 2) * 0.3); | |
147 | int dampHi = (high/2)+damplimit; | |
148 | int dampLow = (high/2)-damplimit; | |
149 | int firstST = 0; | |
150 | ||
151 | // i = clock frame of data | |
152 | for (; i < (int)(len/clock); i++) | |
153 | { | |
154 | hithigh = 0; | |
155 | hitlow = 0; | |
156 | startType = -1; | |
157 | z = startIndex + (i*clock); | |
158 | isDamp = 0; | |
159 | ||
160 | /* Find out if we hit both high and low peaks */ | |
161 | for (j = 0; j < clock; j++) | |
162 | { | |
163 | if (data[z+j] == high){ | |
164 | hithigh = 1; | |
165 | if ( startType == -1) | |
166 | startType = 1; | |
167 | } | |
168 | ||
169 | if (data[z+j] == low ){ | |
170 | hitlow = 1; | |
171 | if ( startType == -1) | |
172 | startType = 0; | |
173 | } | |
174 | ||
175 | if (hithigh && hitlow) | |
176 | break; | |
177 | } | |
178 | ||
179 | // No high value found, are we in a dampening field? | |
180 | if ( !hithigh ) { | |
181 | //PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j); | |
182 | for (j = 0; j < clock; j++) { | |
183 | if ( | |
184 | (data[z+j] <= dampHi && data[z+j] >= dampLow) | |
185 | ){ | |
186 | isDamp++; | |
187 | } | |
188 | } | |
189 | } | |
190 | ||
191 | /* Manchester Switching.. | |
192 | 0: High -> Low | |
193 | 1: Low -> High | |
194 | */ | |
195 | if (startType == 0) | |
196 | dataout[bitIndex++] = 1; | |
197 | else if (startType == 1) | |
198 | dataout[bitIndex++] = 0; | |
199 | else | |
200 | dataout[bitIndex++] = 2; | |
201 | ||
202 | if ( isDamp > clock/2 ) { | |
203 | firstST++; | |
204 | } | |
205 | ||
206 | if ( firstST == 4) | |
207 | break; | |
208 | if ( bitIndex >= dataoutlen-1 ) | |
209 | break; | |
210 | } | |
211 | return bitIndex; | |
212 | } | |
213 | ||
214 | int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout,int dataoutlen, int clock, int startIndex){ | |
215 | ||
216 | int i,j, bitindex, lc, tolerance, warnings; | |
217 | warnings = 0; | |
218 | int upperlimit = len*2/clock+8; | |
219 | i = startIndex; | |
220 | j = 0; | |
221 | tolerance = clock/4; | |
222 | uint8_t decodedArr[len]; | |
223 | ||
224 | /* Detect duration between 2 successive transitions */ | |
225 | for (bitindex = 1; i < len; i++) { | |
226 | ||
227 | if (data[i-1] != data[i]) { | |
228 | lc = i - startIndex; | |
229 | startIndex = i; | |
230 | ||
231 | // Error check: if bitindex becomes too large, we do not | |
232 | // have a Manchester encoded bitstream or the clock is really wrong! | |
233 | if (bitindex > upperlimit ) { | |
234 | PrintAndLog("Error: the clock you gave is probably wrong, aborting."); | |
235 | return 0; | |
236 | } | |
237 | // Then switch depending on lc length: | |
238 | // Tolerance is 1/4 of clock rate (arbitrary) | |
239 | if (abs((lc-clock)/2) < tolerance) { | |
240 | // Short pulse : either "1" or "0" | |
241 | decodedArr[bitindex++] = data[i-1]; | |
242 | } else if (abs(lc-clock) < tolerance) { | |
243 | // Long pulse: either "11" or "00" | |
244 | decodedArr[bitindex++] = data[i-1]; | |
245 | decodedArr[bitindex++] = data[i-1]; | |
246 | } else { | |
247 | ++warnings; | |
248 | PrintAndLog("Warning: Manchester decode error for pulse width detection."); | |
249 | if (warnings > 10) { | |
250 | PrintAndLog("Error: too many detection errors, aborting."); | |
251 | return 0; | |
252 | } | |
253 | } | |
254 | } | |
255 | } | |
256 | ||
257 | /* | |
258 | * We have a decodedArr of "01" ("1") or "10" ("0") | |
259 | * parse it into final decoded dataout | |
260 | */ | |
261 | for (i = 0; i < bitindex; i += 2) { | |
262 | ||
263 | if ((decodedArr[i] == 0) && (decodedArr[i+1] == 1)) { | |
264 | dataout[j++] = 1; | |
265 | } else if ((decodedArr[i] == 1) && (decodedArr[i+1] == 0)) { | |
266 | dataout[j++] = 0; | |
267 | } else { | |
268 | i++; | |
269 | warnings++; | |
270 | PrintAndLog("Unsynchronized, resync..."); | |
271 | PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)"); | |
272 | ||
273 | if (warnings > 10) { | |
274 | PrintAndLog("Error: too many decode errors, aborting."); | |
275 | return 0; | |
276 | } | |
277 | } | |
278 | } | |
279 | ||
280 | PrintAndLog("%s", sprint_hex(dataout, j)); | |
281 | return j; | |
282 | } | |
283 | ||
284 | void ManchesterDiffDecodedString(const uint8_t* bitstream, size_t len, uint8_t invert){ | |
285 | /* | |
286 | * We have a bitstream of "01" ("1") or "10" ("0") | |
287 | * parse it into final decoded bitstream | |
288 | */ | |
289 | int i, j, warnings; | |
290 | uint8_t decodedArr[(len/2)+1]; | |
291 | ||
292 | j = warnings = 0; | |
293 | ||
294 | uint8_t lastbit = 0; | |
295 | ||
296 | for (i = 0; i < len; i += 2) { | |
297 | ||
298 | uint8_t first = bitstream[i]; | |
299 | uint8_t second = bitstream[i+1]; | |
300 | ||
301 | if ( first == second ) { | |
302 | ++i; | |
303 | ++warnings; | |
304 | if (warnings > 10) { | |
305 | PrintAndLog("Error: too many decode errors, aborting."); | |
306 | return; | |
307 | } | |
308 | } | |
309 | else if ( lastbit != first ) { | |
310 | decodedArr[j++] = 0 ^ invert; | |
311 | } | |
312 | else { | |
313 | decodedArr[j++] = 1 ^ invert; | |
314 | } | |
315 | lastbit = second; | |
316 | } | |
317 | ||
318 | PrintAndLog("%s", sprint_hex(decodedArr, j)); | |
319 | } | |
320 | ||
321 | void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){ | |
322 | ||
323 | PrintAndLog(" Manchester decoded : %d bits", len); | |
324 | ||
325 | uint8_t mod = len % blocksize; | |
326 | uint8_t div = len / blocksize; | |
327 | int i; | |
328 | ||
329 | // Now output the bitstream to the scrollback by line of 16 bits | |
330 | for (i = 0; i < div*blocksize; i+=blocksize) { | |
331 | PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) ); | |
332 | } | |
333 | ||
334 | if ( mod > 0 ) | |
335 | PrintAndLog(" %s", sprint_bin(bitStream+i, mod) ); | |
336 | } | |
337 | ||
338 | /* Sliding DFT | |
339 | Smooths out | |
340 | */ | |
341 | void iceFsk2(int * data, const size_t len){ | |
342 | ||
343 | int i, j; | |
344 | int * output = (int* ) malloc(sizeof(int) * len); | |
345 | memset(output, 0x00, len); | |
346 | ||
347 | // for (i=0; i<len-5; ++i){ | |
348 | // for ( j=1; j <=5; ++j) { | |
349 | // output[i] += data[i*j]; | |
350 | // } | |
351 | // output[i] /= 5; | |
352 | // } | |
353 | int rest = 127; | |
354 | int tmp =0; | |
355 | for (i=0; i<len; ++i){ | |
356 | if ( data[i] < 127) | |
357 | output[i] = 0; | |
358 | else { | |
359 | tmp = (100 * (data[i]-rest)) / rest; | |
360 | output[i] = (tmp > 60)? 100:0; | |
361 | } | |
362 | } | |
363 | ||
364 | for (j=0; j<len; ++j) | |
365 | data[j] = output[j]; | |
366 | ||
367 | free(output); | |
368 | } | |
369 | ||
370 | void iceFsk3(int * data, const size_t len){ | |
371 | ||
372 | int i,j; | |
373 | ||
374 | int * output = (int* ) malloc(sizeof(int) * len); | |
375 | memset(output, 0x00, len); | |
376 | float fc = 0.1125f; // center frequency | |
377 | size_t adjustedLen = len; | |
378 | ||
379 | // create very simple low-pass filter to remove images (2nd-order Butterworth) | |
380 | float complex iir_buf[3] = {0,0,0}; | |
381 | float b[3] = {0.003621681514929, 0.007243363029857, 0.003621681514929}; | |
382 | float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023}; | |
383 | ||
384 | float sample = 0; // input sample read from file | |
385 | float complex x_prime = 1.0f; // save sample for estimating frequency | |
386 | float complex x; | |
387 | ||
388 | for (i=0; i<adjustedLen; ++i) { | |
389 | ||
390 | sample = data[i]+128; | |
391 | ||
392 | // remove DC offset and mix to complex baseband | |
393 | x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i ); | |
394 | ||
395 | // apply low-pass filter, removing spectral image (IIR using direct-form II) | |
396 | iir_buf[2] = iir_buf[1]; | |
397 | iir_buf[1] = iir_buf[0]; | |
398 | iir_buf[0] = x - a[1]*iir_buf[1] - a[2]*iir_buf[2]; | |
399 | x = b[0]*iir_buf[0] + | |
400 | b[1]*iir_buf[1] + | |
401 | b[2]*iir_buf[2]; | |
402 | ||
403 | // compute instantaneous frequency by looking at phase difference | |
404 | // between adjacent samples | |
405 | float freq = cargf(x*conjf(x_prime)); | |
406 | x_prime = x; // retain this sample for next iteration | |
407 | ||
408 | output[i] =(freq > 0)? 10 : -10; | |
409 | } | |
410 | ||
411 | // show data | |
412 | for (j=0; j<adjustedLen; ++j) | |
413 | data[j] = output[j]; | |
414 | ||
415 | CmdLtrim("30"); | |
416 | adjustedLen -= 30; | |
417 | ||
418 | // zero crossings. | |
419 | for (j=0; j<adjustedLen; ++j){ | |
420 | if ( data[j] == 10) break; | |
421 | } | |
422 | int startOne =j; | |
423 | ||
424 | for (;j<adjustedLen; ++j){ | |
425 | if ( data[j] == -10 ) break; | |
426 | } | |
427 | int stopOne = j-1; | |
428 | ||
429 | int fieldlen = stopOne-startOne; | |
430 | ||
431 | fieldlen = (fieldlen == 39 || fieldlen == 41)? 40 : fieldlen; | |
432 | fieldlen = (fieldlen == 59 || fieldlen == 51)? 50 : fieldlen; | |
433 | if ( fieldlen != 40 && fieldlen != 50){ | |
434 | printf("Detected field Length: %d \n", fieldlen); | |
435 | printf("Can only handle 40 or 50. Aborting...\n"); | |
436 | return; | |
437 | } | |
438 | ||
439 | // FSK sequence start == 000111 | |
440 | int startPos = 0; | |
441 | for (i =0; i<adjustedLen; ++i){ | |
442 | int dec = 0; | |
443 | for ( j = 0; j < 6*fieldlen; ++j){ | |
444 | dec += data[i + j]; | |
445 | } | |
446 | if (dec == 0) { | |
447 | startPos = i; | |
448 | break; | |
449 | } | |
450 | } | |
451 | ||
452 | printf("000111 position: %d \n", startPos); | |
453 | ||
454 | startPos += 6*fieldlen+5; | |
455 | ||
456 | int bit =0; | |
457 | printf("BINARY\n"); | |
458 | printf("R/40 : "); | |
459 | for (i =startPos ; i < adjustedLen; i += 40){ | |
460 | bit = data[i]>0 ? 1:0; | |
461 | printf("%d", bit ); | |
462 | } | |
463 | printf("\n"); | |
464 | ||
465 | printf("R/50 : "); | |
466 | for (i =startPos ; i < adjustedLen; i += 50){ | |
467 | bit = data[i]>0 ? 1:0; | |
468 | printf("%d", bit ); } | |
469 | printf("\n"); | |
470 | ||
471 | free(output); | |
472 | } | |
473 | ||
474 | float complex cexpf (float complex Z) | |
475 | { | |
476 | float complex Res; | |
477 | double rho = exp (__real__ Z); | |
478 | __real__ Res = rho * cosf(__imag__ Z); | |
479 | __imag__ Res = rho * sinf(__imag__ Z); | |
480 | return Res; | |
481 | } |