]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Copyright (C) 2010 iZsh <izsh at fail0verflow.com> | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // Low frequency EM4x commands | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include <stdio.h> | |
12 | #include <string.h> | |
13 | #include <inttypes.h> | |
14 | #include "proxmark3.h" | |
15 | #include "ui.h" | |
16 | #include "util.h" | |
17 | #include "graph.h" | |
18 | #include "cmdparser.h" | |
19 | #include "cmddata.h" | |
20 | #include "cmdlf.h" | |
21 | #include "cmdmain.h" | |
22 | #include "cmdlfem4x.h" | |
23 | #include "lfdemod.h" | |
24 | ||
25 | char *global_em410xId; | |
26 | ||
27 | static int CmdHelp(const char *Cmd); | |
28 | ||
29 | int CmdEMdemodASK(const char *Cmd) | |
30 | { | |
31 | char cmdp = param_getchar(Cmd, 0); | |
32 | int findone = (cmdp == '1') ? 1 : 0; | |
33 | UsbCommand c={CMD_EM410X_DEMOD}; | |
34 | c.arg[0]=findone; | |
35 | SendCommand(&c); | |
36 | return 0; | |
37 | } | |
38 | ||
39 | /* Read the ID of an EM410x tag. | |
40 | * Format: | |
41 | * 1111 1111 1 <-- standard non-repeatable header | |
42 | * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID | |
43 | * .... | |
44 | * CCCC <-- each bit here is parity for the 10 bits above in corresponding column | |
45 | * 0 <-- stop bit, end of tag | |
46 | */ | |
47 | int CmdEM410xRead(const char *Cmd) | |
48 | { | |
49 | uint32_t hi=0; | |
50 | uint64_t lo=0; | |
51 | ||
52 | if(!AskEm410xDemod("", &hi, &lo, false)) return 0; | |
53 | PrintAndLog("EM410x pattern found: "); | |
54 | printEM410x(hi, lo); | |
55 | if (hi){ | |
56 | PrintAndLog ("EM410x XL pattern found"); | |
57 | return 0; | |
58 | } | |
59 | char id[12] = {0x00}; | |
60 | sprintf(id, "%010"PRIx64,lo); | |
61 | ||
62 | global_em410xId = id; | |
63 | return 1; | |
64 | } | |
65 | ||
66 | // emulate an EM410X tag | |
67 | int CmdEM410xSim(const char *Cmd) | |
68 | { | |
69 | int i, n, j, binary[4], parity[4]; | |
70 | ||
71 | char cmdp = param_getchar(Cmd, 0); | |
72 | uint8_t uid[5] = {0x00}; | |
73 | ||
74 | if (cmdp == 'h' || cmdp == 'H') { | |
75 | PrintAndLog("Usage: lf em 410xsim <UID> <clock>"); | |
76 | PrintAndLog(""); | |
77 | PrintAndLog(" sample: lf em 410xsim 0F0368568B"); | |
78 | return 0; | |
79 | } | |
80 | /* clock is 64 in EM410x tags */ | |
81 | uint8_t clock = 64; | |
82 | ||
83 | if (param_gethex(Cmd, 0, uid, 10)) { | |
84 | PrintAndLog("UID must include 10 HEX symbols"); | |
85 | return 0; | |
86 | } | |
87 | param_getdec(Cmd,1, &clock); | |
88 | ||
89 | PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock); | |
90 | PrintAndLog("Press pm3-button to about simulation"); | |
91 | ||
92 | ||
93 | /* clear our graph */ | |
94 | ClearGraph(0); | |
95 | ||
96 | /* write 9 start bits */ | |
97 | for (i = 0; i < 9; i++) | |
98 | AppendGraph(0, clock, 1); | |
99 | ||
100 | /* for each hex char */ | |
101 | parity[0] = parity[1] = parity[2] = parity[3] = 0; | |
102 | for (i = 0; i < 10; i++) | |
103 | { | |
104 | /* read each hex char */ | |
105 | sscanf(&Cmd[i], "%1x", &n); | |
106 | for (j = 3; j >= 0; j--, n/= 2) | |
107 | binary[j] = n % 2; | |
108 | ||
109 | /* append each bit */ | |
110 | AppendGraph(0, clock, binary[0]); | |
111 | AppendGraph(0, clock, binary[1]); | |
112 | AppendGraph(0, clock, binary[2]); | |
113 | AppendGraph(0, clock, binary[3]); | |
114 | ||
115 | /* append parity bit */ | |
116 | AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]); | |
117 | ||
118 | /* keep track of column parity */ | |
119 | parity[0] ^= binary[0]; | |
120 | parity[1] ^= binary[1]; | |
121 | parity[2] ^= binary[2]; | |
122 | parity[3] ^= binary[3]; | |
123 | } | |
124 | ||
125 | /* parity columns */ | |
126 | AppendGraph(0, clock, parity[0]); | |
127 | AppendGraph(0, clock, parity[1]); | |
128 | AppendGraph(0, clock, parity[2]); | |
129 | AppendGraph(0, clock, parity[3]); | |
130 | ||
131 | /* stop bit */ | |
132 | AppendGraph(1, clock, 0); | |
133 | ||
134 | CmdLFSim("0"); //240 start_gap. | |
135 | return 0; | |
136 | } | |
137 | ||
138 | /* Function is equivalent of lf read + data samples + em410xread | |
139 | * looped until an EM410x tag is detected | |
140 | * | |
141 | * Why is CmdSamples("16000")? | |
142 | * TBD: Auto-grow sample size based on detected sample rate. IE: If the | |
143 | * rate gets lower, then grow the number of samples | |
144 | * Changed by martin, 4000 x 4 = 16000, | |
145 | * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235 | |
146 | */ | |
147 | int CmdEM410xWatch(const char *Cmd) | |
148 | { | |
149 | do { | |
150 | if (ukbhit()) { | |
151 | printf("\naborted via keyboard!\n"); | |
152 | break; | |
153 | } | |
154 | ||
155 | CmdLFRead("s"); | |
156 | getSamples("8201",true); //capture enough to get 2 complete preambles (4096*2+9) | |
157 | } while (!CmdEM410xRead("")); | |
158 | ||
159 | return 0; | |
160 | } | |
161 | ||
162 | //currently only supports manchester modulations | |
163 | int CmdEM410xWatchnSpoof(const char *Cmd) | |
164 | { | |
165 | CmdEM410xWatch(Cmd); | |
166 | PrintAndLog("# Replaying captured ID: %s",global_em410xId); | |
167 | CmdLFaskSim(""); | |
168 | return 0; | |
169 | } | |
170 | ||
171 | int CmdEM410xWrite(const char *Cmd) | |
172 | { | |
173 | uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value | |
174 | int card = 0xFF; // invalid card value | |
175 | unsigned int clock = 0; // invalid clock value | |
176 | ||
177 | sscanf(Cmd, "%" PRIx64 " %d %d", &id, &card, &clock); | |
178 | ||
179 | // Check ID | |
180 | if (id == 0xFFFFFFFFFFFFFFFF) { | |
181 | PrintAndLog("Error! ID is required.\n"); | |
182 | return 0; | |
183 | } | |
184 | if (id >= 0x10000000000) { | |
185 | PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n"); | |
186 | return 0; | |
187 | } | |
188 | ||
189 | // Check Card | |
190 | if (card == 0xFF) { | |
191 | PrintAndLog("Error! Card type required.\n"); | |
192 | return 0; | |
193 | } | |
194 | if (card < 0) { | |
195 | PrintAndLog("Error! Bad card type selected.\n"); | |
196 | return 0; | |
197 | } | |
198 | ||
199 | // Check Clock | |
200 | // Default: 64 | |
201 | if (clock == 0) | |
202 | clock = 64; | |
203 | ||
204 | // Allowed clock rates: 16, 32, 40 and 64 | |
205 | if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) { | |
206 | PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock); | |
207 | return 0; | |
208 | } | |
209 | ||
210 | if (card == 1) { | |
211 | PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock); | |
212 | // NOTE: We really should pass the clock in as a separate argument, but to | |
213 | // provide for backwards-compatibility for older firmware, and to avoid | |
214 | // having to add another argument to CMD_EM410X_WRITE_TAG, we just store | |
215 | // the clock rate in bits 8-15 of the card value | |
216 | card = (card & 0xFF) | ((clock << 8) & 0xFF00); | |
217 | } else if (card == 0) { | |
218 | PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock); | |
219 | card = (card & 0xFF) | ((clock << 8) & 0xFF00); | |
220 | } else { | |
221 | PrintAndLog("Error! Bad card type selected.\n"); | |
222 | return 0; | |
223 | } | |
224 | ||
225 | UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}}; | |
226 | SendCommand(&c); | |
227 | ||
228 | return 0; | |
229 | } | |
230 | ||
231 | //**************** Start of EM4x50 Code ************************ | |
232 | bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType) | |
233 | { | |
234 | if (rows*cols>size) return false; | |
235 | uint8_t colP=0; | |
236 | //assume last col is a parity and do not test | |
237 | for (uint8_t colNum = 0; colNum < cols-1; colNum++) { | |
238 | for (uint8_t rowNum = 0; rowNum < rows; rowNum++) { | |
239 | colP ^= BitStream[(rowNum*cols)+colNum]; | |
240 | } | |
241 | if (colP != pType) return false; | |
242 | } | |
243 | return true; | |
244 | } | |
245 | ||
246 | bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType) | |
247 | { | |
248 | if (rows*cols>size) return false; | |
249 | uint8_t rowP=0; | |
250 | //assume last row is a parity row and do not test | |
251 | for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) { | |
252 | for (uint8_t colNum = 0; colNum < cols; colNum++) { | |
253 | rowP ^= BitStream[(rowNum*cols)+colNum]; | |
254 | } | |
255 | if (rowP != pType) return false; | |
256 | } | |
257 | return true; | |
258 | } | |
259 | ||
260 | uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest) | |
261 | { | |
262 | if (size<45) return 0; | |
263 | uint32_t code = bytebits_to_byte(BitStream,8); | |
264 | code = code<<8 | bytebits_to_byte(BitStream+9,8); | |
265 | code = code<<8 | bytebits_to_byte(BitStream+18,8); | |
266 | code = code<<8 | bytebits_to_byte(BitStream+27,8); | |
267 | if (verbose || g_debugMode){ | |
268 | for (uint8_t i = 0; i<5; i++){ | |
269 | if (i == 4) PrintAndLog(""); //parity byte spacer | |
270 | PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x", | |
271 | BitStream[i*9], | |
272 | BitStream[i*9+1], | |
273 | BitStream[i*9+2], | |
274 | BitStream[i*9+3], | |
275 | BitStream[i*9+4], | |
276 | BitStream[i*9+5], | |
277 | BitStream[i*9+6], | |
278 | BitStream[i*9+7], | |
279 | BitStream[i*9+8], | |
280 | bytebits_to_byte(BitStream+i*9,8) | |
281 | ); | |
282 | } | |
283 | if (pTest) | |
284 | PrintAndLog("Parity Passed"); | |
285 | else | |
286 | PrintAndLog("Parity Failed"); | |
287 | } | |
288 | return code; | |
289 | } | |
290 | /* Read the transmitted data of an EM4x50 tag from the graphbuffer | |
291 | * Format: | |
292 | * | |
293 | * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity | |
294 | * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity | |
295 | * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity | |
296 | * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity | |
297 | * CCCCCCCC <- column parity bits | |
298 | * 0 <- stop bit | |
299 | * LW <- Listen Window | |
300 | * | |
301 | * This pattern repeats for every block of data being transmitted. | |
302 | * Transmission starts with two Listen Windows (LW - a modulated | |
303 | * pattern of 320 cycles each (32/32/128/64/64)). | |
304 | * | |
305 | * Note that this data may or may not be the UID. It is whatever data | |
306 | * is stored in the blocks defined in the control word First and Last | |
307 | * Word Read values. UID is stored in block 32. | |
308 | */ | |
309 | //completed by Marshmellow | |
310 | int EM4x50Read(const char *Cmd, bool verbose) | |
311 | { | |
312 | uint8_t fndClk[] = {8,16,32,40,50,64,128}; | |
313 | int clk = 0; | |
314 | int invert = 0; | |
315 | int tol = 0; | |
316 | int i, j, startblock, skip, block, start, end, low, high, minClk; | |
317 | bool complete = false; | |
318 | int tmpbuff[MAX_GRAPH_TRACE_LEN / 64]; | |
319 | uint32_t Code[6]; | |
320 | char tmp[6]; | |
321 | char tmp2[20]; | |
322 | int phaseoff; | |
323 | high = low = 0; | |
324 | memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64); | |
325 | ||
326 | // get user entry if any | |
327 | sscanf(Cmd, "%i %i", &clk, &invert); | |
328 | ||
329 | // save GraphBuffer - to restore it later | |
330 | save_restoreGB(1); | |
331 | ||
332 | // first get high and low values | |
333 | for (i = 0; i < GraphTraceLen; i++) { | |
334 | if (GraphBuffer[i] > high) | |
335 | high = GraphBuffer[i]; | |
336 | else if (GraphBuffer[i] < low) | |
337 | low = GraphBuffer[i]; | |
338 | } | |
339 | ||
340 | i = 0; | |
341 | j = 0; | |
342 | minClk = 255; | |
343 | // get to first full low to prime loop and skip incomplete first pulse | |
344 | while ((GraphBuffer[i] < high) && (i < GraphTraceLen)) | |
345 | ++i; | |
346 | while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) | |
347 | ++i; | |
348 | skip = i; | |
349 | ||
350 | // populate tmpbuff buffer with pulse lengths | |
351 | while (i < GraphTraceLen) { | |
352 | // measure from low to low | |
353 | while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) | |
354 | ++i; | |
355 | start= i; | |
356 | while ((GraphBuffer[i] < high) && (i < GraphTraceLen)) | |
357 | ++i; | |
358 | while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) | |
359 | ++i; | |
360 | if (j>=(MAX_GRAPH_TRACE_LEN/64)) { | |
361 | break; | |
362 | } | |
363 | tmpbuff[j++]= i - start; | |
364 | if (i-start < minClk && i < GraphTraceLen) { | |
365 | minClk = i - start; | |
366 | } | |
367 | } | |
368 | // set clock | |
369 | if (!clk) { | |
370 | for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { | |
371 | tol = fndClk[clkCnt]/8; | |
372 | if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) { | |
373 | clk=fndClk[clkCnt]; | |
374 | break; | |
375 | } | |
376 | } | |
377 | if (!clk) return 0; | |
378 | } else tol = clk/8; | |
379 | ||
380 | // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2) | |
381 | start = -1; | |
382 | for (i= 0; i < j - 4 ; ++i) { | |
383 | skip += tmpbuff[i]; | |
384 | if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks | |
385 | if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks | |
386 | if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks | |
387 | if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following | |
388 | { | |
389 | start= i + 4; | |
390 | break; | |
391 | } | |
392 | } | |
393 | startblock = i + 4; | |
394 | ||
395 | // skip over the remainder of LW | |
396 | skip += tmpbuff[i+1] + tmpbuff[i+2] + clk; | |
397 | if (tmpbuff[i+3]>clk) | |
398 | phaseoff = tmpbuff[i+3]-clk; | |
399 | else | |
400 | phaseoff = 0; | |
401 | // now do it again to find the end | |
402 | end = skip; | |
403 | for (i += 3; i < j - 4 ; ++i) { | |
404 | end += tmpbuff[i]; | |
405 | if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks | |
406 | if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks | |
407 | if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks | |
408 | if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following | |
409 | { | |
410 | complete= true; | |
411 | break; | |
412 | } | |
413 | } | |
414 | end = i; | |
415 | // report back | |
416 | if (verbose || g_debugMode) { | |
417 | if (start >= 0) { | |
418 | PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)"); | |
419 | } else { | |
420 | PrintAndLog("No data found!, clock tried:%d",clk); | |
421 | PrintAndLog("Try again with more samples."); | |
422 | PrintAndLog(" or after a 'data askedge' command to clean up the read"); | |
423 | return 0; | |
424 | } | |
425 | } else if (start < 0) return 0; | |
426 | start = skip; | |
427 | snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47); | |
428 | // get rid of leading crap | |
429 | snprintf(tmp, sizeof(tmp), "%i", skip); | |
430 | CmdLtrim(tmp); | |
431 | bool pTest; | |
432 | bool AllPTest = true; | |
433 | // now work through remaining buffer printing out data blocks | |
434 | block = 0; | |
435 | i = startblock; | |
436 | while (block < 6) { | |
437 | if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block); | |
438 | skip = phaseoff; | |
439 | ||
440 | // look for LW before start of next block | |
441 | for ( ; i < j - 4 ; ++i) { | |
442 | skip += tmpbuff[i]; | |
443 | if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) | |
444 | if (tmpbuff[i+1] >= clk-tol) | |
445 | break; | |
446 | } | |
447 | if (i >= j-4) break; //next LW not found | |
448 | skip += clk; | |
449 | if (tmpbuff[i+1]>clk) | |
450 | phaseoff = tmpbuff[i+1]-clk; | |
451 | else | |
452 | phaseoff = 0; | |
453 | i += 2; | |
454 | if (ASKDemod(tmp2, false, false, 1) < 1) { | |
455 | save_restoreGB(0); | |
456 | return 0; | |
457 | } | |
458 | //set DemodBufferLen to just one block | |
459 | DemodBufferLen = skip/clk; | |
460 | //test parities | |
461 | pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0); | |
462 | pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0); | |
463 | AllPTest &= pTest; | |
464 | //get output | |
465 | Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest); | |
466 | if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk); | |
467 | //skip to start of next block | |
468 | snprintf(tmp,sizeof(tmp),"%i",skip); | |
469 | CmdLtrim(tmp); | |
470 | block++; | |
471 | if (i >= end) break; //in case chip doesn't output 6 blocks | |
472 | } | |
473 | //print full code: | |
474 | if (verbose || g_debugMode || AllPTest){ | |
475 | if (!complete) { | |
476 | PrintAndLog("*** Warning!"); | |
477 | PrintAndLog("Partial data - no end found!"); | |
478 | PrintAndLog("Try again with more samples."); | |
479 | } | |
480 | PrintAndLog("Found data at sample: %i - using clock: %i", start, clk); | |
481 | end = block; | |
482 | for (block=0; block < end; block++){ | |
483 | PrintAndLog("Block %d: %08x",block,Code[block]); | |
484 | } | |
485 | if (AllPTest) { | |
486 | PrintAndLog("Parities Passed"); | |
487 | } else { | |
488 | PrintAndLog("Parities Failed"); | |
489 | PrintAndLog("Try cleaning the read samples with 'data askedge'"); | |
490 | } | |
491 | } | |
492 | ||
493 | //restore GraphBuffer | |
494 | save_restoreGB(0); | |
495 | return (int)AllPTest; | |
496 | } | |
497 | ||
498 | int CmdEM4x50Read(const char *Cmd) | |
499 | { | |
500 | return EM4x50Read(Cmd, true); | |
501 | } | |
502 | ||
503 | //**************** Start of EM4x05/EM4x69 Code ************************ | |
504 | int usage_lf_em_read(void) { | |
505 | PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. "); | |
506 | PrintAndLog(""); | |
507 | PrintAndLog("Usage: lf em 4x05readword [h] <address> <pwd>"); | |
508 | PrintAndLog("Options:"); | |
509 | PrintAndLog(" h - this help"); | |
510 | PrintAndLog(" address - memory address to read. (0-15)"); | |
511 | PrintAndLog(" pwd - password (hex) (optional)"); | |
512 | PrintAndLog("samples:"); | |
513 | PrintAndLog(" lf em 4x05readword 1"); | |
514 | PrintAndLog(" lf em 4x05readword 1 11223344"); | |
515 | return 0; | |
516 | } | |
517 | ||
518 | // for command responses from em4x05 or em4x69 | |
519 | // download samples from device and copy them to the Graphbuffer | |
520 | bool downloadSamplesEM() { | |
521 | // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples) | |
522 | uint8_t got[6000]; | |
523 | GetFromBigBuf(got, sizeof(got), 0); | |
524 | if ( !WaitForResponseTimeout(CMD_ACK, NULL, 4000) ) { | |
525 | PrintAndLog("command execution time out"); | |
526 | return false; | |
527 | } | |
528 | setGraphBuf(got, sizeof(got)); | |
529 | return true; | |
530 | } | |
531 | ||
532 | bool EM4x05testDemodReadData(uint32_t *word, bool readCmd) { | |
533 | // em4x05/em4x69 command response preamble is 00001010 | |
534 | // skip first two 0 bits as they might have been missed in the demod | |
535 | uint8_t preamble[] = {0,0,1,0,1,0}; | |
536 | size_t startIdx = 0; | |
537 | ||
538 | // set size to 20 to only test first 14 positions for the preamble or less if not a read command | |
539 | size_t size = (readCmd) ? 20 : 11; | |
540 | // sanity check | |
541 | size = (size > DemodBufferLen) ? DemodBufferLen : size; | |
542 | // test preamble | |
543 | if ( !preambleSearchEx(DemodBuffer, preamble, sizeof(preamble), &size, &startIdx, true) ) { | |
544 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", startIdx); | |
545 | return false; | |
546 | } | |
547 | // if this is a readword command, get the read bytes and test the parities | |
548 | if (readCmd) { | |
549 | if (!EM_EndParityTest(DemodBuffer + startIdx + sizeof(preamble), 45, 5, 9, 0)) { | |
550 | if (g_debugMode) PrintAndLog("DEBUG: Error - End Parity check failed"); | |
551 | return false; | |
552 | } | |
553 | // test for even parity bits and remove them. (leave out the end row of parities so 36 bits) | |
554 | if ( removeParity(DemodBuffer, startIdx + sizeof(preamble),9,0,36) == 0 ) { | |
555 | if (g_debugMode) PrintAndLog("DEBUG: Error - Parity not detected"); | |
556 | return false; | |
557 | } | |
558 | ||
559 | setDemodBuf(DemodBuffer, 32, 0); | |
560 | *word = bytebits_to_byteLSBF(DemodBuffer, 32); | |
561 | } | |
562 | return true; | |
563 | } | |
564 | ||
565 | // FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE | |
566 | // should cover 90% of known used configs | |
567 | // the rest will need to be manually demoded for now... | |
568 | int demodEM4x05resp(uint32_t *word, bool readCmd) { | |
569 | int ans = 0; | |
570 | ||
571 | // test for FSK wave (easiest to 99% ID) | |
572 | if (GetFskClock("", false, false)) { | |
573 | //valid fsk clocks found | |
574 | ans = FSKrawDemod("0 0", false); | |
575 | if (!ans) { | |
576 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: FSK Demod failed, ans: %d", ans); | |
577 | } else { | |
578 | if (EM4x05testDemodReadData(word, readCmd)) { | |
579 | return 1; | |
580 | } | |
581 | } | |
582 | } | |
583 | // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... ) | |
584 | ans = GetPskClock("", false, false); | |
585 | if (ans>0) { | |
586 | //try psk1 | |
587 | ans = PSKDemod("0 0 6", false); | |
588 | if (!ans) { | |
589 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans); | |
590 | } else { | |
591 | if (EM4x05testDemodReadData(word, readCmd)) { | |
592 | return 1; | |
593 | } else { | |
594 | //try psk2 | |
595 | psk1TOpsk2(DemodBuffer, DemodBufferLen); | |
596 | if (EM4x05testDemodReadData(word, readCmd)) { | |
597 | return 1; | |
598 | } | |
599 | } | |
600 | //try psk1 inverted | |
601 | ans = PSKDemod("0 1 6", false); | |
602 | if (!ans) { | |
603 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans); | |
604 | } else { | |
605 | if (EM4x05testDemodReadData(word, readCmd)) { | |
606 | return 1; | |
607 | } else { | |
608 | //try psk2 | |
609 | psk1TOpsk2(DemodBuffer, DemodBufferLen); | |
610 | if (EM4x05testDemodReadData(word, readCmd)) { | |
611 | return 1; | |
612 | } | |
613 | } | |
614 | } | |
615 | } | |
616 | } | |
617 | ||
618 | // manchester is more common than biphase... try first | |
619 | bool stcheck = false; | |
620 | // try manchester - NOTE: ST only applies to T55x7 tags. | |
621 | ans = ASKDemod_ext("0,0,1", false, false, 1, &stcheck); | |
622 | if (!ans) { | |
623 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/Manchester Demod failed, ans: %d", ans); | |
624 | } else { | |
625 | if (EM4x05testDemodReadData(word, readCmd)) { | |
626 | return 1; | |
627 | } | |
628 | } | |
629 | ||
630 | //try biphase | |
631 | ans = ASKbiphaseDemod("0 0 1", false); | |
632 | if (!ans) { | |
633 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans); | |
634 | } else { | |
635 | if (EM4x05testDemodReadData(word, readCmd)) { | |
636 | return 1; | |
637 | } | |
638 | } | |
639 | ||
640 | //try diphase (differential biphase or inverted) | |
641 | ans = ASKbiphaseDemod("0 1 1", false); | |
642 | if (!ans) { | |
643 | if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans); | |
644 | } else { | |
645 | if (EM4x05testDemodReadData(word, readCmd)) { | |
646 | return 1; | |
647 | } | |
648 | } | |
649 | ||
650 | return -1; | |
651 | } | |
652 | ||
653 | int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *wordData) { | |
654 | UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}}; | |
655 | clearCommandBuffer(); | |
656 | SendCommand(&c); | |
657 | UsbCommand resp; | |
658 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){ | |
659 | PrintAndLog("Command timed out"); | |
660 | return -1; | |
661 | } | |
662 | if ( !downloadSamplesEM() ) { | |
663 | return -1; | |
664 | } | |
665 | int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000; | |
666 | if (graphJustNoise(GraphBuffer, testLen)) { | |
667 | PrintAndLog("no tag not found"); | |
668 | return -1; | |
669 | } | |
670 | //attempt demod: | |
671 | return demodEM4x05resp(wordData, true); | |
672 | } | |
673 | ||
674 | int EM4x05ReadWord(uint8_t addr, uint32_t pwd, bool usePwd) { | |
675 | uint32_t wordData = 0; | |
676 | int success = EM4x05ReadWord_ext(addr, pwd, usePwd, &wordData); | |
677 | if (success == 1) | |
678 | PrintAndLog("%s Address %02d | %08X", (addr>13) ? "Lock":" Got",addr,wordData); | |
679 | else | |
680 | PrintAndLog("Read Address %02d | failed",addr); | |
681 | ||
682 | return success; | |
683 | } | |
684 | ||
685 | int CmdEM4x05ReadWord(const char *Cmd) { | |
686 | uint8_t addr; | |
687 | uint32_t pwd; | |
688 | bool usePwd = false; | |
689 | uint8_t ctmp = param_getchar(Cmd, 0); | |
690 | if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_read(); | |
691 | ||
692 | addr = param_get8ex(Cmd, 0, 50, 10); | |
693 | // for now use default input of 1 as invalid (unlikely 1 will be a valid password...) | |
694 | pwd = param_get32ex(Cmd, 1, 1, 16); | |
695 | ||
696 | if ( (addr > 15) ) { | |
697 | PrintAndLog("Address must be between 0 and 15"); | |
698 | return 1; | |
699 | } | |
700 | if ( pwd == 1 ) { | |
701 | PrintAndLog("Reading address %02u", addr); | |
702 | } else { | |
703 | usePwd = true; | |
704 | PrintAndLog("Reading address %02u | password %08X", addr, pwd); | |
705 | } | |
706 | ||
707 | return EM4x05ReadWord(addr, pwd, usePwd); | |
708 | } | |
709 | ||
710 | int usage_lf_em_dump(void) { | |
711 | PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. "); | |
712 | PrintAndLog(""); | |
713 | PrintAndLog("Usage: lf em 4x05dump [h] <pwd>"); | |
714 | PrintAndLog("Options:"); | |
715 | PrintAndLog(" h - this help"); | |
716 | PrintAndLog(" pwd - password (hex) (optional)"); | |
717 | PrintAndLog("samples:"); | |
718 | PrintAndLog(" lf em 4x05dump"); | |
719 | PrintAndLog(" lf em 4x05dump 11223344"); | |
720 | return 0; | |
721 | } | |
722 | ||
723 | int CmdEM4x05dump(const char *Cmd) { | |
724 | uint8_t addr = 0; | |
725 | uint32_t pwd; | |
726 | bool usePwd = false; | |
727 | uint8_t ctmp = param_getchar(Cmd, 0); | |
728 | if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump(); | |
729 | ||
730 | // for now use default input of 1 as invalid (unlikely 1 will be a valid password...) | |
731 | pwd = param_get32ex(Cmd, 0, 1, 16); | |
732 | ||
733 | if ( pwd != 1 ) { | |
734 | usePwd = true; | |
735 | } | |
736 | int success = 1; | |
737 | for (; addr < 16; addr++) { | |
738 | if (addr == 2) { | |
739 | if (usePwd) { | |
740 | PrintAndLog(" PWD Address %02u | %08X",addr,pwd); | |
741 | } else { | |
742 | PrintAndLog(" PWD Address 02 | cannot read"); | |
743 | } | |
744 | } else { | |
745 | success &= EM4x05ReadWord(addr, pwd, usePwd); | |
746 | } | |
747 | } | |
748 | ||
749 | return success; | |
750 | } | |
751 | ||
752 | ||
753 | int usage_lf_em_write(void) { | |
754 | PrintAndLog("Write EM4x05/EM4x69. Tag must be on antenna. "); | |
755 | PrintAndLog(""); | |
756 | PrintAndLog("Usage: lf em 4x05writeword [h] <address> <data> <pwd>"); | |
757 | PrintAndLog("Options:"); | |
758 | PrintAndLog(" h - this help"); | |
759 | PrintAndLog(" address - memory address to write to. (0-15)"); | |
760 | PrintAndLog(" data - data to write (hex)"); | |
761 | PrintAndLog(" pwd - password (hex) (optional)"); | |
762 | PrintAndLog("samples:"); | |
763 | PrintAndLog(" lf em 4x05writeword 1"); | |
764 | PrintAndLog(" lf em 4x05writeword 1 deadc0de 11223344"); | |
765 | return 0; | |
766 | } | |
767 | ||
768 | int CmdEM4x05WriteWord(const char *Cmd) { | |
769 | uint8_t ctmp = param_getchar(Cmd, 0); | |
770 | if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_write(); | |
771 | ||
772 | bool usePwd = false; | |
773 | ||
774 | uint8_t addr = 16; // default to invalid address | |
775 | uint32_t data = 0xFFFFFFFF; // default to blank data | |
776 | uint32_t pwd = 0xFFFFFFFF; // default to blank password | |
777 | ||
778 | addr = param_get8ex(Cmd, 0, 16, 10); | |
779 | data = param_get32ex(Cmd, 1, 0, 16); | |
780 | pwd = param_get32ex(Cmd, 2, 1, 16); | |
781 | ||
782 | ||
783 | if ( (addr > 15) ) { | |
784 | PrintAndLog("Address must be between 0 and 15"); | |
785 | return 1; | |
786 | } | |
787 | if ( pwd == 1 ) | |
788 | PrintAndLog("Writing address %d data %08X", addr, data); | |
789 | else { | |
790 | usePwd = true; | |
791 | PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd); | |
792 | } | |
793 | ||
794 | uint16_t flag = (addr << 8 ) | usePwd; | |
795 | ||
796 | UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}}; | |
797 | clearCommandBuffer(); | |
798 | SendCommand(&c); | |
799 | UsbCommand resp; | |
800 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){ | |
801 | PrintAndLog("Error occurred, device did not respond during write operation."); | |
802 | return -1; | |
803 | } | |
804 | if ( !downloadSamplesEM() ) { | |
805 | return -1; | |
806 | } | |
807 | //check response for 00001010 for write confirmation! | |
808 | //attempt demod: | |
809 | uint32_t dummy = 0; | |
810 | int result = demodEM4x05resp(&dummy,false); | |
811 | if (result == 1) { | |
812 | PrintAndLog("Write Verified"); | |
813 | } else { | |
814 | PrintAndLog("Write could not be verified"); | |
815 | } | |
816 | return result; | |
817 | } | |
818 | ||
819 | void printEM4x05config(uint32_t wordData) { | |
820 | uint16_t datarate = (((wordData & 0x3F)+1)*2); | |
821 | uint8_t encoder = ((wordData >> 6) & 0xF); | |
822 | char enc[14]; | |
823 | memset(enc,0,sizeof(enc)); | |
824 | ||
825 | uint8_t PSKcf = (wordData >> 10) & 0x3; | |
826 | char cf[10]; | |
827 | memset(cf,0,sizeof(cf)); | |
828 | uint8_t delay = (wordData >> 12) & 0x3; | |
829 | char cdelay[33]; | |
830 | memset(cdelay,0,sizeof(cdelay)); | |
831 | uint8_t LWR = (wordData >> 14) & 0xF; //last word read | |
832 | ||
833 | switch (encoder) { | |
834 | case 0: snprintf(enc,sizeof(enc),"NRZ"); break; | |
835 | case 1: snprintf(enc,sizeof(enc),"Manchester"); break; | |
836 | case 2: snprintf(enc,sizeof(enc),"Biphase"); break; | |
837 | case 3: snprintf(enc,sizeof(enc),"Miller"); break; | |
838 | case 4: snprintf(enc,sizeof(enc),"PSK1"); break; | |
839 | case 5: snprintf(enc,sizeof(enc),"PSK2"); break; | |
840 | case 6: snprintf(enc,sizeof(enc),"PSK3"); break; | |
841 | case 7: snprintf(enc,sizeof(enc),"Unknown"); break; | |
842 | case 8: snprintf(enc,sizeof(enc),"FSK1"); break; | |
843 | case 9: snprintf(enc,sizeof(enc),"FSK2"); break; | |
844 | default: snprintf(enc,sizeof(enc),"Unknown"); break; | |
845 | } | |
846 | ||
847 | switch (PSKcf) { | |
848 | case 0: snprintf(cf,sizeof(cf),"RF/2"); break; | |
849 | case 1: snprintf(cf,sizeof(cf),"RF/8"); break; | |
850 | case 2: snprintf(cf,sizeof(cf),"RF/4"); break; | |
851 | case 3: snprintf(cf,sizeof(cf),"unknown"); break; | |
852 | } | |
853 | ||
854 | switch (delay) { | |
855 | case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break; | |
856 | case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break; | |
857 | case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break; | |
858 | case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break; | |
859 | } | |
860 | PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData); | |
861 | PrintAndLog("Config Breakdown:", wordData); | |
862 | PrintAndLog(" Data Rate: %02u | RF/%u", wordData & 0x3F, datarate); | |
863 | PrintAndLog(" Encoder: %u | %s", encoder, enc); | |
864 | PrintAndLog(" PSK CF: %u | %s", PSKcf, cf); | |
865 | PrintAndLog(" Delay: %u | %s", delay, cdelay); | |
866 | PrintAndLog(" LastWordR: %02u | Address of last word for default read", LWR); | |
867 | PrintAndLog(" ReadLogin: %u | Read Login is %s", (wordData & 0x40000)>>18, (wordData & 0x40000) ? "Required" : "Not Required"); | |
868 | PrintAndLog(" ReadHKL: %u | Read Housekeeping Words Login is %s", (wordData & 0x80000)>>19, (wordData & 0x80000) ? "Required" : "Not Required"); | |
869 | PrintAndLog("WriteLogin: %u | Write Login is %s", (wordData & 0x100000)>>20, (wordData & 0x100000) ? "Required" : "Not Required"); | |
870 | PrintAndLog(" WriteHKL: %u | Write Housekeeping Words Login is %s", (wordData & 0x200000)>>21, (wordData & 0x200000) ? "Required" : "Not Required"); | |
871 | PrintAndLog(" R.A.W.: %u | Read After Write is %s", (wordData & 0x400000)>>22, (wordData & 0x400000) ? "On" : "Off"); | |
872 | PrintAndLog(" Disable: %u | Disable Command is %s", (wordData & 0x800000)>>23, (wordData & 0x800000) ? "Accepted" : "Not Accepted"); | |
873 | PrintAndLog(" R.T.F.: %u | Reader Talk First is %s", (wordData & 0x1000000)>>24, (wordData & 0x1000000) ? "Enabled" : "Disabled"); | |
874 | PrintAndLog(" Pigeon: %u | Pigeon Mode is %s\n", (wordData & 0x4000000)>>26, (wordData & 0x4000000) ? "Enabled" : "Disabled"); | |
875 | } | |
876 | ||
877 | void printEM4x05info(uint8_t chipType, uint8_t cap, uint16_t custCode, uint32_t serial) { | |
878 | switch (chipType) { | |
879 | case 9: PrintAndLog("\n Chip Type: %u | EM4305", chipType); break; | |
880 | case 4: PrintAndLog(" Chip Type: %u | Unknown", chipType); break; | |
881 | case 2: PrintAndLog(" Chip Type: %u | EM4469", chipType); break; | |
882 | //add more here when known | |
883 | default: PrintAndLog(" Chip Type: %u Unknown", chipType); break; | |
884 | } | |
885 | ||
886 | switch (cap) { | |
887 | case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break; | |
888 | case 2: PrintAndLog(" Cap Type: %u | %spF",cap, (chipType==2)? "75":"210"); break; | |
889 | case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break; | |
890 | case 0: PrintAndLog(" Cap Type: %u | no resonant capacitor",cap); break; | |
891 | default: PrintAndLog(" Cap Type: %u | unknown",cap); break; | |
892 | } | |
893 | ||
894 | PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown"); | |
895 | if (serial != 0) { | |
896 | PrintAndLog("\n Serial #: %08X\n", serial); | |
897 | } | |
898 | } | |
899 | ||
900 | void printEM4x05ProtectionBits(uint32_t wordData) { | |
901 | for (uint8_t i = 0; i < 15; i++) { | |
902 | PrintAndLog(" Word: %02u | %s", i, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked"); | |
903 | if (i==14) { | |
904 | PrintAndLog(" Word: %02u | %s", i+1, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked"); | |
905 | } | |
906 | } | |
907 | } | |
908 | ||
909 | //quick test for EM4x05/EM4x69 tag | |
910 | bool EM4x05Block0Test(uint32_t *wordData) { | |
911 | if (EM4x05ReadWord_ext(0,0,false,wordData) == 1) { | |
912 | return true; | |
913 | } | |
914 | return false; | |
915 | } | |
916 | ||
917 | int CmdEM4x05info(const char *Cmd) { | |
918 | //uint8_t addr = 0; | |
919 | uint32_t pwd; | |
920 | uint32_t wordData = 0; | |
921 | bool usePwd = false; | |
922 | uint8_t ctmp = param_getchar(Cmd, 0); | |
923 | if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump(); | |
924 | ||
925 | // for now use default input of 1 as invalid (unlikely 1 will be a valid password...) | |
926 | pwd = param_get32ex(Cmd, 0, 1, 16); | |
927 | ||
928 | if ( pwd != 1 ) { | |
929 | usePwd = true; | |
930 | } | |
931 | ||
932 | // read word 0 (chip info) | |
933 | // block 0 can be read even without a password. | |
934 | if ( !EM4x05Block0Test(&wordData) ) | |
935 | return -1; | |
936 | ||
937 | uint8_t chipType = (wordData >> 1) & 0xF; | |
938 | uint8_t cap = (wordData >> 5) & 3; | |
939 | uint16_t custCode = (wordData >> 9) & 0x3FF; | |
940 | ||
941 | // read word 1 (serial #) doesn't need pwd | |
942 | wordData = 0; | |
943 | if (EM4x05ReadWord_ext(1, 0, false, &wordData) != 1) { | |
944 | //failed, but continue anyway... | |
945 | } | |
946 | printEM4x05info(chipType, cap, custCode, wordData); | |
947 | ||
948 | // read word 4 (config block) | |
949 | // needs password if one is set | |
950 | wordData = 0; | |
951 | if ( EM4x05ReadWord_ext(4, pwd, usePwd, &wordData) != 1 ) { | |
952 | //failed | |
953 | return 0; | |
954 | } | |
955 | printEM4x05config(wordData); | |
956 | ||
957 | // read word 14 and 15 to see which is being used for the protection bits | |
958 | wordData = 0; | |
959 | if ( EM4x05ReadWord_ext(14, pwd, usePwd, &wordData) != 1 ) { | |
960 | //failed | |
961 | return 0; | |
962 | } | |
963 | // if status bit says this is not the used protection word | |
964 | if (!(wordData & 0x8000)) { | |
965 | if ( EM4x05ReadWord_ext(15, pwd, usePwd, &wordData) != 1 ) { | |
966 | //failed | |
967 | return 0; | |
968 | } | |
969 | } | |
970 | if (!(wordData & 0x8000)) { | |
971 | //something went wrong | |
972 | return 0; | |
973 | } | |
974 | printEM4x05ProtectionBits(wordData); | |
975 | ||
976 | return 1; | |
977 | } | |
978 | ||
979 | ||
980 | static command_t CommandTable[] = | |
981 | { | |
982 | {"help", CmdHelp, 1, "This help"}, | |
983 | {"410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"}, | |
984 | {"410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag in GraphBuffer"}, | |
985 | {"410xsim", CmdEM410xSim, 0, "<UID> [clock rate] -- Simulate EM410x tag"}, | |
986 | {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"}, | |
987 | {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" }, | |
988 | {"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"}, | |
989 | {"4x05dump", CmdEM4x05dump, 0, "(pwd) -- Read EM4x05/EM4x69 all word data"}, | |
990 | {"4x05info", CmdEM4x05info, 0, "(pwd) -- Get info from EM4x05/EM4x69 tag"}, | |
991 | {"4x05readword", CmdEM4x05ReadWord, 0, "<Word> (pwd) -- Read EM4x05/EM4x69 word data"}, | |
992 | {"4x05writeword", CmdEM4x05WriteWord, 0, "<Word> <data> (pwd) -- Write EM4x05/EM4x69 word data"}, | |
993 | {"4x50read", CmdEM4x50Read, 1, "demod data from EM4x50 tag from the graph buffer"}, | |
994 | {NULL, NULL, 0, NULL} | |
995 | }; | |
996 | ||
997 | int CmdLFEM4X(const char *Cmd) | |
998 | { | |
999 | CmdsParse(CommandTable, Cmd); | |
1000 | return 0; | |
1001 | } | |
1002 | ||
1003 | int CmdHelp(const char *Cmd) | |
1004 | { | |
1005 | CmdsHelp(CommandTable); | |
1006 | return 0; | |
1007 | } |