]> cvs.zerfleddert.de Git - proxmark3-svn/blame_incremental - armsrc/util.c
Update README.md
[proxmark3-svn] / armsrc / util.c
... / ...
CommitLineData
1//-----------------------------------------------------------------------------
2// Jonathan Westhues, Sept 2005
3//
4// This code is licensed to you under the terms of the GNU GPL, version 2 or,
5// at your option, any later version. See the LICENSE.txt file for the text of
6// the license.
7//-----------------------------------------------------------------------------
8// Utility functions used in many places, not specific to any piece of code.
9//-----------------------------------------------------------------------------
10
11#include "proxmark3.h"
12#include "util.h"
13#include "string.h"
14#include "apps.h"
15#include "BigBuf.h"
16
17
18
19void print_result(char *name, uint8_t *buf, size_t len) {
20 uint8_t *p = buf;
21
22 if ( len % 16 == 0 ) {
23 for(; p-buf < len; p += 16)
24 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
25 name,
26 p-buf,
27 len,
28 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]
29 );
30 }
31 else {
32 for(; p-buf < len; p += 8)
33 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x", name, p-buf, len, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
34 }
35}
36
37size_t nbytes(size_t nbits) {
38 return (nbits >> 3)+((nbits % 8) > 0);
39}
40
41uint32_t SwapBits(uint32_t value, int nrbits) {
42 int i;
43 uint32_t newvalue = 0;
44 for(i = 0; i < nrbits; i++) {
45 newvalue ^= ((value >> i) & 1) << (nrbits - 1 - i);
46 }
47 return newvalue;
48}
49
50void num_to_bytes(uint64_t n, size_t len, uint8_t* dest)
51{
52 while (len--) {
53 dest[len] = (uint8_t) n;
54 n >>= 8;
55 }
56}
57
58uint64_t bytes_to_num(uint8_t* src, size_t len)
59{
60 uint64_t num = 0;
61 while (len--)
62 {
63 num = (num << 8) | (*src);
64 src++;
65 }
66 return num;
67}
68
69// RotateLeft - Ultralight, Desfire
70void rol(uint8_t *data, const size_t len){
71 uint8_t first = data[0];
72 for (size_t i = 0; i < len-1; i++) {
73 data[i] = data[i+1];
74 }
75 data[len-1] = first;
76}
77void lsl (uint8_t *data, size_t len) {
78 for (size_t n = 0; n < len - 1; n++) {
79 data[n] = (data[n] << 1) | (data[n+1] >> 7);
80 }
81 data[len - 1] <<= 1;
82}
83
84void LEDsoff()
85{
86 LED_A_OFF();
87 LED_B_OFF();
88 LED_C_OFF();
89 LED_D_OFF();
90}
91
92void LEDson()
93{
94 LED_A_ON();
95 LED_B_ON();
96 LED_C_ON();
97 LED_D_ON();
98}
99
100void LEDsinvert()
101{
102 LED_A_INV();
103 LED_B_INV();
104 LED_C_INV();
105 LED_D_INV();
106}
107
108// LEDs: R(C) O(A) G(B) -- R(D) [1, 2, 4 and 8]
109void LED(int led, int ms)
110{
111 if (led & LED_RED)
112 LED_C_ON();
113 if (led & LED_ORANGE)
114 LED_A_ON();
115 if (led & LED_GREEN)
116 LED_B_ON();
117 if (led & LED_RED2)
118 LED_D_ON();
119
120 if (!ms)
121 return;
122
123 SpinDelay(ms);
124
125 if (led & LED_RED)
126 LED_C_OFF();
127 if (led & LED_ORANGE)
128 LED_A_OFF();
129 if (led & LED_GREEN)
130 LED_B_OFF();
131 if (led & LED_RED2)
132 LED_D_OFF();
133}
134
135
136// Determine if a button is double clicked, single clicked,
137// not clicked, or held down (for ms || 1sec)
138// In general, don't use this function unless you expect a
139// double click, otherwise it will waste 500ms -- use BUTTON_HELD instead
140int BUTTON_CLICKED(int ms) {
141 // Up to 500ms in between clicks to mean a double click
142 int ticks = (48000 * (ms ? ms : 1000)) >> 10;
143
144 // If we're not even pressed, forget about it!
145 if (!BUTTON_PRESS())
146 return BUTTON_NO_CLICK;
147
148 // Borrow a PWM unit for my real-time clock
149 AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
150 // 48 MHz / 1024 gives 46.875 kHz
151 AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
152 AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
153 AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
154
155 uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
156
157 int letoff = 0;
158 for(;;)
159 {
160 uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
161
162 // We haven't let off the button yet
163 if (!letoff)
164 {
165 // We just let it off!
166 if (!BUTTON_PRESS())
167 {
168 letoff = 1;
169
170 // reset our timer for 500ms
171 start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
172 ticks = (48000 * (500)) >> 10;
173 }
174
175 // Still haven't let it off
176 else
177 // Have we held down a full second?
178 if (now == (uint16_t)(start + ticks))
179 return BUTTON_HOLD;
180 }
181
182 // We already let off, did we click again?
183 else
184 // Sweet, double click!
185 if (BUTTON_PRESS())
186 return BUTTON_DOUBLE_CLICK;
187
188 // Have we ran out of time to double click?
189 else
190 if (now == (uint16_t)(start + ticks))
191 // At least we did a single click
192 return BUTTON_SINGLE_CLICK;
193
194 WDT_HIT();
195 }
196
197 // We should never get here
198 return BUTTON_ERROR;
199}
200
201// Determine if a button is held down
202int BUTTON_HELD(int ms) {
203 // If button is held for one second
204 int ticks = (48000 * (ms ? ms : 1000)) >> 10;
205
206 // If we're not even pressed, forget about it!
207 if (!BUTTON_PRESS())
208 return BUTTON_NO_CLICK;
209
210 // Borrow a PWM unit for my real-time clock
211 AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
212 // 48 MHz / 1024 gives 46.875 kHz
213 AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
214 AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
215 AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
216
217 uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
218
219 for(;;) {
220 uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
221
222 // As soon as our button let go, we didn't hold long enough
223 if (!BUTTON_PRESS())
224 return BUTTON_SINGLE_CLICK;
225
226 // Have we waited the full second?
227 else if (now == (uint16_t)(start + ticks))
228 return BUTTON_HOLD;
229
230 WDT_HIT();
231 }
232
233 // We should never get here
234 return BUTTON_ERROR;
235}
236
237// attempt at high resolution microsecond timer
238// beware: timer counts in 21.3uS increments (1024/48Mhz)
239void SpinDelayUs(int us) {
240 int ticks = (48*us) >> 10;
241
242 // Borrow a PWM unit for my real-time clock
243 AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
244 // 48 MHz / 1024 gives 46.875 kHz
245 AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
246 AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
247 AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
248
249 uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
250
251 for(;;) {
252 uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
253 if (now == (uint16_t)(start + ticks))
254 return;
255
256 WDT_HIT();
257 }
258}
259
260void SpinDelay(int ms) {
261 // convert to uS and call microsecond delay function
262 SpinDelayUs(ms*1000);
263}
264
265/* Similar to FpgaGatherVersion this formats stored version information
266 * into a string representation. It takes a pointer to the struct version_information,
267 * verifies the magic properties, then stores a formatted string, prefixed by
268 * prefix in dst.
269 */
270void FormatVersionInformation(char *dst, int len, const char *prefix, void *version_information)
271{
272 struct version_information *v = (struct version_information*)version_information;
273 dst[0] = 0;
274 strncat(dst, prefix, len-1);
275 if(v->magic != VERSION_INFORMATION_MAGIC) {
276 strncat(dst, "Missing/Invalid version information\n", len - strlen(dst) - 1);
277 return;
278 }
279 if(v->versionversion != 1) {
280 strncat(dst, "Version information not understood\n", len - strlen(dst) - 1);
281 return;
282 }
283 if(!v->present) {
284 strncat(dst, "Version information not available\n", len - strlen(dst) - 1);
285 return;
286 }
287
288 strncat(dst, v->gitversion, len - strlen(dst) - 1);
289 if(v->clean == 0) {
290 strncat(dst, "-unclean", len - strlen(dst) - 1);
291 } else if(v->clean == 2) {
292 strncat(dst, "-suspect", len - strlen(dst) - 1);
293 }
294
295 strncat(dst, " ", len - strlen(dst) - 1);
296 strncat(dst, v->buildtime, len - strlen(dst) - 1);
297 strncat(dst, "\n", len - strlen(dst) - 1);
298}
299
300
301// -------------------------------------------------------------------------
302// timer lib
303// -------------------------------------------------------------------------
304// test procedure:
305//
306// ti = GetTickCount();
307// SpinDelay(1000);
308// ti = GetTickCount() - ti;
309// Dbprintf("timer(1s): %d t=%d", ti, GetTickCount());
310
311void StartTickCount() {
312 // This timer is based on the slow clock. The slow clock frequency is between 22kHz and 40kHz.
313 // We can determine the actual slow clock frequency by looking at the Main Clock Frequency Register.
314 uint16_t mainf = AT91C_BASE_PMC->PMC_MCFR & 0xffff; // = 16 * main clock frequency (16MHz) / slow clock frequency
315 // set RealTimeCounter divider to count at 1kHz:
316 AT91C_BASE_RTTC->RTTC_RTMR = AT91C_RTTC_RTTRST | ((256000 + (mainf/2)) / mainf);
317 // note: worst case precision is approx 2.5%
318}
319
320
321/*
322* Get the current count.
323*/
324uint32_t RAMFUNC GetTickCount(void) {
325 return AT91C_BASE_RTTC->RTTC_RTVR;// was * 2;
326}
327
328
329// -------------------------------------------------------------------------
330// microseconds timer
331// -------------------------------------------------------------------------
332void StartCountUS(void) {
333 AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
334// AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC1XC1S_TIOA0;
335 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
336
337 // fast clock
338 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
339 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
340 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
341 AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
342 AT91C_BASE_TC0->TC_RA = 1;
343 AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
344
345 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable
346 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from timer 0
347
348 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN;
349 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN;
350 AT91C_BASE_TCB->TCB_BCR = 1;
351 }
352
353
354uint32_t RAMFUNC GetCountUS(void) {
355 return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV * 2) / 3); //was /15) * 10);
356}
357
358
359static uint32_t GlobalUsCounter = 0;
360
361uint32_t RAMFUNC GetDeltaCountUS(void) {
362 uint32_t g_cnt = GetCountUS();
363 uint32_t g_res = g_cnt - GlobalUsCounter;
364 GlobalUsCounter = g_cnt;
365 return g_res;
366}
367
368
369// -------------------------------------------------------------------------
370// Timer for iso14443 commands. Uses ssp_clk from FPGA
371// -------------------------------------------------------------------------
372void StartCountSspClk(void) {
373 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1) | (1 << AT91C_ID_TC2); // Enable Clock to all timers
374 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1
375 | AT91C_TCB_TC1XC1S_NONE // XC1 Clock = none
376 | AT91C_TCB_TC2XC2S_TIOA0; // XC2 Clock = TIOA0
377
378 // configure TC1 to create a short pulse on TIOA1 when a rising edge on TIOB1 (= ssp_clk from FPGA) occurs:
379 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // disable TC1
380 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK // TC1 Clock = MCK(48MHz)/2 = 24MHz
381 | AT91C_TC_CPCSTOP // Stop clock on RC compare
382 | AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event
383 | AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16 ... 13,56MHz/4)
384 | AT91C_TC_ENETRG // Enable external trigger event
385 | AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare
386 | AT91C_TC_WAVE // Waveform Mode
387 | AT91C_TC_AEEVT_SET // Set TIOA1 on external event
388 | AT91C_TC_ACPC_CLEAR; // Clear TIOA1 on RC Compare
389 AT91C_BASE_TC1->TC_RC = 1; // RC Compare value = 1; pulse width to TC0
390
391 // use TC0 to count TIOA1 pulses
392 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0
393 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1
394 | AT91C_TC_WAVE // Waveform Mode
395 | AT91C_TC_WAVESEL_UP // just count
396 | AT91C_TC_ACPA_CLEAR // Clear TIOA0 on RA Compare
397 | AT91C_TC_ACPC_SET; // Set TIOA0 on RC Compare
398 AT91C_BASE_TC0->TC_RA = 1; // RA Compare value = 1; pulse width to TC2
399 AT91C_BASE_TC0->TC_RC = 0; // RC Compare value = 0; increment TC2 on overflow
400
401 // use TC2 to count TIOA0 pulses (giving us a 32bit counter (TC0/TC2) clocked by ssp_clk)
402 AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // disable TC2
403 AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_XC2 // TC2 clock = XC2 clock = TIOA0
404 | AT91C_TC_WAVE // Waveform Mode
405 | AT91C_TC_WAVESEL_UP; // just count
406
407 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN; // enable TC0
408 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN; // enable TC1
409 AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN; // enable TC2
410
411 //
412 // synchronize the counter with the ssp_frame signal. Note: FPGA must be in a FPGA mode with SSC transfer, otherwise SSC_FRAME and SSC_CLK signals would not be present
413 //
414 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
415 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame)
416 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 1st ssp_clk after start of frame
417 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
418 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 2nd ssp_clk after start of frame
419 if ((AT91C_BASE_SSC->SSC_RFMR & SSC_FRAME_MODE_BITS_IN_WORD(32)) == SSC_FRAME_MODE_BITS_IN_WORD(16)) { // 16bit frame
420 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
421 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 3rd ssp_clk after start of frame
422 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
423 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 4th ssp_clk after start of frame
424 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
425 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 5th ssp_clk after start of frame
426 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
427 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 6th ssp_clk after start of frame
428 }
429 // it is now safe to assert a sync signal. This sets all timers to 0 on next active clock edge
430 AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge)
431 // at the next (3rd/7th) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0)
432 // at the next (4th/8th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on,
433 // whenever the last three/four bits of our counter go 0, we can be sure to be in the middle of a frame transfer.
434
435 // The high word of the counter (TC2) will not reset until the low word (TC0) overflows. Therefore need to wait quite some time before
436 // we can use the counter.
437 while (AT91C_BASE_TC0->TC_CV < 0xFFFF);
438 // Note: needs one more SSP_CLK cycle (1.18 us) until TC2 resets. Don't call GetCountSspClk() that soon.
439}
440
441
442void ResetSspClk(void) {
443 //enable clock of timer and software trigger
444 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
445 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
446 AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
447 while (AT91C_BASE_TC2->TC_CV > 0);
448}
449
450uint32_t GetCountSspClk(){
451 uint32_t hi, lo;
452
453 do {
454 hi = AT91C_BASE_TC2->TC_CV;
455 lo = AT91C_BASE_TC0->TC_CV;
456 } while (hi != AT91C_BASE_TC2->TC_CV);
457
458 return (hi << 16) | lo;
459}
460
461// -------------------------------------------------------------------------
462// Timer for bitbanging, or LF stuff when you need a very precis timer
463// 1us = 1.5ticks
464// -------------------------------------------------------------------------
465void StartTicks(void){
466 // initialization of the timer
467 AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1);
468 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
469
470 // disable TC0 and TC1 for re-configuration
471 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
472 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
473
474 // first configure TC1 (higher, 0xFFFF0000) 16 bit counter
475 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // just connect to TIOA0 from TC0
476 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // re-enable timer and wait for TC0
477
478 // second configure TC0 (lower, 0x0000FFFF) 16 bit counter
479 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz) / 32
480 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO |
481 AT91C_TC_ACPA_CLEAR | // RA comperator clears TIOA (carry bit)
482 AT91C_TC_ACPC_SET | // RC comperator sets TIOA (carry bit)
483 AT91C_TC_ASWTRG_SET; // SWTriger sets TIOA (carry bit)
484 AT91C_BASE_TC0->TC_RC = 0; // set TIOA (carry bit) on overflow, return to zero
485 AT91C_BASE_TC0->TC_RA = 1; // clear carry bit on next clock cycle
486 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // reset and re-enable timer
487
488 // synchronized startup procedure
489 while (AT91C_BASE_TC0->TC_CV > 0); // wait until TC0 returned to zero
490 while (AT91C_BASE_TC0->TC_CV < 2); // and has started (TC_CV > TC_RA, now TC1 is cleared)
491
492 // return to zero
493 AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
494 AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
495 while (AT91C_BASE_TC0->TC_CV > 0);
496}
497
498
499uint32_t GetTicks(void) {
500 uint32_t hi, lo;
501
502 do {
503 hi = AT91C_BASE_TC1->TC_CV;
504 lo = AT91C_BASE_TC0->TC_CV;
505 } while(hi != AT91C_BASE_TC1->TC_CV);
506
507 return (hi << 16) | lo;
508}
509
510
511// Wait - Spindelay in ticks.
512// if called with a high number, this will trigger the WDT...
513void WaitTicks(uint32_t ticks){
514 if ( ticks == 0 ) return;
515 ticks += GetTicks();
516 while (GetTicks() < ticks);
517}
518
519
520// Wait / Spindelay in us (microseconds)
521// 1us = 1.5ticks.
522void WaitUS(uint16_t us){
523 WaitTicks( (uint32_t)us * 3 / 2 ) ;
524}
525
526
527void WaitMS(uint16_t ms){
528 WaitTicks( (uint32_t)ms * 1500 );
529}
530
531
532// Starts Clock and waits until its reset
533void ResetTicks(void){
534 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
535 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
536 while (AT91C_BASE_TC0->TC_CV > 0);
537}
538
539
540void ResetTimer(AT91PS_TC timer){
541 timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
542 while(timer->TC_CV > 0) ;
543}
544
545
546// stop clock
547void StopTicks(void){
548 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
549 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
550}
551
552
553static uint64_t next_random = 1;
554
555/* Generates a (non-cryptographically secure) 32-bit random number.
556 *
557 * We don't have an implementation of the "rand" function or a clock to seed it
558 * with, so we just call GetTickCount the first time to seed ourselves.
559 */
560uint32_t prand() {
561 if (next_random == 1) {
562 next_random = GetTickCount();
563 }
564
565 next_random = next_random * 6364136223846793005 + 1;
566 return (uint32_t)(next_random >> 32) % 0xffffffff;
567}
Impressum, Datenschutz