]>
Commit | Line | Data |
---|---|---|
1 | /* reveng.c | |
2 | * Greg Cook, 27/Jun/2016 | |
3 | */ | |
4 | ||
5 | /* CRC RevEng: arbitrary-precision CRC calculator and algorithm finder | |
6 | * Copyright (C) 2010, 2011, 2012, 2013, 2014, 2015, 2016 Gregory Cook | |
7 | * | |
8 | * This file is part of CRC RevEng. | |
9 | * | |
10 | * CRC RevEng is free software: you can redistribute it and/or modify | |
11 | * it under the terms of the GNU General Public License as published by | |
12 | * the Free Software Foundation, either version 3 of the License, or | |
13 | * (at your option) any later version. | |
14 | * | |
15 | * CRC RevEng is distributed in the hope that it will be useful, | |
16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | * GNU General Public License for more details. | |
19 | * | |
20 | * You should have received a copy of the GNU General Public License | |
21 | * along with CRC RevEng. If not, see <https://www.gnu.org/licenses/>. | |
22 | */ | |
23 | ||
24 | /* 2013-09-16: calini(), calout() work on shortest argument | |
25 | * 2013-06-11: added sequence number to uprog() calls | |
26 | * 2013-02-08: added polynomial range search | |
27 | * 2013-01-18: refactored model checking to pshres(); renamed chkres() | |
28 | * 2012-05-24: efficiently build Init contribution string | |
29 | * 2012-05-24: removed broken search for crossed-endian algorithms | |
30 | * 2012-05-23: rewrote engini() after Ewing; removed modini() | |
31 | * 2011-01-17: fixed ANSI C warnings | |
32 | * 2011-01-08: fixed calini(), modini() caters for crossed-endian algos | |
33 | * 2011-01-04: renamed functions, added calini(), factored pshres(); | |
34 | * rewrote engini() and implemented quick Init search | |
35 | * 2011-01-01: reveng() initialises terminating entry, addparms() | |
36 | * initialises all fields | |
37 | * 2010-12-26: renamed CRC RevEng. right results, rejects polys faster | |
38 | * 2010-12-24: completed, first tests (unsuccessful) | |
39 | * 2010-12-21: completed modulate(), partial sketch of reveng() | |
40 | * 2010-12-19: started reveng | |
41 | */ | |
42 | ||
43 | /* reveng() can in theory be modified to search for polynomials shorter | |
44 | * than the full width as well, but this imposes a heavy time burden on | |
45 | * the full width search, which is the primary use case, as well as | |
46 | * complicating the search range function introduced in version 1.1.0. | |
47 | * It is more effective to search for each shorter width directly. | |
48 | */ | |
49 | ||
50 | #include <stdlib.h> | |
51 | ||
52 | #define FILE void | |
53 | #include "reveng.h" | |
54 | ||
55 | static poly_t *modpol(const poly_t init, int rflags, int args, const poly_t *argpolys); | |
56 | static void engini(int *resc, model_t **result, const poly_t divisor, int flags, int args, const poly_t *argpolys); | |
57 | static void calout(int *resc, model_t **result, const poly_t divisor, const poly_t init, int flags, int args, const poly_t *argpolys); | |
58 | static void calini(int *resc, model_t **result, const poly_t divisor, int flags, const poly_t xorout, int args, const poly_t *argpolys); | |
59 | static void chkres(int *resc, model_t **result, const poly_t divisor, const poly_t init, int flags, const poly_t xorout, int args, const poly_t *argpolys); | |
60 | ||
61 | static const poly_t pzero = PZERO; | |
62 | ||
63 | model_t * | |
64 | reveng(const model_t *guess, const poly_t qpoly, int rflags, int args, const poly_t *argpolys) { | |
65 | /* Complete the parameters of a model by calculation or brute search. */ | |
66 | poly_t *pworks, *wptr, rem, gpoly; | |
67 | model_t *result = NULL, *rptr; | |
68 | int resc = 0; | |
69 | unsigned long spin = 0, seq = 0; | |
70 | ||
71 | if(~rflags & R_HAVEP) { | |
72 | /* The poly is not known. | |
73 | * Produce a list of differences between the arguments. | |
74 | */ | |
75 | pworks = modpol(guess->init, rflags, args, argpolys); | |
76 | if(!pworks || !plen(*pworks)) { | |
77 | free(pworks); | |
78 | goto requit; | |
79 | } | |
80 | /* Initialise the guessed poly to the starting value. */ | |
81 | gpoly = pclone(guess->spoly); | |
82 | /* Clear the least significant term, to be set in the | |
83 | * loop. qpoly does not need fixing as it is only | |
84 | * compared with odd polys. | |
85 | */ | |
86 | if(plen(gpoly)) | |
87 | pshift(&gpoly, gpoly, 0UL, 0UL, plen(gpoly) - 1UL, 1UL); | |
88 | ||
89 | while(piter(&gpoly) && (~rflags & R_HAVEQ || pcmp(&gpoly, &qpoly) < 0)) { | |
90 | /* For each possible poly of this size, try | |
91 | * dividing all the differences in the list. | |
92 | */ | |
93 | if(!(spin++ & R_SPMASK)) { | |
94 | uprog(gpoly, guess->flags, seq++); | |
95 | } | |
96 | for(wptr = pworks; plen(*wptr); ++wptr) { | |
97 | /* straight divide message by poly, don't multiply by x^n */ | |
98 | rem = pcrc(*wptr, gpoly, pzero, pzero, 0); | |
99 | if(ptst(rem)) { | |
100 | pfree(&rem); | |
101 | break; | |
102 | } else | |
103 | pfree(&rem); | |
104 | } | |
105 | /* If gpoly divides all the differences, it is a | |
106 | * candidate. Search for an Init value for this | |
107 | * poly or if Init is known, log the result. | |
108 | */ | |
109 | if(!plen(*wptr)) { | |
110 | /* gpoly is a candidate poly */ | |
111 | if(rflags & R_HAVEI && rflags & R_HAVEX) | |
112 | chkres(&resc, &result, gpoly, guess->init, guess->flags, guess->xorout, args, argpolys); | |
113 | else if(rflags & R_HAVEI) | |
114 | calout(&resc, &result, gpoly, guess->init, guess->flags, args, argpolys); | |
115 | else if(rflags & R_HAVEX) | |
116 | calini(&resc, &result, gpoly, guess->flags, guess->xorout, args, argpolys); | |
117 | else | |
118 | engini(&resc, &result, gpoly, guess->flags, args, argpolys); | |
119 | } | |
120 | if(!piter(&gpoly)) | |
121 | break; | |
122 | } | |
123 | /* Finished with gpoly and the differences list, free them. | |
124 | */ | |
125 | pfree(&gpoly); | |
126 | for(wptr = pworks; plen(*wptr); ++wptr) | |
127 | pfree(wptr); | |
128 | free(pworks); | |
129 | } | |
130 | else if(rflags & R_HAVEI && rflags & R_HAVEX) | |
131 | /* All parameters are known! Submit the result if we get here */ | |
132 | chkres(&resc, &result, guess->spoly, guess->init, guess->flags, guess->xorout, args, argpolys); | |
133 | else if(rflags & R_HAVEI) | |
134 | /* Poly and Init are known, calculate XorOut */ | |
135 | calout(&resc, &result, guess->spoly, guess->init, guess->flags, args, argpolys); | |
136 | else if(rflags & R_HAVEX) | |
137 | /* Poly and XorOut are known, calculate Init */ | |
138 | calini(&resc, &result, guess->spoly, guess->flags, guess->xorout, args, argpolys); | |
139 | else | |
140 | /* Poly is known but not Init; search for Init. */ | |
141 | engini(&resc, &result, guess->spoly, guess->flags, args, argpolys); | |
142 | ||
143 | requit: | |
144 | if(!(result = realloc(result, ++resc * sizeof(model_t)))) { | |
145 | uerror("cannot reallocate result array"); | |
146 | return NULL; | |
147 | } | |
148 | rptr = result + resc - 1; | |
149 | rptr->spoly = pzero; | |
150 | rptr->init = pzero; | |
151 | rptr->flags = 0; | |
152 | rptr->xorout = pzero; | |
153 | rptr->check = pzero; | |
154 | rptr->name = NULL; | |
155 | ||
156 | return(result); | |
157 | } | |
158 | ||
159 | static poly_t * | |
160 | modpol(const poly_t init, int rflags, int args, const poly_t *argpolys) { | |
161 | /* Produce, in ascending length order, a list of differences | |
162 | * between the arguments in the list by summing pairs of arguments. | |
163 | * If R_HAVEI is not set in rflags, only pairs of equal length are | |
164 | * summed. | |
165 | * Otherwise, sums of right-aligned pairs are also returned, with | |
166 | * the supplied init poly added to the leftmost terms of each | |
167 | * poly of the pair. | |
168 | */ | |
169 | poly_t work, swap, *result, *rptr, *iptr; | |
170 | const poly_t *aptr, *bptr, *eptr = argpolys + args; | |
171 | unsigned long alen, blen; | |
172 | ||
173 | if(args < 2) return(NULL); | |
174 | ||
175 | if(!(result = malloc(((((args - 1) * args) >> 1) + 1) * sizeof(poly_t)))) | |
176 | uerror("cannot allocate memory for codeword table"); | |
177 | ||
178 | rptr = result; | |
179 | ||
180 | for(aptr = argpolys; aptr < eptr; ++aptr) { | |
181 | alen = plen(*aptr); | |
182 | for(bptr = aptr + 1; bptr < eptr; ++bptr) { | |
183 | blen = plen(*bptr); | |
184 | if(alen == blen) { | |
185 | work = pclone(*aptr); | |
186 | psum(&work, *bptr, 0UL); | |
187 | } else if(rflags & R_HAVEI && alen < blen) { | |
188 | work = pclone(*bptr); | |
189 | psum(&work, *aptr, blen - alen); | |
190 | psum(&work, init, 0UL); | |
191 | psum(&work, init, blen - alen); | |
192 | } else if(rflags & R_HAVEI /* && alen > blen */) { | |
193 | work = pclone(*aptr); | |
194 | psum(&work, *bptr, alen - blen); | |
195 | psum(&work, init, 0UL); | |
196 | psum(&work, init, alen - blen); | |
197 | } else | |
198 | work = pzero; | |
199 | ||
200 | if(plen(work)) | |
201 | pnorm(&work); | |
202 | if((blen = plen(work))) { | |
203 | /* insert work into result[] in ascending order of length */ | |
204 | for(iptr = result; iptr < rptr; ++iptr) { | |
205 | if(plen(work) < plen(*iptr)) { | |
206 | swap = *iptr; | |
207 | *iptr = work; | |
208 | work = swap; | |
209 | } | |
210 | else if(plen(*iptr) == blen && !pcmp(&work, iptr)) { | |
211 | pfree(&work); | |
212 | work = *--rptr; | |
213 | break; | |
214 | } | |
215 | } | |
216 | *rptr++ = work; | |
217 | } | |
218 | } | |
219 | } | |
220 | *rptr = pzero; | |
221 | return(result); | |
222 | } | |
223 | ||
224 | static void | |
225 | engini(int *resc, model_t **result, const poly_t divisor, int flags, int args, const poly_t *argpolys) { | |
226 | /* Search for init values implied by the arguments. | |
227 | * Method from: Ewing, Gregory C. (March 2010). | |
228 | * "Reverse-Engineering a CRC Algorithm". Christchurch: | |
229 | * University of Canterbury. | |
230 | * <http://www.cosc.canterbury.ac.nz/greg.ewing/essays/ | |
231 | * CRC-Reverse-Engineering.html> | |
232 | */ | |
233 | poly_t apoly = PZERO, bpoly, pone = PZERO, *mat, *jptr; | |
234 | const poly_t *aptr, *bptr, *iptr; | |
235 | unsigned long alen, blen, dlen, ilen, i, j; | |
236 | int cy; | |
237 | ||
238 | dlen = plen(divisor); | |
239 | ||
240 | /* Allocate the CRC matrix */ | |
241 | if(!(mat = (poly_t *) malloc((dlen << 1) * sizeof(poly_t)))) | |
242 | uerror("cannot allocate memory for CRC matrix"); | |
243 | ||
244 | /* Find arguments of the two shortest lengths */ | |
245 | alen = blen = plen(*(aptr = bptr = iptr = argpolys)); | |
246 | for(++iptr; iptr < argpolys + args; ++iptr) { | |
247 | ilen = plen(*iptr); | |
248 | if(ilen < alen) { | |
249 | bptr = aptr; blen = alen; | |
250 | aptr = iptr; alen = ilen; | |
251 | } else if(ilen > alen && (aptr == bptr || ilen < blen)) { | |
252 | bptr = iptr; blen = ilen; | |
253 | } | |
254 | } | |
255 | if(aptr == bptr) { | |
256 | /* if no arguments are suitable, calculate Init with an | |
257 | * assumed XorOut of 0. Create a padded XorOut | |
258 | */ | |
259 | palloc(&apoly, dlen); | |
260 | calini(resc, result, divisor, flags, apoly, args, argpolys); | |
261 | pfree(&apoly); | |
262 | free(mat); | |
263 | return; | |
264 | } | |
265 | ||
266 | /* Find the potential contribution of the bottom bit of Init */ | |
267 | palloc(&pone, 1UL); | |
268 | piter(&pone); | |
269 | if(blen < (dlen << 1)) { | |
270 | palloc(&apoly, dlen); /* >= 1 */ | |
271 | psum(&apoly, pone, (dlen << 1) - 1UL - blen); /* >= 0 */ | |
272 | psum(&apoly, pone, (dlen << 1) - 1UL - alen); /* >= 1 */ | |
273 | } else { | |
274 | palloc(&apoly, blen - dlen + 1UL); /* > dlen */ | |
275 | psum(&apoly, pone, 0UL); | |
276 | psum(&apoly, pone, blen - alen); /* >= 1 */ | |
277 | } | |
278 | if(plen(apoly) > dlen) { | |
279 | mat[dlen] = pcrc(apoly, divisor, pzero, pzero, 0); | |
280 | pfree(&apoly); | |
281 | } else { | |
282 | mat[dlen] = apoly; | |
283 | } | |
284 | ||
285 | /* Find the actual contribution of Init */ | |
286 | apoly = pcrc(*aptr, divisor, pzero, pzero, 0); | |
287 | bpoly = pcrc(*bptr, divisor, pzero, apoly, 0); | |
288 | ||
289 | /* Populate the matrix */ | |
290 | palloc(&apoly, 1UL); | |
291 | for(jptr=mat; jptr<mat+dlen; ++jptr) | |
292 | *jptr = pzero; | |
293 | for(iptr = jptr++; jptr < mat + (dlen << 1); iptr = jptr++) | |
294 | *jptr = pcrc(apoly, divisor, *iptr, pzero, P_MULXN); | |
295 | pfree(&apoly); | |
296 | ||
297 | /* Transpose the matrix, augment with the Init contribution | |
298 | * and convert to row echelon form | |
299 | */ | |
300 | for(i=0UL; i<dlen; ++i) { | |
301 | apoly = pzero; | |
302 | iptr = mat + (dlen << 1); | |
303 | for(j=0UL; j<dlen; ++j) | |
304 | ppaste(&apoly, *--iptr, i, j, j + 1UL, dlen + 1UL); | |
305 | if(ptst(apoly)) | |
306 | ppaste(&apoly, bpoly, i, dlen, dlen + 1UL, dlen + 1UL); | |
307 | j = pfirst(apoly); | |
308 | while(j < dlen && !pident(mat[j], pzero)) { | |
309 | psum(&apoly, mat[j], 0UL); /* pfirst(apoly) > j */ | |
310 | j = pfirst(apoly); | |
311 | } | |
312 | if(j < dlen) | |
313 | mat[j] = apoly; /* pident(mat[j], pzero) || pfirst(mat[j]) == j */ | |
314 | else | |
315 | pfree(&apoly); | |
316 | } | |
317 | palloc(&bpoly, dlen + 1UL); | |
318 | psum(&bpoly, pone, dlen); | |
319 | ||
320 | /* Iterate through all solutions */ | |
321 | do { | |
322 | /* Solve the matrix by Gaussian elimination. | |
323 | * The parity of the result, masked by each row, should be even. | |
324 | */ | |
325 | cy = 1; | |
326 | apoly = pclone(bpoly); | |
327 | jptr = mat + dlen; | |
328 | for(i=0UL; i<dlen; ++i) { | |
329 | /* Compute next bit of Init */ | |
330 | if(pmpar(apoly, *--jptr)) | |
331 | psum(&apoly, pone, dlen - 1UL - i); | |
332 | /* Toggle each zero row with carry, for next iteration */ | |
333 | if(cy) { | |
334 | if(pident(*jptr, pzero)) { | |
335 | /* 0 to 1, no carry */ | |
336 | *jptr = bpoly; | |
337 | cy = 0; | |
338 | } else if(pident(*jptr, bpoly)) { | |
339 | /* 1 to 0, carry forward */ | |
340 | *jptr = pzero; | |
341 | } | |
342 | } | |
343 | } | |
344 | ||
345 | /* Trim the augment mask bit */ | |
346 | praloc(&apoly, dlen); | |
347 | ||
348 | /* Test the Init value and add to results if correct */ | |
349 | calout(resc, result, divisor, apoly, flags, args, argpolys); | |
350 | pfree(&apoly); | |
351 | } while(!cy); | |
352 | pfree(&pone); | |
353 | pfree(&bpoly); | |
354 | ||
355 | /* Free the matrix. */ | |
356 | for(jptr=mat; jptr < mat + (dlen << 1); ++jptr) | |
357 | pfree(jptr); | |
358 | free(mat); | |
359 | } | |
360 | ||
361 | static void | |
362 | calout(int *resc, model_t **result, const poly_t divisor, const poly_t init, int flags, int args, const poly_t *argpolys) { | |
363 | /* Calculate Xorout, check it against all the arguments and | |
364 | * add to results if consistent. | |
365 | */ | |
366 | poly_t xorout; | |
367 | const poly_t *aptr, *iptr; | |
368 | unsigned long alen, ilen; | |
369 | ||
370 | if(args < 1) return; | |
371 | ||
372 | /* find argument of the shortest length */ | |
373 | alen = plen(*(aptr = iptr = argpolys)); | |
374 | for(++iptr; iptr < argpolys + args; ++iptr) { | |
375 | ilen = plen(*iptr); | |
376 | if(ilen < alen) { | |
377 | aptr = iptr; alen = ilen; | |
378 | } | |
379 | } | |
380 | ||
381 | xorout = pcrc(*aptr, divisor, init, pzero, 0); | |
382 | /* On little-endian algorithms, the calculations yield | |
383 | * the reverse of the actual xorout: in the Williams | |
384 | * model, the refout stage intervenes between init and | |
385 | * xorout. | |
386 | */ | |
387 | if(flags & P_REFOUT) | |
388 | prev(&xorout); | |
389 | ||
390 | /* Submit the model to the results table. | |
391 | * Could skip the shortest argument but we wish to check our | |
392 | * calculation. | |
393 | */ | |
394 | chkres(resc, result, divisor, init, flags, xorout, args, argpolys); | |
395 | pfree(&xorout); | |
396 | } | |
397 | ||
398 | static void | |
399 | calini(int *resc, model_t **result, const poly_t divisor, int flags, const poly_t xorout, int args, const poly_t *argpolys) { | |
400 | /* Calculate Init, check it against all the arguments and add to | |
401 | * results if consistent. | |
402 | */ | |
403 | poly_t rcpdiv, rxor, arg, init; | |
404 | const poly_t *aptr, *iptr; | |
405 | unsigned long alen, ilen; | |
406 | ||
407 | if(args < 1) return; | |
408 | ||
409 | /* find argument of the shortest length */ | |
410 | alen = plen(*(aptr = iptr = argpolys)); | |
411 | for(++iptr; iptr < argpolys + args; ++iptr) { | |
412 | ilen = plen(*iptr); | |
413 | if(ilen < alen) { | |
414 | aptr = iptr; alen = ilen; | |
415 | } | |
416 | } | |
417 | ||
418 | rcpdiv = pclone(divisor); | |
419 | prcp(&rcpdiv); | |
420 | /* If the algorithm is reflected, an ordinary CRC requires the | |
421 | * model's XorOut to be reversed, as XorOut follows the RefOut | |
422 | * stage. To reverse the CRC calculation we need rxor to be the | |
423 | * mirror image of the forward XorOut. | |
424 | */ | |
425 | rxor = pclone(xorout); | |
426 | if(~flags & P_REFOUT) | |
427 | prev(&rxor); | |
428 | arg = pclone(*aptr); | |
429 | prev(&arg); | |
430 | ||
431 | init = pcrc(arg, rcpdiv, rxor, pzero, 0); | |
432 | pfree(&arg); | |
433 | pfree(&rxor); | |
434 | pfree(&rcpdiv); | |
435 | prev(&init); | |
436 | ||
437 | /* Submit the model to the results table. | |
438 | * Could skip the shortest argument but we wish to check our | |
439 | * calculation. | |
440 | */ | |
441 | chkres(resc, result, divisor, init, flags, xorout, args, argpolys); | |
442 | pfree(&init); | |
443 | } | |
444 | ||
445 | static void | |
446 | chkres(int *resc, model_t **result, const poly_t divisor, const poly_t init, int flags, const poly_t xorout, int args, const poly_t *argpolys) { | |
447 | /* Checks a model against the argument list, and adds to the | |
448 | * external results table if consistent. | |
449 | * Extends the result array and update the external pointer if | |
450 | * necessary. | |
451 | */ | |
452 | model_t *rptr; | |
453 | poly_t xor, crc; | |
454 | const poly_t *aptr = argpolys, *const eptr = argpolys + args; | |
455 | ||
456 | /* If the algorithm is reflected, an ordinary CRC requires the | |
457 | * model's XorOut to be reversed, as XorOut follows the RefOut | |
458 | * stage. | |
459 | */ | |
460 | xor = pclone(xorout); | |
461 | if(flags & P_REFOUT) | |
462 | prev(&xor); | |
463 | ||
464 | for(; aptr < eptr; ++aptr) { | |
465 | crc = pcrc(*aptr, divisor, init, xor, 0); | |
466 | if(ptst(crc)) { | |
467 | pfree(&crc); | |
468 | break; | |
469 | } else { | |
470 | pfree(&crc); | |
471 | } | |
472 | } | |
473 | pfree(&xor); | |
474 | if(aptr != eptr) return; | |
475 | ||
476 | *result = realloc(*result, ++*resc * sizeof(model_t)); | |
477 | if (!*result) { | |
478 | uerror("cannot reallocate result array"); | |
479 | return; | |
480 | } | |
481 | ||
482 | rptr = *result + *resc - 1; | |
483 | rptr->spoly = pclone(divisor); | |
484 | rptr->init = pclone(init); | |
485 | rptr->flags = flags; | |
486 | rptr->xorout = pclone(xorout); | |
487 | rptr->name = NULL; | |
488 | ||
489 | /* compute check value for this model */ | |
490 | mcheck(rptr); | |
491 | ||
492 | /* callback to notify new model */ | |
493 | ufound(rptr); | |
494 | } |