]> cvs.zerfleddert.de Git - proxmark3-svn/blame_incremental - armsrc/appmain.c
CHG: added addresize to legic select struct.
[proxmark3-svn] / armsrc / appmain.c
... / ...
CommitLineData
1//-----------------------------------------------------------------------------
2// Jonathan Westhues, Mar 2006
3// Edits by Gerhard de Koning Gans, Sep 2007 (##)
4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// The main application code. This is the first thing called after start.c
10// executes.
11//-----------------------------------------------------------------------------
12#include "usb_cdc.h"
13//#include "cmd.h"
14#include "proxmark3.h"
15#include "apps.h"
16#include "util.h"
17#include "printf.h"
18#include "string.h"
19#include <stdarg.h>
20#include "legicrf.h"
21#include "hitag2.h"
22#include "hitagS.h"
23#include "lfsampling.h"
24#include "BigBuf.h"
25#include "mifareutil.h"
26#include "pcf7931.h"
27
28#ifdef WITH_LCD
29 #include "LCD.h"
30#endif
31
32// Craig Young - 14a stand-alone code
33#ifdef WITH_ISO14443a_StandAlone
34 #include "iso14443a.h"
35 #include "protocols.h"
36#endif
37
38//=============================================================================
39// A buffer where we can queue things up to be sent through the FPGA, for
40// any purpose (fake tag, as reader, whatever). We go MSB first, since that
41// is the order in which they go out on the wire.
42//=============================================================================
43
44#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
45uint8_t ToSend[TOSEND_BUFFER_SIZE];
46int ToSendMax = 0;
47static int ToSendBit;
48struct common_area common_area __attribute__((section(".commonarea")));
49
50void ToSendReset(void)
51{
52 ToSendMax = -1;
53 ToSendBit = 8;
54}
55
56void ToSendStuffBit(int b) {
57 if(ToSendBit >= 8) {
58 ++ToSendMax;
59 ToSend[ToSendMax] = 0;
60 ToSendBit = 0;
61 }
62
63 if(b)
64 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
65
66 ++ToSendBit;
67
68 if(ToSendMax >= sizeof(ToSend)) {
69 ToSendBit = 0;
70 DbpString("ToSendStuffBit overflowed!");
71 }
72}
73
74void PrintToSendBuffer(void){
75 DbpString("Printing ToSendBuffer:");
76 Dbhexdump(ToSendMax, ToSend, 0);
77}
78
79//=============================================================================
80// Debug print functions, to go out over USB, to the usual PC-side client.
81//=============================================================================
82
83void DbpStringEx(char *str, uint32_t cmd){
84 byte_t len = strlen(str);
85 cmd_send(CMD_DEBUG_PRINT_STRING,len, cmd,0,(byte_t*)str,len);
86}
87
88void DbpString(char *str) {
89 DbpStringEx(str, 0);
90}
91
92#if 0
93void DbpIntegers(int x1, int x2, int x3) {
94 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
95}
96#endif
97void DbprintfEx(uint32_t cmd, const char *fmt, ...) {
98 // should probably limit size here; oh well, let's just use a big buffer
99 char output_string[128] = {0x00};
100 va_list ap;
101
102 va_start(ap, fmt);
103 kvsprintf(fmt, output_string, 10, ap);
104 va_end(ap);
105
106 DbpStringEx(output_string, cmd);
107}
108
109void Dbprintf(const char *fmt, ...) {
110 // should probably limit size here; oh well, let's just use a big buffer
111 char output_string[128] = {0x00};
112 va_list ap;
113
114 va_start(ap, fmt);
115 kvsprintf(fmt, output_string, 10, ap);
116 va_end(ap);
117
118 DbpString(output_string);
119}
120
121// prints HEX & ASCII
122void Dbhexdump(int len, uint8_t *d, bool bAsci) {
123 int l=0, i;
124 char ascii[9];
125
126 while (len>0) {
127
128 l = (len>8) ? 8 : len;
129
130 memcpy(ascii,d,l);
131 ascii[l]=0;
132
133 // filter safe ascii
134 for (i=0; i<l; ++i)
135 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
136
137 if (bAsci)
138 Dbprintf("%-8s %*D",ascii,l,d," ");
139 else
140 Dbprintf("%*D",l,d," ");
141
142 len -= 8;
143 d += 8;
144 }
145}
146
147//-----------------------------------------------------------------------------
148// Read an ADC channel and block till it completes, then return the result
149// in ADC units (0 to 1023). Also a routine to average 32 samples and
150// return that.
151//-----------------------------------------------------------------------------
152static int ReadAdc(int ch)
153{
154 uint32_t d;
155
156 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
157 AT91C_BASE_ADC->ADC_MR =
158 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
159 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
160 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
161
162 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
163 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
164 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
165 //
166 // The maths are:
167 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
168 //
169 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
170 //
171 // Note: with the "historic" values in the comments above, the error was 34% !!!
172
173 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
174
175 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
176
177 while (!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) ;
178
179 d = AT91C_BASE_ADC->ADC_CDR[ch];
180 return d;
181}
182
183int AvgAdc(int ch) // was static - merlok
184{
185 int i;
186 int a = 0;
187
188 for(i = 0; i < 32; ++i)
189 a += ReadAdc(ch);
190
191 return (a + 15) >> 5;
192}
193
194
195void MeasureAntennaTuning(void) {
196
197 uint8_t LF_Results[256];
198 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0;
199 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
200
201 memset(LF_Results, 0, sizeof(LF_Results));
202 LED_B_ON();
203
204/*
205 * Sweeps the useful LF range of the proxmark from
206 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
207 * read the voltage in the antenna, the result left
208 * in the buffer is a graph which should clearly show
209 * the resonating frequency of your LF antenna
210 * ( hopefully around 95 if it is tuned to 125kHz!)
211 */
212
213 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
214 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
215
216 for (i = 255; i >= 19; i--) {
217 WDT_HIT();
218 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
219 SpinDelay(20);
220 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
221 if (i==95) vLf125 = adcval; // voltage at 125Khz
222 if (i==89) vLf134 = adcval; // voltage at 134Khz
223
224 LF_Results[i] = adcval >> 8; // scale int to fit in byte for graphing purposes
225 if(LF_Results[i] > peak) {
226 peakv = adcval;
227 peak = LF_Results[i];
228 peakf = i;
229 }
230 }
231
232 LED_A_ON();
233 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
234 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
235 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
236 SpinDelay(20);
237 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
238
239 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134 << 16), vHf, peakf | (peakv << 16), LF_Results, 256);
240 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
241 LEDsoff();
242}
243
244void MeasureAntennaTuningHf(void) {
245 int vHf = 0; // in mV
246 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
247 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
248 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
249
250 while ( !BUTTON_PRESS() ){
251 SpinDelay(20);
252 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
253 //Dbprintf("%d mV",vHf);
254 DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF, "%d mV",vHf);
255 }
256 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
257 DbpString("cancelled");
258}
259
260
261void ReadMem(int addr) {
262 const uint8_t *data = ((uint8_t *)addr);
263
264 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
265 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
266}
267
268/* osimage version information is linked in */
269extern struct version_information version_information;
270/* bootrom version information is pointed to from _bootphase1_version_pointer */
271extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
272void SendVersion(void)
273{
274 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
275 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
276
277 /* Try to find the bootrom version information. Expect to find a pointer at
278 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
279 * pointer, then use it.
280 */
281 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
282
283 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
284 strcat(VersionString, "bootrom version information appears invalid\n");
285 } else {
286 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
287 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
288 }
289
290 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
291 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
292
293 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
294 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
295
296 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
297 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
298
299 // Send Chip ID and used flash memory
300 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
301 uint32_t compressed_data_section_size = common_area.arg1;
302 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
303}
304
305// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
306// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
307void printUSBSpeed(void)
308{
309 Dbprintf("USB Speed:");
310 Dbprintf(" Sending USB packets to client...");
311
312 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
313 uint8_t *test_data = BigBuf_get_addr();
314 uint32_t end_time;
315
316 uint32_t start_time = end_time = GetTickCount();
317 uint32_t bytes_transferred = 0;
318
319 LED_B_ON();
320 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
321 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
322 end_time = GetTickCount();
323 bytes_transferred += USB_CMD_DATA_SIZE;
324 }
325 LED_B_OFF();
326
327 Dbprintf(" Time elapsed: %dms", end_time - start_time);
328 Dbprintf(" Bytes transferred: %d", bytes_transferred);
329 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
330 1000 * bytes_transferred / (end_time - start_time));
331
332}
333
334/**
335 * Prints runtime information about the PM3.
336**/
337void SendStatus(void) {
338 BigBuf_print_status();
339 Fpga_print_status();
340 printConfig(); //LF Sampling config
341 printUSBSpeed();
342 Dbprintf("Various");
343 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
344 Dbprintf(" ToSendMax..........%d", ToSendMax);
345 Dbprintf(" ToSendBit..........%d", ToSendBit);
346 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE);
347
348 cmd_send(CMD_ACK,1,0,0,0,0);
349}
350
351#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
352
353#define OPTS 2
354void StandAloneMode()
355{
356 DbpString("Stand-alone mode! No PC necessary.");
357 // Oooh pretty -- notify user we're in elite samy mode now
358 LED(LED_RED, 200);
359 LED(LED_ORANGE, 200);
360 LED(LED_GREEN, 200);
361 LED(LED_ORANGE, 200);
362 LED(LED_RED, 200);
363 LED(LED_ORANGE, 200);
364 LED(LED_GREEN, 200);
365 LED(LED_ORANGE, 200);
366 LED(LED_RED, 200);
367}
368#endif
369
370#ifdef WITH_ISO14443a_StandAlone
371void StandAloneMode14a()
372{
373 StandAloneMode();
374 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
375
376 int selected = 0;
377 int playing = 0, iGotoRecord = 0, iGotoClone = 0;
378 int cardRead[OPTS] = {0};
379 uint8_t readUID[10] = {0};
380 uint32_t uid_1st[OPTS]={0};
381 uint32_t uid_2nd[OPTS]={0};
382 uint32_t uid_tmp1 = 0;
383 uint32_t uid_tmp2 = 0;
384 iso14a_card_select_t hi14a_card[OPTS];
385
386 uint8_t params = (MAGIC_SINGLE | MAGIC_DATAIN);
387
388 LED(selected + 1, 0);
389
390 for (;;)
391 {
392 usb_poll();
393 WDT_HIT();
394 SpinDelay(300);
395
396 if (iGotoRecord == 1 || cardRead[selected] == 0)
397 {
398 iGotoRecord = 0;
399 LEDsoff();
400 LED(selected + 1, 0);
401 LED(LED_RED2, 0);
402
403 // record
404 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
405 /* need this delay to prevent catching some weird data */
406 SpinDelay(500);
407 /* Code for reading from 14a tag */
408 uint8_t uid[10] = {0};
409 uint32_t cuid = 0;
410 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
411
412 for ( ; ; )
413 {
414 WDT_HIT();
415 if (BUTTON_PRESS()) {
416 if (cardRead[selected]) {
417 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
418 break;
419 }
420 else if (cardRead[(selected+1)%OPTS]) {
421 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
422 selected = (selected+1)%OPTS;
423 break; // playing = 1;
424 }
425 else {
426 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
427 SpinDelay(300);
428 }
429 }
430 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0))
431 continue;
432 else
433 {
434 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
435 memcpy(readUID,uid,10*sizeof(uint8_t));
436 uint8_t *dst = (uint8_t *)&uid_tmp1;
437 // Set UID byte order
438 for (int i=0; i<4; i++)
439 dst[i] = uid[3-i];
440 dst = (uint8_t *)&uid_tmp2;
441 for (int i=0; i<4; i++)
442 dst[i] = uid[7-i];
443 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
444 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
445 }
446 else {
447 if (uid_tmp2) {
448 Dbprintf("Bank[%d] received a 7-byte UID",selected);
449 uid_1st[selected] = (uid_tmp1)>>8;
450 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
451 }
452 else {
453 Dbprintf("Bank[%d] received a 4-byte UID",selected);
454 uid_1st[selected] = uid_tmp1;
455 uid_2nd[selected] = uid_tmp2;
456 }
457 break;
458 }
459 }
460 }
461 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
462 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
463 LEDsoff();
464 LED(LED_GREEN, 200);
465 LED(LED_ORANGE, 200);
466 LED(LED_GREEN, 200);
467 LED(LED_ORANGE, 200);
468
469 LEDsoff();
470 LED(selected + 1, 0);
471
472 // Next state is replay:
473 playing = 1;
474
475 cardRead[selected] = 1;
476 }
477 /* MF Classic UID clone */
478 else if (iGotoClone==1)
479 {
480 iGotoClone=0;
481 LEDsoff();
482 LED(selected + 1, 0);
483 LED(LED_ORANGE, 250);
484
485 // record
486 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
487
488 // wait for button to be released
489 // Delay cloning until card is in place
490 while(BUTTON_PRESS())
491 WDT_HIT();
492
493 Dbprintf("Starting clone. [Bank: %u]", selected);
494 // need this delay to prevent catching some weird data
495 SpinDelay(500);
496 // Begin clone function here:
497 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
498 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
499 memcpy(c.d.asBytes, data, 16);
500 SendCommand(&c);
501
502 Block read is similar:
503 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
504 We need to imitate that call with blockNo 0 to set a uid.
505
506 The get and set commands are handled in this file:
507 // Work with "magic Chinese" card
508 case CMD_MIFARE_CSETBLOCK:
509 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
510 break;
511 case CMD_MIFARE_CGETBLOCK:
512 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
513 break;
514
515 mfCSetUID provides example logic for UID set workflow:
516 -Read block0 from card in field with MifareCGetBlock()
517 -Configure new values without replacing reserved bytes
518 memcpy(block0, uid, 4); // Copy UID bytes from byte array
519 // Mifare UID BCC
520 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
521 Bytes 5-7 are reserved SAK and ATQA for mifare classic
522 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
523 */
524 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
525 // arg0 = Flags, arg1=blockNo
526 MifareCGetBlock(params, 0, oldBlock0);
527 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
528 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
529 playing = 1;
530 }
531 else {
532 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
533 memcpy(newBlock0,oldBlock0,16);
534 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
535
536 newBlock0[0] = uid_1st[selected]>>24;
537 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
538 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
539 newBlock0[3] = 0xFF & (uid_1st[selected]);
540 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
541
542 // arg0 = workFlags, arg1 = blockNo, datain
543 MifareCSetBlock(params, 0, newBlock0);
544 MifareCGetBlock(params, 0, testBlock0);
545
546 if (memcmp(testBlock0, newBlock0, 16)==0) {
547 DbpString("Cloned successfull!");
548 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
549 playing = 0;
550 iGotoRecord = 1;
551 selected = (selected + 1) % OPTS;
552 } else {
553 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
554 playing = 1;
555 }
556 }
557 LEDsoff();
558 LED(selected + 1, 0);
559 }
560 // Change where to record (or begin playing)
561 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
562 {
563 LEDsoff();
564 LED(selected + 1, 0);
565
566 // Begin transmitting
567 if (playing)
568 {
569 LED(LED_GREEN, 0);
570 DbpString("Playing");
571 for ( ; ; ) {
572 WDT_HIT();
573 int button_action = BUTTON_HELD(1000);
574 if (button_action == 0) { // No button action, proceed with sim
575 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
576 uint8_t flags = ( uid_2nd[selected] > 0x00 ) ? FLAG_7B_UID_IN_DATA : FLAG_4B_UID_IN_DATA;
577 num_to_bytes(uid_1st[selected], 3, data);
578 num_to_bytes(uid_2nd[selected], 4, data);
579
580 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
581 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
582 DbpString("Mifare Classic");
583 SimulateIso14443aTag(1, flags, data); // Mifare Classic
584 }
585 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
586 DbpString("Mifare Ultralight");
587 SimulateIso14443aTag(2, flags, data); // Mifare Ultralight
588 }
589 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
590 DbpString("Mifare DESFire");
591 SimulateIso14443aTag(3, flags, data); // Mifare DESFire
592 }
593 else {
594 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
595 SimulateIso14443aTag(1, flags, data);
596 }
597 }
598 else if (button_action == BUTTON_SINGLE_CLICK) {
599 selected = (selected + 1) % OPTS;
600 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
601 iGotoRecord = 1;
602 break;
603 }
604 else if (button_action == BUTTON_HOLD) {
605 Dbprintf("Playtime over. Begin cloning...");
606 iGotoClone = 1;
607 break;
608 }
609 WDT_HIT();
610 }
611
612 /* We pressed a button so ignore it here with a delay */
613 SpinDelay(300);
614 LEDsoff();
615 LED(selected + 1, 0);
616 }
617 else
618 while(BUTTON_PRESS())
619 WDT_HIT();
620 }
621 }
622}
623#elif WITH_LF
624// samy's sniff and repeat routine
625void SamyRun()
626{
627 StandAloneMode();
628 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
629
630 int high[OPTS], low[OPTS];
631 int selected = 0;
632 int playing = 0;
633 int cardRead = 0;
634
635 // Turn on selected LED
636 LED(selected + 1, 0);
637
638 for (;;) {
639 usb_poll();
640 WDT_HIT();
641
642 // Was our button held down or pressed?
643 int button_pressed = BUTTON_HELD(1000);
644 SpinDelay(300);
645
646 // Button was held for a second, begin recording
647 if (button_pressed > 0 && cardRead == 0)
648 {
649 LEDsoff();
650 LED(selected + 1, 0);
651 LED(LED_RED2, 0);
652
653 // record
654 DbpString("Starting recording");
655
656 // wait for button to be released
657 while(BUTTON_PRESS())
658 WDT_HIT();
659
660 /* need this delay to prevent catching some weird data */
661 SpinDelay(500);
662
663 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
664 Dbprintf("Recorded %x %x %08x", selected, high[selected], low[selected]);
665
666 LEDsoff();
667 LED(selected + 1, 0);
668 // Finished recording
669 // If we were previously playing, set playing off
670 // so next button push begins playing what we recorded
671 playing = 0;
672 cardRead = 1;
673 }
674 else if (button_pressed > 0 && cardRead == 1) {
675 LEDsoff();
676 LED(selected + 1, 0);
677 LED(LED_ORANGE, 0);
678
679 // record
680 Dbprintf("Cloning %x %x %08x", selected, high[selected], low[selected]);
681
682 // wait for button to be released
683 while(BUTTON_PRESS())
684 WDT_HIT();
685
686 /* need this delay to prevent catching some weird data */
687 SpinDelay(500);
688
689 CopyHIDtoT55x7(0, high[selected], low[selected], 0);
690 Dbprintf("Cloned %x %x %08x", selected, high[selected], low[selected]);
691
692 LEDsoff();
693 LED(selected + 1, 0);
694 // Finished recording
695
696 // If we were previously playing, set playing off
697 // so next button push begins playing what we recorded
698 playing = 0;
699 cardRead = 0;
700 }
701
702 // Change where to record (or begin playing)
703 else if (button_pressed) {
704 // Next option if we were previously playing
705 if (playing)
706 selected = (selected + 1) % OPTS;
707 playing = !playing;
708
709 LEDsoff();
710 LED(selected + 1, 0);
711
712 // Begin transmitting
713 if (playing)
714 {
715 LED(LED_GREEN, 0);
716 DbpString("Playing");
717 // wait for button to be released
718 while(BUTTON_PRESS())
719 WDT_HIT();
720
721 Dbprintf("%x %x %08x", selected, high[selected], low[selected]);
722 CmdHIDsimTAG(high[selected], low[selected], 0);
723 DbpString("Done playing");
724
725 if (BUTTON_HELD(1000) > 0) {
726 DbpString("Exiting");
727 LEDsoff();
728 return;
729 }
730
731 /* We pressed a button so ignore it here with a delay */
732 SpinDelay(300);
733
734 // when done, we're done playing, move to next option
735 selected = (selected + 1) % OPTS;
736 playing = !playing;
737 LEDsoff();
738 LED(selected + 1, 0);
739 }
740 else
741 while(BUTTON_PRESS())
742 WDT_HIT();
743 }
744 }
745}
746
747#endif
748/*
749OBJECTIVE
750Listen and detect an external reader. Determine the best location
751for the antenna.
752
753INSTRUCTIONS:
754Inside the ListenReaderField() function, there is two mode.
755By default, when you call the function, you will enter mode 1.
756If you press the PM3 button one time, you will enter mode 2.
757If you press the PM3 button a second time, you will exit the function.
758
759DESCRIPTION OF MODE 1:
760This mode just listens for an external reader field and lights up green
761for HF and/or red for LF. This is the original mode of the detectreader
762function.
763
764DESCRIPTION OF MODE 2:
765This mode will visually represent, using the LEDs, the actual strength of the
766current compared to the maximum current detected. Basically, once you know
767what kind of external reader is present, it will help you spot the best location to place
768your antenna. You will probably not get some good results if there is a LF and a HF reader
769at the same place! :-)
770
771LIGHT SCHEME USED:
772*/
773static const char LIGHT_SCHEME[] = {
774 0x0, /* ---- | No field detected */
775 0x1, /* X--- | 14% of maximum current detected */
776 0x2, /* -X-- | 29% of maximum current detected */
777 0x4, /* --X- | 43% of maximum current detected */
778 0x8, /* ---X | 57% of maximum current detected */
779 0xC, /* --XX | 71% of maximum current detected */
780 0xE, /* -XXX | 86% of maximum current detected */
781 0xF, /* XXXX | 100% of maximum current detected */
782};
783static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
784
785void ListenReaderField(int limit) {
786#define LF_ONLY 1
787#define HF_ONLY 2
788#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
789
790 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
791 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
792 int mode=1, display_val, display_max, i;
793
794 // switch off FPGA - we don't want to measure our own signal
795 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
796 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
797
798 LEDsoff();
799
800 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
801
802 if(limit != HF_ONLY) {
803 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
804 lf_baseline = lf_av;
805 }
806
807 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
808
809 if (limit != LF_ONLY) {
810 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
811 hf_baseline = hf_av;
812 }
813
814 for(;;) {
815 if (BUTTON_PRESS()) {
816 SpinDelay(500);
817 switch (mode) {
818 case 1:
819 mode=2;
820 DbpString("Signal Strength Mode");
821 break;
822 case 2:
823 default:
824 DbpString("Stopped");
825 LEDsoff();
826 return;
827 break;
828 }
829 }
830 WDT_HIT();
831
832 if (limit != HF_ONLY) {
833 if(mode == 1) {
834 if (ABS(lf_av - lf_baseline) > REPORT_CHANGE)
835 LED_D_ON();
836 else
837 LED_D_OFF();
838 }
839
840 lf_av_new = AvgAdc(ADC_CHAN_LF);
841 // see if there's a significant change
842 if(ABS(lf_av - lf_av_new) > REPORT_CHANGE) {
843 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
844 lf_av = lf_av_new;
845 if (lf_av > lf_max)
846 lf_max = lf_av;
847 }
848 }
849
850 if (limit != LF_ONLY) {
851 if (mode == 1){
852 if (ABS(hf_av - hf_baseline) > REPORT_CHANGE)
853 LED_B_ON();
854 else
855 LED_B_OFF();
856 }
857
858 hf_av_new = AvgAdc(ADC_CHAN_HF);
859 // see if there's a significant change
860 if(ABS(hf_av - hf_av_new) > REPORT_CHANGE) {
861 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
862 hf_av = hf_av_new;
863 if (hf_av > hf_max)
864 hf_max = hf_av;
865 }
866 }
867
868 if(mode == 2) {
869 if (limit == LF_ONLY) {
870 display_val = lf_av;
871 display_max = lf_max;
872 } else if (limit == HF_ONLY) {
873 display_val = hf_av;
874 display_max = hf_max;
875 } else { /* Pick one at random */
876 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
877 display_val = hf_av;
878 display_max = hf_max;
879 } else {
880 display_val = lf_av;
881 display_max = lf_max;
882 }
883 }
884 for (i=0; i<LIGHT_LEN; i++) {
885 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
886 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
887 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
888 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
889 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
890 break;
891 }
892 }
893 }
894 }
895}
896
897void UsbPacketReceived(uint8_t *packet, int len)
898{
899 UsbCommand *c = (UsbCommand *)packet;
900
901 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
902
903 switch(c->cmd) {
904#ifdef WITH_LF
905 case CMD_SET_LF_SAMPLING_CONFIG:
906 setSamplingConfig((sample_config *) c->d.asBytes);
907 break;
908 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
909 cmd_send(CMD_ACK, SampleLF(c->arg[0]),0,0,0,0);
910 break;
911 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
912 ModThenAcquireRawAdcSamples125k(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
913 break;
914 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
915 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
916 break;
917 case CMD_HID_DEMOD_FSK:
918 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
919 break;
920 case CMD_HID_SIM_TAG:
921 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
922 break;
923 case CMD_FSK_SIM_TAG:
924 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
925 break;
926 case CMD_ASK_SIM_TAG:
927 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
928 break;
929 case CMD_PSK_SIM_TAG:
930 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
931 break;
932 case CMD_HID_CLONE_TAG:
933 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
934 break;
935 case CMD_IO_DEMOD_FSK:
936 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
937 break;
938 case CMD_IO_CLONE_TAG:
939 CopyIOtoT55x7(c->arg[0], c->arg[1]);
940 break;
941 case CMD_EM410X_DEMOD:
942 CmdEM410xdemod(c->arg[0], 0, 0, 1);
943 break;
944 case CMD_EM410X_WRITE_TAG:
945 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
946 break;
947 case CMD_READ_TI_TYPE:
948 ReadTItag();
949 break;
950 case CMD_WRITE_TI_TYPE:
951 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
952 break;
953 case CMD_SIMULATE_TAG_125K:
954 LED_A_ON();
955 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
956 LED_A_OFF();
957 break;
958 case CMD_LF_SIMULATE_BIDIR:
959 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
960 break;
961 case CMD_INDALA_CLONE_TAG:
962 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
963 break;
964 case CMD_INDALA_CLONE_TAG_L:
965 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
966 break;
967 case CMD_T55XX_READ_BLOCK:
968 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
969 break;
970 case CMD_T55XX_WRITE_BLOCK:
971 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
972 break;
973 case CMD_T55XX_WAKEUP:
974 T55xxWakeUp(c->arg[0]);
975 break;
976 case CMD_T55XX_RESET_READ:
977 T55xxResetRead();
978 break;
979 case CMD_PCF7931_READ:
980 ReadPCF7931();
981 break;
982 case CMD_PCF7931_WRITE:
983 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
984 break;
985 case CMD_EM4X_READ_WORD:
986 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
987 break;
988 case CMD_EM4X_WRITE_WORD:
989 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
990 break;
991 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
992 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
993 break;
994 case CMD_VIKING_CLONE_TAG:
995 CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
996 break;
997#endif
998
999#ifdef WITH_HITAG
1000 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1001 SnoopHitag(c->arg[0]);
1002 break;
1003 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1004 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1005 break;
1006 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1007 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1008 break;
1009 case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
1010 SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1011 break;
1012 case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
1013 check_challenges((bool)c->arg[0],(byte_t*)c->d.asBytes);
1014 break;
1015 case CMD_READ_HITAG_S: //Reader for only Hitag S tags, args = key or challenge
1016 ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1017 break;
1018 case CMD_WR_HITAG_S: //writer for Hitag tags args=data to write,page and key or challenge
1019 WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
1020 break;
1021#endif
1022
1023#ifdef WITH_ISO15693
1024 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1025 AcquireRawAdcSamplesIso15693();
1026 break;
1027 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1028 RecordRawAdcSamplesIso15693();
1029 break;
1030
1031 case CMD_ISO_15693_COMMAND:
1032 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1033 break;
1034
1035 case CMD_ISO_15693_FIND_AFI:
1036 BruteforceIso15693Afi(c->arg[0]);
1037 break;
1038
1039 case CMD_ISO_15693_DEBUG:
1040 SetDebugIso15693(c->arg[0]);
1041 break;
1042
1043 case CMD_READER_ISO_15693:
1044 ReaderIso15693(c->arg[0]);
1045 break;
1046 case CMD_SIMTAG_ISO_15693:
1047 SimTagIso15693(c->arg[0], c->d.asBytes);
1048 break;
1049#endif
1050
1051#ifdef WITH_LEGICRF
1052 case CMD_SIMULATE_TAG_LEGIC_RF:
1053 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1054 break;
1055
1056 case CMD_WRITER_LEGIC_RF:
1057 LegicRfWriter( c->arg[0], c->arg[1], c->arg[2]);
1058 break;
1059
1060 case CMD_RAW_WRITER_LEGIC_RF:
1061 LegicRfRawWriter(c->arg[0], c->arg[1], c->arg[2]);
1062 break;
1063
1064 case CMD_READER_LEGIC_RF:
1065 LegicRfReader(c->arg[0], c->arg[1], c->arg[2]);
1066 break;
1067
1068 case CMD_LEGIC_INFO:
1069 LegicRfInfo();
1070 break;
1071#endif
1072
1073#ifdef WITH_ISO14443b
1074 case CMD_READ_SRI_TAG:
1075 ReadSTMemoryIso14443b(c->arg[0]);
1076 break;
1077 case CMD_SNOOP_ISO_14443B:
1078 SnoopIso14443b();
1079 break;
1080 case CMD_SIMULATE_TAG_ISO_14443B:
1081 SimulateIso14443bTag(c->arg[0]);
1082 break;
1083 case CMD_ISO_14443B_COMMAND:
1084 //SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1085 SendRawCommand14443B_Ex(c);
1086 break;
1087#endif
1088
1089#ifdef WITH_ISO14443a
1090 case CMD_SNOOP_ISO_14443a:
1091 SniffIso14443a(c->arg[0]);
1092 break;
1093 case CMD_READER_ISO_14443a:
1094 ReaderIso14443a(c);
1095 break;
1096 case CMD_SIMULATE_TAG_ISO_14443a:
1097 SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
1098 break;
1099 case CMD_EPA_PACE_COLLECT_NONCE:
1100 EPA_PACE_Collect_Nonce(c);
1101 break;
1102 case CMD_EPA_PACE_REPLAY:
1103 EPA_PACE_Replay(c);
1104 break;
1105 case CMD_READER_MIFARE:
1106 ReaderMifare(c->arg[0], c->arg[1], c->arg[2]);
1107 break;
1108 case CMD_MIFARE_READBL:
1109 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1110 break;
1111 case CMD_MIFAREU_READBL:
1112 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
1113 break;
1114 case CMD_MIFAREUC_AUTH:
1115 MifareUC_Auth(c->arg[0],c->d.asBytes);
1116 break;
1117 case CMD_MIFAREU_READCARD:
1118 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1119 break;
1120 case CMD_MIFAREUC_SETPWD:
1121 MifareUSetPwd(c->arg[0], c->d.asBytes);
1122 break;
1123 case CMD_MIFARE_READSC:
1124 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1125 break;
1126 case CMD_MIFARE_WRITEBL:
1127 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1128 break;
1129 //case CMD_MIFAREU_WRITEBL_COMPAT:
1130 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1131 //break;
1132 case CMD_MIFAREU_WRITEBL:
1133 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
1134 break;
1135 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
1136 MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1137 break;
1138 case CMD_MIFARE_NESTED:
1139 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1140 break;
1141 case CMD_MIFARE_CHKKEYS:
1142 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1143 break;
1144 case CMD_SIMULATE_MIFARE_CARD:
1145 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1146 break;
1147
1148 // emulator
1149 case CMD_MIFARE_SET_DBGMODE:
1150 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1151 break;
1152 case CMD_MIFARE_EML_MEMCLR:
1153 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1154 break;
1155 case CMD_MIFARE_EML_MEMSET:
1156 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1157 break;
1158 case CMD_MIFARE_EML_MEMGET:
1159 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1160 break;
1161 case CMD_MIFARE_EML_CARDLOAD:
1162 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1163 break;
1164
1165 // Work with "magic Chinese" card
1166 case CMD_MIFARE_CSETBLOCK:
1167 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
1168 break;
1169 case CMD_MIFARE_CGETBLOCK:
1170 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
1171 break;
1172 case CMD_MIFARE_CIDENT:
1173 MifareCIdent();
1174 break;
1175
1176 // mifare sniffer
1177 case CMD_MIFARE_SNIFFER:
1178 SniffMifare(c->arg[0]);
1179 break;
1180
1181 //mifare desfire
1182 case CMD_MIFARE_DESFIRE_READBL: break;
1183 case CMD_MIFARE_DESFIRE_WRITEBL: break;
1184 case CMD_MIFARE_DESFIRE_AUTH1:
1185 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1186 break;
1187 case CMD_MIFARE_DESFIRE_AUTH2:
1188 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1189 break;
1190 case CMD_MIFARE_DES_READER:
1191 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1192 break;
1193 case CMD_MIFARE_DESFIRE_INFO:
1194 MifareDesfireGetInformation();
1195 break;
1196 case CMD_MIFARE_DESFIRE:
1197 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
1198 break;
1199
1200 case CMD_MIFARE_COLLECT_NONCES:
1201 break;
1202#endif
1203#ifdef WITH_EMV
1204 case CMD_EMV_TRANSACTION:
1205 EMVTransaction();
1206 break;
1207 case CMD_EMV_GET_RANDOM_NUM:
1208 //EMVgetUDOL();
1209 break;
1210 case CMD_EMV_LOAD_VALUE:
1211 EMVloadvalue(c->arg[0], c->d.asBytes);
1212 break;
1213 case CMD_EMV_DUMP_CARD:
1214 EMVdumpcard();
1215#endif
1216#ifdef WITH_ICLASS
1217 // Makes use of ISO14443a FPGA Firmware
1218 case CMD_SNOOP_ICLASS:
1219 SnoopIClass();
1220 break;
1221 case CMD_SIMULATE_TAG_ICLASS:
1222 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1223 break;
1224 case CMD_READER_ICLASS:
1225 ReaderIClass(c->arg[0]);
1226 break;
1227 case CMD_READER_ICLASS_REPLAY:
1228 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
1229 break;
1230 case CMD_ICLASS_EML_MEMSET:
1231 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1232 break;
1233 case CMD_ICLASS_WRITEBLOCK:
1234 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1235 break;
1236 case CMD_ICLASS_READCHECK: // auth step 1
1237 iClass_ReadCheck(c->arg[0], c->arg[1]);
1238 break;
1239 case CMD_ICLASS_READBLOCK:
1240 iClass_ReadBlk(c->arg[0]);
1241 break;
1242 case CMD_ICLASS_AUTHENTICATION: //check
1243 iClass_Authentication(c->d.asBytes);
1244 break;
1245 case CMD_ICLASS_DUMP:
1246 iClass_Dump(c->arg[0], c->arg[1]);
1247 break;
1248 case CMD_ICLASS_CLONE:
1249 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
1250 break;
1251#endif
1252#ifdef WITH_HFSNOOP
1253 case CMD_HF_SNIFFER:
1254 HfSnoop(c->arg[0], c->arg[1]);
1255 break;
1256#endif
1257
1258 case CMD_BUFF_CLEAR:
1259 BigBuf_Clear();
1260 break;
1261
1262 case CMD_MEASURE_ANTENNA_TUNING:
1263 MeasureAntennaTuning();
1264 break;
1265
1266 case CMD_MEASURE_ANTENNA_TUNING_HF:
1267 MeasureAntennaTuningHf();
1268 break;
1269
1270 case CMD_LISTEN_READER_FIELD:
1271 ListenReaderField(c->arg[0]);
1272 break;
1273
1274 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1275 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1276 SpinDelay(200);
1277 LED_D_OFF(); // LED D indicates field ON or OFF
1278 break;
1279
1280 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
1281 LED_B_ON();
1282 uint8_t *BigBuf = BigBuf_get_addr();
1283 size_t len = 0;
1284 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
1285 len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
1286 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1287 }
1288 // Trigger a finish downloading signal with an ACK frame
1289 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
1290 LED_B_OFF();
1291 break;
1292 }
1293 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
1294 uint8_t *b = BigBuf_get_addr();
1295 memcpy( b + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1296 cmd_send(CMD_ACK,0,0,0,0,0);
1297 break;
1298 }
1299 case CMD_DOWNLOAD_EML_BIGBUF: {
1300 LED_B_ON();
1301 uint8_t *cardmem = BigBuf_get_EM_addr();
1302 size_t len = 0;
1303 for(size_t i=0; i < c->arg[1]; i += USB_CMD_DATA_SIZE) {
1304 len = MIN((c->arg[1] - i), USB_CMD_DATA_SIZE);
1305 cmd_send(CMD_DOWNLOADED_EML_BIGBUF, i, len, CARD_MEMORY_SIZE, cardmem + c->arg[0] + i, len);
1306 }
1307 // Trigger a finish downloading signal with an ACK frame
1308 cmd_send(CMD_ACK, 1, 0, CARD_MEMORY_SIZE, 0, 0);
1309 LED_B_OFF();
1310 break;
1311 }
1312 case CMD_READ_MEM:
1313 ReadMem(c->arg[0]);
1314 break;
1315
1316 case CMD_SET_LF_DIVISOR:
1317 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1318 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1319 break;
1320
1321 case CMD_SET_ADC_MUX:
1322 switch(c->arg[0]) {
1323 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1324 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1325 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1326 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1327 }
1328 break;
1329
1330 case CMD_VERSION:
1331 SendVersion();
1332 break;
1333 case CMD_STATUS:
1334 SendStatus();
1335 break;
1336 case CMD_PING:
1337 cmd_send(CMD_ACK,0,0,0,0,0);
1338 break;
1339#ifdef WITH_LCD
1340 case CMD_LCD_RESET:
1341 LCDReset();
1342 break;
1343 case CMD_LCD:
1344 LCDSend(c->arg[0]);
1345 break;
1346#endif
1347 case CMD_SETUP_WRITE:
1348 case CMD_FINISH_WRITE:
1349 case CMD_HARDWARE_RESET:
1350 usb_disable();
1351 SpinDelay(2000);
1352 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1353 for(;;) {
1354 // We're going to reset, and the bootrom will take control.
1355 }
1356 break;
1357
1358 case CMD_START_FLASH:
1359 if(common_area.flags.bootrom_present) {
1360 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1361 }
1362 usb_disable();
1363 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1364 for(;;);
1365 break;
1366
1367 case CMD_DEVICE_INFO: {
1368 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1369 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1370 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1371 break;
1372 }
1373 default:
1374 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1375 break;
1376 }
1377}
1378
1379void __attribute__((noreturn)) AppMain(void)
1380{
1381 SpinDelay(100);
1382 clear_trace();
1383 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1384 /* Initialize common area */
1385 memset(&common_area, 0, sizeof(common_area));
1386 common_area.magic = COMMON_AREA_MAGIC;
1387 common_area.version = 1;
1388 }
1389 common_area.flags.osimage_present = 1;
1390
1391 LEDsoff();
1392
1393 // Init USB device
1394 usb_enable();
1395
1396 // The FPGA gets its clock from us from PCK0 output, so set that up.
1397 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1398 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1399 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1400 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1401 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1402 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1403
1404 // Reset SPI
1405 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1406 // Reset SSC
1407 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1408
1409 // Load the FPGA image, which we have stored in our flash.
1410 // (the HF version by default)
1411 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1412
1413 StartTickCount();
1414
1415#ifdef WITH_LCD
1416 LCDInit();
1417#endif
1418
1419 byte_t rx[sizeof(UsbCommand)];
1420 size_t rx_len;
1421
1422 for(;;) {
1423 if ( usb_poll_validate_length() ) {
1424 rx_len = usb_read(rx, sizeof(UsbCommand));
1425
1426 if (rx_len)
1427 UsbPacketReceived(rx, rx_len);
1428 }
1429 WDT_HIT();
1430
1431#ifdef WITH_LF
1432#ifndef WITH_ISO14443a_StandAlone
1433 if (BUTTON_HELD(1000) > 0)
1434 SamyRun();
1435#endif
1436#endif
1437#ifdef WITH_ISO14443a
1438#ifdef WITH_ISO14443a_StandAlone
1439 if (BUTTON_HELD(1000) > 0)
1440 StandAloneMode14a();
1441#endif
1442#endif
1443 }
1444}
Impressum, Datenschutz