]>
Commit | Line | Data |
---|---|---|
1 | /***************************************************************************** | |
2 | * This file is part of iClassCipher. It is a reconstructon of the cipher engine | |
3 | * used in iClass, and RFID techology. | |
4 | * | |
5 | * The implementation is based on the work performed by | |
6 | * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and | |
7 | * Milosch Meriac in the paper "Dismantling IClass". | |
8 | * | |
9 | * Copyright (C) 2014 Martin Holst Swende | |
10 | * | |
11 | * This is free software: you can redistribute it and/or modify | |
12 | * it under the terms of the GNU General Public License version 2 as published | |
13 | * by the Free Software Foundation. | |
14 | * | |
15 | * This file is distributed in the hope that it will be useful, | |
16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | * GNU General Public License for more details. | |
19 | * | |
20 | * You should have received a copy of the GNU General Public License | |
21 | * along with IClassCipher. If not, see <http://www.gnu.org/licenses/>. | |
22 | ****************************************************************************/ | |
23 | ||
24 | #include "cipher.h" | |
25 | #include "cipherutils.h" | |
26 | #include <stdio.h> | |
27 | #include <stdlib.h> | |
28 | #include <string.h> | |
29 | #include <stdbool.h> | |
30 | #include <stdint.h> | |
31 | #include <time.h> | |
32 | #include "fileutils.h" | |
33 | uint8_t keytable[] = { 0,0,0,0,0,0,0,0}; | |
34 | ||
35 | /** | |
36 | * Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2 | |
37 | * consisting of the following four components: | |
38 | * 1. the left register l = (l 0 . . . l 7 ) ∈ F 8/2 ; | |
39 | * 2. the right register r = (r 0 . . . r 7 ) ∈ F 8/2 ; | |
40 | * 3. the top register t = (t 0 . . . t 15 ) ∈ F 16/2 . | |
41 | * 4. the bottom register b = (b 0 . . . b 7 ) ∈ F 8/2 . | |
42 | **/ | |
43 | typedef struct { | |
44 | uint8_t l; | |
45 | uint8_t r; | |
46 | uint8_t b; | |
47 | uint16_t t; | |
48 | } State; | |
49 | ||
50 | /** | |
51 | * Definition 2. The feedback function for the top register T : F 16/2 → F 2 | |
52 | * is defined as | |
53 | * T (x 0 x 1 . . . . . . x 15 ) = x 0 ⊕ x 1 ⊕ x 5 ⊕ x 7 ⊕ x 10 ⊕ x 11 ⊕ x 14 ⊕ x 15 . | |
54 | **/ | |
55 | bool T(State state) | |
56 | { | |
57 | bool x0 = state.t & 0x8000; | |
58 | bool x1 = state.t & 0x4000; | |
59 | bool x5 = state.t & 0x0400; | |
60 | bool x7 = state.t & 0x0100; | |
61 | bool x10 = state.t & 0x0020; | |
62 | bool x11 = state.t & 0x0010; | |
63 | bool x14 = state.t & 0x0002; | |
64 | bool x15 = state.t & 0x0001; | |
65 | return x0 ^ x1 ^ x5 ^ x7 ^ x10 ^ x11 ^ x14 ^ x15; | |
66 | } | |
67 | /** | |
68 | * Similarly, the feedback function for the bottom register B : F 8/2 → F 2 is defined as | |
69 | * B(x 0 x 1 . . . x 7 ) = x 1 ⊕ x 2 ⊕ x 3 ⊕ x 7 . | |
70 | **/ | |
71 | bool B(State state) | |
72 | { | |
73 | bool x1 = state.b & 0x40; | |
74 | bool x2 = state.b & 0x20; | |
75 | bool x3 = state.b & 0x10; | |
76 | bool x7 = state.b & 0x01; | |
77 | ||
78 | return x1 ^ x2 ^ x3 ^ x7; | |
79 | ||
80 | } | |
81 | ||
82 | ||
83 | /** | |
84 | * Definition 3 (Selection function). The selection function select : F 2 × F 2 × | |
85 | * F 8/2 → F 3/2 is defined as select(x, y, r) = z 0 z 1 z 2 where | |
86 | * z 0 = (r 0 ∧ r 2 ) ⊕ (r 1 ∧ r 3 ) ⊕ (r 2 ∨ r 4 ) | |
87 | * z 1 = (r 0 ∨ r 2 ) ⊕ (r 5 ∨ r 7 ) ⊕ r 1 ⊕ r 6 ⊕ x ⊕ y | |
88 | * z 2 = (r 3 ∧ r 5 ) ⊕ (r 4 ∧ r 6 ) ⊕ r 7 ⊕ x | |
89 | **/ | |
90 | uint8_t _select(bool x, bool y, uint8_t r) | |
91 | { | |
92 | bool r0 = r >> 7 & 0x1; | |
93 | bool r1 = r >> 6 & 0x1; | |
94 | bool r2 = r >> 5 & 0x1; | |
95 | bool r3 = r >> 4 & 0x1; | |
96 | bool r4 = r >> 3 & 0x1; | |
97 | bool r5 = r >> 2 & 0x1; | |
98 | bool r6 = r >> 1 & 0x1; | |
99 | bool r7 = r & 0x1; | |
100 | ||
101 | bool z0 = (r0 & r2) ^ (r1 & ~r3) ^ (r2 | r4); | |
102 | bool z1 = (r0 | r2) ^ ( r5 | r7) ^ r1 ^ r6 ^ x ^ y; | |
103 | bool z2 = (r3 & ~r5) ^ (r4 & r6 ) ^ r7 ^ x; | |
104 | ||
105 | // The three bitz z0.. z1 are packed into a uint8_t: | |
106 | // 00000ZZZ | |
107 | //Return value is a uint8_t | |
108 | uint8_t retval = 0; | |
109 | retval |= (z0 << 2) & 4; | |
110 | retval |= (z1 << 1) & 2; | |
111 | retval |= z2 & 1; | |
112 | ||
113 | // Return value 0 <= retval <= 7 | |
114 | return retval; | |
115 | } | |
116 | ||
117 | /** | |
118 | * Definition 4 (Successor state). Let s = l, r, t, b be a cipher state, k ∈ (F 82 ) 8 | |
119 | * be a key and y ∈ F 2 be the input bit. Then, the successor cipher state s ′ = | |
120 | * l ′ , r ′ , t ′ , b ′ is defined as | |
121 | * t ′ := (T (t) ⊕ r 0 ⊕ r 4 )t 0 . . . t 14 l ′ := (k [select(T (t),y,r)] ⊕ b ′ ) ⊞ l ⊞ r | |
122 | * b ′ := (B(b) ⊕ r 7 )b 0 . . . b 6 r ′ := (k [select(T (t),y,r)] ⊕ b ′ ) ⊞ l | |
123 | * | |
124 | * @param s - state | |
125 | * @param k - array containing 8 bytes | |
126 | **/ | |
127 | State successor(uint8_t* k, State s, bool y) | |
128 | { | |
129 | bool r0 = s.r >> 7 & 0x1; | |
130 | bool r4 = s.r >> 3 & 0x1; | |
131 | bool r7 = s.r & 0x1; | |
132 | ||
133 | State successor = {0,0,0,0}; | |
134 | ||
135 | successor.t = s.t >> 1; | |
136 | successor.t |= (T(s) ^ r0 ^ r4) << 15; | |
137 | ||
138 | successor.b = s.b >> 1; | |
139 | successor.b |= (B(s) ^ r7) << 7; | |
140 | ||
141 | bool Tt = T(s); | |
142 | ||
143 | successor.l = ((k[_select(Tt,y,s.r)] ^ successor.b) + s.l+s.r ) & 0xFF; | |
144 | successor.r = ((k[_select(Tt,y,s.r)] ^ successor.b) + s.l ) & 0xFF; | |
145 | ||
146 | return successor; | |
147 | } | |
148 | /** | |
149 | * We define the successor function suc which takes a key k ∈ (F 82 ) 8 , a state s and | |
150 | * an input y ∈ F 2 and outputs the successor state s ′ . We overload the function suc | |
151 | * to multiple bit input x ∈ F n 2 which we define as | |
152 | * @param k - array containing 8 bytes | |
153 | **/ | |
154 | State suc(uint8_t* k,State s, BitstreamIn *bitstream) | |
155 | { | |
156 | if(bitsLeft(bitstream) == 0) | |
157 | { | |
158 | return s; | |
159 | } | |
160 | bool lastbit = tailBit(bitstream); | |
161 | return successor(k,suc(k,s,bitstream), lastbit); | |
162 | } | |
163 | ||
164 | /** | |
165 | * Definition 5 (Output). Define the function output which takes an internal | |
166 | * state s =< l, r, t, b > and returns the bit r 5 . We also define the function output | |
167 | * on multiple bits input which takes a key k, a state s and an input x ∈ F n 2 as | |
168 | * output(k, s, ǫ) = ǫ | |
169 | * output(k, s, x 0 . . . x n ) = output(s) · output(k, s ′ , x 1 . . . x n ) | |
170 | * where s ′ = suc(k, s, x 0 ). | |
171 | **/ | |
172 | void output(uint8_t* k,State s, BitstreamIn* in, BitstreamOut* out) | |
173 | { | |
174 | if(bitsLeft(in) == 0) | |
175 | { | |
176 | return; | |
177 | } | |
178 | pushBit(out,(s.r >> 2) & 1); | |
179 | //Remove first bit | |
180 | uint8_t x0 = headBit(in); | |
181 | State ss = successor(k,s,x0); | |
182 | output(k,ss,in, out); | |
183 | } | |
184 | ||
185 | /** | |
186 | * Definition 6 (Initial state). Define the function init which takes as input a | |
187 | * key k ∈ (F 82 ) 8 and outputs the initial cipher state s =< l, r, t, b > | |
188 | **/ | |
189 | ||
190 | State init(uint8_t* k) | |
191 | { | |
192 | State s = { | |
193 | ((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l | |
194 | ((k[0] ^ 0x4c) + 0x21) & 0xFF,// r | |
195 | 0x4c, // b | |
196 | 0xE012 // t | |
197 | }; | |
198 | return s; | |
199 | } | |
200 | void MAC(uint8_t* k, BitstreamIn input, BitstreamOut out) | |
201 | { | |
202 | uint8_t zeroes_32[] = {0,0,0,0}; | |
203 | BitstreamIn input_32_zeroes = {zeroes_32,sizeof(zeroes_32)*8,0}; | |
204 | State initState = suc(k,init(k),&input); | |
205 | output(k,initState,&input_32_zeroes,&out); | |
206 | } | |
207 | ||
208 | void doMAC(uint8_t *cc_nr_p, int length, uint8_t *div_key_p, uint8_t mac[4]) | |
209 | { | |
210 | uint8_t *cc_nr; | |
211 | uint8_t div_key[8]; | |
212 | cc_nr=(uint8_t*)malloc(length+1); | |
213 | memcpy(cc_nr,cc_nr_p,length); | |
214 | memcpy(div_key,div_key_p,8); | |
215 | ||
216 | reverse_arraybytes(cc_nr,length); | |
217 | BitstreamIn bitstream = {cc_nr,length * 8,0}; | |
218 | uint8_t dest []= {0,0,0,0,0,0,0,0}; | |
219 | BitstreamOut out = { dest, sizeof(dest)*8, 0 }; | |
220 | MAC(div_key,bitstream, out); | |
221 | //The output MAC must also be reversed | |
222 | reverse_arraybytes(dest, sizeof(dest)); | |
223 | memcpy(mac,dest,4); | |
224 | //printf("Calculated_MAC\t%02x%02x%02x%02x\n", dest[0],dest[1],dest[2],dest[3]); | |
225 | free(cc_nr); | |
226 | return; | |
227 | } | |
228 | ||
229 | int testMAC() | |
230 | { | |
231 | prnlog("[+] Testing MAC calculation..."); | |
232 | ||
233 | //From the "dismantling.IClass" paper: | |
234 | uint8_t cc_nr[] = {0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0,0,0,0}; | |
235 | //From the paper | |
236 | uint8_t div_key[8] = {0xE0,0x33,0xCA,0x41,0x9A,0xEE,0x43,0xF9}; | |
237 | uint8_t correct_MAC[4] = {0x1d,0x49,0xC9,0xDA}; | |
238 | ||
239 | uint8_t calculated_mac[4] = {0}; | |
240 | doMAC(cc_nr, 12,div_key, calculated_mac); | |
241 | ||
242 | if(memcmp(calculated_mac, correct_MAC,4) == 0) | |
243 | { | |
244 | prnlog("[+] MAC calculation OK!"); | |
245 | ||
246 | }else | |
247 | { | |
248 | prnlog("[+] FAILED: MAC calculation failed:"); | |
249 | printarr(" Calculated_MAC", calculated_mac, 4); | |
250 | printarr(" Correct_MAC ", correct_MAC, 4); | |
251 | return 1; | |
252 | } | |
253 | ||
254 | return 0; | |
255 | } |