]> cvs.zerfleddert.de Git - proxmark3-svn/blame_incremental - client/cmdlfem4x.c
Merge remote-tracking branch 'upstream/master'
[proxmark3-svn] / client / cmdlfem4x.c
... / ...
CommitLineData
1//-----------------------------------------------------------------------------
2// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
3//
4// This code is licensed to you under the terms of the GNU GPL, version 2 or,
5// at your option, any later version. See the LICENSE.txt file for the text of
6// the license.
7//-----------------------------------------------------------------------------
8// Low frequency EM4x commands
9//-----------------------------------------------------------------------------
10
11#include <stdio.h>
12#include <string.h>
13#include <inttypes.h>
14#include "proxmark3.h"
15#include "ui.h"
16#include "util.h"
17#include "graph.h"
18#include "cmdparser.h"
19#include "cmddata.h"
20#include "cmdlf.h"
21#include "cmdmain.h"
22#include "cmdlfem4x.h"
23#include "lfdemod.h"
24
25char *global_em410xId;
26
27static int CmdHelp(const char *Cmd);
28
29int CmdEMdemodASK(const char *Cmd)
30{
31 char cmdp = param_getchar(Cmd, 0);
32 int findone = (cmdp == '1') ? 1 : 0;
33 UsbCommand c={CMD_EM410X_DEMOD};
34 c.arg[0]=findone;
35 SendCommand(&c);
36 return 0;
37}
38
39/* Read the ID of an EM410x tag.
40 * Format:
41 * 1111 1111 1 <-- standard non-repeatable header
42 * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
43 * ....
44 * CCCC <-- each bit here is parity for the 10 bits above in corresponding column
45 * 0 <-- stop bit, end of tag
46 */
47int CmdEM410xRead(const char *Cmd)
48{
49 uint32_t hi=0;
50 uint64_t lo=0;
51
52 if(!AskEm410xDemod("", &hi, &lo, false)) return 0;
53 PrintAndLog("EM410x pattern found: ");
54 printEM410x(hi, lo);
55 if (hi){
56 PrintAndLog ("EM410x XL pattern found");
57 return 0;
58 }
59 char id[12] = {0x00};
60 sprintf(id, "%010"PRIx64,lo);
61
62 global_em410xId = id;
63 return 1;
64}
65
66// emulate an EM410X tag
67int CmdEM410xSim(const char *Cmd)
68{
69 int i, n, j, binary[4], parity[4];
70
71 char cmdp = param_getchar(Cmd, 0);
72 uint8_t uid[5] = {0x00};
73
74 if (cmdp == 'h' || cmdp == 'H') {
75 PrintAndLog("Usage: lf em 410xsim <UID> <clock>");
76 PrintAndLog("");
77 PrintAndLog(" sample: lf em 410xsim 0F0368568B");
78 return 0;
79 }
80 /* clock is 64 in EM410x tags */
81 uint8_t clock = 64;
82
83 if (param_gethex(Cmd, 0, uid, 10)) {
84 PrintAndLog("UID must include 10 HEX symbols");
85 return 0;
86 }
87 param_getdec(Cmd,1, &clock);
88
89 PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock);
90 PrintAndLog("Press pm3-button to about simulation");
91
92
93 /* clear our graph */
94 ClearGraph(0);
95
96 /* write 9 start bits */
97 for (i = 0; i < 9; i++)
98 AppendGraph(0, clock, 1);
99
100 /* for each hex char */
101 parity[0] = parity[1] = parity[2] = parity[3] = 0;
102 for (i = 0; i < 10; i++)
103 {
104 /* read each hex char */
105 sscanf(&Cmd[i], "%1x", &n);
106 for (j = 3; j >= 0; j--, n/= 2)
107 binary[j] = n % 2;
108
109 /* append each bit */
110 AppendGraph(0, clock, binary[0]);
111 AppendGraph(0, clock, binary[1]);
112 AppendGraph(0, clock, binary[2]);
113 AppendGraph(0, clock, binary[3]);
114
115 /* append parity bit */
116 AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
117
118 /* keep track of column parity */
119 parity[0] ^= binary[0];
120 parity[1] ^= binary[1];
121 parity[2] ^= binary[2];
122 parity[3] ^= binary[3];
123 }
124
125 /* parity columns */
126 AppendGraph(0, clock, parity[0]);
127 AppendGraph(0, clock, parity[1]);
128 AppendGraph(0, clock, parity[2]);
129 AppendGraph(0, clock, parity[3]);
130
131 /* stop bit */
132 AppendGraph(1, clock, 0);
133
134 CmdLFSim("0"); //240 start_gap.
135 return 0;
136}
137
138/* Function is equivalent of lf read + data samples + em410xread
139 * looped until an EM410x tag is detected
140 *
141 * Why is CmdSamples("16000")?
142 * TBD: Auto-grow sample size based on detected sample rate. IE: If the
143 * rate gets lower, then grow the number of samples
144 * Changed by martin, 4000 x 4 = 16000,
145 * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
146*/
147int CmdEM410xWatch(const char *Cmd)
148{
149 do {
150 if (ukbhit()) {
151 printf("\naborted via keyboard!\n");
152 break;
153 }
154
155 CmdLFRead("s");
156 getSamples("8201",true); //capture enough to get 2 complete preambles (4096*2+9)
157 } while (!CmdEM410xRead(""));
158
159 return 0;
160}
161
162//currently only supports manchester modulations
163int CmdEM410xWatchnSpoof(const char *Cmd)
164{
165 CmdEM410xWatch(Cmd);
166 PrintAndLog("# Replaying captured ID: %s",global_em410xId);
167 CmdLFaskSim("");
168 return 0;
169}
170
171int CmdEM410xWrite(const char *Cmd)
172{
173 uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
174 int card = 0xFF; // invalid card value
175 unsigned int clock = 0; // invalid clock value
176
177 sscanf(Cmd, "%" PRIx64 " %d %d", &id, &card, &clock);
178
179 // Check ID
180 if (id == 0xFFFFFFFFFFFFFFFF) {
181 PrintAndLog("Error! ID is required.\n");
182 return 0;
183 }
184 if (id >= 0x10000000000) {
185 PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n");
186 return 0;
187 }
188
189 // Check Card
190 if (card == 0xFF) {
191 PrintAndLog("Error! Card type required.\n");
192 return 0;
193 }
194 if (card < 0) {
195 PrintAndLog("Error! Bad card type selected.\n");
196 return 0;
197 }
198
199 // Check Clock
200 // Default: 64
201 if (clock == 0)
202 clock = 64;
203
204 // Allowed clock rates: 16, 32, 40 and 64
205 if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) {
206 PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock);
207 return 0;
208 }
209
210 if (card == 1) {
211 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock);
212 // NOTE: We really should pass the clock in as a separate argument, but to
213 // provide for backwards-compatibility for older firmware, and to avoid
214 // having to add another argument to CMD_EM410X_WRITE_TAG, we just store
215 // the clock rate in bits 8-15 of the card value
216 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
217 } else if (card == 0) {
218 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
219 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
220 } else {
221 PrintAndLog("Error! Bad card type selected.\n");
222 return 0;
223 }
224
225 UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
226 SendCommand(&c);
227
228 return 0;
229}
230
231//**************** Start of EM4x50 Code ************************
232bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
233{
234 if (rows*cols>size) return false;
235 uint8_t colP=0;
236 //assume last col is a parity and do not test
237 for (uint8_t colNum = 0; colNum < cols-1; colNum++) {
238 for (uint8_t rowNum = 0; rowNum < rows; rowNum++) {
239 colP ^= BitStream[(rowNum*cols)+colNum];
240 }
241 if (colP != pType) return false;
242 }
243 return true;
244}
245
246bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
247{
248 if (rows*cols>size) return false;
249 uint8_t rowP=0;
250 //assume last row is a parity row and do not test
251 for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) {
252 for (uint8_t colNum = 0; colNum < cols; colNum++) {
253 rowP ^= BitStream[(rowNum*cols)+colNum];
254 }
255 if (rowP != pType) return false;
256 }
257 return true;
258}
259
260uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
261{
262 if (size<45) return 0;
263 uint32_t code = bytebits_to_byte(BitStream,8);
264 code = code<<8 | bytebits_to_byte(BitStream+9,8);
265 code = code<<8 | bytebits_to_byte(BitStream+18,8);
266 code = code<<8 | bytebits_to_byte(BitStream+27,8);
267 if (verbose || g_debugMode){
268 for (uint8_t i = 0; i<5; i++){
269 if (i == 4) PrintAndLog(""); //parity byte spacer
270 PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x",
271 BitStream[i*9],
272 BitStream[i*9+1],
273 BitStream[i*9+2],
274 BitStream[i*9+3],
275 BitStream[i*9+4],
276 BitStream[i*9+5],
277 BitStream[i*9+6],
278 BitStream[i*9+7],
279 BitStream[i*9+8],
280 bytebits_to_byte(BitStream+i*9,8)
281 );
282 }
283 if (pTest)
284 PrintAndLog("Parity Passed");
285 else
286 PrintAndLog("Parity Failed");
287 }
288 return code;
289}
290/* Read the transmitted data of an EM4x50 tag from the graphbuffer
291 * Format:
292 *
293 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
294 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
295 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
296 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
297 * CCCCCCCC <- column parity bits
298 * 0 <- stop bit
299 * LW <- Listen Window
300 *
301 * This pattern repeats for every block of data being transmitted.
302 * Transmission starts with two Listen Windows (LW - a modulated
303 * pattern of 320 cycles each (32/32/128/64/64)).
304 *
305 * Note that this data may or may not be the UID. It is whatever data
306 * is stored in the blocks defined in the control word First and Last
307 * Word Read values. UID is stored in block 32.
308 */
309 //completed by Marshmellow
310int EM4x50Read(const char *Cmd, bool verbose)
311{
312 uint8_t fndClk[] = {8,16,32,40,50,64,128};
313 int clk = 0;
314 int invert = 0;
315 int tol = 0;
316 int i, j, startblock, skip, block, start, end, low, high, minClk;
317 bool complete = false;
318 int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
319 uint32_t Code[6];
320 char tmp[6];
321 char tmp2[20];
322 int phaseoff;
323 high = low = 0;
324 memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64);
325
326 // get user entry if any
327 sscanf(Cmd, "%i %i", &clk, &invert);
328
329 // save GraphBuffer - to restore it later
330 save_restoreGB(1);
331
332 // first get high and low values
333 for (i = 0; i < GraphTraceLen; i++) {
334 if (GraphBuffer[i] > high)
335 high = GraphBuffer[i];
336 else if (GraphBuffer[i] < low)
337 low = GraphBuffer[i];
338 }
339
340 i = 0;
341 j = 0;
342 minClk = 255;
343 // get to first full low to prime loop and skip incomplete first pulse
344 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
345 ++i;
346 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
347 ++i;
348 skip = i;
349
350 // populate tmpbuff buffer with pulse lengths
351 while (i < GraphTraceLen) {
352 // measure from low to low
353 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
354 ++i;
355 start= i;
356 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
357 ++i;
358 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
359 ++i;
360 if (j>=(MAX_GRAPH_TRACE_LEN/64)) {
361 break;
362 }
363 tmpbuff[j++]= i - start;
364 if (i-start < minClk && i < GraphTraceLen) {
365 minClk = i - start;
366 }
367 }
368 // set clock
369 if (!clk) {
370 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
371 tol = fndClk[clkCnt]/8;
372 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
373 clk=fndClk[clkCnt];
374 break;
375 }
376 }
377 if (!clk) return 0;
378 } else tol = clk/8;
379
380 // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
381 start = -1;
382 for (i= 0; i < j - 4 ; ++i) {
383 skip += tmpbuff[i];
384 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
385 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
386 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
387 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
388 {
389 start= i + 4;
390 break;
391 }
392 }
393 startblock = i + 4;
394
395 // skip over the remainder of LW
396 skip += tmpbuff[i+1] + tmpbuff[i+2] + clk;
397 if (tmpbuff[i+3]>clk)
398 phaseoff = tmpbuff[i+3]-clk;
399 else
400 phaseoff = 0;
401 // now do it again to find the end
402 end = skip;
403 for (i += 3; i < j - 4 ; ++i) {
404 end += tmpbuff[i];
405 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
406 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
407 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
408 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
409 {
410 complete= true;
411 break;
412 }
413 }
414 end = i;
415 // report back
416 if (verbose || g_debugMode) {
417 if (start >= 0) {
418 PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)");
419 } else {
420 PrintAndLog("No data found!, clock tried:%d",clk);
421 PrintAndLog("Try again with more samples.");
422 PrintAndLog(" or after a 'data askedge' command to clean up the read");
423 return 0;
424 }
425 } else if (start < 0) return 0;
426 start = skip;
427 snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47);
428 // get rid of leading crap
429 snprintf(tmp, sizeof(tmp), "%i", skip);
430 CmdLtrim(tmp);
431 bool pTest;
432 bool AllPTest = true;
433 // now work through remaining buffer printing out data blocks
434 block = 0;
435 i = startblock;
436 while (block < 6) {
437 if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block);
438 skip = phaseoff;
439
440 // look for LW before start of next block
441 for ( ; i < j - 4 ; ++i) {
442 skip += tmpbuff[i];
443 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)
444 if (tmpbuff[i+1] >= clk-tol)
445 break;
446 }
447 if (i >= j-4) break; //next LW not found
448 skip += clk;
449 if (tmpbuff[i+1]>clk)
450 phaseoff = tmpbuff[i+1]-clk;
451 else
452 phaseoff = 0;
453 i += 2;
454 if (ASKDemod(tmp2, false, false, 1) < 1) {
455 save_restoreGB(0);
456 return 0;
457 }
458 //set DemodBufferLen to just one block
459 DemodBufferLen = skip/clk;
460 //test parities
461 pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0);
462 pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0);
463 AllPTest &= pTest;
464 //get output
465 Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest);
466 if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk);
467 //skip to start of next block
468 snprintf(tmp,sizeof(tmp),"%i",skip);
469 CmdLtrim(tmp);
470 block++;
471 if (i >= end) break; //in case chip doesn't output 6 blocks
472 }
473 //print full code:
474 if (verbose || g_debugMode || AllPTest){
475 if (!complete) {
476 PrintAndLog("*** Warning!");
477 PrintAndLog("Partial data - no end found!");
478 PrintAndLog("Try again with more samples.");
479 }
480 PrintAndLog("Found data at sample: %i - using clock: %i", start, clk);
481 end = block;
482 for (block=0; block < end; block++){
483 PrintAndLog("Block %d: %08x",block,Code[block]);
484 }
485 if (AllPTest) {
486 PrintAndLog("Parities Passed");
487 } else {
488 PrintAndLog("Parities Failed");
489 PrintAndLog("Try cleaning the read samples with 'data askedge'");
490 }
491 }
492
493 //restore GraphBuffer
494 save_restoreGB(0);
495 return (int)AllPTest;
496}
497
498int CmdEM4x50Read(const char *Cmd)
499{
500 return EM4x50Read(Cmd, true);
501}
502
503//**************** Start of EM4x05/EM4x69 Code ************************
504int usage_lf_em_read(void) {
505 PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. ");
506 PrintAndLog("");
507 PrintAndLog("Usage: lf em 4x05readword [h] <address> <pwd>");
508 PrintAndLog("Options:");
509 PrintAndLog(" h - this help");
510 PrintAndLog(" address - memory address to read. (0-15)");
511 PrintAndLog(" pwd - password (hex) (optional)");
512 PrintAndLog("samples:");
513 PrintAndLog(" lf em 4x05readword 1");
514 PrintAndLog(" lf em 4x05readword 1 11223344");
515 return 0;
516}
517
518// for command responses from em4x05 or em4x69
519// download samples from device and copy them to the Graphbuffer
520bool downloadSamplesEM() {
521 // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
522 uint8_t got[6000];
523 GetFromBigBuf(got, sizeof(got), 0);
524 if ( !WaitForResponseTimeout(CMD_ACK, NULL, 4000) ) {
525 PrintAndLog("command execution time out");
526 return false;
527 }
528 setGraphBuf(got, sizeof(got));
529 return true;
530}
531
532bool EM4x05testDemodReadData(uint32_t *word, bool readCmd) {
533 // em4x05/em4x69 command response preamble is 00001010
534 // skip first two 0 bits as they might have been missed in the demod
535 uint8_t preamble[] = {0,0,1,0,1,0};
536 size_t startIdx = 0;
537
538 // set size to 20 to only test first 14 positions for the preamble or less if not a read command
539 size_t size = (readCmd) ? 20 : 11;
540 // sanity check
541 size = (size > DemodBufferLen) ? DemodBufferLen : size;
542 // test preamble
543 if ( !preambleSearchEx(DemodBuffer, preamble, sizeof(preamble), &size, &startIdx, true) ) {
544 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", startIdx);
545 return false;
546 }
547 // if this is a readword command, get the read bytes and test the parities
548 if (readCmd) {
549 if (!EM_EndParityTest(DemodBuffer + startIdx + sizeof(preamble), 45, 5, 9, 0)) {
550 if (g_debugMode) PrintAndLog("DEBUG: Error - End Parity check failed");
551 return false;
552 }
553 // test for even parity bits and remove them. (leave out the end row of parities so 36 bits)
554 if ( removeParity(DemodBuffer, startIdx + sizeof(preamble),9,0,36) == 0 ) {
555 if (g_debugMode) PrintAndLog("DEBUG: Error - Parity not detected");
556 return false;
557 }
558
559 setDemodBuf(DemodBuffer, 32, 0);
560 *word = bytebits_to_byteLSBF(DemodBuffer, 32);
561 }
562 return true;
563}
564
565// FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE
566// should cover 90% of known used configs
567// the rest will need to be manually demoded for now...
568int demodEM4x05resp(uint32_t *word, bool readCmd) {
569 int ans = 0;
570
571 // test for FSK wave (easiest to 99% ID)
572 if (GetFskClock("", false, false)) {
573 //valid fsk clocks found
574 ans = FSKrawDemod("0 0", false);
575 if (!ans) {
576 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: FSK Demod failed, ans: %d", ans);
577 } else {
578 if (EM4x05testDemodReadData(word, readCmd)) {
579 return 1;
580 }
581 }
582 }
583 // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... )
584 ans = GetPskClock("", false, false);
585 if (ans>0) {
586 //try psk1
587 ans = PSKDemod("0 0 6", false);
588 if (!ans) {
589 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
590 } else {
591 if (EM4x05testDemodReadData(word, readCmd)) {
592 return 1;
593 } else {
594 //try psk2
595 psk1TOpsk2(DemodBuffer, DemodBufferLen);
596 if (EM4x05testDemodReadData(word, readCmd)) {
597 return 1;
598 }
599 }
600 //try psk1 inverted
601 ans = PSKDemod("0 1 6", false);
602 if (!ans) {
603 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
604 } else {
605 if (EM4x05testDemodReadData(word, readCmd)) {
606 return 1;
607 } else {
608 //try psk2
609 psk1TOpsk2(DemodBuffer, DemodBufferLen);
610 if (EM4x05testDemodReadData(word, readCmd)) {
611 return 1;
612 }
613 }
614 }
615 }
616 }
617
618 // manchester is more common than biphase... try first
619 bool stcheck = false;
620 // try manchester - NOTE: ST only applies to T55x7 tags.
621 ans = ASKDemod_ext("0,0,1", false, false, 1, &stcheck);
622 if (!ans) {
623 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/Manchester Demod failed, ans: %d", ans);
624 } else {
625 if (EM4x05testDemodReadData(word, readCmd)) {
626 return 1;
627 }
628 }
629
630 //try biphase
631 ans = ASKbiphaseDemod("0 0 1", false);
632 if (!ans) {
633 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
634 } else {
635 if (EM4x05testDemodReadData(word, readCmd)) {
636 return 1;
637 }
638 }
639
640 //try diphase (differential biphase or inverted)
641 ans = ASKbiphaseDemod("0 1 1", false);
642 if (!ans) {
643 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
644 } else {
645 if (EM4x05testDemodReadData(word, readCmd)) {
646 return 1;
647 }
648 }
649
650 return -1;
651}
652
653int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *wordData) {
654 UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}};
655 clearCommandBuffer();
656 SendCommand(&c);
657 UsbCommand resp;
658 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){
659 PrintAndLog("Command timed out");
660 return -1;
661 }
662 if ( !downloadSamplesEM() ) {
663 return -1;
664 }
665 int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000;
666 if (graphJustNoise(GraphBuffer, testLen)) {
667 PrintAndLog("no tag not found");
668 return -1;
669 }
670 //attempt demod:
671 return demodEM4x05resp(wordData, true);
672}
673
674int EM4x05ReadWord(uint8_t addr, uint32_t pwd, bool usePwd) {
675 uint32_t wordData = 0;
676 int success = EM4x05ReadWord_ext(addr, pwd, usePwd, &wordData);
677 if (success == 1)
678 PrintAndLog("%s Address %02d | %08X", (addr>13) ? "Lock":" Got",addr,wordData);
679 else
680 PrintAndLog("Read Address %02d | failed",addr);
681
682 return success;
683}
684
685int CmdEM4x05ReadWord(const char *Cmd) {
686 uint8_t addr;
687 uint32_t pwd;
688 bool usePwd = false;
689 uint8_t ctmp = param_getchar(Cmd, 0);
690 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_read();
691
692 addr = param_get8ex(Cmd, 0, 50, 10);
693 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
694 pwd = param_get32ex(Cmd, 1, 1, 16);
695
696 if ( (addr > 15) ) {
697 PrintAndLog("Address must be between 0 and 15");
698 return 1;
699 }
700 if ( pwd == 1 ) {
701 PrintAndLog("Reading address %02u", addr);
702 } else {
703 usePwd = true;
704 PrintAndLog("Reading address %02u | password %08X", addr, pwd);
705 }
706
707 return EM4x05ReadWord(addr, pwd, usePwd);
708}
709
710int usage_lf_em_dump(void) {
711 PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. ");
712 PrintAndLog("");
713 PrintAndLog("Usage: lf em 4x05dump [h] <pwd>");
714 PrintAndLog("Options:");
715 PrintAndLog(" h - this help");
716 PrintAndLog(" pwd - password (hex) (optional)");
717 PrintAndLog("samples:");
718 PrintAndLog(" lf em 4x05dump");
719 PrintAndLog(" lf em 4x05dump 11223344");
720 return 0;
721}
722
723int CmdEM4x05dump(const char *Cmd) {
724 uint8_t addr = 0;
725 uint32_t pwd;
726 bool usePwd = false;
727 uint8_t ctmp = param_getchar(Cmd, 0);
728 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
729
730 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
731 pwd = param_get32ex(Cmd, 0, 1, 16);
732
733 if ( pwd != 1 ) {
734 usePwd = true;
735 }
736 int success = 1;
737 for (; addr < 16; addr++) {
738 if (addr == 2) {
739 if (usePwd) {
740 PrintAndLog(" PWD Address %02u | %08X",addr,pwd);
741 } else {
742 PrintAndLog(" PWD Address 02 | cannot read");
743 }
744 } else {
745 success &= EM4x05ReadWord(addr, pwd, usePwd);
746 }
747 }
748
749 return success;
750}
751
752
753int usage_lf_em_write(void) {
754 PrintAndLog("Write EM4x05/EM4x69. Tag must be on antenna. ");
755 PrintAndLog("");
756 PrintAndLog("Usage: lf em 4x05writeword [h] <address> <data> <pwd>");
757 PrintAndLog("Options:");
758 PrintAndLog(" h - this help");
759 PrintAndLog(" address - memory address to write to. (0-15)");
760 PrintAndLog(" data - data to write (hex)");
761 PrintAndLog(" pwd - password (hex) (optional)");
762 PrintAndLog("samples:");
763 PrintAndLog(" lf em 4x05writeword 1");
764 PrintAndLog(" lf em 4x05writeword 1 deadc0de 11223344");
765 return 0;
766}
767
768int CmdEM4x05WriteWord(const char *Cmd) {
769 uint8_t ctmp = param_getchar(Cmd, 0);
770 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_write();
771
772 bool usePwd = false;
773
774 uint8_t addr = 16; // default to invalid address
775 uint32_t data = 0xFFFFFFFF; // default to blank data
776 uint32_t pwd = 0xFFFFFFFF; // default to blank password
777
778 addr = param_get8ex(Cmd, 0, 16, 10);
779 data = param_get32ex(Cmd, 1, 0, 16);
780 pwd = param_get32ex(Cmd, 2, 1, 16);
781
782
783 if ( (addr > 15) ) {
784 PrintAndLog("Address must be between 0 and 15");
785 return 1;
786 }
787 if ( pwd == 1 )
788 PrintAndLog("Writing address %d data %08X", addr, data);
789 else {
790 usePwd = true;
791 PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd);
792 }
793
794 uint16_t flag = (addr << 8 ) | usePwd;
795
796 UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}};
797 clearCommandBuffer();
798 SendCommand(&c);
799 UsbCommand resp;
800 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){
801 PrintAndLog("Error occurred, device did not respond during write operation.");
802 return -1;
803 }
804 if ( !downloadSamplesEM() ) {
805 return -1;
806 }
807 //check response for 00001010 for write confirmation!
808 //attempt demod:
809 uint32_t dummy = 0;
810 int result = demodEM4x05resp(&dummy,false);
811 if (result == 1) {
812 PrintAndLog("Write Verified");
813 } else {
814 PrintAndLog("Write could not be verified");
815 }
816 return result;
817}
818
819void printEM4x05config(uint32_t wordData) {
820 uint16_t datarate = (((wordData & 0x3F)+1)*2);
821 uint8_t encoder = ((wordData >> 6) & 0xF);
822 char enc[14];
823 memset(enc,0,sizeof(enc));
824
825 uint8_t PSKcf = (wordData >> 10) & 0x3;
826 char cf[10];
827 memset(cf,0,sizeof(cf));
828 uint8_t delay = (wordData >> 12) & 0x3;
829 char cdelay[33];
830 memset(cdelay,0,sizeof(cdelay));
831 uint8_t LWR = (wordData >> 14) & 0xF; //last word read
832
833 switch (encoder) {
834 case 0: snprintf(enc,sizeof(enc),"NRZ"); break;
835 case 1: snprintf(enc,sizeof(enc),"Manchester"); break;
836 case 2: snprintf(enc,sizeof(enc),"Biphase"); break;
837 case 3: snprintf(enc,sizeof(enc),"Miller"); break;
838 case 4: snprintf(enc,sizeof(enc),"PSK1"); break;
839 case 5: snprintf(enc,sizeof(enc),"PSK2"); break;
840 case 6: snprintf(enc,sizeof(enc),"PSK3"); break;
841 case 7: snprintf(enc,sizeof(enc),"Unknown"); break;
842 case 8: snprintf(enc,sizeof(enc),"FSK1"); break;
843 case 9: snprintf(enc,sizeof(enc),"FSK2"); break;
844 default: snprintf(enc,sizeof(enc),"Unknown"); break;
845 }
846
847 switch (PSKcf) {
848 case 0: snprintf(cf,sizeof(cf),"RF/2"); break;
849 case 1: snprintf(cf,sizeof(cf),"RF/8"); break;
850 case 2: snprintf(cf,sizeof(cf),"RF/4"); break;
851 case 3: snprintf(cf,sizeof(cf),"unknown"); break;
852 }
853
854 switch (delay) {
855 case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
856 case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break;
857 case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break;
858 case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
859 }
860 PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData);
861 PrintAndLog("Config Breakdown:", wordData);
862 PrintAndLog(" Data Rate: %02u | RF/%u", wordData & 0x3F, datarate);
863 PrintAndLog(" Encoder: %u | %s", encoder, enc);
864 PrintAndLog(" PSK CF: %u | %s", PSKcf, cf);
865 PrintAndLog(" Delay: %u | %s", delay, cdelay);
866 PrintAndLog(" LastWordR: %02u | Address of last word for default read", LWR);
867 PrintAndLog(" ReadLogin: %u | Read Login is %s", (wordData & 0x40000)>>18, (wordData & 0x40000) ? "Required" : "Not Required");
868 PrintAndLog(" ReadHKL: %u | Read Housekeeping Words Login is %s", (wordData & 0x80000)>>19, (wordData & 0x80000) ? "Required" : "Not Required");
869 PrintAndLog("WriteLogin: %u | Write Login is %s", (wordData & 0x100000)>>20, (wordData & 0x100000) ? "Required" : "Not Required");
870 PrintAndLog(" WriteHKL: %u | Write Housekeeping Words Login is %s", (wordData & 0x200000)>>21, (wordData & 0x200000) ? "Required" : "Not Required");
871 PrintAndLog(" R.A.W.: %u | Read After Write is %s", (wordData & 0x400000)>>22, (wordData & 0x400000) ? "On" : "Off");
872 PrintAndLog(" Disable: %u | Disable Command is %s", (wordData & 0x800000)>>23, (wordData & 0x800000) ? "Accepted" : "Not Accepted");
873 PrintAndLog(" R.T.F.: %u | Reader Talk First is %s", (wordData & 0x1000000)>>24, (wordData & 0x1000000) ? "Enabled" : "Disabled");
874 PrintAndLog(" Pigeon: %u | Pigeon Mode is %s\n", (wordData & 0x4000000)>>26, (wordData & 0x4000000) ? "Enabled" : "Disabled");
875}
876
877void printEM4x05info(uint8_t chipType, uint8_t cap, uint16_t custCode, uint32_t serial) {
878 switch (chipType) {
879 case 9: PrintAndLog("\n Chip Type: %u | EM4305", chipType); break;
880 case 4: PrintAndLog(" Chip Type: %u | Unknown", chipType); break;
881 case 2: PrintAndLog(" Chip Type: %u | EM4469", chipType); break;
882 //add more here when known
883 default: PrintAndLog(" Chip Type: %u Unknown", chipType); break;
884 }
885
886 switch (cap) {
887 case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break;
888 case 2: PrintAndLog(" Cap Type: %u | %spF",cap, (chipType==2)? "75":"210"); break;
889 case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break;
890 case 0: PrintAndLog(" Cap Type: %u | no resonant capacitor",cap); break;
891 default: PrintAndLog(" Cap Type: %u | unknown",cap); break;
892 }
893
894 PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown");
895 if (serial != 0) {
896 PrintAndLog("\n Serial #: %08X\n", serial);
897 }
898}
899
900void printEM4x05ProtectionBits(uint32_t wordData) {
901 for (uint8_t i = 0; i < 15; i++) {
902 PrintAndLog(" Word: %02u | %s", i, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
903 if (i==14) {
904 PrintAndLog(" Word: %02u | %s", i+1, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
905 }
906 }
907}
908
909//quick test for EM4x05/EM4x69 tag
910bool EM4x05Block0Test(uint32_t *wordData) {
911 if (EM4x05ReadWord_ext(0,0,false,wordData) == 1) {
912 return true;
913 }
914 return false;
915}
916
917int CmdEM4x05info(const char *Cmd) {
918 //uint8_t addr = 0;
919 uint32_t pwd;
920 uint32_t wordData = 0;
921 bool usePwd = false;
922 uint8_t ctmp = param_getchar(Cmd, 0);
923 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
924
925 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
926 pwd = param_get32ex(Cmd, 0, 1, 16);
927
928 if ( pwd != 1 ) {
929 usePwd = true;
930 }
931
932 // read word 0 (chip info)
933 // block 0 can be read even without a password.
934 if ( !EM4x05Block0Test(&wordData) )
935 return -1;
936
937 uint8_t chipType = (wordData >> 1) & 0xF;
938 uint8_t cap = (wordData >> 5) & 3;
939 uint16_t custCode = (wordData >> 9) & 0x3FF;
940
941 // read word 1 (serial #) doesn't need pwd
942 wordData = 0;
943 if (EM4x05ReadWord_ext(1, 0, false, &wordData) != 1) {
944 //failed, but continue anyway...
945 }
946 printEM4x05info(chipType, cap, custCode, wordData);
947
948 // read word 4 (config block)
949 // needs password if one is set
950 wordData = 0;
951 if ( EM4x05ReadWord_ext(4, pwd, usePwd, &wordData) != 1 ) {
952 //failed
953 return 0;
954 }
955 printEM4x05config(wordData);
956
957 // read word 14 and 15 to see which is being used for the protection bits
958 wordData = 0;
959 if ( EM4x05ReadWord_ext(14, pwd, usePwd, &wordData) != 1 ) {
960 //failed
961 return 0;
962 }
963 // if status bit says this is not the used protection word
964 if (!(wordData & 0x8000)) {
965 if ( EM4x05ReadWord_ext(15, pwd, usePwd, &wordData) != 1 ) {
966 //failed
967 return 0;
968 }
969 }
970 if (!(wordData & 0x8000)) {
971 //something went wrong
972 return 0;
973 }
974 printEM4x05ProtectionBits(wordData);
975
976 return 1;
977}
978
979
980static command_t CommandTable[] =
981{
982 {"help", CmdHelp, 1, "This help"},
983 {"410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
984 {"410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag in GraphBuffer"},
985 {"410xsim", CmdEM410xSim, 0, "<UID> [clock rate] -- Simulate EM410x tag"},
986 {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
987 {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
988 {"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
989 {"4x05dump", CmdEM4x05dump, 0, "(pwd) -- Read EM4x05/EM4x69 all word data"},
990 {"4x05info", CmdEM4x05info, 0, "(pwd) -- Get info from EM4x05/EM4x69 tag"},
991 {"4x05readword", CmdEM4x05ReadWord, 0, "<Word> (pwd) -- Read EM4x05/EM4x69 word data"},
992 {"4x05writeword", CmdEM4x05WriteWord, 0, "<Word> <data> (pwd) -- Write EM4x05/EM4x69 word data"},
993 {"4x50read", CmdEM4x50Read, 1, "demod data from EM4x50 tag from the graph buffer"},
994 {NULL, NULL, 0, NULL}
995};
996
997int CmdLFEM4X(const char *Cmd)
998{
999 CmdsParse(CommandTable, Cmd);
1000 return 0;
1001}
1002
1003int CmdHelp(const char *Cmd)
1004{
1005 CmdsHelp(CommandTable);
1006 return 0;
1007}
Impressum, Datenschutz