]> cvs.zerfleddert.de Git - proxmark3-svn/blame_incremental - armsrc/lfops.c
chg: more debug statements to find sending errors
[proxmark3-svn] / armsrc / lfops.c
... / ...
CommitLineData
1//-----------------------------------------------------------------------------
2// This code is licensed to you under the terms of the GNU GPL, version 2 or,
3// at your option, any later version. See the LICENSE.txt file for the text of
4// the license.
5//-----------------------------------------------------------------------------
6// Miscellaneous routines for low frequency tag operations.
7// Tags supported here so far are Texas Instruments (TI), HID
8// Also routines for raw mode reading/simulating of LF waveform
9//-----------------------------------------------------------------------------
10
11#include "proxmark3.h"
12#include "apps.h"
13#include "util.h"
14#include "hitag2.h"
15#include "crc16.h"
16#include "string.h"
17#include "lfdemod.h"
18#include "lfsampling.h"
19#include "protocols.h"
20#include "usb_cdc.h" // for usb_poll_validate_length
21
22#ifndef SHORT_COIL
23# define SHORT_COIL() LOW(GPIO_SSC_DOUT)
24#endif
25#ifndef OPEN_COIL
26# define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
27#endif
28
29/**
30 * Function to do a modulation and then get samples.
31 * @param delay_off
32 * @param periods 0xFFFF0000 is period_0, 0x0000FFFF is period_1
33 * @param useHighFreg
34 * @param command
35 */
36void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t periods, uint32_t useHighFreq, uint8_t *command)
37{
38 /* Make sure the tag is reset */
39 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
40 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
41 SpinDelay(200);
42
43 uint16_t period_0 = periods >> 16;
44 uint16_t period_1 = periods & 0xFFFF;
45
46 // 95 == 125 KHz 88 == 134.8 KHz
47 int divisor_used = (useHighFreq) ? 88 : 95;
48 sample_config sc = { 0,0,1, divisor_used, 0};
49 setSamplingConfig(&sc);
50
51 //clear read buffer
52 BigBuf_Clear_keep_EM();
53
54 LFSetupFPGAForADC(sc.divisor, 1);
55
56 // And a little more time for the tag to fully power up
57 SpinDelay(50);
58
59 // now modulate the reader field
60 while(*command != '\0' && *command != ' ') {
61 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
62 LED_D_OFF();
63 WaitUS(delay_off);
64 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
65
66 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
67 LED_D_ON();
68 if(*(command++) == '0')
69 WaitUS(period_0);
70 else
71 WaitUS(period_1);
72 }
73 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
74 LED_D_OFF();
75 WaitUS(delay_off);
76 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
77 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
78
79 // now do the read
80 DoAcquisition_config(false);
81
82 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
83}
84
85/* blank r/w tag data stream
86...0000000000000000 01111111
871010101010101010101010101010101010101010101010101010101010101010
880011010010100001
8901111111
90101010101010101[0]000...
91
92[5555fe852c5555555555555555fe0000]
93*/
94void ReadTItag(void)
95{
96 StartTicks();
97 // some hardcoded initial params
98 // when we read a TI tag we sample the zerocross line at 2Mhz
99 // TI tags modulate a 1 as 16 cycles of 123.2Khz
100 // TI tags modulate a 0 as 16 cycles of 134.2Khz
101 #define FSAMPLE 2000000
102 #define FREQLO 123200
103 #define FREQHI 134200
104
105 signed char *dest = (signed char *)BigBuf_get_addr();
106 uint16_t n = BigBuf_max_traceLen();
107 // 128 bit shift register [shift3:shift2:shift1:shift0]
108 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
109
110 int i, cycles=0, samples=0;
111 // how many sample points fit in 16 cycles of each frequency
112 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
113 // when to tell if we're close enough to one freq or another
114 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
115
116 // TI tags charge at 134.2Khz
117 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
118 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
119
120 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
121 // connects to SSP_DIN and the SSP_DOUT logic level controls
122 // whether we're modulating the antenna (high)
123 // or listening to the antenna (low)
124 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
125
126 // get TI tag data into the buffer
127 AcquireTiType();
128
129 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
130
131 for (i=0; i<n-1; i++) {
132 // count cycles by looking for lo to hi zero crossings
133 if ( (dest[i]<0) && (dest[i+1]>0) ) {
134 cycles++;
135 // after 16 cycles, measure the frequency
136 if (cycles>15) {
137 cycles=0;
138 samples=i-samples; // number of samples in these 16 cycles
139
140 // TI bits are coming to us lsb first so shift them
141 // right through our 128 bit right shift register
142 shift0 = (shift0>>1) | (shift1 << 31);
143 shift1 = (shift1>>1) | (shift2 << 31);
144 shift2 = (shift2>>1) | (shift3 << 31);
145 shift3 >>= 1;
146
147 // check if the cycles fall close to the number
148 // expected for either the low or high frequency
149 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
150 // low frequency represents a 1
151 shift3 |= (1<<31);
152 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
153 // high frequency represents a 0
154 } else {
155 // probably detected a gay waveform or noise
156 // use this as gaydar or discard shift register and start again
157 shift3 = shift2 = shift1 = shift0 = 0;
158 }
159 samples = i;
160
161 // for each bit we receive, test if we've detected a valid tag
162
163 // if we see 17 zeroes followed by 6 ones, we might have a tag
164 // remember the bits are backwards
165 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
166 // if start and end bytes match, we have a tag so break out of the loop
167 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
168 cycles = 0xF0B; //use this as a flag (ugly but whatever)
169 break;
170 }
171 }
172 }
173 }
174 }
175
176 // if flag is set we have a tag
177 if (cycles!=0xF0B) {
178 DbpString("Info: No valid tag detected.");
179 } else {
180 // put 64 bit data into shift1 and shift0
181 shift0 = (shift0>>24) | (shift1 << 8);
182 shift1 = (shift1>>24) | (shift2 << 8);
183
184 // align 16 bit crc into lower half of shift2
185 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
186
187 // if r/w tag, check ident match
188 if (shift3 & (1<<15) ) {
189 DbpString("Info: TI tag is rewriteable");
190 // only 15 bits compare, last bit of ident is not valid
191 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
192 DbpString("Error: Ident mismatch!");
193 } else {
194 DbpString("Info: TI tag ident is valid");
195 }
196 } else {
197 DbpString("Info: TI tag is readonly");
198 }
199
200 // WARNING the order of the bytes in which we calc crc below needs checking
201 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
202 // bytes in reverse or something
203 // calculate CRC
204 uint32_t crc=0;
205
206 crc = update_crc16(crc, (shift0)&0xff);
207 crc = update_crc16(crc, (shift0>>8)&0xff);
208 crc = update_crc16(crc, (shift0>>16)&0xff);
209 crc = update_crc16(crc, (shift0>>24)&0xff);
210 crc = update_crc16(crc, (shift1)&0xff);
211 crc = update_crc16(crc, (shift1>>8)&0xff);
212 crc = update_crc16(crc, (shift1>>16)&0xff);
213 crc = update_crc16(crc, (shift1>>24)&0xff);
214
215 Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
216 if (crc != (shift2&0xffff)) {
217 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
218 } else {
219 DbpString("Info: CRC is good");
220 }
221 }
222 StopTicks();
223}
224
225void WriteTIbyte(uint8_t b)
226{
227 int i = 0;
228
229 // modulate 8 bits out to the antenna
230 for (i=0; i<8; i++)
231 {
232 if ( b & ( 1 << i ) ) {
233 // stop modulating antenna 1ms
234 LOW(GPIO_SSC_DOUT);
235 WaitUS(1000);
236 // modulate antenna 1ms
237 HIGH(GPIO_SSC_DOUT);
238 WaitUS(1000);
239 } else {
240 // stop modulating antenna 1ms
241 LOW(GPIO_SSC_DOUT);
242 WaitUS(300);
243 // modulate antenna 1m
244 HIGH(GPIO_SSC_DOUT);
245 WaitUS(1700);
246 }
247 }
248}
249
250void AcquireTiType(void)
251{
252 int i, j, n;
253 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
254 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
255 #define TIBUFLEN 1250
256
257 // clear buffer
258 uint32_t *buf = (uint32_t *)BigBuf_get_addr();
259
260 //clear buffer now so it does not interfere with timing later
261 BigBuf_Clear_ext(false);
262
263 // Set up the synchronous serial port
264 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
265 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
266
267 // steal this pin from the SSP and use it to control the modulation
268 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
269 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
270
271 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
272 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
273
274 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
275 // 48/2 = 24 MHz clock must be divided by 12
276 AT91C_BASE_SSC->SSC_CMR = 12;
277
278 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
279 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
280 AT91C_BASE_SSC->SSC_TCMR = 0;
281 AT91C_BASE_SSC->SSC_TFMR = 0;
282 // iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
283 LED_D_ON();
284
285 // modulate antenna
286 HIGH(GPIO_SSC_DOUT);
287
288 // Charge TI tag for 50ms.
289 WaitMS(50);
290
291 // stop modulating antenna and listen
292 LOW(GPIO_SSC_DOUT);
293
294 LED_D_OFF();
295
296 i = 0;
297 for(;;) {
298 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
299 buf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
300 i++; if(i >= TIBUFLEN) break;
301 }
302 WDT_HIT();
303 }
304
305 // return stolen pin to SSP
306 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
307 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
308
309 char *dest = (char *)BigBuf_get_addr();
310 n = TIBUFLEN * 32;
311
312 // unpack buffer
313 for (i = TIBUFLEN-1; i >= 0; i--) {
314 for (j = 0; j < 32; j++) {
315 if(buf[i] & (1 << j)) {
316 dest[--n] = 1;
317 } else {
318 dest[--n] = -1;
319 }
320 }
321 }
322}
323
324// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
325// if crc provided, it will be written with the data verbatim (even if bogus)
326// if not provided a valid crc will be computed from the data and written.
327void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
328{
329 StartTicks();
330 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
331 if(crc == 0) {
332 crc = update_crc16(crc, (idlo)&0xff);
333 crc = update_crc16(crc, (idlo>>8)&0xff);
334 crc = update_crc16(crc, (idlo>>16)&0xff);
335 crc = update_crc16(crc, (idlo>>24)&0xff);
336 crc = update_crc16(crc, (idhi)&0xff);
337 crc = update_crc16(crc, (idhi>>8)&0xff);
338 crc = update_crc16(crc, (idhi>>16)&0xff);
339 crc = update_crc16(crc, (idhi>>24)&0xff);
340 }
341 Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi, (unsigned int) idlo, crc);
342
343 // TI tags charge at 134.2Khz
344 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
345 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
346 // connects to SSP_DIN and the SSP_DOUT logic level controls
347 // whether we're modulating the antenna (high)
348 // or listening to the antenna (low)
349 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
350 LED_A_ON();
351
352 // steal this pin from the SSP and use it to control the modulation
353 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
354 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
355
356 // writing algorithm:
357 // a high bit consists of a field off for 1ms and field on for 1ms
358 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
359 // initiate a charge time of 50ms (field on) then immediately start writing bits
360 // start by writing 0xBB (keyword) and 0xEB (password)
361 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
362 // finally end with 0x0300 (write frame)
363 // all data is sent lsb first
364 // finish with 15ms programming time
365
366 // modulate antenna
367 HIGH(GPIO_SSC_DOUT);
368 WaitMS(50); // charge time
369
370 WriteTIbyte(0xbb); // keyword
371 WriteTIbyte(0xeb); // password
372 WriteTIbyte( (idlo )&0xff );
373 WriteTIbyte( (idlo>>8 )&0xff );
374 WriteTIbyte( (idlo>>16)&0xff );
375 WriteTIbyte( (idlo>>24)&0xff );
376 WriteTIbyte( (idhi )&0xff );
377 WriteTIbyte( (idhi>>8 )&0xff );
378 WriteTIbyte( (idhi>>16)&0xff );
379 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
380 WriteTIbyte( (crc )&0xff ); // crc lo
381 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
382 WriteTIbyte(0x00); // write frame lo
383 WriteTIbyte(0x03); // write frame hi
384 HIGH(GPIO_SSC_DOUT);
385 WaitMS(50); // programming time
386
387 LED_A_OFF();
388
389 // get TI tag data into the buffer
390 AcquireTiType();
391
392 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
393 DbpString("Now use `lf ti read` to check");
394 StopTicks();
395}
396
397void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
398{
399 int i = 0;
400 uint8_t *buf = BigBuf_get_addr();
401
402 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
403 //FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
404 //FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE );
405
406 // set frequency, get values from 'lf config' command
407 sample_config *sc = getSamplingConfig();
408
409 if ( (sc->divisor == 1) || (sc->divisor < 0) || (sc->divisor > 255) )
410 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
411 else if (sc->divisor == 0)
412 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
413 else
414 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
415
416 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
417
418 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
419 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
420 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
421
422 // power on antenna
423 // OPEN_COIL();
424 // SpinDelay(50);
425
426 for(;;) {
427 WDT_HIT();
428
429 if (ledcontrol) LED_D_ON();
430
431 // wait until SSC_CLK goes HIGH
432 // used as a simple detection of a reader field?
433 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
434 WDT_HIT();
435 if ( usb_poll_validate_length() || BUTTON_PRESS() )
436 goto OUT;
437 }
438
439 if(buf[i])
440 OPEN_COIL();
441 else
442 SHORT_COIL();
443
444 //wait until SSC_CLK goes LOW
445 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
446 WDT_HIT();
447 if ( usb_poll_validate_length() || BUTTON_PRESS() )
448 goto OUT;
449 }
450
451 i++;
452 if(i == period) {
453 i = 0;
454 if (gap) {
455 WDT_HIT();
456 SHORT_COIL();
457 SpinDelayUs(gap);
458 }
459 }
460
461 if (ledcontrol) LED_D_OFF();
462 }
463OUT:
464 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
465 LED_D_OFF();
466 DbpString("Simulation stopped");
467 return;
468}
469
470#define DEBUG_FRAME_CONTENTS 1
471void SimulateTagLowFrequencyBidir(int divisor, int t0)
472{
473}
474
475// compose fc/8 fc/10 waveform (FSK2)
476static void fc(int c, int *n)
477{
478 uint8_t *dest = BigBuf_get_addr();
479 int idx;
480
481 // for when we want an fc8 pattern every 4 logical bits
482 if(c==0) {
483 dest[((*n)++)]=1;
484 dest[((*n)++)]=1;
485 dest[((*n)++)]=1;
486 dest[((*n)++)]=1;
487 dest[((*n)++)]=0;
488 dest[((*n)++)]=0;
489 dest[((*n)++)]=0;
490 dest[((*n)++)]=0;
491 }
492
493 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
494 if(c==8) {
495 for (idx=0; idx<6; idx++) {
496 dest[((*n)++)]=1;
497 dest[((*n)++)]=1;
498 dest[((*n)++)]=1;
499 dest[((*n)++)]=1;
500 dest[((*n)++)]=0;
501 dest[((*n)++)]=0;
502 dest[((*n)++)]=0;
503 dest[((*n)++)]=0;
504 }
505 }
506
507 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
508 if(c==10) {
509 for (idx=0; idx<5; idx++) {
510 dest[((*n)++)]=1;
511 dest[((*n)++)]=1;
512 dest[((*n)++)]=1;
513 dest[((*n)++)]=1;
514 dest[((*n)++)]=1;
515 dest[((*n)++)]=0;
516 dest[((*n)++)]=0;
517 dest[((*n)++)]=0;
518 dest[((*n)++)]=0;
519 dest[((*n)++)]=0;
520 }
521 }
522}
523// compose fc/X fc/Y waveform (FSKx)
524static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
525{
526 uint8_t *dest = BigBuf_get_addr();
527 uint8_t halfFC = fc/2;
528 uint8_t wavesPerClock = clock/fc;
529 uint8_t mod = clock % fc; //modifier
530 uint8_t modAdj = fc/mod; //how often to apply modifier
531 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
532 // loop through clock - step field clock
533 for (uint8_t idx=0; idx < wavesPerClock; idx++){
534 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
535 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
536 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
537 *n += fc;
538 }
539 if (mod>0) (*modCnt)++;
540 if ((mod>0) && modAdjOk){ //fsk2
541 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
542 memset(dest+(*n), 0, fc-halfFC);
543 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
544 *n += fc;
545 }
546 }
547 if (mod>0 && !modAdjOk){ //fsk1
548 memset(dest+(*n), 0, mod-(mod/2));
549 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
550 *n += mod;
551 }
552}
553
554// prepare a waveform pattern in the buffer based on the ID given then
555// simulate a HID tag until the button is pressed
556void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
557{
558 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
559 set_tracing(FALSE);
560
561 int n = 0, i = 0;
562 /*
563 HID tag bitstream format
564 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
565 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
566 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
567 A fc8 is inserted before every 4 bits
568 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
569 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
570 */
571
572 if (hi > 0xFFF) {
573 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
574 return;
575 }
576 fc(0,&n);
577 // special start of frame marker containing invalid bit sequences
578 fc(8, &n); fc(8, &n); // invalid
579 fc(8, &n); fc(10, &n); // logical 0
580 fc(10, &n); fc(10, &n); // invalid
581 fc(8, &n); fc(10, &n); // logical 0
582
583 WDT_HIT();
584 // manchester encode bits 43 to 32
585 for (i=11; i>=0; i--) {
586 if ((i%4)==3) fc(0,&n);
587 if ((hi>>i)&1) {
588 fc(10, &n); fc(8, &n); // low-high transition
589 } else {
590 fc(8, &n); fc(10, &n); // high-low transition
591 }
592 }
593
594 WDT_HIT();
595 // manchester encode bits 31 to 0
596 for (i=31; i>=0; i--) {
597 if ((i%4)==3) fc(0,&n);
598 if ((lo>>i)&1) {
599 fc(10, &n); fc(8, &n); // low-high transition
600 } else {
601 fc(8, &n); fc(10, &n); // high-low transition
602 }
603 }
604 WDT_HIT();
605
606 if (ledcontrol) LED_A_ON();
607 SimulateTagLowFrequency(n, 0, ledcontrol);
608 if (ledcontrol) LED_A_OFF();
609}
610
611// prepare a waveform pattern in the buffer based on the ID given then
612// simulate a FSK tag until the button is pressed
613// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
614void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
615{
616 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
617
618 // free eventually allocated BigBuf memory
619 BigBuf_free(); BigBuf_Clear_ext(false);
620 clear_trace();
621 set_tracing(FALSE);
622
623 int ledcontrol = 1, n = 0, i = 0;
624 uint8_t fcHigh = arg1 >> 8;
625 uint8_t fcLow = arg1 & 0xFF;
626 uint16_t modCnt = 0;
627 uint8_t clk = arg2 & 0xFF;
628 uint8_t invert = (arg2 >> 8) & 1;
629
630 for (i=0; i<size; i++){
631
632 if (BitStream[i] == invert)
633 fcAll(fcLow, &n, clk, &modCnt);
634 else
635 fcAll(fcHigh, &n, clk, &modCnt);
636 }
637 WDT_HIT();
638
639 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d", fcHigh, fcLow, clk, invert, n);
640
641 if (ledcontrol) LED_A_ON();
642 SimulateTagLowFrequency(n, 0, ledcontrol);
643 if (ledcontrol) LED_A_OFF();
644}
645
646// compose ask waveform for one bit(ASK)
647static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
648{
649 uint8_t *dest = BigBuf_get_addr();
650 uint8_t halfClk = clock/2;
651 // c = current bit 1 or 0
652 if (manchester==1){
653 memset(dest+(*n), c, halfClk);
654 memset(dest+(*n) + halfClk, c^1, halfClk);
655 } else {
656 memset(dest+(*n), c, clock);
657 }
658 *n += clock;
659}
660
661static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
662{
663 uint8_t *dest = BigBuf_get_addr();
664 uint8_t halfClk = clock/2;
665 if (c){
666 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
667 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
668 } else {
669 memset(dest+(*n), c ^ *phase, clock);
670 *phase ^= 1;
671 }
672 *n += clock;
673}
674
675static void stAskSimBit(int *n, uint8_t clock) {
676 uint8_t *dest = BigBuf_get_addr();
677 uint8_t halfClk = clock/2;
678 //ST = .5 high .5 low 1.5 high .5 low 1 high
679 memset(dest+(*n), 1, halfClk);
680 memset(dest+(*n) + halfClk, 0, halfClk);
681 memset(dest+(*n) + clock, 1, clock + halfClk);
682 memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
683 memset(dest+(*n) + clock*3, 1, clock);
684 *n += clock*4;
685}
686
687// args clock, ask/man or askraw, invert, transmission separator
688void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
689{
690 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
691 set_tracing(FALSE);
692
693 int ledcontrol = 1, n = 0, i = 0;
694 uint8_t clk = (arg1 >> 8) & 0xFF;
695 uint8_t encoding = arg1 & 0xFF;
696 uint8_t separator = arg2 & 1;
697 uint8_t invert = (arg2 >> 8) & 1;
698
699 if (encoding == 2){ //biphase
700 uint8_t phase = 0;
701 for (i=0; i<size; i++){
702 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
703 }
704 if (phase == 1) { //run a second set inverted to keep phase in check
705 for (i=0; i<size; i++){
706 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
707 }
708 }
709 } else { // ask/manchester || ask/raw
710 for (i=0; i<size; i++){
711 askSimBit(BitStream[i]^invert, &n, clk, encoding);
712 }
713 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
714 for (i=0; i<size; i++){
715 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
716 }
717 }
718 }
719 if (separator==1 && encoding == 1)
720 stAskSimBit(&n, clk);
721 else if (separator==1)
722 Dbprintf("sorry but separator option not yet available");
723
724 WDT_HIT();
725
726 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
727
728 if (ledcontrol) LED_A_ON();
729 SimulateTagLowFrequency(n, 0, ledcontrol);
730 if (ledcontrol) LED_A_OFF();
731}
732
733//carrier can be 2,4 or 8
734static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
735{
736 uint8_t *dest = BigBuf_get_addr();
737 uint8_t halfWave = waveLen/2;
738 //uint8_t idx;
739 int i = 0;
740 if (phaseChg){
741 // write phase change
742 memset(dest+(*n), *curPhase^1, halfWave);
743 memset(dest+(*n) + halfWave, *curPhase, halfWave);
744 *n += waveLen;
745 *curPhase ^= 1;
746 i += waveLen;
747 }
748 //write each normal clock wave for the clock duration
749 for (; i < clk; i+=waveLen){
750 memset(dest+(*n), *curPhase, halfWave);
751 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
752 *n += waveLen;
753 }
754}
755
756// args clock, carrier, invert,
757void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
758{
759 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
760 set_tracing(FALSE);
761
762 int ledcontrol = 1, n = 0, i = 0;
763 uint8_t clk = arg1 >> 8;
764 uint8_t carrier = arg1 & 0xFF;
765 uint8_t invert = arg2 & 0xFF;
766 uint8_t curPhase = 0;
767 for (i=0; i<size; i++){
768 if (BitStream[i] == curPhase){
769 pskSimBit(carrier, &n, clk, &curPhase, FALSE);
770 } else {
771 pskSimBit(carrier, &n, clk, &curPhase, TRUE);
772 }
773 }
774
775 WDT_HIT();
776
777 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
778
779 if (ledcontrol) LED_A_ON();
780 SimulateTagLowFrequency(n, 0, ledcontrol);
781 if (ledcontrol) LED_A_OFF();
782}
783
784// loop to get raw HID waveform then FSK demodulate the TAG ID from it
785void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
786{
787 uint8_t *dest = BigBuf_get_addr();
788 size_t size = 0;
789 uint32_t hi2=0, hi=0, lo=0;
790 int idx=0;
791 // Configure to go in 125Khz listen mode
792 LFSetupFPGAForADC(95, true);
793
794 //clear read buffer
795 BigBuf_Clear_keep_EM();
796
797 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
798
799 WDT_HIT();
800 if (ledcontrol) LED_A_ON();
801
802 DoAcquisition_default(0, true);
803 // FSK demodulator
804 size = 50*128*2; //big enough to catch 2 sequences of largest format
805 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
806
807 if (idx>0 && lo>0 && (size==96 || size==192)){
808 // go over previously decoded manchester data and decode into usable tag ID
809 if (hi2 != 0){ //extra large HID tags 88/192 bits
810 Dbprintf("TAG ID: %x%08x%08x (%d)",
811 (unsigned int) hi2,
812 (unsigned int) hi,
813 (unsigned int) lo,
814 (unsigned int) (lo>>1) & 0xFFFF
815 );
816 } else { //standard HID tags 44/96 bits
817 uint8_t bitlen = 0;
818 uint32_t fc = 0;
819 uint32_t cardnum = 0;
820
821 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
822 uint32_t lo2=0;
823 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
824 uint8_t idx3 = 1;
825 while(lo2 > 1){ //find last bit set to 1 (format len bit)
826 lo2=lo2 >> 1;
827 idx3++;
828 }
829 bitlen = idx3+19;
830 fc =0;
831 cardnum=0;
832 if(bitlen == 26){
833 cardnum = (lo>>1)&0xFFFF;
834 fc = (lo>>17)&0xFF;
835 }
836 if(bitlen == 37){
837 cardnum = (lo>>1)&0x7FFFF;
838 fc = ((hi&0xF)<<12)|(lo>>20);
839 }
840 if(bitlen == 34){
841 cardnum = (lo>>1)&0xFFFF;
842 fc= ((hi&1)<<15)|(lo>>17);
843 }
844 if(bitlen == 35){
845 cardnum = (lo>>1)&0xFFFFF;
846 fc = ((hi&1)<<11)|(lo>>21);
847 }
848 }
849 else { //if bit 38 is not set then 37 bit format is used
850 bitlen= 37;
851 fc =0;
852 cardnum=0;
853 if(bitlen==37){
854 cardnum = (lo>>1)&0x7FFFF;
855 fc = ((hi&0xF)<<12)|(lo>>20);
856 }
857 }
858 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
859 (unsigned int) hi,
860 (unsigned int) lo,
861 (unsigned int) (lo>>1) & 0xFFFF,
862 (unsigned int) bitlen,
863 (unsigned int) fc,
864 (unsigned int) cardnum);
865 }
866 if (findone){
867 if (ledcontrol) LED_A_OFF();
868 *high = hi;
869 *low = lo;
870 break;
871 }
872 // reset
873 }
874 hi2 = hi = lo = idx = 0;
875 WDT_HIT();
876 }
877 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
878 DbpString("Stopped");
879 if (ledcontrol) LED_A_OFF();
880}
881
882// loop to get raw HID waveform then FSK demodulate the TAG ID from it
883void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
884{
885 uint8_t *dest = BigBuf_get_addr();
886 size_t size;
887 int idx=0;
888 //clear read buffer
889 BigBuf_Clear_keep_EM();
890 // Configure to go in 125Khz listen mode
891 LFSetupFPGAForADC(95, true);
892
893 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
894
895 WDT_HIT();
896 if (ledcontrol) LED_A_ON();
897
898 DoAcquisition_default(-1,true);
899 // FSK demodulator
900 size = 50*128*2; //big enough to catch 2 sequences of largest format
901 idx = AWIDdemodFSK(dest, &size);
902
903 if (idx<=0 || size!=96) continue;
904 // Index map
905 // 0 10 20 30 40 50 60
906 // | | | | | | |
907 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
908 // -----------------------------------------------------------------------------
909 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
910 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
911 // |---26 bit---| |-----117----||-------------142-------------|
912 // b = format bit len, o = odd parity of last 3 bits
913 // f = facility code, c = card number
914 // w = wiegand parity
915 // (26 bit format shown)
916
917 //get raw ID before removing parities
918 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
919 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
920 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
921
922 size = removeParity(dest, idx+8, 4, 1, 88);
923 if (size != 66) continue;
924
925 // Index map
926 // 0 10 20 30 40 50 60
927 // | | | | | | |
928 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
929 // -----------------------------------------------------------------------------
930 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
931 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
932 // |26 bit| |-117--| |-----142------|
933 //
934 // 00110010 0 0000011111010000000000000001000100101000100001111 0 00000000
935 // bbbbbbbb w ffffffffffffffffccccccccccccccccccccccccccccccccc w xxxxxxxx
936 // |50 bit| |----4000------||-----------2248975-------------|
937 //
938 // b = format bit len, o = odd parity of last 3 bits
939 // f = facility code, c = card number
940 // w = wiegand parity
941
942 uint32_t fc = 0;
943 uint32_t cardnum = 0;
944 uint32_t code1 = 0;
945 uint32_t code2 = 0;
946 uint8_t fmtLen = bytebits_to_byte(dest,8);
947 switch(fmtLen) {
948 case 26:
949 fc = bytebits_to_byte(dest + 9, 8);
950 cardnum = bytebits_to_byte(dest + 17, 16);
951 code1 = bytebits_to_byte(dest + 8,fmtLen);
952 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
953 break;
954 case 50:
955 fc = bytebits_to_byte(dest + 9, 16);
956 cardnum = bytebits_to_byte(dest + 25, 32);
957 code1 = bytebits_to_byte(dest + 8, (fmtLen-32) );
958 code2 = bytebits_to_byte(dest + 8 + (fmtLen-32), 32);
959 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, code2, rawHi2, rawHi, rawLo);
960 break;
961 default:
962 if (fmtLen > 32 ) {
963 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
964 code1 = bytebits_to_byte(dest+8,fmtLen-32);
965 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
966 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
967 } else {
968 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
969 code1 = bytebits_to_byte(dest+8,fmtLen);
970 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
971 }
972 break;
973 }
974 if (findone)
975 break;
976
977 idx = 0;
978 WDT_HIT();
979 }
980
981 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
982 DbpString("Stopped");
983 if (ledcontrol) LED_A_OFF();
984}
985
986void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
987{
988 uint8_t *dest = BigBuf_get_addr();
989
990 size_t size=0, idx=0;
991 int clk=0, invert=0, errCnt=0, maxErr=20;
992 uint32_t hi=0;
993 uint64_t lo=0;
994 //clear read buffer
995 BigBuf_Clear_keep_EM();
996 // Configure to go in 125Khz listen mode
997 LFSetupFPGAForADC(95, true);
998
999 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1000
1001 WDT_HIT();
1002 if (ledcontrol) LED_A_ON();
1003
1004 DoAcquisition_default(-1,true);
1005 size = BigBuf_max_traceLen();
1006 //askdemod and manchester decode
1007 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
1008 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
1009 WDT_HIT();
1010
1011 if (errCnt<0) continue;
1012
1013 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
1014 if (errCnt){
1015 if (size>64){
1016 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
1017 hi,
1018 (uint32_t)(lo>>32),
1019 (uint32_t)lo,
1020 (uint32_t)(lo&0xFFFF),
1021 (uint32_t)((lo>>16LL) & 0xFF),
1022 (uint32_t)(lo & 0xFFFFFF));
1023 } else {
1024 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
1025 (uint32_t)(lo>>32),
1026 (uint32_t)lo,
1027 (uint32_t)(lo&0xFFFF),
1028 (uint32_t)((lo>>16LL) & 0xFF),
1029 (uint32_t)(lo & 0xFFFFFF));
1030 }
1031
1032 if (findone){
1033 if (ledcontrol) LED_A_OFF();
1034 *high=lo>>32;
1035 *low=lo & 0xFFFFFFFF;
1036 break;
1037 }
1038 }
1039 WDT_HIT();
1040 hi = lo = size = idx = 0;
1041 clk = invert = errCnt = 0;
1042 }
1043 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1044 DbpString("Stopped");
1045 if (ledcontrol) LED_A_OFF();
1046}
1047
1048void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
1049{
1050 uint8_t *dest = BigBuf_get_addr();
1051 int idx=0;
1052 uint32_t code=0, code2=0;
1053 uint8_t version=0;
1054 uint8_t facilitycode=0;
1055 uint16_t number=0;
1056 uint8_t crc = 0;
1057 uint16_t calccrc = 0;
1058
1059 //clear read buffer
1060 BigBuf_Clear_keep_EM();
1061
1062 // Configure to go in 125Khz listen mode
1063 LFSetupFPGAForADC(95, true);
1064
1065 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1066 WDT_HIT();
1067 if (ledcontrol) LED_A_ON();
1068 DoAcquisition_default(-1,true);
1069 //fskdemod and get start index
1070 WDT_HIT();
1071 idx = IOdemodFSK(dest, BigBuf_max_traceLen());
1072 if (idx<0) continue;
1073 //valid tag found
1074
1075 //Index map
1076 //0 10 20 30 40 50 60
1077 //| | | | | | |
1078 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1079 //-----------------------------------------------------------------------------
1080 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
1081 //
1082 //Checksum:
1083 //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
1084 //preamble F0 E0 01 03 B6 75
1085 // How to calc checksum,
1086 // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
1087 // F0 + E0 + 01 + 03 + B6 = 28A
1088 // 28A & FF = 8A
1089 // FF - 8A = 75
1090 // Checksum: 0x75
1091 //XSF(version)facility:codeone+codetwo
1092 //Handle the data
1093 // if(findone){ //only print binary if we are doing one
1094 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1095 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1096 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1097 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1098 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1099 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1100 // Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1101 // }
1102 code = bytebits_to_byte(dest+idx,32);
1103 code2 = bytebits_to_byte(dest+idx+32,32);
1104 version = bytebits_to_byte(dest+idx+27,8); //14,4
1105 facilitycode = bytebits_to_byte(dest+idx+18,8);
1106 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1107
1108 crc = bytebits_to_byte(dest+idx+54,8);
1109 for (uint8_t i=1; i<6; ++i)
1110 calccrc += bytebits_to_byte(dest+idx+9*i,8);
1111 calccrc &= 0xff;
1112 calccrc = 0xff - calccrc;
1113
1114 char *crcStr = (crc == calccrc) ? "ok":"!crc";
1115
1116 Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr);
1117 // if we're only looking for one tag
1118 if (findone){
1119 if (ledcontrol) LED_A_OFF();
1120 *high=code;
1121 *low=code2;
1122 break;
1123 }
1124 code=code2=0;
1125 version=facilitycode=0;
1126 number=0;
1127 idx=0;
1128
1129 WDT_HIT();
1130 }
1131 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1132 DbpString("Stopped");
1133 if (ledcontrol) LED_A_OFF();
1134}
1135
1136/*------------------------------
1137 * T5555/T5557/T5567/T5577 routines
1138 *------------------------------
1139 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1140 *
1141 * Relevant communication times in microsecond
1142 * To compensate antenna falling times shorten the write times
1143 * and enlarge the gap ones.
1144 * Q5 tags seems to have issues when these values changes.
1145 */
1146
1147#define START_GAP 50*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (15fc)
1148#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (10fc)
1149#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (24fc)
1150#define WRITE_1 54*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (56fc) 432 for T55x7; 448 for E5550
1151#define READ_GAP 15*8
1152
1153// VALUES TAKEN FROM EM4x function: SendForward
1154// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1155// WRITE_GAP = 128; (16*8)
1156// WRITE_1 = 256 32*8; (32*8)
1157
1158// These timings work for 4469/4269/4305 (with the 55*8 above)
1159// WRITE_0 = 23*8 , 9*8
1160
1161// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1162// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1163// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1164// T0 = TIMER_CLOCK1 / 125000 = 192
1165// 1 Cycle = 8 microseconds(us) == 1 field clock
1166
1167// new timer:
1168// = 1us = 1.5ticks
1169// 1fc = 8us = 12ticks
1170void TurnReadLFOn(uint32_t delay) {
1171 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1172
1173 // measure antenna strength.
1174 //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
1175
1176 // Give it a bit of time for the resonant antenna to settle.
1177 WaitUS(delay);
1178}
1179
1180// Write one bit to card
1181void T55xxWriteBit(int bit) {
1182 if (!bit)
1183 TurnReadLFOn(WRITE_0);
1184 else
1185 TurnReadLFOn(WRITE_1);
1186 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1187 WaitUS(WRITE_GAP);
1188}
1189
1190// Send T5577 reset command then read stream (see if we can identify the start of the stream)
1191void T55xxResetRead(void) {
1192 LED_A_ON();
1193 //clear buffer now so it does not interfere with timing later
1194 BigBuf_Clear_keep_EM();
1195
1196 // Set up FPGA, 125kHz
1197 LFSetupFPGAForADC(95, true);
1198
1199 // Trigger T55x7 in mode.
1200 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1201 WaitUS(START_GAP);
1202
1203 // reset tag - op code 00
1204 T55xxWriteBit(0);
1205 T55xxWriteBit(0);
1206
1207 // Turn field on to read the response
1208 TurnReadLFOn(READ_GAP);
1209
1210 // Acquisition
1211 doT55x7Acquisition(BigBuf_max_traceLen());
1212
1213 // Turn the field off
1214 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1215 cmd_send(CMD_ACK,0,0,0,0,0);
1216 LED_A_OFF();
1217}
1218
1219// Write one card block in page 0, no lock
1220void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
1221 LED_A_ON();
1222 bool PwdMode = arg & 0x1;
1223 uint8_t Page = (arg & 0x2)>>1;
1224 uint32_t i = 0;
1225
1226 // Set up FPGA, 125kHz
1227 LFSetupFPGAForADC(95, true);
1228
1229 // Trigger T55x7 in mode.
1230 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1231 WaitUS(START_GAP);
1232
1233 // Opcode 10
1234 T55xxWriteBit(1);
1235 T55xxWriteBit(Page); //Page 0
1236 if (PwdMode){
1237 // Send Pwd
1238 for (i = 0x80000000; i != 0; i >>= 1)
1239 T55xxWriteBit(Pwd & i);
1240 }
1241 // Send Lock bit
1242 T55xxWriteBit(0);
1243
1244 // Send Data
1245 for (i = 0x80000000; i != 0; i >>= 1)
1246 T55xxWriteBit(Data & i);
1247
1248 // Send Block number
1249 for (i = 0x04; i != 0; i >>= 1)
1250 T55xxWriteBit(Block & i);
1251
1252 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1253 // so wait a little more)
1254 TurnReadLFOn(20 * 1000);
1255
1256 //could attempt to do a read to confirm write took
1257 // as the tag should repeat back the new block
1258 // until it is reset, but to confirm it we would
1259 // need to know the current block 0 config mode
1260
1261 // turn field off
1262 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1263 LED_A_OFF();
1264}
1265
1266// Write one card block in page 0, no lock
1267void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
1268 T55xxWriteBlockExt(Data, Block, Pwd, arg);
1269 cmd_send(CMD_ACK,0,0,0,0,0);
1270}
1271
1272// Read one card block in page [page]
1273void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
1274 LED_A_ON();
1275 bool PwdMode = arg0 & 0x1;
1276 uint8_t Page = (arg0 & 0x2) >> 1;
1277 uint32_t i = 0;
1278 bool RegReadMode = (Block == 0xFF);
1279
1280 //clear buffer now so it does not interfere with timing later
1281 BigBuf_Clear_keep_EM();
1282
1283 //make sure block is at max 7
1284 Block &= 0x7;
1285
1286 // Set up FPGA, 125kHz to power up the tag
1287 LFSetupFPGAForADC(95, true);
1288 //SpinDelay(3);
1289
1290 // Trigger T55x7 Direct Access Mode with start gap
1291 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1292 WaitUS(START_GAP);
1293
1294 // Opcode 1[page]
1295 T55xxWriteBit(1);
1296 T55xxWriteBit(Page); //Page 0
1297
1298 if (PwdMode){
1299 // Send Pwd
1300 for (i = 0x80000000; i != 0; i >>= 1)
1301 T55xxWriteBit(Pwd & i);
1302 }
1303 // Send a zero bit separation
1304 T55xxWriteBit(0);
1305
1306 // Send Block number (if direct access mode)
1307 if (!RegReadMode)
1308 for (i = 0x04; i != 0; i >>= 1)
1309 T55xxWriteBit(Block & i);
1310
1311 // Turn field on to read the response
1312 TurnReadLFOn(READ_GAP);
1313
1314 // Acquisition
1315 doT55x7Acquisition(7679);
1316
1317 // Turn the field off
1318 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1319 cmd_send(CMD_ACK,0,0,0,0,0);
1320 LED_A_OFF();
1321}
1322
1323void T55xxWakeUp(uint32_t Pwd){
1324 LED_B_ON();
1325 uint32_t i = 0;
1326
1327 // Set up FPGA, 125kHz
1328 LFSetupFPGAForADC(95, true);
1329
1330 // Trigger T55x7 Direct Access Mode
1331 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1332 WaitUS(START_GAP);
1333
1334 // Opcode 10
1335 T55xxWriteBit(1);
1336 T55xxWriteBit(0); //Page 0
1337
1338 // Send Pwd
1339 for (i = 0x80000000; i != 0; i >>= 1)
1340 T55xxWriteBit(Pwd & i);
1341
1342 // Turn and leave field on to let the begin repeating transmission
1343 TurnReadLFOn(20*1000);
1344}
1345
1346/*-------------- Cloning routines -----------*/
1347void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
1348 // write last block first and config block last (if included)
1349 for (uint8_t i = numblocks+startblock; i > startblock; i--)
1350 T55xxWriteBlockExt(blockdata[i-1], i-1, 0, 0);
1351}
1352
1353// Copy HID id to card and setup block 0 config
1354void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
1355 uint32_t data[] = {0,0,0,0,0,0,0};
1356 uint8_t last_block = 0;
1357
1358 if (longFMT){
1359 // Ensure no more than 84 bits supplied
1360 if (hi2 > 0xFFFFF) {
1361 DbpString("Tags can only have 84 bits.");
1362 return;
1363 }
1364 // Build the 6 data blocks for supplied 84bit ID
1365 last_block = 6;
1366 // load preamble (1D) & long format identifier (9E manchester encoded)
1367 data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
1368 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1369 data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
1370 data[3] = manchesterEncode2Bytes(hi >> 16);
1371 data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
1372 data[5] = manchesterEncode2Bytes(lo >> 16);
1373 data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
1374 } else {
1375 // Ensure no more than 44 bits supplied
1376 if (hi > 0xFFF) {
1377 DbpString("Tags can only have 44 bits.");
1378 return;
1379 }
1380 // Build the 3 data blocks for supplied 44bit ID
1381 last_block = 3;
1382 // load preamble
1383 data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
1384 data[2] = manchesterEncode2Bytes(lo >> 16);
1385 data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
1386 }
1387 // load chip config block
1388 data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
1389
1390 //TODO add selection of chip for Q5 or T55x7
1391 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1392
1393 LED_D_ON();
1394 WriteT55xx(data, 0, last_block+1);
1395 LED_D_OFF();
1396}
1397
1398void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
1399 uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1400 //TODO add selection of chip for Q5 or T55x7
1401 //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
1402 // data[0] = (64 << T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1403
1404 LED_D_ON();
1405 // Program the data blocks for supplied ID
1406 // and the block 0 config
1407 WriteT55xx(data, 0, 3);
1408 LED_D_OFF();
1409}
1410
1411// Clone Indala 64-bit tag by UID to T55x7
1412void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
1413 //Program the 2 data blocks for supplied 64bit UID
1414 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1415 uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1416 //TODO add selection of chip for Q5 or T55x7
1417 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1418
1419 WriteT55xx(data, 0, 3);
1420 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1421 // T5567WriteBlock(0x603E1042,0);
1422}
1423// Clone Indala 224-bit tag by UID to T55x7
1424void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
1425 //Program the 7 data blocks for supplied 224bit UID
1426 uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
1427 // and the block 0 for Indala224 format
1428 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1429 data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT);
1430 //TODO add selection of chip for Q5 or T55x7
1431 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
1432 WriteT55xx(data, 0, 8);
1433 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1434 // T5567WriteBlock(0x603E10E2,0);
1435}
1436// clone viking tag to T55xx
1437void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
1438 uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
1439 //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
1440 if (Q5) data[0] = (32 << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
1441 // Program the data blocks for supplied ID and the block 0 config
1442 WriteT55xx(data, 0, 3);
1443 LED_D_OFF();
1444 cmd_send(CMD_ACK,0,0,0,0,0);
1445}
1446
1447// Define 9bit header for EM410x tags
1448#define EM410X_HEADER 0x1FF
1449#define EM410X_ID_LENGTH 40
1450
1451void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
1452 int i, id_bit;
1453 uint64_t id = EM410X_HEADER;
1454 uint64_t rev_id = 0; // reversed ID
1455 int c_parity[4]; // column parity
1456 int r_parity = 0; // row parity
1457 uint32_t clock = 0;
1458
1459 // Reverse ID bits given as parameter (for simpler operations)
1460 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1461 if (i < 32) {
1462 rev_id = (rev_id << 1) | (id_lo & 1);
1463 id_lo >>= 1;
1464 } else {
1465 rev_id = (rev_id << 1) | (id_hi & 1);
1466 id_hi >>= 1;
1467 }
1468 }
1469
1470 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1471 id_bit = rev_id & 1;
1472
1473 if (i % 4 == 0) {
1474 // Don't write row parity bit at start of parsing
1475 if (i)
1476 id = (id << 1) | r_parity;
1477 // Start counting parity for new row
1478 r_parity = id_bit;
1479 } else {
1480 // Count row parity
1481 r_parity ^= id_bit;
1482 }
1483
1484 // First elements in column?
1485 if (i < 4)
1486 // Fill out first elements
1487 c_parity[i] = id_bit;
1488 else
1489 // Count column parity
1490 c_parity[i % 4] ^= id_bit;
1491
1492 // Insert ID bit
1493 id = (id << 1) | id_bit;
1494 rev_id >>= 1;
1495 }
1496
1497 // Insert parity bit of last row
1498 id = (id << 1) | r_parity;
1499
1500 // Fill out column parity at the end of tag
1501 for (i = 0; i < 4; ++i)
1502 id = (id << 1) | c_parity[i];
1503
1504 // Add stop bit
1505 id <<= 1;
1506
1507 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1508 LED_D_ON();
1509
1510 // Write EM410x ID
1511 uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
1512
1513 clock = (card & 0xFF00) >> 8;
1514 clock = (clock == 0) ? 64 : clock;
1515 Dbprintf("Clock rate: %d", clock);
1516 if (card & 0xFF) { //t55x7
1517 clock = GetT55xxClockBit(clock);
1518 if (clock == 0) {
1519 Dbprintf("Invalid clock rate: %d", clock);
1520 return;
1521 }
1522 data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
1523 } else { //t5555 (Q5)
1524 clock = (clock-2)>>1; //n = (RF-2)/2
1525 data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
1526 }
1527
1528 WriteT55xx(data, 0, 3);
1529
1530 LED_D_OFF();
1531 Dbprintf("Tag %s written with 0x%08x%08x\n",
1532 card ? "T55x7":"T5555",
1533 (uint32_t)(id >> 32),
1534 (uint32_t)id);
1535}
1536
1537//-----------------------------------
1538// EM4469 / EM4305 routines
1539//-----------------------------------
1540#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1541#define FWD_CMD_WRITE 0xA
1542#define FWD_CMD_READ 0x9
1543#define FWD_CMD_DISABLE 0x5
1544
1545uint8_t forwardLink_data[64]; //array of forwarded bits
1546uint8_t * forward_ptr; //ptr for forward message preparation
1547uint8_t fwd_bit_sz; //forwardlink bit counter
1548uint8_t * fwd_write_ptr; //forwardlink bit pointer
1549
1550//====================================================================
1551// prepares command bits
1552// see EM4469 spec
1553//====================================================================
1554//--------------------------------------------------------------------
1555// VALUES TAKEN FROM EM4x function: SendForward
1556// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1557// WRITE_GAP = 128; (16*8)
1558// WRITE_1 = 256 32*8; (32*8)
1559
1560// These timings work for 4469/4269/4305 (with the 55*8 above)
1561// WRITE_0 = 23*8 , 9*8
1562
1563uint8_t Prepare_Cmd( uint8_t cmd ) {
1564
1565 *forward_ptr++ = 0; //start bit
1566 *forward_ptr++ = 0; //second pause for 4050 code
1567
1568 *forward_ptr++ = cmd;
1569 cmd >>= 1;
1570 *forward_ptr++ = cmd;
1571 cmd >>= 1;
1572 *forward_ptr++ = cmd;
1573 cmd >>= 1;
1574 *forward_ptr++ = cmd;
1575
1576 return 6; //return number of emited bits
1577}
1578
1579//====================================================================
1580// prepares address bits
1581// see EM4469 spec
1582//====================================================================
1583uint8_t Prepare_Addr( uint8_t addr ) {
1584
1585 register uint8_t line_parity;
1586
1587 uint8_t i;
1588 line_parity = 0;
1589 for(i=0;i<6;i++) {
1590 *forward_ptr++ = addr;
1591 line_parity ^= addr;
1592 addr >>= 1;
1593 }
1594
1595 *forward_ptr++ = (line_parity & 1);
1596
1597 return 7; //return number of emited bits
1598}
1599
1600//====================================================================
1601// prepares data bits intreleaved with parity bits
1602// see EM4469 spec
1603//====================================================================
1604uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1605
1606 register uint8_t line_parity;
1607 register uint8_t column_parity;
1608 register uint8_t i, j;
1609 register uint16_t data;
1610
1611 data = data_low;
1612 column_parity = 0;
1613
1614 for(i=0; i<4; i++) {
1615 line_parity = 0;
1616 for(j=0; j<8; j++) {
1617 line_parity ^= data;
1618 column_parity ^= (data & 1) << j;
1619 *forward_ptr++ = data;
1620 data >>= 1;
1621 }
1622 *forward_ptr++ = line_parity;
1623 if(i == 1)
1624 data = data_hi;
1625 }
1626
1627 for(j=0; j<8; j++) {
1628 *forward_ptr++ = column_parity;
1629 column_parity >>= 1;
1630 }
1631 *forward_ptr = 0;
1632
1633 return 45; //return number of emited bits
1634}
1635
1636//====================================================================
1637// Forward Link send function
1638// Requires: forwarLink_data filled with valid bits (1 bit per byte)
1639// fwd_bit_count set with number of bits to be sent
1640//====================================================================
1641void SendForward(uint8_t fwd_bit_count) {
1642
1643 fwd_write_ptr = forwardLink_data;
1644 fwd_bit_sz = fwd_bit_count;
1645
1646 LED_D_ON();
1647
1648 // Set up FPGA, 125kHz
1649 LFSetupFPGAForADC(95, true);
1650
1651 // force 1st mod pulse (start gap must be longer for 4305)
1652 fwd_bit_sz--; //prepare next bit modulation
1653 fwd_write_ptr++;
1654 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1655 WaitUS(55*8); //55 cycles off (8us each)for 4305 // ICEMAN: problem with (us) clock is 21.3us increments
1656 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1657 WaitUS(16*8); //16 cycles on (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
1658
1659 // now start writting
1660 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1661 if(((*fwd_write_ptr++) & 1) == 1)
1662 WaitUS(32*8); //32 cycles at 125Khz (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
1663 else {
1664 //These timings work for 4469/4269/4305 (with the 55*8 above)
1665 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1666 WaitUS(16*8); //16-4 cycles off (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
1667 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1668 WaitUS(16*8); //16 cycles on (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
1669 }
1670 }
1671}
1672
1673void EM4xLogin(uint32_t Password) {
1674
1675 uint8_t fwd_bit_count;
1676 forward_ptr = forwardLink_data;
1677 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1678 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1679 SendForward(fwd_bit_count);
1680
1681 //Wait for command to complete
1682 WaitMS(20);
1683}
1684
1685void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1686
1687 uint8_t fwd_bit_count;
1688 uint8_t *dest = BigBuf_get_addr();
1689 uint16_t bufsize = BigBuf_max_traceLen(); // ICEMAN: this tries to fill up all tracelog space
1690 uint32_t i = 0;
1691
1692 // Clear destination buffer before sending the command
1693 BigBuf_Clear_ext(false);
1694
1695 //If password mode do login
1696 if (PwdMode == 1) EM4xLogin(Pwd);
1697
1698 forward_ptr = forwardLink_data;
1699 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1700 fwd_bit_count += Prepare_Addr( Address );
1701
1702 SendForward(fwd_bit_count);
1703
1704 // Now do the acquisition
1705 // ICEMAN, change to the one in lfsampling.c
1706 i = 0;
1707 for(;;) {
1708 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1709 AT91C_BASE_SSC->SSC_THR = 0x43;
1710 }
1711 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1712 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1713 ++i;
1714 if (i >= bufsize) break;
1715 }
1716 }
1717
1718 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1719 cmd_send(CMD_ACK,0,0,0,0,0);
1720 LED_D_OFF();
1721}
1722
1723void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1724
1725 uint8_t fwd_bit_count;
1726
1727 //If password mode do login
1728 if (PwdMode == 1) EM4xLogin(Pwd);
1729
1730 forward_ptr = forwardLink_data;
1731 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1732 fwd_bit_count += Prepare_Addr( Address );
1733 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1734
1735 SendForward(fwd_bit_count);
1736
1737 //Wait for write to complete
1738 WaitMS(20);
1739 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1740 LED_D_OFF();
1741}
1742
1743/*
1744Reading a COTAG.
1745
1746COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
1747because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
1748
1749READER START SEQUENCE:
1750burst 800 us, gap 2.2 msecs
1751burst 3.6 msecs gap 2.2 msecs
1752burst 800 us gap 2.2 msecs
1753pulse 3.6 msecs
1754
1755This triggers a COTAG tag to response
1756*/
1757void Cotag(uint32_t arg0) {
1758
1759#define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
1760#define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
1761
1762 uint8_t rawsignal = arg0 & 0xF;
1763
1764 LED_A_ON();
1765
1766 // Switching to LF image on FPGA. This might empty BigBuff
1767 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1768
1769 //clear buffer now so it does not interfere with timing later
1770 BigBuf_Clear_ext(false);
1771
1772 // Set up FPGA, 132kHz to power up the tag
1773 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89);
1774 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1775
1776 // Connect the A/D to the peak-detected low-frequency path.
1777 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1778
1779 // Now set up the SSC to get the ADC samples that are now streaming at us.
1780 FpgaSetupSsc();
1781
1782 // start clock - 1.5ticks is 1us
1783 StartTicks();
1784
1785 //send COTAG start pulse
1786 ON(740) OFF
1787 ON(3330) OFF
1788 ON(740) OFF
1789 ON(1000)
1790
1791 switch(rawsignal) {
1792 case 0: doCotagAcquisition(50000); break;
1793 case 1: doCotagAcquisitionManchester(); break;
1794 case 2: DoAcquisition_config(TRUE); break;
1795 }
1796
1797 // Turn the field off
1798 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1799 cmd_send(CMD_ACK,0,0,0,0,0);
1800 LED_A_OFF();
1801}
Impressum, Datenschutz