| 1 | //----------------------------------------------------------------------------- |
| 2 | // Copyright (C) 2015, 2016 by piwi |
| 3 | // |
| 4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
| 5 | // at your option, any later version. See the LICENSE.txt file for the text of |
| 6 | // the license. |
| 7 | //----------------------------------------------------------------------------- |
| 8 | // Implements a card only attack based on crypto text (encrypted nonces |
| 9 | // received during a nested authentication) only. Unlike other card only |
| 10 | // attacks this doesn't rely on implementation errors but only on the |
| 11 | // inherent weaknesses of the crypto1 cypher. Described in |
| 12 | // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened |
| 13 | // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on |
| 14 | // Computer and Communications Security, 2015 |
| 15 | //----------------------------------------------------------------------------- |
| 16 | |
| 17 | #include "cmdhfmfhard.h" |
| 18 | |
| 19 | #include <stdio.h> |
| 20 | #include <stdlib.h> |
| 21 | #include <inttypes.h> |
| 22 | #include <string.h> |
| 23 | #include <time.h> |
| 24 | #include <pthread.h> |
| 25 | #include <locale.h> |
| 26 | #include <math.h> |
| 27 | #include "proxmark3.h" |
| 28 | #include "cmdmain.h" |
| 29 | #include "ui.h" |
| 30 | #include "util.h" |
| 31 | #include "util_posix.h" |
| 32 | #include "crapto1/crapto1.h" |
| 33 | #include "parity.h" |
| 34 | #include "hardnested/hardnested_bruteforce.h" |
| 35 | #include "hardnested/hardnested_bitarray_core.h" |
| 36 | #include "zlib.h" |
| 37 | |
| 38 | #define NUM_CHECK_BITFLIPS_THREADS (num_CPUs()) |
| 39 | #define NUM_REDUCTION_WORKING_THREADS (num_CPUs()) |
| 40 | |
| 41 | #define IGNORE_BITFLIP_THRESHOLD 0.99 // ignore bitflip arrays which have nearly only valid states |
| 42 | |
| 43 | #define STATE_FILES_DIRECTORY "hardnested/tables/" |
| 44 | #define STATE_FILE_TEMPLATE "bitflip_%d_%03" PRIx16 "_states.bin.z" |
| 45 | |
| 46 | #define DEBUG_KEY_ELIMINATION |
| 47 | // #define DEBUG_REDUCTION |
| 48 | |
| 49 | static uint16_t sums[NUM_SUMS] = {0, 32, 56, 64, 80, 96, 104, 112, 120, 128, 136, 144, 152, 160, 176, 192, 200, 224, 256}; // possible sum property values |
| 50 | |
| 51 | #define NUM_PART_SUMS 9 // number of possible partial sum property values |
| 52 | |
| 53 | typedef enum { |
| 54 | EVEN_STATE = 0, |
| 55 | ODD_STATE = 1 |
| 56 | } odd_even_t; |
| 57 | |
| 58 | static uint32_t num_acquired_nonces = 0; |
| 59 | static uint64_t start_time = 0; |
| 60 | static uint16_t effective_bitflip[2][0x400]; |
| 61 | static uint16_t num_effective_bitflips[2] = {0, 0}; |
| 62 | static uint16_t all_effective_bitflip[0x400]; |
| 63 | static uint16_t num_all_effective_bitflips = 0; |
| 64 | static uint16_t num_1st_byte_effective_bitflips = 0; |
| 65 | #define CHECK_1ST_BYTES 0x01 |
| 66 | #define CHECK_2ND_BYTES 0x02 |
| 67 | static uint8_t hardnested_stage = CHECK_1ST_BYTES; |
| 68 | static uint64_t known_target_key; |
| 69 | static uint32_t test_state[2] = {0,0}; |
| 70 | static float brute_force_per_second; |
| 71 | |
| 72 | |
| 73 | static void get_SIMD_instruction_set(char* instruction_set) { |
| 74 | #if defined (__i386__) || defined (__x86_64__) |
| 75 | #if !defined(__APPLE__) || (defined(__APPLE__) && (__clang_major__ > 8 || __clang_major__ == 8 && __clang_minor__ >= 1)) |
| 76 | #if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2) |
| 77 | if (__builtin_cpu_supports("avx512f")) strcpy(instruction_set, "AVX512F"); |
| 78 | else if (__builtin_cpu_supports("avx2")) strcpy(instruction_set, "AVX2"); |
| 79 | #else |
| 80 | if (__builtin_cpu_supports("avx2")) strcpy(instruction_set, "AVX2"); |
| 81 | #endif |
| 82 | else if (__builtin_cpu_supports("avx")) strcpy(instruction_set, "AVX"); |
| 83 | else if (__builtin_cpu_supports("sse2")) strcpy(instruction_set, "SSE2"); |
| 84 | else if (__builtin_cpu_supports("mmx")) strcpy(instruction_set, "MMX"); |
| 85 | else |
| 86 | #endif |
| 87 | #endif |
| 88 | strcpy(instruction_set, "no"); |
| 89 | } |
| 90 | |
| 91 | |
| 92 | static void print_progress_header(void) { |
| 93 | char progress_text[80]; |
| 94 | char instr_set[12] = ""; |
| 95 | get_SIMD_instruction_set(instr_set); |
| 96 | sprintf(progress_text, "Start using %d threads and %s SIMD core", num_CPUs(), instr_set); |
| 97 | PrintAndLog("\n\n"); |
| 98 | PrintAndLog(" time | #nonces | Activity | expected to brute force"); |
| 99 | PrintAndLog(" | | | #states | time "); |
| 100 | PrintAndLog("------------------------------------------------------------------------------------------------------"); |
| 101 | PrintAndLog(" 0 | 0 | %-55s | |", progress_text); |
| 102 | } |
| 103 | |
| 104 | |
| 105 | void hardnested_print_progress(uint32_t nonces, char *activity, float brute_force, uint64_t min_diff_print_time) { |
| 106 | static uint64_t last_print_time = 0; |
| 107 | if (msclock() - last_print_time > min_diff_print_time) { |
| 108 | last_print_time = msclock(); |
| 109 | uint64_t total_time = msclock() - start_time; |
| 110 | float brute_force_time = brute_force / brute_force_per_second; |
| 111 | char brute_force_time_string[20]; |
| 112 | if (brute_force_time < 90) { |
| 113 | sprintf(brute_force_time_string, "%2.0fs", brute_force_time); |
| 114 | } else if (brute_force_time < 60 * 90) { |
| 115 | sprintf(brute_force_time_string, "%2.0fmin", brute_force_time/60); |
| 116 | } else if (brute_force_time < 60 * 60 * 36) { |
| 117 | sprintf(brute_force_time_string, "%2.0fh", brute_force_time/(60*60)); |
| 118 | } else { |
| 119 | sprintf(brute_force_time_string, "%2.0fd", brute_force_time/(60*60*24)); |
| 120 | } |
| 121 | PrintAndLog(" %7.0f | %7d | %-55s | %15.0f | %5s", (float)total_time/1000.0, nonces, activity, brute_force, brute_force_time_string); |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | |
| 126 | ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
| 127 | // bitarray functions |
| 128 | |
| 129 | static inline void clear_bitarray24(uint32_t *bitarray) |
| 130 | { |
| 131 | memset(bitarray, 0x00, sizeof(uint32_t) * (1<<19)); |
| 132 | } |
| 133 | |
| 134 | |
| 135 | static inline void set_bitarray24(uint32_t *bitarray) |
| 136 | { |
| 137 | memset(bitarray, 0xff, sizeof(uint32_t) * (1<<19)); |
| 138 | } |
| 139 | |
| 140 | |
| 141 | static inline void set_bit24(uint32_t *bitarray, uint32_t index) |
| 142 | { |
| 143 | bitarray[index>>5] |= 0x80000000>>(index&0x0000001f); |
| 144 | } |
| 145 | |
| 146 | |
| 147 | static inline void clear_bit24(uint32_t *bitarray, uint32_t index) |
| 148 | { |
| 149 | bitarray[index>>5] &= ~(0x80000000>>(index&0x0000001f)); |
| 150 | } |
| 151 | |
| 152 | |
| 153 | static inline uint32_t test_bit24(uint32_t *bitarray, uint32_t index) |
| 154 | { |
| 155 | return bitarray[index>>5] & (0x80000000>>(index&0x0000001f)); |
| 156 | } |
| 157 | |
| 158 | |
| 159 | static inline uint32_t next_state(uint32_t *bitarray, uint32_t state) |
| 160 | { |
| 161 | if (++state == 1<<24) return 1<<24; |
| 162 | uint32_t index = state >> 5; |
| 163 | uint_fast8_t bit = state & 0x1f; |
| 164 | uint32_t line = bitarray[index] << bit; |
| 165 | while (bit <= 0x1f) { |
| 166 | if (line & 0x80000000) return state; |
| 167 | state++; |
| 168 | bit++; |
| 169 | line <<= 1; |
| 170 | } |
| 171 | index++; |
| 172 | while (bitarray[index] == 0x00000000 && state < 1<<24) { |
| 173 | index++; |
| 174 | state += 0x20; |
| 175 | } |
| 176 | if (state >= 1<<24) return 1<<24; |
| 177 | #if defined __GNUC__ |
| 178 | return state + __builtin_clz(bitarray[index]); |
| 179 | #else |
| 180 | bit = 0x00; |
| 181 | line = bitarray[index]; |
| 182 | while (bit <= 0x1f) { |
| 183 | if (line & 0x80000000) return state; |
| 184 | state++; |
| 185 | bit++; |
| 186 | line <<= 1; |
| 187 | } |
| 188 | return 1<<24; |
| 189 | #endif |
| 190 | } |
| 191 | |
| 192 | |
| 193 | static inline uint32_t next_not_state(uint32_t *bitarray, uint32_t state) |
| 194 | { |
| 195 | if (++state == 1<<24) return 1<<24; |
| 196 | uint32_t index = state >> 5; |
| 197 | uint_fast8_t bit = state & 0x1f; |
| 198 | uint32_t line = bitarray[index] << bit; |
| 199 | while (bit <= 0x1f) { |
| 200 | if ((line & 0x80000000) == 0) return state; |
| 201 | state++; |
| 202 | bit++; |
| 203 | line <<= 1; |
| 204 | } |
| 205 | index++; |
| 206 | while (bitarray[index] == 0xffffffff && state < 1<<24) { |
| 207 | index++; |
| 208 | state += 0x20; |
| 209 | } |
| 210 | if (state >= 1<<24) return 1<<24; |
| 211 | #if defined __GNUC__ |
| 212 | return state + __builtin_clz(~bitarray[index]); |
| 213 | #else |
| 214 | bit = 0x00; |
| 215 | line = bitarray[index]; |
| 216 | while (bit <= 0x1f) { |
| 217 | if ((line & 0x80000000) == 0) return state; |
| 218 | state++; |
| 219 | bit++; |
| 220 | line <<= 1; |
| 221 | } |
| 222 | return 1<<24; |
| 223 | #endif |
| 224 | } |
| 225 | |
| 226 | |
| 227 | |
| 228 | |
| 229 | #define BITFLIP_2ND_BYTE 0x0200 |
| 230 | |
| 231 | |
| 232 | ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
| 233 | // bitflip property bitarrays |
| 234 | |
| 235 | static uint32_t *bitflip_bitarrays[2][0x400]; |
| 236 | static uint32_t count_bitflip_bitarrays[2][0x400]; |
| 237 | |
| 238 | static int compare_count_bitflip_bitarrays(const void *b1, const void *b2) |
| 239 | { |
| 240 | uint64_t count1 = (uint64_t)count_bitflip_bitarrays[ODD_STATE][*(uint16_t *)b1] * count_bitflip_bitarrays[EVEN_STATE][*(uint16_t *)b1]; |
| 241 | uint64_t count2 = (uint64_t)count_bitflip_bitarrays[ODD_STATE][*(uint16_t *)b2] * count_bitflip_bitarrays[EVEN_STATE][*(uint16_t *)b2]; |
| 242 | return (count1 > count2) - (count2 > count1); |
| 243 | } |
| 244 | |
| 245 | |
| 246 | static voidpf inflate_malloc(voidpf opaque, uInt items, uInt size) |
| 247 | { |
| 248 | return malloc(items*size); |
| 249 | } |
| 250 | |
| 251 | |
| 252 | static void inflate_free(voidpf opaque, voidpf address) |
| 253 | { |
| 254 | free(address); |
| 255 | } |
| 256 | |
| 257 | #define OUTPUT_BUFFER_LEN 80 |
| 258 | #define INPUT_BUFFER_LEN 80 |
| 259 | |
| 260 | //---------------------------------------------------------------------------- |
| 261 | // Initialize decompression of the respective (HF or LF) FPGA stream |
| 262 | //---------------------------------------------------------------------------- |
| 263 | static void init_inflate(z_streamp compressed_stream, uint8_t *input_buffer, uint32_t insize, uint8_t *output_buffer, uint32_t outsize) |
| 264 | { |
| 265 | |
| 266 | // initialize z_stream structure for inflate: |
| 267 | compressed_stream->next_in = input_buffer; |
| 268 | compressed_stream->avail_in = insize; |
| 269 | compressed_stream->next_out = output_buffer; |
| 270 | compressed_stream->avail_out = outsize; |
| 271 | compressed_stream->zalloc = &inflate_malloc; |
| 272 | compressed_stream->zfree = &inflate_free; |
| 273 | |
| 274 | inflateInit2(compressed_stream, 0); |
| 275 | |
| 276 | } |
| 277 | |
| 278 | |
| 279 | static void init_bitflip_bitarrays(void) |
| 280 | { |
| 281 | #if defined (DEBUG_REDUCTION) |
| 282 | uint8_t line = 0; |
| 283 | #endif |
| 284 | |
| 285 | |
| 286 | z_stream compressed_stream; |
| 287 | |
| 288 | char state_files_path[strlen(get_my_executable_directory()) + strlen(STATE_FILES_DIRECTORY) + strlen(STATE_FILE_TEMPLATE) + 1]; |
| 289 | char state_file_name[strlen(STATE_FILE_TEMPLATE)+1]; |
| 290 | |
| 291 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
| 292 | num_effective_bitflips[odd_even] = 0; |
| 293 | for (uint16_t bitflip = 0x001; bitflip < 0x400; bitflip++) { |
| 294 | bitflip_bitarrays[odd_even][bitflip] = NULL; |
| 295 | count_bitflip_bitarrays[odd_even][bitflip] = 1<<24; |
| 296 | sprintf(state_file_name, STATE_FILE_TEMPLATE, odd_even, bitflip); |
| 297 | strcpy(state_files_path, get_my_executable_directory()); |
| 298 | strcat(state_files_path, STATE_FILES_DIRECTORY); |
| 299 | strcat(state_files_path, state_file_name); |
| 300 | FILE *statesfile = fopen(state_files_path, "rb"); |
| 301 | if (statesfile == NULL) { |
| 302 | continue; |
| 303 | } else { |
| 304 | fseek(statesfile, 0, SEEK_END); |
| 305 | uint32_t filesize = (uint32_t)ftell(statesfile); |
| 306 | rewind(statesfile); |
| 307 | uint8_t input_buffer[filesize]; |
| 308 | size_t bytesread = fread(input_buffer, 1, filesize, statesfile); |
| 309 | if (bytesread != filesize) { |
| 310 | printf("File read error with %s. Aborting...\n", state_file_name); |
| 311 | fclose(statesfile); |
| 312 | inflateEnd(&compressed_stream); |
| 313 | exit(5); |
| 314 | } |
| 315 | fclose(statesfile); |
| 316 | uint32_t count = 0; |
| 317 | init_inflate(&compressed_stream, input_buffer, filesize, (uint8_t *)&count, sizeof(count)); |
| 318 | inflate(&compressed_stream, Z_SYNC_FLUSH); |
| 319 | if ((float)count/(1<<24) < IGNORE_BITFLIP_THRESHOLD) { |
| 320 | uint32_t *bitset = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); |
| 321 | if (bitset == NULL) { |
| 322 | printf("Out of memory error in init_bitflip_statelists(). Aborting...\n"); |
| 323 | inflateEnd(&compressed_stream); |
| 324 | exit(4); |
| 325 | } |
| 326 | compressed_stream.next_out = (uint8_t *)bitset; |
| 327 | compressed_stream.avail_out = sizeof(uint32_t) * (1<<19); |
| 328 | inflate(&compressed_stream, Z_SYNC_FLUSH); |
| 329 | effective_bitflip[odd_even][num_effective_bitflips[odd_even]++] = bitflip; |
| 330 | bitflip_bitarrays[odd_even][bitflip] = bitset; |
| 331 | count_bitflip_bitarrays[odd_even][bitflip] = count; |
| 332 | #if defined (DEBUG_REDUCTION) |
| 333 | printf("(%03" PRIx16 " %s:%5.1f%%) ", bitflip, odd_even?"odd ":"even", (float)count/(1<<24)*100.0); |
| 334 | line++; |
| 335 | if (line == 8) { |
| 336 | printf("\n"); |
| 337 | line = 0; |
| 338 | } |
| 339 | #endif |
| 340 | } |
| 341 | inflateEnd(&compressed_stream); |
| 342 | } |
| 343 | } |
| 344 | effective_bitflip[odd_even][num_effective_bitflips[odd_even]] = 0x400; // EndOfList marker |
| 345 | } |
| 346 | |
| 347 | uint16_t i = 0; |
| 348 | uint16_t j = 0; |
| 349 | num_all_effective_bitflips = 0; |
| 350 | num_1st_byte_effective_bitflips = 0; |
| 351 | while (i < num_effective_bitflips[EVEN_STATE] || j < num_effective_bitflips[ODD_STATE]) { |
| 352 | if (effective_bitflip[EVEN_STATE][i] < effective_bitflip[ODD_STATE][j]) { |
| 353 | all_effective_bitflip[num_all_effective_bitflips++] = effective_bitflip[EVEN_STATE][i]; |
| 354 | i++; |
| 355 | } else if (effective_bitflip[EVEN_STATE][i] > effective_bitflip[ODD_STATE][j]) { |
| 356 | all_effective_bitflip[num_all_effective_bitflips++] = effective_bitflip[ODD_STATE][j]; |
| 357 | j++; |
| 358 | } else { |
| 359 | all_effective_bitflip[num_all_effective_bitflips++] = effective_bitflip[EVEN_STATE][i]; |
| 360 | i++; j++; |
| 361 | } |
| 362 | if (!(all_effective_bitflip[num_all_effective_bitflips-1] & BITFLIP_2ND_BYTE)) { |
| 363 | num_1st_byte_effective_bitflips = num_all_effective_bitflips; |
| 364 | } |
| 365 | } |
| 366 | qsort(all_effective_bitflip, num_1st_byte_effective_bitflips, sizeof(uint16_t), compare_count_bitflip_bitarrays); |
| 367 | #if defined (DEBUG_REDUCTION) |
| 368 | printf("\n1st byte effective bitflips (%d): \n", num_1st_byte_effective_bitflips); |
| 369 | for(uint16_t i = 0; i < num_1st_byte_effective_bitflips; i++) { |
| 370 | printf("%03x ", all_effective_bitflip[i]); |
| 371 | } |
| 372 | #endif |
| 373 | qsort(all_effective_bitflip+num_1st_byte_effective_bitflips, num_all_effective_bitflips - num_1st_byte_effective_bitflips, sizeof(uint16_t), compare_count_bitflip_bitarrays); |
| 374 | #if defined (DEBUG_REDUCTION) |
| 375 | printf("\n2nd byte effective bitflips (%d): \n", num_all_effective_bitflips - num_1st_byte_effective_bitflips); |
| 376 | for(uint16_t i = num_1st_byte_effective_bitflips; i < num_all_effective_bitflips; i++) { |
| 377 | printf("%03x ", all_effective_bitflip[i]); |
| 378 | } |
| 379 | #endif |
| 380 | char progress_text[80]; |
| 381 | sprintf(progress_text, "Using %d precalculated bitflip state tables", num_all_effective_bitflips); |
| 382 | hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0); |
| 383 | } |
| 384 | |
| 385 | |
| 386 | static void free_bitflip_bitarrays(void) |
| 387 | { |
| 388 | for (int16_t bitflip = 0x3ff; bitflip > 0x000; bitflip--) { |
| 389 | free_bitarray(bitflip_bitarrays[ODD_STATE][bitflip]); |
| 390 | } |
| 391 | for (int16_t bitflip = 0x3ff; bitflip > 0x000; bitflip--) { |
| 392 | free_bitarray(bitflip_bitarrays[EVEN_STATE][bitflip]); |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | |
| 397 | ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
| 398 | // sum property bitarrays |
| 399 | |
| 400 | static uint32_t *part_sum_a0_bitarrays[2][NUM_PART_SUMS]; |
| 401 | static uint32_t *part_sum_a8_bitarrays[2][NUM_PART_SUMS]; |
| 402 | static uint32_t *sum_a0_bitarrays[2][NUM_SUMS]; |
| 403 | |
| 404 | static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even) |
| 405 | { |
| 406 | uint16_t sum = 0; |
| 407 | for (uint16_t j = 0; j < 16; j++) { |
| 408 | uint32_t st = state; |
| 409 | uint16_t part_sum = 0; |
| 410 | if (odd_even == ODD_STATE) { |
| 411 | for (uint16_t i = 0; i < 5; i++) { |
| 412 | part_sum ^= filter(st); |
| 413 | st = (st << 1) | ((j >> (3-i)) & 0x01) ; |
| 414 | } |
| 415 | part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits |
| 416 | } else { |
| 417 | for (uint16_t i = 0; i < 4; i++) { |
| 418 | st = (st << 1) | ((j >> (3-i)) & 0x01) ; |
| 419 | part_sum ^= filter(st); |
| 420 | } |
| 421 | } |
| 422 | sum += part_sum; |
| 423 | } |
| 424 | return sum; |
| 425 | } |
| 426 | |
| 427 | |
| 428 | static void init_part_sum_bitarrays(void) |
| 429 | { |
| 430 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
| 431 | for (uint16_t part_sum_a0 = 0; part_sum_a0 < NUM_PART_SUMS; part_sum_a0++) { |
| 432 | part_sum_a0_bitarrays[odd_even][part_sum_a0] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); |
| 433 | if (part_sum_a0_bitarrays[odd_even][part_sum_a0] == NULL) { |
| 434 | printf("Out of memory error in init_part_suma0_statelists(). Aborting...\n"); |
| 435 | exit(4); |
| 436 | } |
| 437 | clear_bitarray24(part_sum_a0_bitarrays[odd_even][part_sum_a0]); |
| 438 | } |
| 439 | } |
| 440 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
| 441 | //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a0); |
| 442 | for (uint32_t state = 0; state < (1<<20); state++) { |
| 443 | uint16_t part_sum_a0 = PartialSumProperty(state, odd_even) / 2; |
| 444 | for (uint16_t low_bits = 0; low_bits < 1<<4; low_bits++) { |
| 445 | set_bit24(part_sum_a0_bitarrays[odd_even][part_sum_a0], state<<4 | low_bits); |
| 446 | } |
| 447 | } |
| 448 | } |
| 449 | |
| 450 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
| 451 | for (uint16_t part_sum_a8 = 0; part_sum_a8 < NUM_PART_SUMS; part_sum_a8++) { |
| 452 | part_sum_a8_bitarrays[odd_even][part_sum_a8] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); |
| 453 | if (part_sum_a8_bitarrays[odd_even][part_sum_a8] == NULL) { |
| 454 | printf("Out of memory error in init_part_suma8_statelists(). Aborting...\n"); |
| 455 | exit(4); |
| 456 | } |
| 457 | clear_bitarray24(part_sum_a8_bitarrays[odd_even][part_sum_a8]); |
| 458 | } |
| 459 | } |
| 460 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
| 461 | //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a8); |
| 462 | for (uint32_t state = 0; state < (1<<20); state++) { |
| 463 | uint16_t part_sum_a8 = PartialSumProperty(state, odd_even) / 2; |
| 464 | for (uint16_t high_bits = 0; high_bits < 1<<4; high_bits++) { |
| 465 | set_bit24(part_sum_a8_bitarrays[odd_even][part_sum_a8], state | high_bits<<20); |
| 466 | } |
| 467 | } |
| 468 | } |
| 469 | } |
| 470 | |
| 471 | |
| 472 | static void free_part_sum_bitarrays(void) |
| 473 | { |
| 474 | for (int16_t part_sum_a8 = (NUM_PART_SUMS-1); part_sum_a8 >= 0; part_sum_a8--) { |
| 475 | free_bitarray(part_sum_a8_bitarrays[ODD_STATE][part_sum_a8]); |
| 476 | } |
| 477 | for (int16_t part_sum_a8 = (NUM_PART_SUMS-1); part_sum_a8 >= 0; part_sum_a8--) { |
| 478 | free_bitarray(part_sum_a8_bitarrays[EVEN_STATE][part_sum_a8]); |
| 479 | } |
| 480 | for (int16_t part_sum_a0 = (NUM_PART_SUMS-1); part_sum_a0 >= 0; part_sum_a0--) { |
| 481 | free_bitarray(part_sum_a0_bitarrays[ODD_STATE][part_sum_a0]); |
| 482 | } |
| 483 | for (int16_t part_sum_a0 = (NUM_PART_SUMS-1); part_sum_a0 >= 0; part_sum_a0--) { |
| 484 | free_bitarray(part_sum_a0_bitarrays[EVEN_STATE][part_sum_a0]); |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | |
| 489 | static void init_sum_bitarrays(void) |
| 490 | { |
| 491 | for (uint16_t sum_a0 = 0; sum_a0 < NUM_SUMS; sum_a0++) { |
| 492 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
| 493 | sum_a0_bitarrays[odd_even][sum_a0] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); |
| 494 | if (sum_a0_bitarrays[odd_even][sum_a0] == NULL) { |
| 495 | printf("Out of memory error in init_sum_bitarrays(). Aborting...\n"); |
| 496 | exit(4); |
| 497 | } |
| 498 | clear_bitarray24(sum_a0_bitarrays[odd_even][sum_a0]); |
| 499 | } |
| 500 | } |
| 501 | for (uint8_t p = 0; p < NUM_PART_SUMS; p++) { |
| 502 | for (uint8_t q = 0; q < NUM_PART_SUMS; q++) { |
| 503 | uint16_t sum_a0 = 2*p*(16-2*q) + (16-2*p)*2*q; |
| 504 | uint16_t sum_a0_idx = 0; |
| 505 | while (sums[sum_a0_idx] != sum_a0) sum_a0_idx++; |
| 506 | bitarray_OR(sum_a0_bitarrays[EVEN_STATE][sum_a0_idx], part_sum_a0_bitarrays[EVEN_STATE][q]); |
| 507 | bitarray_OR(sum_a0_bitarrays[ODD_STATE][sum_a0_idx], part_sum_a0_bitarrays[ODD_STATE][p]); |
| 508 | } |
| 509 | } |
| 510 | // for (uint16_t sum_a0 = 0; sum_a0 < NUM_SUMS; sum_a0++) { |
| 511 | // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
| 512 | // uint32_t count = count_states(sum_a0_bitarrays[odd_even][sum_a0]); |
| 513 | // printf("sum_a0_bitarray[%s][%d] has %d states (%5.2f%%)\n", odd_even==EVEN_STATE?"even":"odd ", sums[sum_a0], count, (float)count/(1<<24)*100.0); |
| 514 | // } |
| 515 | // } |
| 516 | } |
| 517 | |
| 518 | |
| 519 | static void free_sum_bitarrays(void) |
| 520 | { |
| 521 | for (int8_t sum_a0 = NUM_SUMS-1; sum_a0 >= 0; sum_a0--) { |
| 522 | free_bitarray(sum_a0_bitarrays[ODD_STATE][sum_a0]); |
| 523 | free_bitarray(sum_a0_bitarrays[EVEN_STATE][sum_a0]); |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | |
| 528 | #ifdef DEBUG_KEY_ELIMINATION |
| 529 | char failstr[250] = ""; |
| 530 | #endif |
| 531 | |
| 532 | static const float p_K0[NUM_SUMS] = { // the probability that a random nonce has a Sum Property K |
| 533 | 0.0290, 0.0083, 0.0006, 0.0339, 0.0048, 0.0934, 0.0119, 0.0489, 0.0602, 0.4180, 0.0602, 0.0489, 0.0119, 0.0934, 0.0048, 0.0339, 0.0006, 0.0083, 0.0290 |
| 534 | }; |
| 535 | |
| 536 | static float my_p_K[NUM_SUMS]; |
| 537 | |
| 538 | static const float *p_K; |
| 539 | |
| 540 | static uint32_t cuid; |
| 541 | static noncelist_t nonces[256]; |
| 542 | static uint8_t best_first_bytes[256]; |
| 543 | static uint64_t maximum_states = 0; |
| 544 | static uint8_t best_first_byte_smallest_bitarray = 0; |
| 545 | static uint16_t first_byte_Sum = 0; |
| 546 | static uint16_t first_byte_num = 0; |
| 547 | static bool write_stats = false; |
| 548 | static FILE *fstats = NULL; |
| 549 | static uint32_t *all_bitflips_bitarray[2]; |
| 550 | static uint32_t num_all_bitflips_bitarray[2]; |
| 551 | static bool all_bitflips_bitarray_dirty[2]; |
| 552 | static uint64_t last_sample_clock = 0; |
| 553 | static uint64_t sample_period = 0; |
| 554 | static uint64_t num_keys_tested = 0; |
| 555 | static statelist_t *candidates = NULL; |
| 556 | |
| 557 | |
| 558 | static int add_nonce(uint32_t nonce_enc, uint8_t par_enc) |
| 559 | { |
| 560 | uint8_t first_byte = nonce_enc >> 24; |
| 561 | noncelistentry_t *p1 = nonces[first_byte].first; |
| 562 | noncelistentry_t *p2 = NULL; |
| 563 | |
| 564 | if (p1 == NULL) { // first nonce with this 1st byte |
| 565 | first_byte_num++; |
| 566 | first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08)); |
| 567 | } |
| 568 | |
| 569 | while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) { |
| 570 | p2 = p1; |
| 571 | p1 = p1->next; |
| 572 | } |
| 573 | |
| 574 | if (p1 == NULL) { // need to add at the end of the list |
| 575 | if (p2 == NULL) { // list is empty yet. Add first entry. |
| 576 | p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t)); |
| 577 | } else { // add new entry at end of existing list. |
| 578 | p2 = p2->next = malloc(sizeof(noncelistentry_t)); |
| 579 | } |
| 580 | } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert. |
| 581 | if (p2 == NULL) { // need to insert at start of list |
| 582 | p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t)); |
| 583 | } else { |
| 584 | p2 = p2->next = malloc(sizeof(noncelistentry_t)); |
| 585 | } |
| 586 | } else { // we have seen this 2nd byte before. Nothing to add or insert. |
| 587 | return (0); |
| 588 | } |
| 589 | |
| 590 | // add or insert new data |
| 591 | p2->next = p1; |
| 592 | p2->nonce_enc = nonce_enc; |
| 593 | p2->par_enc = par_enc; |
| 594 | |
| 595 | nonces[first_byte].num++; |
| 596 | nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04)); |
| 597 | nonces[first_byte].sum_a8_guess_dirty = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte |
| 598 | return (1); // new nonce added |
| 599 | } |
| 600 | |
| 601 | |
| 602 | static void init_nonce_memory(void) |
| 603 | { |
| 604 | for (uint16_t i = 0; i < 256; i++) { |
| 605 | nonces[i].num = 0; |
| 606 | nonces[i].Sum = 0; |
| 607 | nonces[i].first = NULL; |
| 608 | for (uint16_t j = 0; j < NUM_SUMS; j++) { |
| 609 | nonces[i].sum_a8_guess[j].sum_a8_idx = j; |
| 610 | nonces[i].sum_a8_guess[j].prob = 0.0; |
| 611 | } |
| 612 | nonces[i].sum_a8_guess_dirty = false; |
| 613 | for (uint16_t bitflip = 0x000; bitflip < 0x400; bitflip++) { |
| 614 | nonces[i].BitFlips[bitflip] = 0; |
| 615 | } |
| 616 | nonces[i].states_bitarray[EVEN_STATE] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); |
| 617 | if (nonces[i].states_bitarray[EVEN_STATE] == NULL) { |
| 618 | printf("Out of memory error in init_nonce_memory(). Aborting...\n"); |
| 619 | exit(4); |
| 620 | } |
| 621 | set_bitarray24(nonces[i].states_bitarray[EVEN_STATE]); |
| 622 | nonces[i].num_states_bitarray[EVEN_STATE] = 1 << 24; |
| 623 | nonces[i].states_bitarray[ODD_STATE] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); |
| 624 | if (nonces[i].states_bitarray[ODD_STATE] == NULL) { |
| 625 | printf("Out of memory error in init_nonce_memory(). Aborting...\n"); |
| 626 | exit(4); |
| 627 | } |
| 628 | set_bitarray24(nonces[i].states_bitarray[ODD_STATE]); |
| 629 | nonces[i].num_states_bitarray[ODD_STATE] = 1 << 24; |
| 630 | nonces[i].all_bitflips_dirty[EVEN_STATE] = false; |
| 631 | nonces[i].all_bitflips_dirty[ODD_STATE] = false; |
| 632 | } |
| 633 | first_byte_num = 0; |
| 634 | first_byte_Sum = 0; |
| 635 | } |
| 636 | |
| 637 | |
| 638 | static void free_nonce_list(noncelistentry_t *p) |
| 639 | { |
| 640 | if (p == NULL) { |
| 641 | return; |
| 642 | } else { |
| 643 | free_nonce_list(p->next); |
| 644 | free(p); |
| 645 | } |
| 646 | } |
| 647 | |
| 648 | |
| 649 | static void free_nonces_memory(void) |
| 650 | { |
| 651 | for (uint16_t i = 0; i < 256; i++) { |
| 652 | free_nonce_list(nonces[i].first); |
| 653 | } |
| 654 | for (int i = 255; i >= 0; i--) { |
| 655 | free_bitarray(nonces[i].states_bitarray[ODD_STATE]); |
| 656 | free_bitarray(nonces[i].states_bitarray[EVEN_STATE]); |
| 657 | } |
| 658 | } |
| 659 | |
| 660 | |
| 661 | // static double p_hypergeometric_cache[257][NUM_SUMS][257]; |
| 662 | |
| 663 | // #define CACHE_INVALID -1.0 |
| 664 | // static void init_p_hypergeometric_cache(void) |
| 665 | // { |
| 666 | // for (uint16_t n = 0; n <= 256; n++) { |
| 667 | // for (uint16_t i_K = 0; i_K < NUM_SUMS; i_K++) { |
| 668 | // for (uint16_t k = 0; k <= 256; k++) { |
| 669 | // p_hypergeometric_cache[n][i_K][k] = CACHE_INVALID; |
| 670 | // } |
| 671 | // } |
| 672 | // } |
| 673 | // } |
| 674 | |
| 675 | |
| 676 | static double p_hypergeometric(uint16_t i_K, uint16_t n, uint16_t k) |
| 677 | { |
| 678 | // for efficient computation we are using the recursive definition |
| 679 | // (K-k+1) * (n-k+1) |
| 680 | // P(X=k) = P(X=k-1) * -------------------- |
| 681 | // k * (N-K-n+k) |
| 682 | // and |
| 683 | // (N-K)*(N-K-1)*...*(N-K-n+1) |
| 684 | // P(X=0) = ----------------------------- |
| 685 | // N*(N-1)*...*(N-n+1) |
| 686 | |
| 687 | |
| 688 | uint16_t const N = 256; |
| 689 | uint16_t K = sums[i_K]; |
| 690 | |
| 691 | // if (p_hypergeometric_cache[n][i_K][k] != CACHE_INVALID) { |
| 692 | // return p_hypergeometric_cache[n][i_K][k]; |
| 693 | // } |
| 694 | |
| 695 | if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below |
| 696 | if (k == 0) { |
| 697 | // use logarithms to avoid overflow with huge factorials (double type can only hold 170!) |
| 698 | double log_result = 0.0; |
| 699 | for (int16_t i = N-K; i >= N-K-n+1; i--) { |
| 700 | log_result += log(i); |
| 701 | } |
| 702 | for (int16_t i = N; i >= N-n+1; i--) { |
| 703 | log_result -= log(i); |
| 704 | } |
| 705 | // p_hypergeometric_cache[n][i_K][k] = exp(log_result); |
| 706 | return exp(log_result); |
| 707 | } else { |
| 708 | if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception |
| 709 | double log_result = 0.0; |
| 710 | for (int16_t i = k+1; i <= n; i++) { |
| 711 | log_result += log(i); |
| 712 | } |
| 713 | for (int16_t i = K+1; i <= N; i++) { |
| 714 | log_result -= log(i); |
| 715 | } |
| 716 | // p_hypergeometric_cache[n][i_K][k] = exp(log_result); |
| 717 | return exp(log_result); |
| 718 | } else { // recursion |
| 719 | return (p_hypergeometric(i_K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k))); |
| 720 | } |
| 721 | } |
| 722 | } |
| 723 | |
| 724 | |
| 725 | static float sum_probability(uint16_t i_K, uint16_t n, uint16_t k) |
| 726 | { |
| 727 | if (k > sums[i_K]) return 0.0; |
| 728 | |
| 729 | double p_T_is_k_when_S_is_K = p_hypergeometric(i_K, n, k); |
| 730 | double p_S_is_K = p_K[i_K]; |
| 731 | double p_T_is_k = 0; |
| 732 | for (uint16_t i = 0; i < NUM_SUMS; i++) { |
| 733 | p_T_is_k += p_K[i] * p_hypergeometric(i, n, k); |
| 734 | } |
| 735 | return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k); |
| 736 | } |
| 737 | |
| 738 | |
| 739 | static uint32_t part_sum_count[2][NUM_PART_SUMS][NUM_PART_SUMS]; |
| 740 | |
| 741 | static void init_allbitflips_array(void) |
| 742 | { |
| 743 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
| 744 | uint32_t *bitset = all_bitflips_bitarray[odd_even] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); |
| 745 | if (bitset == NULL) { |
| 746 | printf("Out of memory in init_allbitflips_array(). Aborting..."); |
| 747 | exit(4); |
| 748 | } |
| 749 | set_bitarray24(bitset); |
| 750 | all_bitflips_bitarray_dirty[odd_even] = false; |
| 751 | num_all_bitflips_bitarray[odd_even] = 1<<24; |
| 752 | } |
| 753 | } |
| 754 | |
| 755 | |
| 756 | static void update_allbitflips_array(void) |
| 757 | { |
| 758 | if (hardnested_stage & CHECK_2ND_BYTES) { |
| 759 | for (uint16_t i = 0; i < 256; i++) { |
| 760 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
| 761 | if (nonces[i].all_bitflips_dirty[odd_even]) { |
| 762 | uint32_t old_count = num_all_bitflips_bitarray[odd_even]; |
| 763 | num_all_bitflips_bitarray[odd_even] = count_bitarray_low20_AND(all_bitflips_bitarray[odd_even], nonces[i].states_bitarray[odd_even]); |
| 764 | nonces[i].all_bitflips_dirty[odd_even] = false; |
| 765 | if (num_all_bitflips_bitarray[odd_even] != old_count) { |
| 766 | all_bitflips_bitarray_dirty[odd_even] = true; |
| 767 | } |
| 768 | } |
| 769 | } |
| 770 | } |
| 771 | } |
| 772 | } |
| 773 | |
| 774 | |
| 775 | static uint32_t estimated_num_states_part_sum_coarse(uint16_t part_sum_a0_idx, uint16_t part_sum_a8_idx, odd_even_t odd_even) |
| 776 | { |
| 777 | return part_sum_count[odd_even][part_sum_a0_idx][part_sum_a8_idx]; |
| 778 | } |
| 779 | |
| 780 | |
| 781 | static uint32_t estimated_num_states_part_sum(uint8_t first_byte, uint16_t part_sum_a0_idx, uint16_t part_sum_a8_idx, odd_even_t odd_even) |
| 782 | { |
| 783 | if (odd_even == ODD_STATE) { |
| 784 | return count_bitarray_AND3(part_sum_a0_bitarrays[odd_even][part_sum_a0_idx], |
| 785 | part_sum_a8_bitarrays[odd_even][part_sum_a8_idx], |
| 786 | nonces[first_byte].states_bitarray[odd_even]); |
| 787 | } else { |
| 788 | return count_bitarray_AND4(part_sum_a0_bitarrays[odd_even][part_sum_a0_idx], |
| 789 | part_sum_a8_bitarrays[odd_even][part_sum_a8_idx], |
| 790 | nonces[first_byte].states_bitarray[odd_even], |
| 791 | nonces[first_byte^0x80].states_bitarray[odd_even]); |
| 792 | } |
| 793 | |
| 794 | // estimate reduction by all_bitflips_match() |
| 795 | // if (odd_even) { |
| 796 | // float p_bitflip = (float)nonces[first_byte ^ 0x80].num_states_bitarray[ODD_STATE] / num_all_bitflips_bitarray[ODD_STATE]; |
| 797 | // return (float)count * p_bitflip; //(p_bitflip - 0.25*p_bitflip*p_bitflip); |
| 798 | // } else { |
| 799 | // return count; |
| 800 | // } |
| 801 | } |
| 802 | |
| 803 | |
| 804 | static uint64_t estimated_num_states(uint8_t first_byte, uint16_t sum_a0, uint16_t sum_a8) |
| 805 | { |
| 806 | uint64_t num_states = 0; |
| 807 | for (uint8_t p = 0; p < NUM_PART_SUMS; p++) { |
| 808 | for (uint8_t q = 0; q < NUM_PART_SUMS; q++) { |
| 809 | if (2*p*(16-2*q) + (16-2*p)*2*q == sum_a0) { |
| 810 | for (uint8_t r = 0; r < NUM_PART_SUMS; r++) { |
| 811 | for (uint8_t s = 0; s < NUM_PART_SUMS; s++) { |
| 812 | if (2*r*(16-2*s) + (16-2*r)*2*s == sum_a8) { |
| 813 | num_states += (uint64_t)estimated_num_states_part_sum(first_byte, p, r, ODD_STATE) |
| 814 | * estimated_num_states_part_sum(first_byte, q, s, EVEN_STATE); |
| 815 | } |
| 816 | } |
| 817 | } |
| 818 | } |
| 819 | } |
| 820 | } |
| 821 | return num_states; |
| 822 | } |
| 823 | |
| 824 | |
| 825 | static uint64_t estimated_num_states_coarse(uint16_t sum_a0, uint16_t sum_a8) |
| 826 | { |
| 827 | uint64_t num_states = 0; |
| 828 | for (uint8_t p = 0; p < NUM_PART_SUMS; p++) { |
| 829 | for (uint8_t q = 0; q < NUM_PART_SUMS; q++) { |
| 830 | if (2*p*(16-2*q) + (16-2*p)*2*q == sum_a0) { |
| 831 | for (uint8_t r = 0; r < NUM_PART_SUMS; r++) { |
| 832 | for (uint8_t s = 0; s < NUM_PART_SUMS; s++) { |
| 833 | if (2*r*(16-2*s) + (16-2*r)*2*s == sum_a8) { |
| 834 | num_states += (uint64_t)estimated_num_states_part_sum_coarse(p, r, ODD_STATE) |
| 835 | * estimated_num_states_part_sum_coarse(q, s, EVEN_STATE); |
| 836 | } |
| 837 | } |
| 838 | } |
| 839 | } |
| 840 | } |
| 841 | } |
| 842 | return num_states; |
| 843 | } |
| 844 | |
| 845 | |
| 846 | static void update_p_K(void) |
| 847 | { |
| 848 | if (hardnested_stage & CHECK_2ND_BYTES) { |
| 849 | uint64_t total_count = 0; |
| 850 | uint16_t sum_a0 = sums[first_byte_Sum]; |
| 851 | for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) { |
| 852 | uint16_t sum_a8 = sums[sum_a8_idx]; |
| 853 | total_count += estimated_num_states_coarse(sum_a0, sum_a8); |
| 854 | } |
| 855 | for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) { |
| 856 | uint16_t sum_a8 = sums[sum_a8_idx]; |
| 857 | my_p_K[sum_a8_idx] = (float)estimated_num_states_coarse(sum_a0, sum_a8) / total_count; |
| 858 | } |
| 859 | // printf("my_p_K = ["); |
| 860 | // for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) { |
| 861 | // printf("%7.4f ", my_p_K[sum_a8_idx]); |
| 862 | // } |
| 863 | p_K = my_p_K; |
| 864 | } |
| 865 | } |
| 866 | |
| 867 | |
| 868 | static void update_sum_bitarrays(odd_even_t odd_even) |
| 869 | { |
| 870 | if (all_bitflips_bitarray_dirty[odd_even]) { |
| 871 | for (uint8_t part_sum = 0; part_sum < NUM_PART_SUMS; part_sum++) { |
| 872 | bitarray_AND(part_sum_a0_bitarrays[odd_even][part_sum], all_bitflips_bitarray[odd_even]); |
| 873 | bitarray_AND(part_sum_a8_bitarrays[odd_even][part_sum], all_bitflips_bitarray[odd_even]); |
| 874 | } |
| 875 | for (uint16_t i = 0; i < 256; i++) { |
| 876 | nonces[i].num_states_bitarray[odd_even] = count_bitarray_AND(nonces[i].states_bitarray[odd_even], all_bitflips_bitarray[odd_even]); |
| 877 | } |
| 878 | for (uint8_t part_sum_a0 = 0; part_sum_a0 < NUM_PART_SUMS; part_sum_a0++) { |
| 879 | for (uint8_t part_sum_a8 = 0; part_sum_a8 < NUM_PART_SUMS; part_sum_a8++) { |
| 880 | part_sum_count[odd_even][part_sum_a0][part_sum_a8] |
| 881 | += count_bitarray_AND2(part_sum_a0_bitarrays[odd_even][part_sum_a0], part_sum_a8_bitarrays[odd_even][part_sum_a8]); |
| 882 | } |
| 883 | } |
| 884 | all_bitflips_bitarray_dirty[odd_even] = false; |
| 885 | } |
| 886 | } |
| 887 | |
| 888 | |
| 889 | static int compare_expected_num_brute_force(const void *b1, const void *b2) |
| 890 | { |
| 891 | uint8_t index1 = *(uint8_t *)b1; |
| 892 | uint8_t index2 = *(uint8_t *)b2; |
| 893 | float score1 = nonces[index1].expected_num_brute_force; |
| 894 | float score2 = nonces[index2].expected_num_brute_force; |
| 895 | return (score1 > score2) - (score1 < score2); |
| 896 | } |
| 897 | |
| 898 | |
| 899 | static int compare_sum_a8_guess(const void *b1, const void *b2) |
| 900 | { |
| 901 | float prob1 = ((guess_sum_a8_t *)b1)->prob; |
| 902 | float prob2 = ((guess_sum_a8_t *)b2)->prob; |
| 903 | return (prob1 < prob2) - (prob1 > prob2); |
| 904 | |
| 905 | } |
| 906 | |
| 907 | |
| 908 | static float check_smallest_bitflip_bitarrays(void) |
| 909 | { |
| 910 | uint32_t num_odd, num_even; |
| 911 | uint64_t smallest = 1LL << 48; |
| 912 | // initialize best_first_bytes, do a rough estimation on remaining states |
| 913 | for (uint16_t i = 0; i < 256; i++) { |
| 914 | num_odd = nonces[i].num_states_bitarray[ODD_STATE]; |
| 915 | num_even = nonces[i].num_states_bitarray[EVEN_STATE]; // * (float)nonces[i^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE]; |
| 916 | if ((uint64_t)num_odd * num_even < smallest) { |
| 917 | smallest = (uint64_t)num_odd * num_even; |
| 918 | best_first_byte_smallest_bitarray = i; |
| 919 | } |
| 920 | } |
| 921 | |
| 922 | #if defined (DEBUG_REDUCTION) |
| 923 | num_odd = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[ODD_STATE]; |
| 924 | num_even = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[EVEN_STATE]; // * (float)nonces[best_first_byte_smallest_bitarray^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE]; |
| 925 | printf("0x%02x: %8d * %8d = %12" PRIu64 " (2^%1.1f)\n", best_first_byte_smallest_bitarray, num_odd, num_even, (uint64_t)num_odd * num_even, log((uint64_t)num_odd * num_even)/log(2.0)); |
| 926 | #endif |
| 927 | return (float)smallest/2.0; |
| 928 | } |
| 929 | |
| 930 | |
| 931 | static void update_expected_brute_force(uint8_t best_byte) { |
| 932 | |
| 933 | float total_prob = 0.0; |
| 934 | for (uint8_t i = 0; i < NUM_SUMS; i++) { |
| 935 | total_prob += nonces[best_byte].sum_a8_guess[i].prob; |
| 936 | } |
| 937 | // linear adjust probabilities to result in total_prob = 1.0; |
| 938 | for (uint8_t i = 0; i < NUM_SUMS; i++) { |
| 939 | nonces[best_byte].sum_a8_guess[i].prob /= total_prob; |
| 940 | } |
| 941 | float prob_all_failed = 1.0; |
| 942 | nonces[best_byte].expected_num_brute_force = 0.0; |
| 943 | for (uint8_t i = 0; i < NUM_SUMS; i++) { |
| 944 | nonces[best_byte].expected_num_brute_force += nonces[best_byte].sum_a8_guess[i].prob * (float)nonces[best_byte].sum_a8_guess[i].num_states / 2.0; |
| 945 | prob_all_failed -= nonces[best_byte].sum_a8_guess[i].prob; |
| 946 | nonces[best_byte].expected_num_brute_force += prob_all_failed * (float)nonces[best_byte].sum_a8_guess[i].num_states / 2.0; |
| 947 | } |
| 948 | return; |
| 949 | } |
| 950 | |
| 951 | |
| 952 | static float sort_best_first_bytes(void) |
| 953 | { |
| 954 | |
| 955 | // initialize best_first_bytes, do a rough estimation on remaining states for each Sum_a8 property |
| 956 | // and the expected number of states to brute force |
| 957 | for (uint16_t i = 0; i < 256; i++) { |
| 958 | best_first_bytes[i] = i; |
| 959 | float prob_all_failed = 1.0; |
| 960 | nonces[i].expected_num_brute_force = 0.0; |
| 961 | for (uint8_t j = 0; j < NUM_SUMS; j++) { |
| 962 | nonces[i].sum_a8_guess[j].num_states = estimated_num_states_coarse(sums[first_byte_Sum], sums[nonces[i].sum_a8_guess[j].sum_a8_idx]); |
| 963 | nonces[i].expected_num_brute_force += nonces[i].sum_a8_guess[j].prob * (float)nonces[i].sum_a8_guess[j].num_states / 2.0; |
| 964 | prob_all_failed -= nonces[i].sum_a8_guess[j].prob; |
| 965 | nonces[i].expected_num_brute_force += prob_all_failed * (float)nonces[i].sum_a8_guess[j].num_states / 2.0; |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | // sort based on expected number of states to brute force |
| 970 | qsort(best_first_bytes, 256, 1, compare_expected_num_brute_force); |
| 971 | |
| 972 | // printf("refine estimations: "); |
| 973 | #define NUM_REFINES 1 |
| 974 | // refine scores for the best: |
| 975 | for (uint16_t i = 0; i < NUM_REFINES; i++) { |
| 976 | // printf("%d...", i); |
| 977 | uint16_t first_byte = best_first_bytes[i]; |
| 978 | for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) { |
| 979 | nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]); |
| 980 | } |
| 981 | // while (nonces[first_byte].sum_a8_guess[0].num_states == 0 |
| 982 | // || nonces[first_byte].sum_a8_guess[1].num_states == 0 |
| 983 | // || nonces[first_byte].sum_a8_guess[2].num_states == 0) { |
| 984 | // if (nonces[first_byte].sum_a8_guess[0].num_states == 0) { |
| 985 | // nonces[first_byte].sum_a8_guess[0].prob = 0.0; |
| 986 | // printf("(0x%02x,%d)", first_byte, 0); |
| 987 | // } |
| 988 | // if (nonces[first_byte].sum_a8_guess[1].num_states == 0) { |
| 989 | // nonces[first_byte].sum_a8_guess[1].prob = 0.0; |
| 990 | // printf("(0x%02x,%d)", first_byte, 1); |
| 991 | // } |
| 992 | // if (nonces[first_byte].sum_a8_guess[2].num_states == 0) { |
| 993 | // nonces[first_byte].sum_a8_guess[2].prob = 0.0; |
| 994 | // printf("(0x%02x,%d)", first_byte, 2); |
| 995 | // } |
| 996 | // printf("|"); |
| 997 | // qsort(nonces[first_byte].sum_a8_guess, NUM_SUMS, sizeof(guess_sum_a8_t), compare_sum_a8_guess); |
| 998 | // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) { |
| 999 | // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]); |
| 1000 | // } |
| 1001 | // } |
| 1002 | // float fix_probs = 0.0; |
| 1003 | // for (uint8_t j = 0; j < NUM_SUMS; j++) { |
| 1004 | // fix_probs += nonces[first_byte].sum_a8_guess[j].prob; |
| 1005 | // } |
| 1006 | // for (uint8_t j = 0; j < NUM_SUMS; j++) { |
| 1007 | // nonces[first_byte].sum_a8_guess[j].prob /= fix_probs; |
| 1008 | // } |
| 1009 | // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) { |
| 1010 | // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]); |
| 1011 | // } |
| 1012 | float prob_all_failed = 1.0; |
| 1013 | nonces[first_byte].expected_num_brute_force = 0.0; |
| 1014 | for (uint8_t j = 0; j < NUM_SUMS; j++) { |
| 1015 | nonces[first_byte].expected_num_brute_force += nonces[first_byte].sum_a8_guess[j].prob * (float)nonces[first_byte].sum_a8_guess[j].num_states / 2.0; |
| 1016 | prob_all_failed -= nonces[first_byte].sum_a8_guess[j].prob; |
| 1017 | nonces[first_byte].expected_num_brute_force += prob_all_failed * (float)nonces[first_byte].sum_a8_guess[j].num_states / 2.0; |
| 1018 | } |
| 1019 | } |
| 1020 | |
| 1021 | // copy best byte to front: |
| 1022 | float least_expected_brute_force = (1LL << 48); |
| 1023 | uint8_t best_byte = 0; |
| 1024 | for (uint16_t i = 0; i < 10; i++) { |
| 1025 | uint16_t first_byte = best_first_bytes[i]; |
| 1026 | if (nonces[first_byte].expected_num_brute_force < least_expected_brute_force) { |
| 1027 | least_expected_brute_force = nonces[first_byte].expected_num_brute_force; |
| 1028 | best_byte = i; |
| 1029 | } |
| 1030 | } |
| 1031 | if (best_byte != 0) { |
| 1032 | // printf("0x%02x <-> 0x%02x", best_first_bytes[0], best_first_bytes[best_byte]); |
| 1033 | uint8_t tmp = best_first_bytes[0]; |
| 1034 | best_first_bytes[0] = best_first_bytes[best_byte]; |
| 1035 | best_first_bytes[best_byte] = tmp; |
| 1036 | } |
| 1037 | |
| 1038 | return nonces[best_first_bytes[0]].expected_num_brute_force; |
| 1039 | } |
| 1040 | |
| 1041 | |
| 1042 | static float update_reduction_rate(float last, bool init) |
| 1043 | { |
| 1044 | #define QUEUE_LEN 4 |
| 1045 | static float queue[QUEUE_LEN]; |
| 1046 | |
| 1047 | for (uint16_t i = 0; i < QUEUE_LEN-1; i++) { |
| 1048 | if (init) { |
| 1049 | queue[i] = (float)(1LL << 48); |
| 1050 | } else { |
| 1051 | queue[i] = queue[i+1]; |
| 1052 | } |
| 1053 | } |
| 1054 | if (init) { |
| 1055 | queue[QUEUE_LEN-1] = (float)(1LL << 48); |
| 1056 | } else { |
| 1057 | queue[QUEUE_LEN-1] = last; |
| 1058 | } |
| 1059 | |
| 1060 | // linear regression |
| 1061 | float avg_y = 0.0; |
| 1062 | float avg_x = 0.0; |
| 1063 | for (uint16_t i = 0; i < QUEUE_LEN; i++) { |
| 1064 | avg_x += i; |
| 1065 | avg_y += queue[i]; |
| 1066 | } |
| 1067 | avg_x /= QUEUE_LEN; |
| 1068 | avg_y /= QUEUE_LEN; |
| 1069 | |
| 1070 | float dev_xy = 0.0; |
| 1071 | float dev_x2 = 0.0; |
| 1072 | for (uint16_t i = 0; i < QUEUE_LEN; i++) { |
| 1073 | dev_xy += (i - avg_x)*(queue[i] - avg_y); |
| 1074 | dev_x2 += (i - avg_x)*(i - avg_x); |
| 1075 | } |
| 1076 | |
| 1077 | float reduction_rate = -1.0 * dev_xy / dev_x2; // the negative slope of the linear regression |
| 1078 | |
| 1079 | #if defined (DEBUG_REDUCTION) |
| 1080 | printf("update_reduction_rate(%1.0f) = %1.0f per sample, brute_force_per_sample = %1.0f\n", last, reduction_rate, brute_force_per_second * (float)sample_period / 1000.0); |
| 1081 | #endif |
| 1082 | return reduction_rate; |
| 1083 | } |
| 1084 | |
| 1085 | |
| 1086 | static bool shrink_key_space(float *brute_forces) |
| 1087 | { |
| 1088 | #if defined(DEBUG_REDUCTION) |
| 1089 | printf("shrink_key_space() with stage = 0x%02x\n", hardnested_stage); |
| 1090 | #endif |
| 1091 | float brute_forces1 = check_smallest_bitflip_bitarrays(); |
| 1092 | float brute_forces2 = (float)(1LL << 47); |
| 1093 | if (hardnested_stage & CHECK_2ND_BYTES) { |
| 1094 | brute_forces2 = sort_best_first_bytes(); |
| 1095 | } |
| 1096 | *brute_forces = MIN(brute_forces1, brute_forces2); |
| 1097 | float reduction_rate = update_reduction_rate(*brute_forces, false); |
| 1098 | return ((hardnested_stage & CHECK_2ND_BYTES) |
| 1099 | && reduction_rate >= 0.0 && reduction_rate < brute_force_per_second * sample_period / 1000.0); |
| 1100 | } |
| 1101 | |
| 1102 | |
| 1103 | static void estimate_sum_a8(void) |
| 1104 | { |
| 1105 | if (first_byte_num == 256) { |
| 1106 | for (uint16_t i = 0; i < 256; i++) { |
| 1107 | if (nonces[i].sum_a8_guess_dirty) { |
| 1108 | for (uint16_t j = 0; j < NUM_SUMS; j++ ) { |
| 1109 | uint16_t sum_a8_idx = nonces[i].sum_a8_guess[j].sum_a8_idx; |
| 1110 | nonces[i].sum_a8_guess[j].prob = sum_probability(sum_a8_idx, nonces[i].num, nonces[i].Sum); |
| 1111 | } |
| 1112 | qsort(nonces[i].sum_a8_guess, NUM_SUMS, sizeof(guess_sum_a8_t), compare_sum_a8_guess); |
| 1113 | nonces[i].sum_a8_guess_dirty = false; |
| 1114 | } |
| 1115 | } |
| 1116 | } |
| 1117 | } |
| 1118 | |
| 1119 | |
| 1120 | static int read_nonce_file(void) |
| 1121 | { |
| 1122 | FILE *fnonces = NULL; |
| 1123 | size_t bytes_read; |
| 1124 | uint8_t trgBlockNo; |
| 1125 | uint8_t trgKeyType; |
| 1126 | uint8_t read_buf[9]; |
| 1127 | uint32_t nt_enc1, nt_enc2; |
| 1128 | uint8_t par_enc; |
| 1129 | |
| 1130 | num_acquired_nonces = 0; |
| 1131 | if ((fnonces = fopen("nonces.bin","rb")) == NULL) { |
| 1132 | PrintAndLog("Could not open file nonces.bin"); |
| 1133 | return 1; |
| 1134 | } |
| 1135 | |
| 1136 | hardnested_print_progress(0, "Reading nonces from file nonces.bin...", (float)(1LL<<47), 0); |
| 1137 | bytes_read = fread(read_buf, 1, 6, fnonces); |
| 1138 | if (bytes_read != 6) { |
| 1139 | PrintAndLog("File reading error."); |
| 1140 | fclose(fnonces); |
| 1141 | return 1; |
| 1142 | } |
| 1143 | cuid = bytes_to_num(read_buf, 4); |
| 1144 | trgBlockNo = bytes_to_num(read_buf+4, 1); |
| 1145 | trgKeyType = bytes_to_num(read_buf+5, 1); |
| 1146 | |
| 1147 | bytes_read = fread(read_buf, 1, 9, fnonces); |
| 1148 | while (bytes_read == 9) { |
| 1149 | nt_enc1 = bytes_to_num(read_buf, 4); |
| 1150 | nt_enc2 = bytes_to_num(read_buf+4, 4); |
| 1151 | par_enc = bytes_to_num(read_buf+8, 1); |
| 1152 | add_nonce(nt_enc1, par_enc >> 4); |
| 1153 | add_nonce(nt_enc2, par_enc & 0x0f); |
| 1154 | num_acquired_nonces += 2; |
| 1155 | bytes_read = fread(read_buf, 1, 9, fnonces); |
| 1156 | } |
| 1157 | fclose(fnonces); |
| 1158 | |
| 1159 | char progress_string[80]; |
| 1160 | sprintf(progress_string, "Read %d nonces from file. cuid=%08x", num_acquired_nonces, cuid); |
| 1161 | hardnested_print_progress(num_acquired_nonces, progress_string, (float)(1LL<<47), 0); |
| 1162 | sprintf(progress_string, "Target Block=%d, Keytype=%c", trgBlockNo, trgKeyType==0?'A':'B'); |
| 1163 | hardnested_print_progress(num_acquired_nonces, progress_string, (float)(1LL<<47), 0); |
| 1164 | |
| 1165 | for (uint16_t i = 0; i < NUM_SUMS; i++) { |
| 1166 | if (first_byte_Sum == sums[i]) { |
| 1167 | first_byte_Sum = i; |
| 1168 | break; |
| 1169 | } |
| 1170 | } |
| 1171 | |
| 1172 | return 0; |
| 1173 | } |
| 1174 | |
| 1175 | |
| 1176 | noncelistentry_t *SearchFor2ndByte(uint8_t b1, uint8_t b2) |
| 1177 | { |
| 1178 | noncelistentry_t *p = nonces[b1].first; |
| 1179 | while (p != NULL) { |
| 1180 | if ((p->nonce_enc >> 16 & 0xff) == b2) { |
| 1181 | return p; |
| 1182 | } |
| 1183 | p = p->next; |
| 1184 | } |
| 1185 | return NULL; |
| 1186 | } |
| 1187 | |
| 1188 | |
| 1189 | static bool timeout(void) |
| 1190 | { |
| 1191 | return (msclock() > last_sample_clock + sample_period); |
| 1192 | } |
| 1193 | |
| 1194 | |
| 1195 | static void *check_for_BitFlipProperties_thread(void *args) |
| 1196 | { |
| 1197 | uint8_t first_byte = ((uint8_t *)args)[0]; |
| 1198 | uint8_t last_byte = ((uint8_t *)args)[1]; |
| 1199 | uint8_t time_budget = ((uint8_t *)args)[2]; |
| 1200 | |
| 1201 | if (hardnested_stage & CHECK_1ST_BYTES) { |
| 1202 | // for (uint16_t bitflip = 0x001; bitflip < 0x200; bitflip++) { |
| 1203 | for (uint16_t bitflip_idx = 0; bitflip_idx < num_1st_byte_effective_bitflips; bitflip_idx++) { |
| 1204 | uint16_t bitflip = all_effective_bitflip[bitflip_idx]; |
| 1205 | if (time_budget & timeout()) { |
| 1206 | #if defined (DEBUG_REDUCTION) |
| 1207 | printf("break at bitflip_idx %d...", bitflip_idx); |
| 1208 | #endif |
| 1209 | return NULL; |
| 1210 | } |
| 1211 | for (uint16_t i = first_byte; i <= last_byte; i++) { |
| 1212 | if (nonces[i].BitFlips[bitflip] == 0 && nonces[i].BitFlips[bitflip ^ 0x100] == 0 |
| 1213 | && nonces[i].first != NULL && nonces[i^(bitflip&0xff)].first != NULL) { |
| 1214 | uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte |
| 1215 | uint8_t parity2 = (nonces[i^(bitflip&0xff)].first->par_enc) >> 3; // parity of nonce with bits flipped |
| 1216 | if ((parity1 == parity2 && !(bitflip & 0x100)) // bitflip |
| 1217 | || (parity1 != parity2 && (bitflip & 0x100))) { // not bitflip |
| 1218 | nonces[i].BitFlips[bitflip] = 1; |
| 1219 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
| 1220 | if (bitflip_bitarrays[odd_even][bitflip] != NULL) { |
| 1221 | uint32_t old_count = nonces[i].num_states_bitarray[odd_even]; |
| 1222 | nonces[i].num_states_bitarray[odd_even] = count_bitarray_AND(nonces[i].states_bitarray[odd_even], bitflip_bitarrays[odd_even][bitflip]); |
| 1223 | if (nonces[i].num_states_bitarray[odd_even] != old_count) { |
| 1224 | nonces[i].all_bitflips_dirty[odd_even] = true; |
| 1225 | } |
| 1226 | // printf("bitflip: %d old: %d, new: %d ", bitflip, old_count, nonces[i].num_states_bitarray[odd_even]); |
| 1227 | } |
| 1228 | } |
| 1229 | } |
| 1230 | } |
| 1231 | } |
| 1232 | ((uint8_t *)args)[1] = num_1st_byte_effective_bitflips - bitflip_idx - 1; // bitflips still to go in stage 1 |
| 1233 | } |
| 1234 | } |
| 1235 | |
| 1236 | ((uint8_t *)args)[1] = 0; // stage 1 definitely completed |
| 1237 | |
| 1238 | if (hardnested_stage & CHECK_2ND_BYTES) { |
| 1239 | for (uint16_t bitflip_idx = num_1st_byte_effective_bitflips; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) { |
| 1240 | uint16_t bitflip = all_effective_bitflip[bitflip_idx]; |
| 1241 | if (time_budget & timeout()) { |
| 1242 | #if defined (DEBUG_REDUCTION) |
| 1243 | printf("break at bitflip_idx %d...", bitflip_idx); |
| 1244 | #endif |
| 1245 | return NULL; |
| 1246 | } |
| 1247 | for (uint16_t i = first_byte; i <= last_byte; i++) { |
| 1248 | // Check for Bit Flip Property of 2nd bytes |
| 1249 | if (nonces[i].BitFlips[bitflip] == 0) { |
| 1250 | for (uint16_t j = 0; j < 256; j++) { // for each 2nd Byte |
| 1251 | noncelistentry_t *byte1 = SearchFor2ndByte(i, j); |
| 1252 | noncelistentry_t *byte2 = SearchFor2ndByte(i, j^(bitflip&0xff)); |
| 1253 | if (byte1 != NULL && byte2 != NULL) { |
| 1254 | uint8_t parity1 = byte1->par_enc >> 2 & 0x01; // parity of 2nd byte |
| 1255 | uint8_t parity2 = byte2->par_enc >> 2 & 0x01; // parity of 2nd byte with bits flipped |
| 1256 | if ((parity1 == parity2 && !(bitflip&0x100)) // bitflip |
| 1257 | || (parity1 != parity2 && (bitflip&0x100))) { // not bitflip |
| 1258 | nonces[i].BitFlips[bitflip] = 1; |
| 1259 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
| 1260 | if (bitflip_bitarrays[odd_even][bitflip] != NULL) { |
| 1261 | uint32_t old_count = nonces[i].num_states_bitarray[odd_even]; |
| 1262 | nonces[i].num_states_bitarray[odd_even] = count_bitarray_AND(nonces[i].states_bitarray[odd_even], bitflip_bitarrays[odd_even][bitflip]); |
| 1263 | if (nonces[i].num_states_bitarray[odd_even] != old_count) { |
| 1264 | nonces[i].all_bitflips_dirty[odd_even] = true; |
| 1265 | } |
| 1266 | } |
| 1267 | } |
| 1268 | break; |
| 1269 | } |
| 1270 | } |
| 1271 | } |
| 1272 | } |
| 1273 | // printf("states_bitarray[0][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[EVEN_STATE])); |
| 1274 | // printf("states_bitarray[1][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[ODD_STATE])); |
| 1275 | } |
| 1276 | } |
| 1277 | } |
| 1278 | |
| 1279 | return NULL; |
| 1280 | } |
| 1281 | |
| 1282 | |
| 1283 | static void check_for_BitFlipProperties(bool time_budget) |
| 1284 | { |
| 1285 | // create and run worker threads |
| 1286 | pthread_t thread_id[NUM_CHECK_BITFLIPS_THREADS]; |
| 1287 | |
| 1288 | uint8_t args[NUM_CHECK_BITFLIPS_THREADS][3]; |
| 1289 | uint16_t bytes_per_thread = (256 + (NUM_CHECK_BITFLIPS_THREADS/2)) / NUM_CHECK_BITFLIPS_THREADS; |
| 1290 | for (uint8_t i = 0; i < NUM_CHECK_BITFLIPS_THREADS; i++) { |
| 1291 | args[i][0] = i * bytes_per_thread; |
| 1292 | args[i][1] = MIN(args[i][0]+bytes_per_thread-1, 255); |
| 1293 | args[i][2] = time_budget; |
| 1294 | } |
| 1295 | args[NUM_CHECK_BITFLIPS_THREADS-1][1] = MAX(args[NUM_CHECK_BITFLIPS_THREADS-1][1], 255); |
| 1296 | |
| 1297 | // start threads |
| 1298 | for (uint8_t i = 0; i < NUM_CHECK_BITFLIPS_THREADS; i++) { |
| 1299 | pthread_create(&thread_id[i], NULL, check_for_BitFlipProperties_thread, args[i]); |
| 1300 | } |
| 1301 | |
| 1302 | // wait for threads to terminate: |
| 1303 | for (uint8_t i = 0; i < NUM_CHECK_BITFLIPS_THREADS; i++) { |
| 1304 | pthread_join(thread_id[i], NULL); |
| 1305 | } |
| 1306 | |
| 1307 | if (hardnested_stage & CHECK_2ND_BYTES) { |
| 1308 | hardnested_stage &= ~CHECK_1ST_BYTES; // we are done with 1st stage, except... |
| 1309 | for (uint16_t i = 0; i < NUM_CHECK_BITFLIPS_THREADS; i++) { |
| 1310 | if (args[i][1] != 0) { |
| 1311 | hardnested_stage |= CHECK_1ST_BYTES; // ... when any of the threads didn't complete in time |
| 1312 | break; |
| 1313 | } |
| 1314 | } |
| 1315 | } |
| 1316 | #if defined (DEBUG_REDUCTION) |
| 1317 | if (hardnested_stage & CHECK_1ST_BYTES) printf("stage 1 not completed yet\n"); |
| 1318 | #endif |
| 1319 | } |
| 1320 | |
| 1321 | |
| 1322 | static void update_nonce_data(bool time_budget) |
| 1323 | { |
| 1324 | check_for_BitFlipProperties(time_budget); |
| 1325 | update_allbitflips_array(); |
| 1326 | update_sum_bitarrays(EVEN_STATE); |
| 1327 | update_sum_bitarrays(ODD_STATE); |
| 1328 | update_p_K(); |
| 1329 | estimate_sum_a8(); |
| 1330 | } |
| 1331 | |
| 1332 | |
| 1333 | static void apply_sum_a0(void) |
| 1334 | { |
| 1335 | uint32_t old_count = num_all_bitflips_bitarray[EVEN_STATE]; |
| 1336 | num_all_bitflips_bitarray[EVEN_STATE] = count_bitarray_AND(all_bitflips_bitarray[EVEN_STATE], sum_a0_bitarrays[EVEN_STATE][first_byte_Sum]); |
| 1337 | if (num_all_bitflips_bitarray[EVEN_STATE] != old_count) { |
| 1338 | all_bitflips_bitarray_dirty[EVEN_STATE] = true; |
| 1339 | } |
| 1340 | old_count = num_all_bitflips_bitarray[ODD_STATE]; |
| 1341 | num_all_bitflips_bitarray[ODD_STATE] = count_bitarray_AND(all_bitflips_bitarray[ODD_STATE], sum_a0_bitarrays[ODD_STATE][first_byte_Sum]); |
| 1342 | if (num_all_bitflips_bitarray[ODD_STATE] != old_count) { |
| 1343 | all_bitflips_bitarray_dirty[ODD_STATE] = true; |
| 1344 | } |
| 1345 | } |
| 1346 | |
| 1347 | |
| 1348 | static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc) |
| 1349 | { |
| 1350 | struct Crypto1State sim_cs = {0, 0}; |
| 1351 | |
| 1352 | // init cryptostate with key: |
| 1353 | for(int8_t i = 47; i > 0; i -= 2) { |
| 1354 | sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7); |
| 1355 | sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7); |
| 1356 | } |
| 1357 | |
| 1358 | *par_enc = 0; |
| 1359 | uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); |
| 1360 | for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) { |
| 1361 | uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff; |
| 1362 | uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte |
| 1363 | *nt_enc = (*nt_enc << 8) | nt_byte_enc; |
| 1364 | uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit |
| 1365 | uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it |
| 1366 | *par_enc = (*par_enc << 1) | nt_byte_par_enc; |
| 1367 | } |
| 1368 | |
| 1369 | } |
| 1370 | |
| 1371 | |
| 1372 | static void simulate_acquire_nonces() |
| 1373 | { |
| 1374 | time_t time1 = time(NULL); |
| 1375 | last_sample_clock = 0; |
| 1376 | sample_period = 1000; // for simulation |
| 1377 | hardnested_stage = CHECK_1ST_BYTES; |
| 1378 | bool acquisition_completed = false; |
| 1379 | uint32_t total_num_nonces = 0; |
| 1380 | float brute_force; |
| 1381 | bool reported_suma8 = false; |
| 1382 | |
| 1383 | cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); |
| 1384 | if (known_target_key == -1) { |
| 1385 | known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff); |
| 1386 | } |
| 1387 | |
| 1388 | char progress_text[80]; |
| 1389 | sprintf(progress_text, "Simulating key %012" PRIx64 ", cuid %08" PRIx32 " ...", known_target_key, cuid); |
| 1390 | hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0); |
| 1391 | fprintf(fstats, "%012" PRIx64 ";%" PRIx32 ";", known_target_key, cuid); |
| 1392 | |
| 1393 | num_acquired_nonces = 0; |
| 1394 | |
| 1395 | do { |
| 1396 | uint32_t nt_enc = 0; |
| 1397 | uint8_t par_enc = 0; |
| 1398 | |
| 1399 | for (uint16_t i = 0; i < 113; i++) { |
| 1400 | simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc); |
| 1401 | num_acquired_nonces += add_nonce(nt_enc, par_enc); |
| 1402 | total_num_nonces++; |
| 1403 | } |
| 1404 | |
| 1405 | last_sample_clock = msclock(); |
| 1406 | |
| 1407 | if (first_byte_num == 256 ) { |
| 1408 | if (hardnested_stage == CHECK_1ST_BYTES) { |
| 1409 | for (uint16_t i = 0; i < NUM_SUMS; i++) { |
| 1410 | if (first_byte_Sum == sums[i]) { |
| 1411 | first_byte_Sum = i; |
| 1412 | break; |
| 1413 | } |
| 1414 | } |
| 1415 | hardnested_stage |= CHECK_2ND_BYTES; |
| 1416 | apply_sum_a0(); |
| 1417 | } |
| 1418 | update_nonce_data(true); |
| 1419 | acquisition_completed = shrink_key_space(&brute_force); |
| 1420 | if (!reported_suma8) { |
| 1421 | char progress_string[80]; |
| 1422 | sprintf(progress_string, "Apply Sum property. Sum(a0) = %d", sums[first_byte_Sum]); |
| 1423 | hardnested_print_progress(num_acquired_nonces, progress_string, brute_force, 0); |
| 1424 | reported_suma8 = true; |
| 1425 | } else { |
| 1426 | hardnested_print_progress(num_acquired_nonces, "Apply bit flip properties", brute_force, 0); |
| 1427 | } |
| 1428 | } else { |
| 1429 | update_nonce_data(true); |
| 1430 | acquisition_completed = shrink_key_space(&brute_force); |
| 1431 | hardnested_print_progress(num_acquired_nonces, "Apply bit flip properties", brute_force, 0); |
| 1432 | } |
| 1433 | } while (!acquisition_completed); |
| 1434 | |
| 1435 | time_t end_time = time(NULL); |
| 1436 | // PrintAndLog("Acquired a total of %" PRId32" nonces in %1.0f seconds (%1.0f nonces/minute)", |
| 1437 | // num_acquired_nonces, |
| 1438 | // difftime(end_time, time1), |
| 1439 | // difftime(end_time, time1)!=0.0?(float)total_num_nonces*60.0/difftime(end_time, time1):INFINITY |
| 1440 | // ); |
| 1441 | |
| 1442 | fprintf(fstats, "%" PRId32 ";%" PRId32 ";%1.0f;", total_num_nonces, num_acquired_nonces, difftime(end_time,time1)); |
| 1443 | |
| 1444 | } |
| 1445 | |
| 1446 | |
| 1447 | static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow) |
| 1448 | { |
| 1449 | last_sample_clock = msclock(); |
| 1450 | sample_period = 2000; // initial rough estimate. Will be refined. |
| 1451 | bool initialize = true; |
| 1452 | bool field_off = false; |
| 1453 | hardnested_stage = CHECK_1ST_BYTES; |
| 1454 | bool acquisition_completed = false; |
| 1455 | uint32_t flags = 0; |
| 1456 | uint8_t write_buf[9]; |
| 1457 | uint32_t total_num_nonces = 0; |
| 1458 | float brute_force; |
| 1459 | bool reported_suma8 = false; |
| 1460 | FILE *fnonces = NULL; |
| 1461 | UsbCommand resp; |
| 1462 | |
| 1463 | num_acquired_nonces = 0; |
| 1464 | |
| 1465 | clearCommandBuffer(); |
| 1466 | |
| 1467 | do { |
| 1468 | flags = 0; |
| 1469 | flags |= initialize ? 0x0001 : 0; |
| 1470 | flags |= slow ? 0x0002 : 0; |
| 1471 | flags |= field_off ? 0x0004 : 0; |
| 1472 | UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}}; |
| 1473 | memcpy(c.d.asBytes, key, 6); |
| 1474 | |
| 1475 | SendCommand(&c); |
| 1476 | |
| 1477 | if (field_off) break; |
| 1478 | |
| 1479 | if (initialize) { |
| 1480 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1; |
| 1481 | |
| 1482 | if (resp.arg[0]) return resp.arg[0]; // error during nested_hard |
| 1483 | |
| 1484 | cuid = resp.arg[1]; |
| 1485 | // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid); |
| 1486 | if (nonce_file_write && fnonces == NULL) { |
| 1487 | if ((fnonces = fopen("nonces.bin","wb")) == NULL) { |
| 1488 | PrintAndLog("Could not create file nonces.bin"); |
| 1489 | return 3; |
| 1490 | } |
| 1491 | hardnested_print_progress(0, "Writing acquired nonces to binary file nonces.bin", (float)(1LL<<47), 0); |
| 1492 | num_to_bytes(cuid, 4, write_buf); |
| 1493 | fwrite(write_buf, 1, 4, fnonces); |
| 1494 | fwrite(&trgBlockNo, 1, 1, fnonces); |
| 1495 | fwrite(&trgKeyType, 1, 1, fnonces); |
| 1496 | } |
| 1497 | } |
| 1498 | |
| 1499 | if (!initialize) { |
| 1500 | uint32_t nt_enc1, nt_enc2; |
| 1501 | uint8_t par_enc; |
| 1502 | uint16_t num_sampled_nonces = resp.arg[2]; |
| 1503 | uint8_t *bufp = resp.d.asBytes; |
| 1504 | for (uint16_t i = 0; i < num_sampled_nonces; i+=2) { |
| 1505 | nt_enc1 = bytes_to_num(bufp, 4); |
| 1506 | nt_enc2 = bytes_to_num(bufp+4, 4); |
| 1507 | par_enc = bytes_to_num(bufp+8, 1); |
| 1508 | |
| 1509 | //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4); |
| 1510 | num_acquired_nonces += add_nonce(nt_enc1, par_enc >> 4); |
| 1511 | //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f); |
| 1512 | num_acquired_nonces += add_nonce(nt_enc2, par_enc & 0x0f); |
| 1513 | |
| 1514 | if (nonce_file_write) { |
| 1515 | fwrite(bufp, 1, 9, fnonces); |
| 1516 | } |
| 1517 | bufp += 9; |
| 1518 | } |
| 1519 | total_num_nonces += num_sampled_nonces; |
| 1520 | |
| 1521 | if (first_byte_num == 256 ) { |
| 1522 | if (hardnested_stage == CHECK_1ST_BYTES) { |
| 1523 | for (uint16_t i = 0; i < NUM_SUMS; i++) { |
| 1524 | if (first_byte_Sum == sums[i]) { |
| 1525 | first_byte_Sum = i; |
| 1526 | break; |
| 1527 | } |
| 1528 | } |
| 1529 | hardnested_stage |= CHECK_2ND_BYTES; |
| 1530 | apply_sum_a0(); |
| 1531 | } |
| 1532 | update_nonce_data(true); |
| 1533 | acquisition_completed = shrink_key_space(&brute_force); |
| 1534 | if (!reported_suma8) { |
| 1535 | char progress_string[80]; |
| 1536 | sprintf(progress_string, "Apply Sum property. Sum(a0) = %d", sums[first_byte_Sum]); |
| 1537 | hardnested_print_progress(num_acquired_nonces, progress_string, brute_force, 0); |
| 1538 | reported_suma8 = true; |
| 1539 | } else { |
| 1540 | hardnested_print_progress(num_acquired_nonces, "Apply bit flip properties", brute_force, 0); |
| 1541 | } |
| 1542 | } else { |
| 1543 | update_nonce_data(true); |
| 1544 | acquisition_completed = shrink_key_space(&brute_force); |
| 1545 | hardnested_print_progress(num_acquired_nonces, "Apply bit flip properties", brute_force, 0); |
| 1546 | } |
| 1547 | } |
| 1548 | |
| 1549 | if (acquisition_completed) { |
| 1550 | field_off = true; // switch off field with next SendCommand and then finish |
| 1551 | } |
| 1552 | |
| 1553 | if (!initialize) { |
| 1554 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) { |
| 1555 | if (nonce_file_write) { |
| 1556 | fclose(fnonces); |
| 1557 | } |
| 1558 | return 1; |
| 1559 | } |
| 1560 | if (resp.arg[0]) { |
| 1561 | if (nonce_file_write) { |
| 1562 | fclose(fnonces); |
| 1563 | } |
| 1564 | return resp.arg[0]; // error during nested_hard |
| 1565 | } |
| 1566 | } |
| 1567 | |
| 1568 | initialize = false; |
| 1569 | |
| 1570 | if (msclock() - last_sample_clock < sample_period) { |
| 1571 | sample_period = msclock() - last_sample_clock; |
| 1572 | } |
| 1573 | last_sample_clock = msclock(); |
| 1574 | |
| 1575 | } while (!acquisition_completed || field_off); |
| 1576 | |
| 1577 | if (nonce_file_write) { |
| 1578 | fclose(fnonces); |
| 1579 | } |
| 1580 | |
| 1581 | // PrintAndLog("Sampled a total of %d nonces in %d seconds (%0.0f nonces/minute)", |
| 1582 | // total_num_nonces, |
| 1583 | // time(NULL)-time1, |
| 1584 | // (float)total_num_nonces*60.0/(time(NULL)-time1)); |
| 1585 | |
| 1586 | return 0; |
| 1587 | } |
| 1588 | |
| 1589 | |
| 1590 | static inline bool invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) |
| 1591 | { |
| 1592 | uint_fast8_t j_1_bit_mask = 0x01 << (bit-1); |
| 1593 | uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit |
| 1594 | uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function |
| 1595 | uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit; |
| 1596 | uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13 |
| 1597 | uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits |
| 1598 | return !all_diff; |
| 1599 | } |
| 1600 | |
| 1601 | |
| 1602 | static inline bool invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) |
| 1603 | { |
| 1604 | uint_fast8_t j_bit_mask = 0x01 << bit; |
| 1605 | uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit |
| 1606 | uint_fast8_t mask_y13_y16 = 0x48 >> state_bit; |
| 1607 | uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16 |
| 1608 | uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits |
| 1609 | return all_diff; |
| 1610 | } |
| 1611 | |
| 1612 | |
| 1613 | static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even) |
| 1614 | { |
| 1615 | if (odd_even) { |
| 1616 | // odd bits |
| 1617 | switch (num_common_bits) { |
| 1618 | case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true; |
| 1619 | case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false; |
| 1620 | case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true; |
| 1621 | case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false; |
| 1622 | case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true; |
| 1623 | case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false; |
| 1624 | case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true; |
| 1625 | case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false; |
| 1626 | } |
| 1627 | } else { |
| 1628 | // even bits |
| 1629 | switch (num_common_bits) { |
| 1630 | case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false; |
| 1631 | case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true; |
| 1632 | case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false; |
| 1633 | case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true; |
| 1634 | case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false; |
| 1635 | case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true; |
| 1636 | case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false; |
| 1637 | } |
| 1638 | } |
| 1639 | |
| 1640 | return true; // valid state |
| 1641 | } |
| 1642 | |
| 1643 | |
| 1644 | static pthread_mutex_t statelist_cache_mutex; |
| 1645 | static pthread_mutex_t book_of_work_mutex; |
| 1646 | |
| 1647 | |
| 1648 | typedef enum { |
| 1649 | TO_BE_DONE, |
| 1650 | WORK_IN_PROGRESS, |
| 1651 | COMPLETED |
| 1652 | } work_status_t; |
| 1653 | |
| 1654 | static struct sl_cache_entry { |
| 1655 | uint32_t *sl; |
| 1656 | uint32_t len; |
| 1657 | work_status_t cache_status; |
| 1658 | } sl_cache[NUM_PART_SUMS][NUM_PART_SUMS][2]; |
| 1659 | |
| 1660 | |
| 1661 | static void init_statelist_cache(void) |
| 1662 | { |
| 1663 | pthread_mutex_lock(&statelist_cache_mutex); |
| 1664 | for (uint16_t i = 0; i < NUM_PART_SUMS; i++) { |
| 1665 | for (uint16_t j = 0; j < NUM_PART_SUMS; j++) { |
| 1666 | for (uint16_t k = 0; k < 2; k++) { |
| 1667 | sl_cache[i][j][k].sl = NULL; |
| 1668 | sl_cache[i][j][k].len = 0; |
| 1669 | sl_cache[i][j][k].cache_status = TO_BE_DONE; |
| 1670 | } |
| 1671 | } |
| 1672 | } |
| 1673 | pthread_mutex_unlock(&statelist_cache_mutex); |
| 1674 | } |
| 1675 | |
| 1676 | |
| 1677 | static void free_statelist_cache(void) |
| 1678 | { |
| 1679 | pthread_mutex_lock(&statelist_cache_mutex); |
| 1680 | for (uint16_t i = 0; i < NUM_PART_SUMS; i++) { |
| 1681 | for (uint16_t j = 0; j < NUM_PART_SUMS; j++) { |
| 1682 | for (uint16_t k = 0; k < 2; k++) { |
| 1683 | free(sl_cache[i][j][k].sl); |
| 1684 | } |
| 1685 | } |
| 1686 | } |
| 1687 | pthread_mutex_unlock(&statelist_cache_mutex); |
| 1688 | } |
| 1689 | |
| 1690 | |
| 1691 | #ifdef DEBUG_KEY_ELIMINATION |
| 1692 | static inline bool bitflips_match(uint8_t byte, uint32_t state, odd_even_t odd_even, bool quiet) |
| 1693 | #else |
| 1694 | static inline bool bitflips_match(uint8_t byte, uint32_t state, odd_even_t odd_even) |
| 1695 | #endif |
| 1696 | { |
| 1697 | uint32_t *bitset = nonces[byte].states_bitarray[odd_even]; |
| 1698 | bool possible = test_bit24(bitset, state); |
| 1699 | if (!possible) { |
| 1700 | #ifdef DEBUG_KEY_ELIMINATION |
| 1701 | if (!quiet && known_target_key != -1 && state == test_state[odd_even]) { |
| 1702 | printf("Initial state lists: %s test state eliminated by bitflip property.\n", odd_even==EVEN_STATE?"even":"odd"); |
| 1703 | sprintf(failstr, "Initial %s Byte Bitflip property", odd_even==EVEN_STATE?"even":"odd"); |
| 1704 | } |
| 1705 | #endif |
| 1706 | return false; |
| 1707 | } else { |
| 1708 | return true; |
| 1709 | } |
| 1710 | } |
| 1711 | |
| 1712 | |
| 1713 | static uint_fast8_t reverse(uint_fast8_t byte) |
| 1714 | { |
| 1715 | uint_fast8_t rev_byte = 0; |
| 1716 | |
| 1717 | for (uint8_t i = 0; i < 8; i++) { |
| 1718 | rev_byte <<= 1; |
| 1719 | rev_byte |= (byte >> i) & 0x01; |
| 1720 | } |
| 1721 | |
| 1722 | return rev_byte; |
| 1723 | } |
| 1724 | |
| 1725 | |
| 1726 | static bool all_bitflips_match(uint8_t byte, uint32_t state, odd_even_t odd_even) |
| 1727 | { |
| 1728 | uint32_t masks[2][8] = {{0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe, 0x00ffffff}, |
| 1729 | {0x00fffff0, 0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe} }; |
| 1730 | |
| 1731 | for (uint16_t i = 1; i < 256; i++) { |
| 1732 | uint_fast8_t bytes_diff = reverse(i); // start with most common bits |
| 1733 | uint_fast8_t byte2 = byte ^ bytes_diff; |
| 1734 | uint_fast8_t num_common = trailing_zeros(bytes_diff); |
| 1735 | uint32_t mask = masks[odd_even][num_common]; |
| 1736 | bool found_match = false; |
| 1737 | for (uint8_t remaining_bits = 0; remaining_bits <= (~mask & 0xff); remaining_bits++) { |
| 1738 | if (remaining_bits_match(num_common, bytes_diff, state, (state & mask) | remaining_bits, odd_even)) { |
| 1739 | #ifdef DEBUG_KEY_ELIMINATION |
| 1740 | if (bitflips_match(byte2, (state & mask) | remaining_bits, odd_even, true)) { |
| 1741 | #else |
| 1742 | if (bitflips_match(byte2, (state & mask) | remaining_bits, odd_even)) { |
| 1743 | #endif |
| 1744 | found_match = true; |
| 1745 | break; |
| 1746 | } |
| 1747 | } |
| 1748 | } |
| 1749 | if (!found_match) { |
| 1750 | #ifdef DEBUG_KEY_ELIMINATION |
| 1751 | if (known_target_key != -1 && state == test_state[odd_even]) { |
| 1752 | printf("all_bitflips_match() 1st Byte: %s test state (0x%06x): Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", |
| 1753 | odd_even==ODD_STATE?"odd":"even", |
| 1754 | test_state[odd_even], |
| 1755 | byte, byte2, num_common); |
| 1756 | if (failstr[0] == '\0') { |
| 1757 | sprintf(failstr, "Other 1st Byte %s, all_bitflips_match(), no match", odd_even?"odd":"even"); |
| 1758 | } |
| 1759 | } |
| 1760 | #endif |
| 1761 | return false; |
| 1762 | } |
| 1763 | } |
| 1764 | |
| 1765 | return true; |
| 1766 | } |
| 1767 | |
| 1768 | |
| 1769 | static void bitarray_to_list(uint8_t byte, uint32_t *bitarray, uint32_t *state_list, uint32_t *len, odd_even_t odd_even) |
| 1770 | { |
| 1771 | uint32_t *p = state_list; |
| 1772 | for (uint32_t state = next_state(bitarray, -1L); state < (1<<24); state = next_state(bitarray, state)) { |
| 1773 | if (all_bitflips_match(byte, state, odd_even)) { |
| 1774 | *p++ = state; |
| 1775 | } |
| 1776 | } |
| 1777 | // add End Of List marker |
| 1778 | *p = 0xffffffff; |
| 1779 | *len = p - state_list; |
| 1780 | } |
| 1781 | |
| 1782 | |
| 1783 | static void add_cached_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even) |
| 1784 | { |
| 1785 | candidates->states[odd_even] = sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].sl; |
| 1786 | candidates->len[odd_even] = sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].len; |
| 1787 | return; |
| 1788 | } |
| 1789 | |
| 1790 | |
| 1791 | static void add_matching_states(statelist_t *candidates, uint8_t part_sum_a0, uint8_t part_sum_a8, odd_even_t odd_even) |
| 1792 | { |
| 1793 | uint32_t worstcase_size = 1<<20; |
| 1794 | candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size); |
| 1795 | if (candidates->states[odd_even] == NULL) { |
| 1796 | PrintAndLog("Out of memory error in add_matching_states() - statelist.\n"); |
| 1797 | exit(4); |
| 1798 | } |
| 1799 | uint32_t *candidates_bitarray = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); |
| 1800 | if (candidates_bitarray == NULL) { |
| 1801 | PrintAndLog("Out of memory error in add_matching_states() - bitarray.\n"); |
| 1802 | free(candidates->states[odd_even]); |
| 1803 | exit(4); |
| 1804 | } |
| 1805 | |
| 1806 | uint32_t *bitarray_a0 = part_sum_a0_bitarrays[odd_even][part_sum_a0/2]; |
| 1807 | uint32_t *bitarray_a8 = part_sum_a8_bitarrays[odd_even][part_sum_a8/2]; |
| 1808 | uint32_t *bitarray_bitflips = nonces[best_first_bytes[0]].states_bitarray[odd_even]; |
| 1809 | |
| 1810 | // for (uint32_t i = 0; i < (1<<19); i++) { |
| 1811 | // candidates_bitarray[i] = bitarray_a0[i] & bitarray_a8[i] & bitarray_bitflips[i]; |
| 1812 | // } |
| 1813 | bitarray_AND4(candidates_bitarray, bitarray_a0, bitarray_a8, bitarray_bitflips); |
| 1814 | |
| 1815 | bitarray_to_list(best_first_bytes[0], candidates_bitarray, candidates->states[odd_even], &(candidates->len[odd_even]), odd_even); |
| 1816 | if (candidates->len[odd_even] == 0) { |
| 1817 | free(candidates->states[odd_even]); |
| 1818 | candidates->states[odd_even] = NULL; |
| 1819 | } else if (candidates->len[odd_even] + 1 < worstcase_size) { |
| 1820 | candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1)); |
| 1821 | } |
| 1822 | free_bitarray(candidates_bitarray); |
| 1823 | |
| 1824 | |
| 1825 | pthread_mutex_lock(&statelist_cache_mutex); |
| 1826 | sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].sl = candidates->states[odd_even]; |
| 1827 | sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].len = candidates->len[odd_even]; |
| 1828 | sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].cache_status = COMPLETED; |
| 1829 | pthread_mutex_unlock(&statelist_cache_mutex); |
| 1830 | |
| 1831 | return; |
| 1832 | } |
| 1833 | |
| 1834 | |
| 1835 | static statelist_t *add_more_candidates(void) |
| 1836 | { |
| 1837 | statelist_t *new_candidates = candidates; |
| 1838 | if (candidates == NULL) { |
| 1839 | candidates = (statelist_t *)malloc(sizeof(statelist_t)); |
| 1840 | new_candidates = candidates; |
| 1841 | } else { |
| 1842 | new_candidates = candidates; |
| 1843 | while (new_candidates->next != NULL) { |
| 1844 | new_candidates = new_candidates->next; |
| 1845 | } |
| 1846 | new_candidates = new_candidates->next = (statelist_t *)malloc(sizeof(statelist_t)); |
| 1847 | } |
| 1848 | new_candidates->next = NULL; |
| 1849 | new_candidates->len[ODD_STATE] = 0; |
| 1850 | new_candidates->len[EVEN_STATE] = 0; |
| 1851 | new_candidates->states[ODD_STATE] = NULL; |
| 1852 | new_candidates->states[EVEN_STATE] = NULL; |
| 1853 | return new_candidates; |
| 1854 | } |
| 1855 | |
| 1856 | |
| 1857 | static void add_bitflip_candidates(uint8_t byte) |
| 1858 | { |
| 1859 | statelist_t *candidates = add_more_candidates(); |
| 1860 | |
| 1861 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
| 1862 | uint32_t worstcase_size = nonces[byte].num_states_bitarray[odd_even] + 1; |
| 1863 | candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size); |
| 1864 | if (candidates->states[odd_even] == NULL) { |
| 1865 | PrintAndLog("Out of memory error in add_bitflip_candidates().\n"); |
| 1866 | exit(4); |
| 1867 | } |
| 1868 | |
| 1869 | bitarray_to_list(byte, nonces[byte].states_bitarray[odd_even], candidates->states[odd_even], &(candidates->len[odd_even]), odd_even); |
| 1870 | |
| 1871 | if (candidates->len[odd_even] + 1 < worstcase_size) { |
| 1872 | candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1)); |
| 1873 | } |
| 1874 | } |
| 1875 | return; |
| 1876 | } |
| 1877 | |
| 1878 | |
| 1879 | static bool TestIfKeyExists(uint64_t key) |
| 1880 | { |
| 1881 | struct Crypto1State *pcs; |
| 1882 | pcs = crypto1_create(key); |
| 1883 | crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); |
| 1884 | |
| 1885 | uint32_t state_odd = pcs->odd & 0x00ffffff; |
| 1886 | uint32_t state_even = pcs->even & 0x00ffffff; |
| 1887 | |
| 1888 | uint64_t count = 0; |
| 1889 | for (statelist_t *p = candidates; p != NULL; p = p->next) { |
| 1890 | bool found_odd = false; |
| 1891 | bool found_even = false; |
| 1892 | uint32_t *p_odd = p->states[ODD_STATE]; |
| 1893 | uint32_t *p_even = p->states[EVEN_STATE]; |
| 1894 | if (p_odd != NULL && p_even != NULL) { |
| 1895 | while (*p_odd != 0xffffffff) { |
| 1896 | if ((*p_odd & 0x00ffffff) == state_odd) { |
| 1897 | found_odd = true; |
| 1898 | break; |
| 1899 | } |
| 1900 | p_odd++; |
| 1901 | } |
| 1902 | while (*p_even != 0xffffffff) { |
| 1903 | if ((*p_even & 0x00ffffff) == state_even) { |
| 1904 | found_even = true; |
| 1905 | } |
| 1906 | p_even++; |
| 1907 | } |
| 1908 | count += (uint64_t)(p_odd - p->states[ODD_STATE]) * (uint64_t)(p_even - p->states[EVEN_STATE]); |
| 1909 | } |
| 1910 | if (found_odd && found_even) { |
| 1911 | num_keys_tested += count; |
| 1912 | hardnested_print_progress(num_acquired_nonces, "(Test: Key found)", 0.0, 0); |
| 1913 | crypto1_destroy(pcs); |
| 1914 | return true; |
| 1915 | } |
| 1916 | } |
| 1917 | |
| 1918 | num_keys_tested += count; |
| 1919 | hardnested_print_progress(num_acquired_nonces, "(Test: Key NOT found)", 0.0, 0); |
| 1920 | |
| 1921 | crypto1_destroy(pcs); |
| 1922 | return false; |
| 1923 | } |
| 1924 | |
| 1925 | |
| 1926 | static work_status_t book_of_work[NUM_PART_SUMS][NUM_PART_SUMS][NUM_PART_SUMS][NUM_PART_SUMS]; |
| 1927 | |
| 1928 | |
| 1929 | static void init_book_of_work(void) |
| 1930 | { |
| 1931 | for (uint8_t p = 0; p < NUM_PART_SUMS; p++) { |
| 1932 | for (uint8_t q = 0; q < NUM_PART_SUMS; q++) { |
| 1933 | for (uint8_t r = 0; r < NUM_PART_SUMS; r++) { |
| 1934 | for (uint8_t s = 0; s < NUM_PART_SUMS; s++) { |
| 1935 | book_of_work[p][q][r][s] = TO_BE_DONE; |
| 1936 | } |
| 1937 | } |
| 1938 | } |
| 1939 | } |
| 1940 | } |
| 1941 | |
| 1942 | |
| 1943 | static void *generate_candidates_worker_thread(void *args) |
| 1944 | { |
| 1945 | uint16_t *sum_args = (uint16_t *)args; |
| 1946 | uint16_t sum_a0 = sums[sum_args[0]]; |
| 1947 | uint16_t sum_a8 = sums[sum_args[1]]; |
| 1948 | // uint16_t my_thread_number = sums[2]; |
| 1949 | |
| 1950 | bool there_might_be_more_work = true; |
| 1951 | do { |
| 1952 | there_might_be_more_work = false; |
| 1953 | for (uint8_t p = 0; p < NUM_PART_SUMS; p++) { |
| 1954 | for (uint8_t q = 0; q < NUM_PART_SUMS; q++) { |
| 1955 | if (2*p*(16-2*q) + (16-2*p)*2*q == sum_a0) { |
| 1956 | // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n", |
| 1957 | // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]); |
| 1958 | for (uint8_t r = 0; r < NUM_PART_SUMS; r++) { |
| 1959 | for (uint8_t s = 0; s < NUM_PART_SUMS; s++) { |
| 1960 | if (2*r*(16-2*s) + (16-2*r)*2*s == sum_a8) { |
| 1961 | pthread_mutex_lock(&book_of_work_mutex); |
| 1962 | if (book_of_work[p][q][r][s] != TO_BE_DONE) { // this has been done or is currently been done by another thread. Look for some other work. |
| 1963 | pthread_mutex_unlock(&book_of_work_mutex); |
| 1964 | continue; |
| 1965 | } |
| 1966 | |
| 1967 | pthread_mutex_lock(&statelist_cache_mutex); |
| 1968 | if (sl_cache[p][r][ODD_STATE].cache_status == WORK_IN_PROGRESS |
| 1969 | || sl_cache[q][s][EVEN_STATE].cache_status == WORK_IN_PROGRESS) { // defer until not blocked by another thread. |
| 1970 | pthread_mutex_unlock(&statelist_cache_mutex); |
| 1971 | pthread_mutex_unlock(&book_of_work_mutex); |
| 1972 | there_might_be_more_work = true; |
| 1973 | continue; |
| 1974 | } |
| 1975 | |
| 1976 | // we finally can do some work. |
| 1977 | book_of_work[p][q][r][s] = WORK_IN_PROGRESS; |
| 1978 | statelist_t *current_candidates = add_more_candidates(); |
| 1979 | |
| 1980 | // Check for cached results and add them first |
| 1981 | bool odd_completed = false; |
| 1982 | if (sl_cache[p][r][ODD_STATE].cache_status == COMPLETED) { |
| 1983 | add_cached_states(current_candidates, 2*p, 2*r, ODD_STATE); |
| 1984 | odd_completed = true; |
| 1985 | } |
| 1986 | bool even_completed = false; |
| 1987 | if (sl_cache[q][s][EVEN_STATE].cache_status == COMPLETED) { |
| 1988 | add_cached_states(current_candidates, 2*q, 2*s, EVEN_STATE); |
| 1989 | even_completed = true; |
| 1990 | } |
| 1991 | |
| 1992 | bool work_required = true; |
| 1993 | |
| 1994 | // if there had been two cached results, there is no more work to do |
| 1995 | if (even_completed && odd_completed) { |
| 1996 | work_required = false; |
| 1997 | } |
| 1998 | |
| 1999 | // if there had been one cached empty result, there is no need to calculate the other part: |
| 2000 | if (work_required) { |
| 2001 | if (even_completed && !current_candidates->len[EVEN_STATE]) { |
| 2002 | current_candidates->len[ODD_STATE] = 0; |
| 2003 | current_candidates->states[ODD_STATE] = NULL; |
| 2004 | work_required = false; |
| 2005 | } |
| 2006 | if (odd_completed && !current_candidates->len[ODD_STATE]) { |
| 2007 | current_candidates->len[EVEN_STATE] = 0; |
| 2008 | current_candidates->states[EVEN_STATE] = NULL; |
| 2009 | work_required = false; |
| 2010 | } |
| 2011 | } |
| 2012 | |
| 2013 | if (!work_required) { |
| 2014 | pthread_mutex_unlock(&statelist_cache_mutex); |
| 2015 | pthread_mutex_unlock(&book_of_work_mutex); |
| 2016 | } else { |
| 2017 | // we really need to calculate something |
| 2018 | if (even_completed) { // we had one cache hit with non-zero even states |
| 2019 | // printf("Thread #%u: start working on odd states p=%2d, r=%2d...\n", my_thread_number, p, r); |
| 2020 | sl_cache[p][r][ODD_STATE].cache_status = WORK_IN_PROGRESS; |
| 2021 | pthread_mutex_unlock(&statelist_cache_mutex); |
| 2022 | pthread_mutex_unlock(&book_of_work_mutex); |
| 2023 | add_matching_states(current_candidates, 2*p, 2*r, ODD_STATE); |
| 2024 | work_required = false; |
| 2025 | } else if (odd_completed) { // we had one cache hit with non-zero odd_states |
| 2026 | // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s); |
| 2027 | sl_cache[q][s][EVEN_STATE].cache_status = WORK_IN_PROGRESS; |
| 2028 | pthread_mutex_unlock(&statelist_cache_mutex); |
| 2029 | pthread_mutex_unlock(&book_of_work_mutex); |
| 2030 | add_matching_states(current_candidates, 2*q, 2*s, EVEN_STATE); |
| 2031 | work_required = false; |
| 2032 | } |
| 2033 | } |
| 2034 | |
| 2035 | if (work_required) { // we had no cached result. Need to calculate both odd and even |
| 2036 | sl_cache[p][r][ODD_STATE].cache_status = WORK_IN_PROGRESS; |
| 2037 | sl_cache[q][s][EVEN_STATE].cache_status = WORK_IN_PROGRESS; |
| 2038 | pthread_mutex_unlock(&statelist_cache_mutex); |
| 2039 | pthread_mutex_unlock(&book_of_work_mutex); |
| 2040 | |
| 2041 | add_matching_states(current_candidates, 2*p, 2*r, ODD_STATE); |
| 2042 | if(current_candidates->len[ODD_STATE]) { |
| 2043 | // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s); |
| 2044 | add_matching_states(current_candidates, 2*q, 2*s, EVEN_STATE); |
| 2045 | } else { // no need to calculate even states yet |
| 2046 | pthread_mutex_lock(&statelist_cache_mutex); |
| 2047 | sl_cache[q][s][EVEN_STATE].cache_status = TO_BE_DONE; |
| 2048 | pthread_mutex_unlock(&statelist_cache_mutex); |
| 2049 | current_candidates->len[EVEN_STATE] = 0; |
| 2050 | current_candidates->states[EVEN_STATE] = NULL; |
| 2051 | } |
| 2052 | } |
| 2053 | |
| 2054 | // update book of work |
| 2055 | pthread_mutex_lock(&book_of_work_mutex); |
| 2056 | book_of_work[p][q][r][s] = COMPLETED; |
| 2057 | pthread_mutex_unlock(&book_of_work_mutex); |
| 2058 | |
| 2059 | // if ((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE]) { |
| 2060 | // printf("Candidates for p=%2u, q=%2u, r=%2u, s=%2u: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", |
| 2061 | // 2*p, 2*q, 2*r, 2*s, current_candidates->len[ODD_STATE], current_candidates->len[EVEN_STATE], |
| 2062 | // (uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE], |
| 2063 | // log((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE])/log(2)); |
| 2064 | // uint32_t estimated_odd = estimated_num_states_part_sum(best_first_bytes[0], p, r, ODD_STATE); |
| 2065 | // uint32_t estimated_even= estimated_num_states_part_sum(best_first_bytes[0], q, s, EVEN_STATE); |
| 2066 | // uint64_t estimated_total = (uint64_t)estimated_odd * estimated_even; |
| 2067 | // printf("Estimated: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", estimated_odd, estimated_even, estimated_total, log(estimated_total) / log(2)); |
| 2068 | // if (estimated_odd < current_candidates->len[ODD_STATE] || estimated_even < current_candidates->len[EVEN_STATE]) { |
| 2069 | // printf("############################################################################ERROR! ESTIMATED < REAL !!!\n"); |
| 2070 | // //exit(2); |
| 2071 | // } |
| 2072 | // } |
| 2073 | } |
| 2074 | } |
| 2075 | } |
| 2076 | } |
| 2077 | } |
| 2078 | } |
| 2079 | } while (there_might_be_more_work); |
| 2080 | |
| 2081 | return NULL; |
| 2082 | } |
| 2083 | |
| 2084 | |
| 2085 | static void generate_candidates(uint8_t sum_a0_idx, uint8_t sum_a8_idx) |
| 2086 | { |
| 2087 | // printf("Generating crypto1 state candidates... \n"); |
| 2088 | |
| 2089 | // estimate maximum candidate states |
| 2090 | // maximum_states = 0; |
| 2091 | // for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) { |
| 2092 | // for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) { |
| 2093 | // if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) { |
| 2094 | // maximum_states += (uint64_t)count_states(part_sum_a0_bitarrays[EVEN_STATE][sum_even/2]) |
| 2095 | // * count_states(part_sum_a0_bitarrays[ODD_STATE][sum_odd/2]); |
| 2096 | // } |
| 2097 | // } |
| 2098 | // } |
| 2099 | // printf("Number of possible keys with Sum(a0) = %d: %" PRIu64 " (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0)); |
| 2100 | |
| 2101 | init_statelist_cache(); |
| 2102 | init_book_of_work(); |
| 2103 | |
| 2104 | // create mutexes for accessing the statelist cache and our "book of work" |
| 2105 | pthread_mutex_init(&statelist_cache_mutex, NULL); |
| 2106 | pthread_mutex_init(&book_of_work_mutex, NULL); |
| 2107 | |
| 2108 | // create and run worker threads |
| 2109 | pthread_t thread_id[NUM_REDUCTION_WORKING_THREADS]; |
| 2110 | |
| 2111 | uint16_t sums[NUM_REDUCTION_WORKING_THREADS][3]; |
| 2112 | for (uint16_t i = 0; i < NUM_REDUCTION_WORKING_THREADS; i++) { |
| 2113 | sums[i][0] = sum_a0_idx; |
| 2114 | sums[i][1] = sum_a8_idx; |
| 2115 | sums[i][2] = i+1; |
| 2116 | pthread_create(thread_id + i, NULL, generate_candidates_worker_thread, sums[i]); |
| 2117 | } |
| 2118 | |
| 2119 | // wait for threads to terminate: |
| 2120 | for (uint16_t i = 0; i < NUM_REDUCTION_WORKING_THREADS; i++) { |
| 2121 | pthread_join(thread_id[i], NULL); |
| 2122 | } |
| 2123 | |
| 2124 | // clean up mutex |
| 2125 | pthread_mutex_destroy(&statelist_cache_mutex); |
| 2126 | |
| 2127 | maximum_states = 0; |
| 2128 | for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) { |
| 2129 | maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; |
| 2130 | } |
| 2131 | |
| 2132 | for (uint8_t i = 0; i < NUM_SUMS; i++) { |
| 2133 | if (nonces[best_first_bytes[0]].sum_a8_guess[i].sum_a8_idx == sum_a8_idx) { |
| 2134 | nonces[best_first_bytes[0]].sum_a8_guess[i].num_states = maximum_states; |
| 2135 | break; |
| 2136 | } |
| 2137 | } |
| 2138 | update_expected_brute_force(best_first_bytes[0]); |
| 2139 | |
| 2140 | hardnested_print_progress(num_acquired_nonces, "Apply Sum(a8) and all bytes bitflip properties", nonces[best_first_bytes[0]].expected_num_brute_force, 0); |
| 2141 | } |
| 2142 | |
| 2143 | |
| 2144 | static void free_candidates_memory(statelist_t *sl) |
| 2145 | { |
| 2146 | if (sl == NULL) { |
| 2147 | return; |
| 2148 | } else { |
| 2149 | free_candidates_memory(sl->next); |
| 2150 | free(sl); |
| 2151 | } |
| 2152 | } |
| 2153 | |
| 2154 | |
| 2155 | static void pre_XOR_nonces(void) |
| 2156 | { |
| 2157 | // prepare acquired nonces for faster brute forcing. |
| 2158 | |
| 2159 | // XOR the cryptoUID and its parity |
| 2160 | for (uint16_t i = 0; i < 256; i++) { |
| 2161 | noncelistentry_t *test_nonce = nonces[i].first; |
| 2162 | while (test_nonce != NULL) { |
| 2163 | test_nonce->nonce_enc ^= cuid; |
| 2164 | test_nonce->par_enc ^= oddparity8(cuid >> 0 & 0xff) << 0; |
| 2165 | test_nonce->par_enc ^= oddparity8(cuid >> 8 & 0xff) << 1; |
| 2166 | test_nonce->par_enc ^= oddparity8(cuid >> 16 & 0xff) << 2; |
| 2167 | test_nonce->par_enc ^= oddparity8(cuid >> 24 & 0xff) << 3; |
| 2168 | test_nonce = test_nonce->next; |
| 2169 | } |
| 2170 | } |
| 2171 | } |
| 2172 | |
| 2173 | |
| 2174 | static bool brute_force(void) |
| 2175 | { |
| 2176 | if (known_target_key != -1) { |
| 2177 | TestIfKeyExists(known_target_key); |
| 2178 | } |
| 2179 | return brute_force_bs(NULL, candidates, cuid, num_acquired_nonces, maximum_states, nonces, best_first_bytes); |
| 2180 | } |
| 2181 | |
| 2182 | |
| 2183 | static uint16_t SumProperty(struct Crypto1State *s) |
| 2184 | { |
| 2185 | uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE); |
| 2186 | uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE); |
| 2187 | return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even); |
| 2188 | } |
| 2189 | |
| 2190 | |
| 2191 | static void Tests() |
| 2192 | { |
| 2193 | |
| 2194 | /* #define NUM_STATISTICS 100000 |
| 2195 | uint32_t statistics_odd[17]; |
| 2196 | uint64_t statistics[257]; |
| 2197 | uint32_t statistics_even[17]; |
| 2198 | struct Crypto1State cs; |
| 2199 | uint64_t time1 = msclock(); |
| 2200 | |
| 2201 | for (uint16_t i = 0; i < 257; i++) { |
| 2202 | statistics[i] = 0; |
| 2203 | } |
| 2204 | for (uint16_t i = 0; i < 17; i++) { |
| 2205 | statistics_odd[i] = 0; |
| 2206 | statistics_even[i] = 0; |
| 2207 | } |
| 2208 | |
| 2209 | for (uint64_t i = 0; i < NUM_STATISTICS; i++) { |
| 2210 | cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); |
| 2211 | cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); |
| 2212 | uint16_t sum_property = SumProperty(&cs); |
| 2213 | statistics[sum_property] += 1; |
| 2214 | sum_property = PartialSumProperty(cs.even, EVEN_STATE); |
| 2215 | statistics_even[sum_property]++; |
| 2216 | sum_property = PartialSumProperty(cs.odd, ODD_STATE); |
| 2217 | statistics_odd[sum_property]++; |
| 2218 | if (i%(NUM_STATISTICS/100) == 0) printf("."); |
| 2219 | } |
| 2220 | |
| 2221 | printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0); |
| 2222 | for (uint16_t i = 0; i < 257; i++) { |
| 2223 | if (statistics[i] != 0) { |
| 2224 | printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS); |
| 2225 | } |
| 2226 | } |
| 2227 | for (uint16_t i = 0; i <= 16; i++) { |
| 2228 | if (statistics_odd[i] != 0) { |
| 2229 | printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS); |
| 2230 | } |
| 2231 | } |
| 2232 | for (uint16_t i = 0; i <= 16; i++) { |
| 2233 | if (statistics_odd[i] != 0) { |
| 2234 | printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS); |
| 2235 | } |
| 2236 | } |
| 2237 | */ |
| 2238 | |
| 2239 | /* #define NUM_STATISTICS 100000000LL |
| 2240 | uint64_t statistics_a0[257]; |
| 2241 | uint64_t statistics_a8[257][257]; |
| 2242 | struct Crypto1State cs; |
| 2243 | uint64_t time1 = msclock(); |
| 2244 | |
| 2245 | for (uint16_t i = 0; i < 257; i++) { |
| 2246 | statistics_a0[i] = 0; |
| 2247 | for (uint16_t j = 0; j < 257; j++) { |
| 2248 | statistics_a8[i][j] = 0; |
| 2249 | } |
| 2250 | } |
| 2251 | |
| 2252 | for (uint64_t i = 0; i < NUM_STATISTICS; i++) { |
| 2253 | cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); |
| 2254 | cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); |
| 2255 | uint16_t sum_property_a0 = SumProperty(&cs); |
| 2256 | statistics_a0[sum_property_a0]++; |
| 2257 | uint8_t first_byte = rand() & 0xff; |
| 2258 | crypto1_byte(&cs, first_byte, true); |
| 2259 | uint16_t sum_property_a8 = SumProperty(&cs); |
| 2260 | statistics_a8[sum_property_a0][sum_property_a8] += 1; |
| 2261 | if (i%(NUM_STATISTICS/100) == 0) printf("."); |
| 2262 | } |
| 2263 | |
| 2264 | printf("\nTests: Probability Distribution of a8 depending on a0:\n"); |
| 2265 | printf("\n "); |
| 2266 | for (uint16_t i = 0; i < NUM_SUMS; i++) { |
| 2267 | printf("%7d ", sums[i]); |
| 2268 | } |
| 2269 | printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n"); |
| 2270 | printf("a0: "); |
| 2271 | for (uint16_t i = 0; i < NUM_SUMS; i++) { |
| 2272 | printf("%7.5f ", (float)statistics_a0[sums[i]] / NUM_STATISTICS); |
| 2273 | } |
| 2274 | printf("\n"); |
| 2275 | for (uint16_t i = 0; i < NUM_SUMS; i++) { |
| 2276 | printf("%3d ", sums[i]); |
| 2277 | for (uint16_t j = 0; j < NUM_SUMS; j++) { |
| 2278 | printf("%7.5f ", (float)statistics_a8[sums[i]][sums[j]] / statistics_a0[sums[i]]); |
| 2279 | } |
| 2280 | printf("\n"); |
| 2281 | } |
| 2282 | printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0); |
| 2283 | */ |
| 2284 | |
| 2285 | /* #define NUM_STATISTICS 100000LL |
| 2286 | uint64_t statistics_a8[257]; |
| 2287 | struct Crypto1State cs; |
| 2288 | uint64_t time1 = msclock(); |
| 2289 | |
| 2290 | printf("\nTests: Probability Distribution of a8 depending on first byte:\n"); |
| 2291 | printf("\n "); |
| 2292 | for (uint16_t i = 0; i < NUM_SUMS; i++) { |
| 2293 | printf("%7d ", sums[i]); |
| 2294 | } |
| 2295 | printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n"); |
| 2296 | for (uint16_t first_byte = 0; first_byte < 256; first_byte++) { |
| 2297 | for (uint16_t i = 0; i < 257; i++) { |
| 2298 | statistics_a8[i] = 0; |
| 2299 | } |
| 2300 | for (uint64_t i = 0; i < NUM_STATISTICS; i++) { |
| 2301 | cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); |
| 2302 | cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); |
| 2303 | crypto1_byte(&cs, first_byte, true); |
| 2304 | uint16_t sum_property_a8 = SumProperty(&cs); |
| 2305 | statistics_a8[sum_property_a8] += 1; |
| 2306 | } |
| 2307 | printf("%03x ", first_byte); |
| 2308 | for (uint16_t j = 0; j < NUM_SUMS; j++) { |
| 2309 | printf("%7.5f ", (float)statistics_a8[sums[j]] / NUM_STATISTICS); |
| 2310 | } |
| 2311 | printf("\n"); |
| 2312 | } |
| 2313 | printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0); |
| 2314 | */ |
| 2315 | |
| 2316 | /* printf("Tests: Sum Probabilities based on Partial Sums\n"); |
| 2317 | for (uint16_t i = 0; i < 257; i++) { |
| 2318 | statistics[i] = 0; |
| 2319 | } |
| 2320 | uint64_t num_states = 0; |
| 2321 | for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) { |
| 2322 | for (uint16_t evensum = 0; evensum <= 16; evensum += 2) { |
| 2323 | uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum; |
| 2324 | statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); |
| 2325 | num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); |
| 2326 | } |
| 2327 | } |
| 2328 | printf("num_states = %"lld", expected %"lld"\n", num_states, (1LL<<48)); |
| 2329 | for (uint16_t i = 0; i < 257; i++) { |
| 2330 | if (statistics[i] != 0) { |
| 2331 | printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states); |
| 2332 | } |
| 2333 | } |
| 2334 | */ |
| 2335 | |
| 2336 | /* struct Crypto1State *pcs; |
| 2337 | pcs = crypto1_create(0xffffffffffff); |
| 2338 | printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", |
| 2339 | SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); |
| 2340 | crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); |
| 2341 | printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", |
| 2342 | best_first_bytes[0], |
| 2343 | SumProperty(pcs), |
| 2344 | pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); |
| 2345 | //test_state_odd = pcs->odd & 0x00ffffff; |
| 2346 | //test_state_even = pcs->even & 0x00ffffff; |
| 2347 | crypto1_destroy(pcs); |
| 2348 | pcs = crypto1_create(0xa0a1a2a3a4a5); |
| 2349 | printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", |
| 2350 | SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); |
| 2351 | crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); |
| 2352 | printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", |
| 2353 | best_first_bytes[0], |
| 2354 | SumProperty(pcs), |
| 2355 | pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); |
| 2356 | //test_state_odd = pcs->odd & 0x00ffffff; |
| 2357 | //test_state_even = pcs->even & 0x00ffffff; |
| 2358 | crypto1_destroy(pcs); |
| 2359 | pcs = crypto1_create(0xa6b9aa97b955); |
| 2360 | printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", |
| 2361 | SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); |
| 2362 | crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); |
| 2363 | printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", |
| 2364 | best_first_bytes[0], |
| 2365 | SumProperty(pcs), |
| 2366 | pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); |
| 2367 | test_state_odd = pcs->odd & 0x00ffffff; |
| 2368 | test_state_even = pcs->even & 0x00ffffff; |
| 2369 | crypto1_destroy(pcs); |
| 2370 | */ |
| 2371 | |
| 2372 | // printf("\nTests: Sorted First Bytes:\n"); |
| 2373 | // for (uint16_t i = 0; i < 20; i++) { |
| 2374 | // uint8_t best_byte = best_first_bytes[i]; |
| 2375 | // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%\n", |
| 2376 | // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8) = ", i, best_byte, nonces[best_byte].num, nonces[best_byte].Sum); |
| 2377 | // for (uint16_t j = 0; j < 3; j++) { |
| 2378 | // printf("%3d @ %4.1f%%, ", sums[nonces[best_byte].sum_a8_guess[j].sum_a8_idx], nonces[best_byte].sum_a8_guess[j].prob * 100.0); |
| 2379 | // } |
| 2380 | // printf(" %12" PRIu64 ", %12" PRIu64 ", %12" PRIu64 ", exp_brute: %12.0f\n", |
| 2381 | // nonces[best_byte].sum_a8_guess[0].num_states, |
| 2382 | // nonces[best_byte].sum_a8_guess[1].num_states, |
| 2383 | // nonces[best_byte].sum_a8_guess[2].num_states, |
| 2384 | // nonces[best_byte].expected_num_brute_force); |
| 2385 | // } |
| 2386 | |
| 2387 | // printf("\nTests: Actual BitFlipProperties of best byte:\n"); |
| 2388 | // printf("[%02x]:", best_first_bytes[0]); |
| 2389 | // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) { |
| 2390 | // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx]; |
| 2391 | // if (nonces[best_first_bytes[0]].BitFlips[bitflip_prop]) { |
| 2392 | // printf(" %03" PRIx16 , bitflip_prop); |
| 2393 | // } |
| 2394 | // } |
| 2395 | // printf("\n"); |
| 2396 | |
| 2397 | // printf("\nTests2: Actual BitFlipProperties of first_byte_smallest_bitarray:\n"); |
| 2398 | // printf("[%02x]:", best_first_byte_smallest_bitarray); |
| 2399 | // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) { |
| 2400 | // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx]; |
| 2401 | // if (nonces[best_first_byte_smallest_bitarray].BitFlips[bitflip_prop]) { |
| 2402 | // printf(" %03" PRIx16 , bitflip_prop); |
| 2403 | // } |
| 2404 | // } |
| 2405 | // printf("\n"); |
| 2406 | |
| 2407 | if (known_target_key != -1) { |
| 2408 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
| 2409 | uint32_t *bitset = nonces[best_first_bytes[0]].states_bitarray[odd_even]; |
| 2410 | if (!test_bit24(bitset, test_state[odd_even])) { |
| 2411 | printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n", |
| 2412 | odd_even==EVEN_STATE?"even":"odd ", |
| 2413 | best_first_bytes[0]); |
| 2414 | } |
| 2415 | } |
| 2416 | } |
| 2417 | |
| 2418 | if (known_target_key != -1) { |
| 2419 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
| 2420 | uint32_t *bitset = all_bitflips_bitarray[odd_even]; |
| 2421 | if (!test_bit24(bitset, test_state[odd_even])) { |
| 2422 | printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n", |
| 2423 | odd_even==EVEN_STATE?"even":"odd "); |
| 2424 | } |
| 2425 | } |
| 2426 | } |
| 2427 | |
| 2428 | // if (known_target_key != -1) { |
| 2429 | // int16_t p = -1, q = -1, r = -1, s = -1; |
| 2430 | |
| 2431 | // printf("\nTests: known target key is member of these partial sum_a0 bitsets:\n"); |
| 2432 | // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
| 2433 | // printf("%s", odd_even==EVEN_STATE?"even:":"odd: "); |
| 2434 | // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) { |
| 2435 | // uint32_t *bitset = part_sum_a0_bitarrays[odd_even][i]; |
| 2436 | // if (test_bit24(bitset, test_state[odd_even])) { |
| 2437 | // printf("%d ", i); |
| 2438 | // if (odd_even == ODD_STATE) { |
| 2439 | // p = 2*i; |
| 2440 | // } else { |
| 2441 | // q = 2*i; |
| 2442 | // } |
| 2443 | // } |
| 2444 | // } |
| 2445 | // printf("\n"); |
| 2446 | // } |
| 2447 | |
| 2448 | // printf("\nTests: known target key is member of these partial sum_a8 bitsets:\n"); |
| 2449 | // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
| 2450 | // printf("%s", odd_even==EVEN_STATE?"even:":"odd: "); |
| 2451 | // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) { |
| 2452 | // uint32_t *bitset = part_sum_a8_bitarrays[odd_even][i]; |
| 2453 | // if (test_bit24(bitset, test_state[odd_even])) { |
| 2454 | // printf("%d ", i); |
| 2455 | // if (odd_even == ODD_STATE) { |
| 2456 | // r = 2*i; |
| 2457 | // } else { |
| 2458 | // s = 2*i; |
| 2459 | // } |
| 2460 | // } |
| 2461 | // } |
| 2462 | // printf("\n"); |
| 2463 | // } |
| 2464 | |
| 2465 | // printf("Sum(a0) = p*(16-q) + (16-p)*q = %d*(16-%d) + (16-%d)*%d = %d\n", p, q, p, q, p*(16-q)+(16-p)*q); |
| 2466 | // printf("Sum(a8) = r*(16-s) + (16-r)*s = %d*(16-%d) + (16-%d)*%d = %d\n", r, s, r, s, r*(16-s)+(16-r)*s); |
| 2467 | // } |
| 2468 | |
| 2469 | /* printf("\nTests: parity performance\n"); |
| 2470 | uint64_t time1p = msclock(); |
| 2471 | uint32_t par_sum = 0; |
| 2472 | for (uint32_t i = 0; i < 100000000; i++) { |
| 2473 | par_sum += parity(i); |
| 2474 | } |
| 2475 | printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0); |
| 2476 | |
| 2477 | time1p = msclock(); |
| 2478 | par_sum = 0; |
| 2479 | for (uint32_t i = 0; i < 100000000; i++) { |
| 2480 | par_sum += evenparity32(i); |
| 2481 | } |
| 2482 | printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0); |
| 2483 | */ |
| 2484 | |
| 2485 | } |
| 2486 | |
| 2487 | |
| 2488 | static void Tests2(void) |
| 2489 | { |
| 2490 | if (known_target_key != -1) { |
| 2491 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
| 2492 | uint32_t *bitset = nonces[best_first_byte_smallest_bitarray].states_bitarray[odd_even]; |
| 2493 | if (!test_bit24(bitset, test_state[odd_even])) { |
| 2494 | printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n", |
| 2495 | odd_even==EVEN_STATE?"even":"odd ", |
| 2496 | best_first_byte_smallest_bitarray); |
| 2497 | } |
| 2498 | } |
| 2499 | } |
| 2500 | |
| 2501 | if (known_target_key != -1) { |
| 2502 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
| 2503 | uint32_t *bitset = all_bitflips_bitarray[odd_even]; |
| 2504 | if (!test_bit24(bitset, test_state[odd_even])) { |
| 2505 | printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n", |
| 2506 | odd_even==EVEN_STATE?"even":"odd "); |
| 2507 | } |
| 2508 | } |
| 2509 | } |
| 2510 | |
| 2511 | } |
| 2512 | |
| 2513 | |
| 2514 | static uint16_t real_sum_a8 = 0; |
| 2515 | |
| 2516 | static void set_test_state(uint8_t byte) |
| 2517 | { |
| 2518 | struct Crypto1State *pcs; |
| 2519 | pcs = crypto1_create(known_target_key); |
| 2520 | crypto1_byte(pcs, (cuid >> 24) ^ byte, true); |
| 2521 | test_state[ODD_STATE] = pcs->odd & 0x00ffffff; |
| 2522 | test_state[EVEN_STATE] = pcs->even & 0x00ffffff; |
| 2523 | real_sum_a8 = SumProperty(pcs); |
| 2524 | crypto1_destroy(pcs); |
| 2525 | } |
| 2526 | |
| 2527 | |
| 2528 | int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests) |
| 2529 | { |
| 2530 | char progress_text[80]; |
| 2531 | |
| 2532 | srand((unsigned) time(NULL)); |
| 2533 | brute_force_per_second = brute_force_benchmark(); |
| 2534 | write_stats = false; |
| 2535 | |
| 2536 | if (tests) { |
| 2537 | // set the correct locale for the stats printing |
| 2538 | write_stats = true; |
| 2539 | setlocale(LC_NUMERIC, ""); |
| 2540 | if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) { |
| 2541 | PrintAndLog("Could not create/open file hardnested_stats.txt"); |
| 2542 | return 3; |
| 2543 | } |
| 2544 | for (uint32_t i = 0; i < tests; i++) { |
| 2545 | start_time = msclock(); |
| 2546 | print_progress_header(); |
| 2547 | sprintf(progress_text, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second/1000000, log(brute_force_per_second)/log(2.0)); |
| 2548 | hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0); |
| 2549 | sprintf(progress_text, "Starting Test #%" PRIu32 " ...", i+1); |
| 2550 | hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0); |
| 2551 | if (trgkey != NULL) { |
| 2552 | known_target_key = bytes_to_num(trgkey, 6); |
| 2553 | } else { |
| 2554 | known_target_key = -1; |
| 2555 | } |
| 2556 | |
| 2557 | init_bitflip_bitarrays(); |
| 2558 | init_part_sum_bitarrays(); |
| 2559 | init_sum_bitarrays(); |
| 2560 | init_allbitflips_array(); |
| 2561 | init_nonce_memory(); |
| 2562 | update_reduction_rate(0.0, true); |
| 2563 | |
| 2564 | simulate_acquire_nonces(); |
| 2565 | |
| 2566 | set_test_state(best_first_bytes[0]); |
| 2567 | |
| 2568 | Tests(); |
| 2569 | free_bitflip_bitarrays(); |
| 2570 | |
| 2571 | fprintf(fstats, "%" PRIu16 ";%1.1f;", sums[first_byte_Sum], log(p_K0[first_byte_Sum])/log(2.0)); |
| 2572 | fprintf(fstats, "%" PRIu16 ";%1.1f;", sums[nonces[best_first_bytes[0]].sum_a8_guess[0].sum_a8_idx], log(p_K[nonces[best_first_bytes[0]].sum_a8_guess[0].sum_a8_idx])/log(2.0)); |
| 2573 | fprintf(fstats, "%" PRIu16 ";", real_sum_a8); |
| 2574 | |
| 2575 | #ifdef DEBUG_KEY_ELIMINATION |
| 2576 | failstr[0] = '\0'; |
| 2577 | #endif |
| 2578 | bool key_found = false; |
| 2579 | num_keys_tested = 0; |
| 2580 | uint32_t num_odd = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[ODD_STATE]; |
| 2581 | uint32_t num_even = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[EVEN_STATE]; |
| 2582 | float expected_brute_force1 = (float)num_odd * num_even / 2.0; |
| 2583 | float expected_brute_force2 = nonces[best_first_bytes[0]].expected_num_brute_force; |
| 2584 | fprintf(fstats, "%1.1f;%1.1f;", log(expected_brute_force1)/log(2.0), log(expected_brute_force2)/log(2.0)); |
| 2585 | if (expected_brute_force1 < expected_brute_force2) { |
| 2586 | hardnested_print_progress(num_acquired_nonces, "(Ignoring Sum(a8) properties)", expected_brute_force1, 0); |
| 2587 | set_test_state(best_first_byte_smallest_bitarray); |
| 2588 | add_bitflip_candidates(best_first_byte_smallest_bitarray); |
| 2589 | Tests2(); |
| 2590 | maximum_states = 0; |
| 2591 | for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) { |
| 2592 | maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; |
| 2593 | } |
| 2594 | //printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0)); |
| 2595 | // fprintf("fstats, "%" PRIu64 ";", maximum_states); |
| 2596 | best_first_bytes[0] = best_first_byte_smallest_bitarray; |
| 2597 | pre_XOR_nonces(); |
| 2598 | prepare_bf_test_nonces(nonces, best_first_bytes[0]); |
| 2599 | hardnested_print_progress(num_acquired_nonces, "Starting brute force...", expected_brute_force1, 0); |
| 2600 | key_found = brute_force(); |
| 2601 | free(candidates->states[ODD_STATE]); |
| 2602 | free(candidates->states[EVEN_STATE]); |
| 2603 | free_candidates_memory(candidates); |
| 2604 | candidates = NULL; |
| 2605 | } else { |
| 2606 | pre_XOR_nonces(); |
| 2607 | prepare_bf_test_nonces(nonces, best_first_bytes[0]); |
| 2608 | for (uint8_t j = 0; j < NUM_SUMS && !key_found; j++) { |
| 2609 | float expected_brute_force = nonces[best_first_bytes[0]].expected_num_brute_force; |
| 2610 | sprintf(progress_text, "(%d. guess: Sum(a8) = %" PRIu16 ")", j+1, sums[nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx]); |
| 2611 | hardnested_print_progress(num_acquired_nonces, progress_text, expected_brute_force, 0); |
| 2612 | if (sums[nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx] != real_sum_a8) { |
| 2613 | sprintf(progress_text, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16 ")", real_sum_a8); |
| 2614 | hardnested_print_progress(num_acquired_nonces, progress_text, expected_brute_force, 0); |
| 2615 | } |
| 2616 | // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0)); |
| 2617 | generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx); |
| 2618 | // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0); |
| 2619 | hardnested_print_progress(num_acquired_nonces, "Starting brute force...", expected_brute_force, 0); |
| 2620 | key_found = brute_force(); |
| 2621 | free_statelist_cache(); |
| 2622 | free_candidates_memory(candidates); |
| 2623 | candidates = NULL; |
| 2624 | if (!key_found) { |
| 2625 | // update the statistics |
| 2626 | nonces[best_first_bytes[0]].sum_a8_guess[j].prob = 0; |
| 2627 | nonces[best_first_bytes[0]].sum_a8_guess[j].num_states = 0; |
| 2628 | // and calculate new expected number of brute forces |
| 2629 | update_expected_brute_force(best_first_bytes[0]); |
| 2630 | } |
| 2631 | } |
| 2632 | } |
| 2633 | #ifdef DEBUG_KEY_ELIMINATION |
| 2634 | fprintf(fstats, "%1.1f;%1.0f;%d;%s\n", log(num_keys_tested)/log(2.0), (float)num_keys_tested/brute_force_per_second, key_found, failstr); |
| 2635 | #else |
| 2636 | fprintf(fstats, "%1.0f;%d\n", log(num_keys_tested)/log(2.0), (float)num_keys_tested/brute_force_per_second, key_found); |
| 2637 | #endif |
| 2638 | |
| 2639 | free_nonces_memory(); |
| 2640 | free_bitarray(all_bitflips_bitarray[ODD_STATE]); |
| 2641 | free_bitarray(all_bitflips_bitarray[EVEN_STATE]); |
| 2642 | free_sum_bitarrays(); |
| 2643 | free_part_sum_bitarrays(); |
| 2644 | } |
| 2645 | fclose(fstats); |
| 2646 | } else { |
| 2647 | start_time = msclock(); |
| 2648 | print_progress_header(); |
| 2649 | sprintf(progress_text, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second/1000000, log(brute_force_per_second)/log(2.0)); |
| 2650 | hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0); |
| 2651 | init_bitflip_bitarrays(); |
| 2652 | init_part_sum_bitarrays(); |
| 2653 | init_sum_bitarrays(); |
| 2654 | init_allbitflips_array(); |
| 2655 | init_nonce_memory(); |
| 2656 | update_reduction_rate(0.0, true); |
| 2657 | |
| 2658 | if (nonce_file_read) { // use pre-acquired data from file nonces.bin |
| 2659 | if (read_nonce_file() != 0) { |
| 2660 | free_bitflip_bitarrays(); |
| 2661 | free_nonces_memory(); |
| 2662 | free_bitarray(all_bitflips_bitarray[ODD_STATE]); |
| 2663 | free_bitarray(all_bitflips_bitarray[EVEN_STATE]); |
| 2664 | free_sum_bitarrays(); |
| 2665 | free_part_sum_bitarrays(); |
| 2666 | return 3; |
| 2667 | } |
| 2668 | hardnested_stage = CHECK_1ST_BYTES | CHECK_2ND_BYTES; |
| 2669 | update_nonce_data(false); |
| 2670 | float brute_force; |
| 2671 | shrink_key_space(&brute_force); |
| 2672 | } else { // acquire nonces. |
| 2673 | uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow); |
| 2674 | if (is_OK != 0) { |
| 2675 | free_bitflip_bitarrays(); |
| 2676 | free_nonces_memory(); |
| 2677 | free_bitarray(all_bitflips_bitarray[ODD_STATE]); |
| 2678 | free_bitarray(all_bitflips_bitarray[EVEN_STATE]); |
| 2679 | free_sum_bitarrays(); |
| 2680 | free_part_sum_bitarrays(); |
| 2681 | return is_OK; |
| 2682 | } |
| 2683 | } |
| 2684 | |
| 2685 | if (trgkey != NULL) { |
| 2686 | known_target_key = bytes_to_num(trgkey, 6); |
| 2687 | set_test_state(best_first_bytes[0]); |
| 2688 | } else { |
| 2689 | known_target_key = -1; |
| 2690 | } |
| 2691 | |
| 2692 | Tests(); |
| 2693 | |
| 2694 | free_bitflip_bitarrays(); |
| 2695 | bool key_found = false; |
| 2696 | num_keys_tested = 0; |
| 2697 | uint32_t num_odd = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[ODD_STATE]; |
| 2698 | uint32_t num_even = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[EVEN_STATE]; |
| 2699 | float expected_brute_force1 = (float)num_odd * num_even / 2.0; |
| 2700 | float expected_brute_force2 = nonces[best_first_bytes[0]].expected_num_brute_force; |
| 2701 | if (expected_brute_force1 < expected_brute_force2) { |
| 2702 | hardnested_print_progress(num_acquired_nonces, "(Ignoring Sum(a8) properties)", expected_brute_force1, 0); |
| 2703 | set_test_state(best_first_byte_smallest_bitarray); |
| 2704 | add_bitflip_candidates(best_first_byte_smallest_bitarray); |
| 2705 | Tests2(); |
| 2706 | maximum_states = 0; |
| 2707 | for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) { |
| 2708 | maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; |
| 2709 | } |
| 2710 | // printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0)); |
| 2711 | best_first_bytes[0] = best_first_byte_smallest_bitarray; |
| 2712 | pre_XOR_nonces(); |
| 2713 | prepare_bf_test_nonces(nonces, best_first_bytes[0]); |
| 2714 | hardnested_print_progress(num_acquired_nonces, "Starting brute force...", expected_brute_force1, 0); |
| 2715 | key_found = brute_force(); |
| 2716 | free(candidates->states[ODD_STATE]); |
| 2717 | free(candidates->states[EVEN_STATE]); |
| 2718 | free_candidates_memory(candidates); |
| 2719 | candidates = NULL; |
| 2720 | } else { |
| 2721 | pre_XOR_nonces(); |
| 2722 | prepare_bf_test_nonces(nonces, best_first_bytes[0]); |
| 2723 | for (uint8_t j = 0; j < NUM_SUMS && !key_found; j++) { |
| 2724 | float expected_brute_force = nonces[best_first_bytes[0]].expected_num_brute_force; |
| 2725 | sprintf(progress_text, "(%d. guess: Sum(a8) = %" PRIu16 ")", j+1, sums[nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx]); |
| 2726 | hardnested_print_progress(num_acquired_nonces, progress_text, expected_brute_force, 0); |
| 2727 | if (trgkey != NULL && sums[nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx] != real_sum_a8) { |
| 2728 | sprintf(progress_text, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16 ")", real_sum_a8); |
| 2729 | hardnested_print_progress(num_acquired_nonces, progress_text, expected_brute_force, 0); |
| 2730 | } |
| 2731 | // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0)); |
| 2732 | generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx); |
| 2733 | // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0); |
| 2734 | hardnested_print_progress(num_acquired_nonces, "Starting brute force...", expected_brute_force, 0); |
| 2735 | key_found = brute_force(); |
| 2736 | free_statelist_cache(); |
| 2737 | free_candidates_memory(candidates); |
| 2738 | candidates = NULL; |
| 2739 | if (!key_found) { |
| 2740 | // update the statistics |
| 2741 | nonces[best_first_bytes[0]].sum_a8_guess[j].prob = 0; |
| 2742 | nonces[best_first_bytes[0]].sum_a8_guess[j].num_states = 0; |
| 2743 | // and calculate new expected number of brute forces |
| 2744 | update_expected_brute_force(best_first_bytes[0]); |
| 2745 | } |
| 2746 | |
| 2747 | } |
| 2748 | } |
| 2749 | |
| 2750 | free_nonces_memory(); |
| 2751 | free_bitarray(all_bitflips_bitarray[ODD_STATE]); |
| 2752 | free_bitarray(all_bitflips_bitarray[EVEN_STATE]); |
| 2753 | free_sum_bitarrays(); |
| 2754 | free_part_sum_bitarrays(); |
| 2755 | } |
| 2756 | |
| 2757 | return 0; |
| 2758 | } |