]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Gerhard de Koning Gans - May 2008 | |
3 | // Hagen Fritsch - June 2010 | |
4 | // Gerhard de Koning Gans - May 2011 | |
5 | // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation | |
6 | // | |
7 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
8 | // at your option, any later version. See the LICENSE.txt file for the text of | |
9 | // the license. | |
10 | //----------------------------------------------------------------------------- | |
11 | // Routines to support iClass. | |
12 | //----------------------------------------------------------------------------- | |
13 | // Based on ISO14443a implementation. Still in experimental phase. | |
14 | // Contribution made during a security research at Radboud University Nijmegen | |
15 | // | |
16 | // Please feel free to contribute and extend iClass support!! | |
17 | //----------------------------------------------------------------------------- | |
18 | // | |
19 | // FIX: | |
20 | // ==== | |
21 | // We still have sometimes a demodulation error when snooping iClass communication. | |
22 | // The resulting trace of a read-block-03 command may look something like this: | |
23 | // | |
24 | // + 22279: : 0c 03 e8 01 | |
25 | // | |
26 | // ...with an incorrect answer... | |
27 | // | |
28 | // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc | |
29 | // | |
30 | // We still left the error signalling bytes in the traces like 0xbb | |
31 | // | |
32 | // A correct trace should look like this: | |
33 | // | |
34 | // + 21112: : 0c 03 e8 01 | |
35 | // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5 | |
36 | // | |
37 | //----------------------------------------------------------------------------- | |
38 | ||
39 | #include "iclass.h" | |
40 | ||
41 | #include "proxmark3.h" | |
42 | #include "apps.h" | |
43 | #include "util.h" | |
44 | #include "string.h" | |
45 | #include "printf.h" | |
46 | #include "common.h" | |
47 | #include "cmd.h" | |
48 | #include "iso14443a.h" | |
49 | #include "iso15693.h" | |
50 | // Needed for CRC in emulation mode; | |
51 | // same construction as in ISO 14443; | |
52 | // different initial value (CRC_ICLASS) | |
53 | #include "iso14443crc.h" | |
54 | #include "iso15693tools.h" | |
55 | #include "protocols.h" | |
56 | #include "optimized_cipher.h" | |
57 | #include "usb_cdc.h" // for usb_poll_validate_length | |
58 | #include "fpgaloader.h" | |
59 | ||
60 | // iCLASS has a slightly different timing compared to ISO15693. According to the picopass data sheet the tag response is expected 330us after | |
61 | // the reader command. This is measured from end of reader EOF to first modulation of the tag's SOF which starts with a 56,64us unmodulated period. | |
62 | // 330us = 140 ssp_clk cycles @ 423,75kHz when simulating. | |
63 | // 56,64us = 24 ssp_clk_cycles | |
64 | #define DELAY_ICLASS_VCD_TO_VICC_SIM (140 - 24) | |
65 | // times in ssp_clk_cycles @ 3,3625MHz when acting as reader | |
66 | #define DELAY_ICLASS_VICC_TO_VCD_READER DELAY_ISO15693_VICC_TO_VCD_READER | |
67 | // times in samples @ 212kHz when acting as reader | |
68 | #define ICLASS_READER_TIMEOUT_ACTALL 330 // 1558us, nominal 330us + 7slots*160us = 1450us | |
69 | #define ICLASS_READER_TIMEOUT_OTHERS 80 // 380us, nominal 330us | |
70 | ||
71 | ||
72 | //----------------------------------------------------------------------------- | |
73 | // The software UART that receives commands from the reader, and its state | |
74 | // variables. | |
75 | //----------------------------------------------------------------------------- | |
76 | static struct { | |
77 | enum { | |
78 | STATE_UNSYNCD, | |
79 | STATE_START_OF_COMMUNICATION, | |
80 | STATE_RECEIVING | |
81 | } state; | |
82 | uint16_t shiftReg; | |
83 | int bitCnt; | |
84 | int byteCnt; | |
85 | int byteCntMax; | |
86 | int posCnt; | |
87 | int nOutOfCnt; | |
88 | int OutOfCnt; | |
89 | int syncBit; | |
90 | int samples; | |
91 | int highCnt; | |
92 | int swapper; | |
93 | int counter; | |
94 | int bitBuffer; | |
95 | int dropPosition; | |
96 | uint8_t *output; | |
97 | } Uart; | |
98 | ||
99 | static RAMFUNC int OutOfNDecoding(int bit) { | |
100 | //int error = 0; | |
101 | int bitright; | |
102 | ||
103 | if (!Uart.bitBuffer) { | |
104 | Uart.bitBuffer = bit ^ 0xFF0; | |
105 | return false; | |
106 | } else { | |
107 | Uart.bitBuffer <<= 4; | |
108 | Uart.bitBuffer ^= bit; | |
109 | } | |
110 | ||
111 | /*if (Uart.swapper) { | |
112 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; | |
113 | Uart.byteCnt++; | |
114 | Uart.swapper = 0; | |
115 | if (Uart.byteCnt > 15) { return true; } | |
116 | } | |
117 | else { | |
118 | Uart.swapper = 1; | |
119 | }*/ | |
120 | ||
121 | if (Uart.state != STATE_UNSYNCD) { | |
122 | Uart.posCnt++; | |
123 | ||
124 | if ((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { | |
125 | bit = 0x00; | |
126 | } else { | |
127 | bit = 0x01; | |
128 | } | |
129 | if (((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { | |
130 | bitright = 0x00; | |
131 | } else { | |
132 | bitright = 0x01; | |
133 | } | |
134 | if (bit != bitright) { | |
135 | bit = bitright; | |
136 | } | |
137 | ||
138 | ||
139 | // So, now we only have to deal with *bit*, lets see... | |
140 | if (Uart.posCnt == 1) { | |
141 | // measurement first half bitperiod | |
142 | if (!bit) { | |
143 | // Drop in first half means that we are either seeing | |
144 | // an SOF or an EOF. | |
145 | ||
146 | if (Uart.nOutOfCnt == 1) { | |
147 | // End of Communication | |
148 | Uart.state = STATE_UNSYNCD; | |
149 | Uart.highCnt = 0; | |
150 | if (Uart.byteCnt == 0) { | |
151 | // Its not straightforward to show single EOFs | |
152 | // So just leave it and do not return true | |
153 | Uart.output[0] = 0xf0; | |
154 | Uart.byteCnt++; | |
155 | } else { | |
156 | return true; | |
157 | } | |
158 | } else if (Uart.state != STATE_START_OF_COMMUNICATION) { | |
159 | // When not part of SOF or EOF, it is an error | |
160 | Uart.state = STATE_UNSYNCD; | |
161 | Uart.highCnt = 0; | |
162 | //error = 4; | |
163 | } | |
164 | } | |
165 | } else { | |
166 | // measurement second half bitperiod | |
167 | // Count the bitslot we are in... (ISO 15693) | |
168 | Uart.nOutOfCnt++; | |
169 | ||
170 | if (!bit) { | |
171 | if (Uart.dropPosition) { | |
172 | if (Uart.state == STATE_START_OF_COMMUNICATION) { | |
173 | //error = 1; | |
174 | } else { | |
175 | //error = 7; | |
176 | } | |
177 | // It is an error if we already have seen a drop in current frame | |
178 | Uart.state = STATE_UNSYNCD; | |
179 | Uart.highCnt = 0; | |
180 | } else { | |
181 | Uart.dropPosition = Uart.nOutOfCnt; | |
182 | } | |
183 | } | |
184 | ||
185 | Uart.posCnt = 0; | |
186 | ||
187 | ||
188 | if (Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) { | |
189 | Uart.nOutOfCnt = 0; | |
190 | ||
191 | if (Uart.state == STATE_START_OF_COMMUNICATION) { | |
192 | if (Uart.dropPosition == 4) { | |
193 | Uart.state = STATE_RECEIVING; | |
194 | Uart.OutOfCnt = 256; | |
195 | } else if (Uart.dropPosition == 3) { | |
196 | Uart.state = STATE_RECEIVING; | |
197 | Uart.OutOfCnt = 4; | |
198 | //Uart.output[Uart.byteCnt] = 0xdd; | |
199 | //Uart.byteCnt++; | |
200 | } else { | |
201 | Uart.state = STATE_UNSYNCD; | |
202 | Uart.highCnt = 0; | |
203 | } | |
204 | Uart.dropPosition = 0; | |
205 | } else { | |
206 | // RECEIVING DATA | |
207 | // 1 out of 4 | |
208 | if (!Uart.dropPosition) { | |
209 | Uart.state = STATE_UNSYNCD; | |
210 | Uart.highCnt = 0; | |
211 | //error = 9; | |
212 | } else { | |
213 | Uart.shiftReg >>= 2; | |
214 | ||
215 | // Swap bit order | |
216 | Uart.dropPosition--; | |
217 | //if (Uart.dropPosition == 1) { Uart.dropPosition = 2; } | |
218 | //else if (Uart.dropPosition == 2) { Uart.dropPosition = 1; } | |
219 | ||
220 | Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6); | |
221 | Uart.bitCnt += 2; | |
222 | Uart.dropPosition = 0; | |
223 | ||
224 | if (Uart.bitCnt == 8) { | |
225 | Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); | |
226 | Uart.byteCnt++; | |
227 | Uart.bitCnt = 0; | |
228 | Uart.shiftReg = 0; | |
229 | } | |
230 | } | |
231 | } | |
232 | } else if (Uart.nOutOfCnt == Uart.OutOfCnt) { | |
233 | // RECEIVING DATA | |
234 | // 1 out of 256 | |
235 | if (!Uart.dropPosition) { | |
236 | Uart.state = STATE_UNSYNCD; | |
237 | Uart.highCnt = 0; | |
238 | //error = 3; | |
239 | } else { | |
240 | Uart.dropPosition--; | |
241 | Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff); | |
242 | Uart.byteCnt++; | |
243 | Uart.bitCnt = 0; | |
244 | Uart.shiftReg = 0; | |
245 | Uart.nOutOfCnt = 0; | |
246 | Uart.dropPosition = 0; | |
247 | } | |
248 | } | |
249 | ||
250 | /*if (error) { | |
251 | Uart.output[Uart.byteCnt] = 0xAA; | |
252 | Uart.byteCnt++; | |
253 | Uart.output[Uart.byteCnt] = error & 0xFF; | |
254 | Uart.byteCnt++; | |
255 | Uart.output[Uart.byteCnt] = 0xAA; | |
256 | Uart.byteCnt++; | |
257 | Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; | |
258 | Uart.byteCnt++; | |
259 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; | |
260 | Uart.byteCnt++; | |
261 | Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; | |
262 | Uart.byteCnt++; | |
263 | Uart.output[Uart.byteCnt] = 0xAA; | |
264 | Uart.byteCnt++; | |
265 | return true; | |
266 | }*/ | |
267 | } | |
268 | ||
269 | } else { | |
270 | bit = Uart.bitBuffer & 0xf0; | |
271 | bit >>= 4; | |
272 | bit ^= 0x0F; // drops become 1s ;-) | |
273 | if (bit) { | |
274 | // should have been high or at least (4 * 128) / fc | |
275 | // according to ISO this should be at least (9 * 128 + 20) / fc | |
276 | if (Uart.highCnt == 8) { | |
277 | // we went low, so this could be start of communication | |
278 | // it turns out to be safer to choose a less significant | |
279 | // syncbit... so we check whether the neighbour also represents the drop | |
280 | Uart.posCnt = 1; // apparently we are busy with our first half bit period | |
281 | Uart.syncBit = bit & 8; | |
282 | Uart.samples = 3; | |
283 | if (!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } | |
284 | else if (bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } | |
285 | if (!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } | |
286 | else if (bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } | |
287 | if (!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; | |
288 | if (Uart.syncBit && (Uart.bitBuffer & 8)) { | |
289 | Uart.syncBit = 8; | |
290 | ||
291 | // the first half bit period is expected in next sample | |
292 | Uart.posCnt = 0; | |
293 | Uart.samples = 3; | |
294 | } | |
295 | } else if (bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } | |
296 | ||
297 | Uart.syncBit <<= 4; | |
298 | Uart.state = STATE_START_OF_COMMUNICATION; | |
299 | Uart.bitCnt = 0; | |
300 | Uart.byteCnt = 0; | |
301 | Uart.nOutOfCnt = 0; | |
302 | Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256 | |
303 | Uart.dropPosition = 0; | |
304 | Uart.shiftReg = 0; | |
305 | //error = 0; | |
306 | } else { | |
307 | Uart.highCnt = 0; | |
308 | } | |
309 | } else if (Uart.highCnt < 8) { | |
310 | Uart.highCnt++; | |
311 | } | |
312 | } | |
313 | ||
314 | return false; | |
315 | } | |
316 | ||
317 | ||
318 | //============================================================================= | |
319 | // Manchester | |
320 | //============================================================================= | |
321 | ||
322 | static struct { | |
323 | enum { | |
324 | DEMOD_UNSYNCD, | |
325 | DEMOD_START_OF_COMMUNICATION, | |
326 | DEMOD_START_OF_COMMUNICATION2, | |
327 | DEMOD_START_OF_COMMUNICATION3, | |
328 | DEMOD_SOF_COMPLETE, | |
329 | DEMOD_MANCHESTER_D, | |
330 | DEMOD_MANCHESTER_E, | |
331 | DEMOD_END_OF_COMMUNICATION, | |
332 | DEMOD_END_OF_COMMUNICATION2, | |
333 | DEMOD_MANCHESTER_F, | |
334 | DEMOD_ERROR_WAIT | |
335 | } state; | |
336 | int bitCount; | |
337 | int posCount; | |
338 | int syncBit; | |
339 | uint16_t shiftReg; | |
340 | int buffer; | |
341 | int buffer2; | |
342 | int buffer3; | |
343 | int buff; | |
344 | int samples; | |
345 | int len; | |
346 | enum { | |
347 | SUB_NONE, | |
348 | SUB_FIRST_HALF, | |
349 | SUB_SECOND_HALF, | |
350 | SUB_BOTH | |
351 | } sub; | |
352 | uint8_t *output; | |
353 | } Demod; | |
354 | ||
355 | static RAMFUNC int ManchesterDecoding(int v) { | |
356 | int bit; | |
357 | int modulation; | |
358 | int error = 0; | |
359 | ||
360 | bit = Demod.buffer; | |
361 | Demod.buffer = Demod.buffer2; | |
362 | Demod.buffer2 = Demod.buffer3; | |
363 | Demod.buffer3 = v; | |
364 | ||
365 | if (Demod.buff < 3) { | |
366 | Demod.buff++; | |
367 | return false; | |
368 | } | |
369 | ||
370 | if (Demod.state==DEMOD_UNSYNCD) { | |
371 | Demod.output[Demod.len] = 0xfa; | |
372 | Demod.syncBit = 0; | |
373 | //Demod.samples = 0; | |
374 | Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part | |
375 | ||
376 | if (bit & 0x08) { | |
377 | Demod.syncBit = 0x08; | |
378 | } | |
379 | ||
380 | if (bit & 0x04) { | |
381 | if (Demod.syncBit) { | |
382 | bit <<= 4; | |
383 | } | |
384 | Demod.syncBit = 0x04; | |
385 | } | |
386 | ||
387 | if (bit & 0x02) { | |
388 | if (Demod.syncBit) { | |
389 | bit <<= 2; | |
390 | } | |
391 | Demod.syncBit = 0x02; | |
392 | } | |
393 | ||
394 | if (bit & 0x01 && Demod.syncBit) { | |
395 | Demod.syncBit = 0x01; | |
396 | } | |
397 | ||
398 | if (Demod.syncBit) { | |
399 | Demod.len = 0; | |
400 | Demod.state = DEMOD_START_OF_COMMUNICATION; | |
401 | Demod.sub = SUB_FIRST_HALF; | |
402 | Demod.bitCount = 0; | |
403 | Demod.shiftReg = 0; | |
404 | Demod.samples = 0; | |
405 | if (Demod.posCount) { | |
406 | switch (Demod.syncBit) { | |
407 | case 0x08: Demod.samples = 3; break; | |
408 | case 0x04: Demod.samples = 2; break; | |
409 | case 0x02: Demod.samples = 1; break; | |
410 | case 0x01: Demod.samples = 0; break; | |
411 | } | |
412 | // SOF must be long burst... otherwise stay unsynced!!! | |
413 | if (!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) { | |
414 | Demod.state = DEMOD_UNSYNCD; | |
415 | } | |
416 | } else { | |
417 | // SOF must be long burst... otherwise stay unsynced!!! | |
418 | if (!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) { | |
419 | Demod.state = DEMOD_UNSYNCD; | |
420 | error = 0x88; | |
421 | } | |
422 | ||
423 | } | |
424 | error = 0; | |
425 | ||
426 | } | |
427 | } else { | |
428 | // state is DEMOD is in SYNC from here on. | |
429 | modulation = bit & Demod.syncBit; | |
430 | modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; | |
431 | ||
432 | Demod.samples += 4; | |
433 | ||
434 | if (Demod.posCount == 0) { | |
435 | Demod.posCount = 1; | |
436 | if (modulation) { | |
437 | Demod.sub = SUB_FIRST_HALF; | |
438 | } else { | |
439 | Demod.sub = SUB_NONE; | |
440 | } | |
441 | } else { | |
442 | Demod.posCount = 0; | |
443 | if (modulation) { | |
444 | if (Demod.sub == SUB_FIRST_HALF) { | |
445 | Demod.sub = SUB_BOTH; | |
446 | } else { | |
447 | Demod.sub = SUB_SECOND_HALF; | |
448 | } | |
449 | } else if (Demod.sub == SUB_NONE) { | |
450 | if (Demod.state == DEMOD_SOF_COMPLETE) { | |
451 | Demod.output[Demod.len] = 0x0f; | |
452 | Demod.len++; | |
453 | Demod.state = DEMOD_UNSYNCD; | |
454 | return true; | |
455 | } else { | |
456 | Demod.state = DEMOD_ERROR_WAIT; | |
457 | error = 0x33; | |
458 | } | |
459 | } | |
460 | ||
461 | switch(Demod.state) { | |
462 | case DEMOD_START_OF_COMMUNICATION: | |
463 | if (Demod.sub == SUB_BOTH) { | |
464 | Demod.state = DEMOD_START_OF_COMMUNICATION2; | |
465 | Demod.posCount = 1; | |
466 | Demod.sub = SUB_NONE; | |
467 | } else { | |
468 | Demod.output[Demod.len] = 0xab; | |
469 | Demod.state = DEMOD_ERROR_WAIT; | |
470 | error = 0xd2; | |
471 | } | |
472 | break; | |
473 | case DEMOD_START_OF_COMMUNICATION2: | |
474 | if (Demod.sub == SUB_SECOND_HALF) { | |
475 | Demod.state = DEMOD_START_OF_COMMUNICATION3; | |
476 | } else { | |
477 | Demod.output[Demod.len] = 0xab; | |
478 | Demod.state = DEMOD_ERROR_WAIT; | |
479 | error = 0xd3; | |
480 | } | |
481 | break; | |
482 | case DEMOD_START_OF_COMMUNICATION3: | |
483 | if (Demod.sub == SUB_SECOND_HALF) { | |
484 | Demod.state = DEMOD_SOF_COMPLETE; | |
485 | } else { | |
486 | Demod.output[Demod.len] = 0xab; | |
487 | Demod.state = DEMOD_ERROR_WAIT; | |
488 | error = 0xd4; | |
489 | } | |
490 | break; | |
491 | case DEMOD_SOF_COMPLETE: | |
492 | case DEMOD_MANCHESTER_D: | |
493 | case DEMOD_MANCHESTER_E: | |
494 | // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443) | |
495 | // 00001111 = 1 (0 in 14443) | |
496 | if (Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF | |
497 | Demod.bitCount++; | |
498 | Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; | |
499 | Demod.state = DEMOD_MANCHESTER_D; | |
500 | } else if (Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF | |
501 | Demod.bitCount++; | |
502 | Demod.shiftReg >>= 1; | |
503 | Demod.state = DEMOD_MANCHESTER_E; | |
504 | } else if (Demod.sub == SUB_BOTH) { | |
505 | Demod.state = DEMOD_MANCHESTER_F; | |
506 | } else { | |
507 | Demod.state = DEMOD_ERROR_WAIT; | |
508 | error = 0x55; | |
509 | } | |
510 | break; | |
511 | ||
512 | case DEMOD_MANCHESTER_F: | |
513 | // Tag response does not need to be a complete byte! | |
514 | if (Demod.len > 0 || Demod.bitCount > 0) { | |
515 | if (Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF | |
516 | Demod.shiftReg >>= (9 - Demod.bitCount); // right align data | |
517 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
518 | Demod.len++; | |
519 | } | |
520 | ||
521 | Demod.state = DEMOD_UNSYNCD; | |
522 | return true; | |
523 | } else { | |
524 | Demod.output[Demod.len] = 0xad; | |
525 | Demod.state = DEMOD_ERROR_WAIT; | |
526 | error = 0x03; | |
527 | } | |
528 | break; | |
529 | ||
530 | case DEMOD_ERROR_WAIT: | |
531 | Demod.state = DEMOD_UNSYNCD; | |
532 | break; | |
533 | ||
534 | default: | |
535 | Demod.output[Demod.len] = 0xdd; | |
536 | Demod.state = DEMOD_UNSYNCD; | |
537 | break; | |
538 | } | |
539 | ||
540 | if (Demod.bitCount >= 8) { | |
541 | Demod.shiftReg >>= 1; | |
542 | Demod.output[Demod.len] = (Demod.shiftReg & 0xff); | |
543 | Demod.len++; | |
544 | Demod.bitCount = 0; | |
545 | Demod.shiftReg = 0; | |
546 | } | |
547 | ||
548 | if (error) { | |
549 | Demod.output[Demod.len] = 0xBB; | |
550 | Demod.len++; | |
551 | Demod.output[Demod.len] = error & 0xFF; | |
552 | Demod.len++; | |
553 | Demod.output[Demod.len] = 0xBB; | |
554 | Demod.len++; | |
555 | Demod.output[Demod.len] = bit & 0xFF; | |
556 | Demod.len++; | |
557 | Demod.output[Demod.len] = Demod.buffer & 0xFF; | |
558 | Demod.len++; | |
559 | // Look harder ;-) | |
560 | Demod.output[Demod.len] = Demod.buffer2 & 0xFF; | |
561 | Demod.len++; | |
562 | Demod.output[Demod.len] = Demod.syncBit & 0xFF; | |
563 | Demod.len++; | |
564 | Demod.output[Demod.len] = 0xBB; | |
565 | Demod.len++; | |
566 | return true; | |
567 | } | |
568 | ||
569 | } | |
570 | ||
571 | } // end (state != UNSYNCED) | |
572 | ||
573 | return false; | |
574 | } | |
575 | ||
576 | //============================================================================= | |
577 | // Finally, a `sniffer' for iClass communication | |
578 | // Both sides of communication! | |
579 | //============================================================================= | |
580 | ||
581 | //----------------------------------------------------------------------------- | |
582 | // Record the sequence of commands sent by the reader to the tag, with | |
583 | // triggering so that we start recording at the point that the tag is moved | |
584 | // near the reader. | |
585 | //----------------------------------------------------------------------------- | |
586 | void RAMFUNC SnoopIClass(void) { | |
587 | ||
588 | // We won't start recording the frames that we acquire until we trigger; | |
589 | // a good trigger condition to get started is probably when we see a | |
590 | // response from the tag. | |
591 | //int triggered = false; // false to wait first for card | |
592 | ||
593 | // The command (reader -> tag) that we're receiving. | |
594 | // The length of a received command will in most cases be no more than 18 bytes. | |
595 | // So 32 should be enough! | |
596 | #define ICLASS_BUFFER_SIZE 32 | |
597 | uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE]; | |
598 | // The response (tag -> reader) that we're receiving. | |
599 | uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE]; | |
600 | ||
601 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
602 | ||
603 | // free all BigBuf memory | |
604 | BigBuf_free(); | |
605 | // The DMA buffer, used to stream samples from the FPGA | |
606 | uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); | |
607 | ||
608 | set_tracing(true); | |
609 | clear_trace(); | |
610 | iso14a_set_trigger(false); | |
611 | ||
612 | int lastRxCounter; | |
613 | uint8_t *upTo; | |
614 | int smpl; | |
615 | int maxBehindBy = 0; | |
616 | ||
617 | // Count of samples received so far, so that we can include timing | |
618 | // information in the trace buffer. | |
619 | int samples = 0; | |
620 | rsamples = 0; | |
621 | ||
622 | // Set up the demodulator for tag -> reader responses. | |
623 | Demod.output = tagToReaderResponse; | |
624 | Demod.len = 0; | |
625 | Demod.state = DEMOD_UNSYNCD; | |
626 | ||
627 | // Setup for the DMA. | |
628 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A); | |
629 | upTo = dmaBuf; | |
630 | lastRxCounter = DMA_BUFFER_SIZE; | |
631 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); | |
632 | ||
633 | // And the reader -> tag commands | |
634 | memset(&Uart, 0, sizeof(Uart)); | |
635 | Uart.output = readerToTagCmd; | |
636 | Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// | |
637 | Uart.state = STATE_UNSYNCD; | |
638 | ||
639 | // And put the FPGA in the appropriate mode | |
640 | // Signal field is off with the appropriate LED | |
641 | LED_D_OFF(); | |
642 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); | |
643 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
644 | ||
645 | uint32_t time_0 = GetCountSspClk(); | |
646 | uint32_t time_start = 0; | |
647 | uint32_t time_stop = 0; | |
648 | ||
649 | int div = 0; | |
650 | //int div2 = 0; | |
651 | int decbyte = 0; | |
652 | int decbyter = 0; | |
653 | ||
654 | // And now we loop, receiving samples. | |
655 | for (;;) { | |
656 | LED_A_ON(); | |
657 | WDT_HIT(); | |
658 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1); | |
659 | if (behindBy > maxBehindBy) { | |
660 | maxBehindBy = behindBy; | |
661 | if (behindBy > (9 * DMA_BUFFER_SIZE / 10)) { | |
662 | Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); | |
663 | goto done; | |
664 | } | |
665 | } | |
666 | if (behindBy < 1) continue; | |
667 | ||
668 | LED_A_OFF(); | |
669 | smpl = upTo[0]; | |
670 | upTo++; | |
671 | lastRxCounter -= 1; | |
672 | if (upTo - dmaBuf > DMA_BUFFER_SIZE) { | |
673 | upTo -= DMA_BUFFER_SIZE; | |
674 | lastRxCounter += DMA_BUFFER_SIZE; | |
675 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
676 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; | |
677 | } | |
678 | ||
679 | //samples += 4; | |
680 | samples += 1; | |
681 | ||
682 | if (smpl & 0xF) { | |
683 | decbyte ^= (1 << (3 - div)); | |
684 | } | |
685 | ||
686 | // FOR READER SIDE COMMUMICATION... | |
687 | ||
688 | decbyter <<= 2; | |
689 | decbyter ^= (smpl & 0x30); | |
690 | ||
691 | div++; | |
692 | ||
693 | if ((div + 1) % 2 == 0) { | |
694 | smpl = decbyter; | |
695 | if (OutOfNDecoding((smpl & 0xF0) >> 4)) { | |
696 | rsamples = samples - Uart.samples; | |
697 | time_stop = (GetCountSspClk()-time_0) << 4; | |
698 | ||
699 | //if (!LogTrace(Uart.output, Uart.byteCnt, rsamples, Uart.parityBits,true)) break; | |
700 | //if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break; | |
701 | uint8_t parity[MAX_PARITY_SIZE]; | |
702 | GetParity(Uart.output, Uart.byteCnt, parity); | |
703 | LogTrace_ISO15693(Uart.output, Uart.byteCnt, time_start*32, time_stop*32, parity, true); | |
704 | ||
705 | /* And ready to receive another command. */ | |
706 | Uart.state = STATE_UNSYNCD; | |
707 | /* And also reset the demod code, which might have been */ | |
708 | /* false-triggered by the commands from the reader. */ | |
709 | Demod.state = DEMOD_UNSYNCD; | |
710 | Uart.byteCnt = 0; | |
711 | } else { | |
712 | time_start = (GetCountSspClk()-time_0) << 4; | |
713 | } | |
714 | decbyter = 0; | |
715 | } | |
716 | ||
717 | if (div > 3) { | |
718 | smpl = decbyte; | |
719 | if (ManchesterDecoding(smpl & 0x0F)) { | |
720 | time_stop = (GetCountSspClk()-time_0) << 4; | |
721 | ||
722 | rsamples = samples - Demod.samples; | |
723 | ||
724 | uint8_t parity[MAX_PARITY_SIZE]; | |
725 | GetParity(Demod.output, Demod.len, parity); | |
726 | LogTrace_ISO15693(Demod.output, Demod.len, time_start*32, time_stop*32, parity, false); | |
727 | ||
728 | // And ready to receive another response. | |
729 | memset(&Demod, 0, sizeof(Demod)); | |
730 | Demod.output = tagToReaderResponse; | |
731 | Demod.state = DEMOD_UNSYNCD; | |
732 | } else { | |
733 | time_start = (GetCountSspClk()-time_0) << 4; | |
734 | } | |
735 | ||
736 | div = 0; | |
737 | decbyte = 0x00; | |
738 | } | |
739 | ||
740 | if (BUTTON_PRESS()) { | |
741 | DbpString("cancelled_a"); | |
742 | goto done; | |
743 | } | |
744 | } | |
745 | ||
746 | DbpString("COMMAND FINISHED"); | |
747 | ||
748 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); | |
749 | Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]); | |
750 | ||
751 | done: | |
752 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; | |
753 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); | |
754 | Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]); | |
755 | LEDsoff(); | |
756 | } | |
757 | ||
758 | void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) { | |
759 | int i; | |
760 | for (i = 0; i < 8; i++) { | |
761 | rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5); | |
762 | } | |
763 | } | |
764 | ||
765 | // Encode SOF only | |
766 | static void CodeIClassTagSOF() { | |
767 | ToSendReset(); | |
768 | ToSend[++ToSendMax] = 0x1D; | |
769 | ToSendMax++; | |
770 | } | |
771 | ||
772 | static void AppendCrc(uint8_t *data, int len) { | |
773 | ComputeCrc14443(CRC_ICLASS, data, len, data+len, data+len+1); | |
774 | } | |
775 | ||
776 | ||
777 | /** | |
778 | * @brief Does the actual simulation | |
779 | */ | |
780 | int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) { | |
781 | ||
782 | // free eventually allocated BigBuf memory | |
783 | BigBuf_free_keep_EM(); | |
784 | ||
785 | uint16_t page_size = 32 * 8; | |
786 | uint8_t current_page = 0; | |
787 | ||
788 | // maintain cipher states for both credit and debit key for each page | |
789 | State cipher_state_KC[8]; | |
790 | State cipher_state_KD[8]; | |
791 | State *cipher_state = &cipher_state_KD[0]; | |
792 | ||
793 | uint8_t *emulator = BigBuf_get_EM_addr(); | |
794 | uint8_t *csn = emulator; | |
795 | ||
796 | // CSN followed by two CRC bytes | |
797 | uint8_t anticoll_data[10]; | |
798 | uint8_t csn_data[10]; | |
799 | memcpy(csn_data, csn, sizeof(csn_data)); | |
800 | Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x", csn[0], csn[1], csn[2], csn[3], csn[4], csn[5], csn[6], csn[7]); | |
801 | ||
802 | // Construct anticollision-CSN | |
803 | rotateCSN(csn_data, anticoll_data); | |
804 | ||
805 | // Compute CRC on both CSNs | |
806 | AppendCrc(anticoll_data, 8); | |
807 | AppendCrc(csn_data, 8); | |
808 | ||
809 | uint8_t diversified_key_d[8] = { 0x00 }; | |
810 | uint8_t diversified_key_c[8] = { 0x00 }; | |
811 | uint8_t *diversified_key = diversified_key_d; | |
812 | ||
813 | // configuration block | |
814 | uint8_t conf_block[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00}; | |
815 | ||
816 | // e-Purse | |
817 | uint8_t card_challenge_data[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; | |
818 | ||
819 | if (simulationMode == ICLASS_SIM_MODE_FULL) { | |
820 | // initialize from page 0 | |
821 | memcpy(conf_block, emulator + 8 * 1, 8); | |
822 | memcpy(card_challenge_data, emulator + 8 * 2, 8); // e-purse | |
823 | memcpy(diversified_key_d, emulator + 8 * 3, 8); // Kd | |
824 | memcpy(diversified_key_c, emulator + 8 * 4, 8); // Kc | |
825 | } | |
826 | ||
827 | AppendCrc(conf_block, 8); | |
828 | ||
829 | // save card challenge for sim2,4 attack | |
830 | if (reader_mac_buf != NULL) { | |
831 | memcpy(reader_mac_buf, card_challenge_data, 8); | |
832 | } | |
833 | ||
834 | if (conf_block[5] & 0x80) { | |
835 | page_size = 256 * 8; | |
836 | } | |
837 | ||
838 | // From PicoPass DS: | |
839 | // When the page is in personalization mode this bit is equal to 1. | |
840 | // Once the application issuer has personalized and coded its dedicated areas, this bit must be set to 0: | |
841 | // the page is then "in application mode". | |
842 | bool personalization_mode = conf_block[7] & 0x80; | |
843 | ||
844 | // chip memory may be divided in 8 pages | |
845 | uint8_t max_page = conf_block[4] & 0x10 ? 0 : 7; | |
846 | ||
847 | // Precalculate the cipher states, feeding it the CC | |
848 | cipher_state_KD[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_d); | |
849 | cipher_state_KC[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_c); | |
850 | if (simulationMode == ICLASS_SIM_MODE_FULL) { | |
851 | for (int i = 1; i < max_page; i++) { | |
852 | uint8_t *epurse = emulator + i*page_size + 8*2; | |
853 | uint8_t *Kd = emulator + i*page_size + 8*3; | |
854 | uint8_t *Kc = emulator + i*page_size + 8*4; | |
855 | cipher_state_KD[i] = opt_doTagMAC_1(epurse, Kd); | |
856 | cipher_state_KC[i] = opt_doTagMAC_1(epurse, Kc); | |
857 | } | |
858 | } | |
859 | ||
860 | int exitLoop = 0; | |
861 | // Reader 0a | |
862 | // Tag 0f | |
863 | // Reader 0c | |
864 | // Tag anticoll. CSN | |
865 | // Reader 81 anticoll. CSN | |
866 | // Tag CSN | |
867 | ||
868 | uint8_t *modulated_response; | |
869 | int modulated_response_size = 0; | |
870 | uint8_t *trace_data = NULL; | |
871 | int trace_data_size = 0; | |
872 | ||
873 | // Respond SOF -- takes 1 bytes | |
874 | uint8_t *resp_sof = BigBuf_malloc(1); | |
875 | int resp_sof_Len; | |
876 | ||
877 | // Anticollision CSN (rotated CSN) | |
878 | // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) | |
879 | uint8_t *resp_anticoll = BigBuf_malloc(22); | |
880 | int resp_anticoll_len; | |
881 | ||
882 | // CSN (block 0) | |
883 | // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) | |
884 | uint8_t *resp_csn = BigBuf_malloc(22); | |
885 | int resp_csn_len; | |
886 | ||
887 | // configuration (block 1) picopass 2ks | |
888 | uint8_t *resp_conf = BigBuf_malloc(22); | |
889 | int resp_conf_len; | |
890 | ||
891 | // e-Purse (block 2) | |
892 | // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit) | |
893 | uint8_t *resp_cc = BigBuf_malloc(18); | |
894 | int resp_cc_len; | |
895 | ||
896 | // Kd, Kc (blocks 3 and 4). Cannot be read. Always respond with 0xff bytes only | |
897 | uint8_t *resp_ff = BigBuf_malloc(22); | |
898 | int resp_ff_len; | |
899 | uint8_t ff_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00}; | |
900 | AppendCrc(ff_data, 8); | |
901 | ||
902 | // Application Issuer Area (block 5) | |
903 | uint8_t *resp_aia = BigBuf_malloc(22); | |
904 | int resp_aia_len; | |
905 | uint8_t aia_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00}; | |
906 | AppendCrc(aia_data, 8); | |
907 | ||
908 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); | |
909 | int len; | |
910 | ||
911 | // Prepare card messages | |
912 | ||
913 | // First card answer: SOF only | |
914 | CodeIClassTagSOF(); | |
915 | memcpy(resp_sof, ToSend, ToSendMax); | |
916 | resp_sof_Len = ToSendMax; | |
917 | ||
918 | // Anticollision CSN | |
919 | CodeIso15693AsTag(anticoll_data, sizeof(anticoll_data)); | |
920 | memcpy(resp_anticoll, ToSend, ToSendMax); | |
921 | resp_anticoll_len = ToSendMax; | |
922 | ||
923 | // CSN (block 0) | |
924 | CodeIso15693AsTag(csn_data, sizeof(csn_data)); | |
925 | memcpy(resp_csn, ToSend, ToSendMax); | |
926 | resp_csn_len = ToSendMax; | |
927 | ||
928 | // Configuration (block 1) | |
929 | CodeIso15693AsTag(conf_block, sizeof(conf_block)); | |
930 | memcpy(resp_conf, ToSend, ToSendMax); | |
931 | resp_conf_len = ToSendMax; | |
932 | ||
933 | // e-Purse (block 2) | |
934 | CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data)); | |
935 | memcpy(resp_cc, ToSend, ToSendMax); | |
936 | resp_cc_len = ToSendMax; | |
937 | ||
938 | // Kd, Kc (blocks 3 and 4) | |
939 | CodeIso15693AsTag(ff_data, sizeof(ff_data)); | |
940 | memcpy(resp_ff, ToSend, ToSendMax); | |
941 | resp_ff_len = ToSendMax; | |
942 | ||
943 | // Application Issuer Area (block 5) | |
944 | CodeIso15693AsTag(aia_data, sizeof(aia_data)); | |
945 | memcpy(resp_aia, ToSend, ToSendMax); | |
946 | resp_aia_len = ToSendMax; | |
947 | ||
948 | //This is used for responding to READ-block commands or other data which is dynamically generated | |
949 | uint8_t *data_generic_trace = BigBuf_malloc(32 + 2); // 32 bytes data + 2byte CRC is max tag answer | |
950 | uint8_t *data_response = BigBuf_malloc( (32 + 2) * 2 + 2); | |
951 | ||
952 | bool buttonPressed = false; | |
953 | enum { IDLE, ACTIVATED, SELECTED, HALTED } chip_state = IDLE; | |
954 | ||
955 | while (!exitLoop) { | |
956 | WDT_HIT(); | |
957 | ||
958 | uint32_t reader_eof_time = 0; | |
959 | len = GetIso15693CommandFromReader(receivedCmd, MAX_FRAME_SIZE, &reader_eof_time); | |
960 | if (len < 0) { | |
961 | buttonPressed = true; | |
962 | break; | |
963 | } | |
964 | ||
965 | // Now look at the reader command and provide appropriate responses | |
966 | // default is no response: | |
967 | modulated_response = NULL; | |
968 | modulated_response_size = 0; | |
969 | trace_data = NULL; | |
970 | trace_data_size = 0; | |
971 | ||
972 | if (receivedCmd[0] == ICLASS_CMD_ACTALL && len == 1) { | |
973 | // Reader in anticollision phase | |
974 | if (chip_state != HALTED) { | |
975 | modulated_response = resp_sof; | |
976 | modulated_response_size = resp_sof_Len; | |
977 | chip_state = ACTIVATED; | |
978 | } | |
979 | ||
980 | } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { // identify | |
981 | // Reader asks for anticollision CSN | |
982 | if (chip_state == SELECTED || chip_state == ACTIVATED) { | |
983 | modulated_response = resp_anticoll; | |
984 | modulated_response_size = resp_anticoll_len; | |
985 | trace_data = anticoll_data; | |
986 | trace_data_size = sizeof(anticoll_data); | |
987 | } | |
988 | ||
989 | } else if (receivedCmd[0] == ICLASS_CMD_SELECT && len == 9) { | |
990 | // Reader selects anticollision CSN. | |
991 | // Tag sends the corresponding real CSN | |
992 | if (chip_state == ACTIVATED || chip_state == SELECTED) { | |
993 | if (!memcmp(receivedCmd+1, anticoll_data, 8)) { | |
994 | modulated_response = resp_csn; | |
995 | modulated_response_size = resp_csn_len; | |
996 | trace_data = csn_data; | |
997 | trace_data_size = sizeof(csn_data); | |
998 | chip_state = SELECTED; | |
999 | } else { | |
1000 | chip_state = IDLE; | |
1001 | } | |
1002 | } else if (chip_state == HALTED) { | |
1003 | // RESELECT with CSN | |
1004 | if (!memcmp(receivedCmd+1, csn_data, 8)) { | |
1005 | modulated_response = resp_csn; | |
1006 | modulated_response_size = resp_csn_len; | |
1007 | trace_data = csn_data; | |
1008 | trace_data_size = sizeof(csn_data); | |
1009 | chip_state = SELECTED; | |
1010 | } | |
1011 | } | |
1012 | ||
1013 | } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4) { // read block | |
1014 | uint16_t blockNo = receivedCmd[1]; | |
1015 | if (chip_state == SELECTED) { | |
1016 | if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) { | |
1017 | // provide defaults for blocks 0 ... 5 | |
1018 | switch (blockNo) { | |
1019 | case 0: // csn (block 00) | |
1020 | modulated_response = resp_csn; | |
1021 | modulated_response_size = resp_csn_len; | |
1022 | trace_data = csn_data; | |
1023 | trace_data_size = sizeof(csn_data); | |
1024 | break; | |
1025 | case 1: // configuration (block 01) | |
1026 | modulated_response = resp_conf; | |
1027 | modulated_response_size = resp_conf_len; | |
1028 | trace_data = conf_block; | |
1029 | trace_data_size = sizeof(conf_block); | |
1030 | break; | |
1031 | case 2: // e-purse (block 02) | |
1032 | modulated_response = resp_cc; | |
1033 | modulated_response_size = resp_cc_len; | |
1034 | trace_data = card_challenge_data; | |
1035 | trace_data_size = sizeof(card_challenge_data); | |
1036 | // set epurse of sim2,4 attack | |
1037 | if (reader_mac_buf != NULL) { | |
1038 | memcpy(reader_mac_buf, card_challenge_data, 8); | |
1039 | } | |
1040 | break; | |
1041 | case 3: | |
1042 | case 4: // Kd, Kc, always respond with 0xff bytes | |
1043 | modulated_response = resp_ff; | |
1044 | modulated_response_size = resp_ff_len; | |
1045 | trace_data = ff_data; | |
1046 | trace_data_size = sizeof(ff_data); | |
1047 | break; | |
1048 | case 5: // Application Issuer Area (block 05) | |
1049 | modulated_response = resp_aia; | |
1050 | modulated_response_size = resp_aia_len; | |
1051 | trace_data = aia_data; | |
1052 | trace_data_size = sizeof(aia_data); | |
1053 | break; | |
1054 | // default: don't respond | |
1055 | } | |
1056 | } else if (simulationMode == ICLASS_SIM_MODE_FULL) { | |
1057 | if (blockNo == 3 || blockNo == 4) { // Kd, Kc, always respond with 0xff bytes | |
1058 | modulated_response = resp_ff; | |
1059 | modulated_response_size = resp_ff_len; | |
1060 | trace_data = ff_data; | |
1061 | trace_data_size = sizeof(ff_data); | |
1062 | } else { // use data from emulator memory | |
1063 | memcpy(data_generic_trace, emulator + current_page*page_size + 8*blockNo, 8); | |
1064 | AppendCrc(data_generic_trace, 8); | |
1065 | trace_data = data_generic_trace; | |
1066 | trace_data_size = 10; | |
1067 | CodeIso15693AsTag(trace_data, trace_data_size); | |
1068 | memcpy(data_response, ToSend, ToSendMax); | |
1069 | modulated_response = data_response; | |
1070 | modulated_response_size = ToSendMax; | |
1071 | } | |
1072 | } | |
1073 | } | |
1074 | ||
1075 | } else if ((receivedCmd[0] == ICLASS_CMD_READCHECK_KD | |
1076 | || receivedCmd[0] == ICLASS_CMD_READCHECK_KC) && receivedCmd[1] == 0x02 && len == 2) { | |
1077 | // Read e-purse (88 02 || 18 02) | |
1078 | if (chip_state == SELECTED) { | |
1079 | if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD){ | |
1080 | cipher_state = &cipher_state_KD[current_page]; | |
1081 | diversified_key = diversified_key_d; | |
1082 | } else { | |
1083 | cipher_state = &cipher_state_KC[current_page]; | |
1084 | diversified_key = diversified_key_c; | |
1085 | } | |
1086 | modulated_response = resp_cc; | |
1087 | modulated_response_size = resp_cc_len; | |
1088 | trace_data = card_challenge_data; | |
1089 | trace_data_size = sizeof(card_challenge_data); | |
1090 | } | |
1091 | ||
1092 | } else if ((receivedCmd[0] == ICLASS_CMD_CHECK_KC | |
1093 | || receivedCmd[0] == ICLASS_CMD_CHECK_KD) && len == 9) { | |
1094 | // Reader random and reader MAC!!! | |
1095 | if (chip_state == SELECTED) { | |
1096 | if (simulationMode == ICLASS_SIM_MODE_FULL) { | |
1097 | //NR, from reader, is in receivedCmd+1 | |
1098 | opt_doTagMAC_2(*cipher_state, receivedCmd+1, data_generic_trace, diversified_key); | |
1099 | trace_data = data_generic_trace; | |
1100 | trace_data_size = 4; | |
1101 | CodeIso15693AsTag(trace_data, trace_data_size); | |
1102 | memcpy(data_response, ToSend, ToSendMax); | |
1103 | modulated_response = data_response; | |
1104 | modulated_response_size = ToSendMax; | |
1105 | //exitLoop = true; | |
1106 | } else { // Not fullsim, we don't respond | |
1107 | // We do not know what to answer, so lets keep quiet | |
1108 | if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) { | |
1109 | if (reader_mac_buf != NULL) { | |
1110 | // save NR and MAC for sim 2,4 | |
1111 | memcpy(reader_mac_buf + 8, receivedCmd + 1, 8); | |
1112 | } | |
1113 | exitLoop = true; | |
1114 | } | |
1115 | } | |
1116 | } | |
1117 | ||
1118 | } else if (receivedCmd[0] == ICLASS_CMD_HALT && len == 1) { | |
1119 | if (chip_state == SELECTED) { | |
1120 | // Reader ends the session | |
1121 | modulated_response = resp_sof; | |
1122 | modulated_response_size = resp_sof_Len; | |
1123 | chip_state = HALTED; | |
1124 | } | |
1125 | ||
1126 | } else if (simulationMode == ICLASS_SIM_MODE_FULL && receivedCmd[0] == ICLASS_CMD_READ4 && len == 4) { // 0x06 | |
1127 | //Read 4 blocks | |
1128 | if (chip_state == SELECTED) { | |
1129 | uint8_t blockNo = receivedCmd[1]; | |
1130 | memcpy(data_generic_trace, emulator + current_page*page_size + blockNo*8, 8 * 4); | |
1131 | AppendCrc(data_generic_trace, 8 * 4); | |
1132 | trace_data = data_generic_trace; | |
1133 | trace_data_size = 8 * 4 + 2; | |
1134 | CodeIso15693AsTag(trace_data, trace_data_size); | |
1135 | memcpy(data_response, ToSend, ToSendMax); | |
1136 | modulated_response = data_response; | |
1137 | modulated_response_size = ToSendMax; | |
1138 | } | |
1139 | ||
1140 | } else if (receivedCmd[0] == ICLASS_CMD_UPDATE && (len == 12 || len == 14)) { | |
1141 | // We're expected to respond with the data+crc, exactly what's already in the receivedCmd | |
1142 | // receivedCmd is now UPDATE 1b | ADDRESS 1b | DATA 8b | Signature 4b or CRC 2b | |
1143 | if (chip_state == SELECTED) { | |
1144 | uint8_t blockNo = receivedCmd[1]; | |
1145 | if (blockNo == 2) { // update e-purse | |
1146 | memcpy(card_challenge_data, receivedCmd+2, 8); | |
1147 | CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data)); | |
1148 | memcpy(resp_cc, ToSend, ToSendMax); | |
1149 | resp_cc_len = ToSendMax; | |
1150 | cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d); | |
1151 | cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c); | |
1152 | if (simulationMode == ICLASS_SIM_MODE_FULL) { | |
1153 | memcpy(emulator + current_page*page_size + 8*2, card_challenge_data, 8); | |
1154 | } | |
1155 | } else if (blockNo == 3) { // update Kd | |
1156 | for (int i = 0; i < 8; i++) { | |
1157 | if (personalization_mode) { | |
1158 | diversified_key_d[i] = receivedCmd[2 + i]; | |
1159 | } else { | |
1160 | diversified_key_d[i] ^= receivedCmd[2 + i]; | |
1161 | } | |
1162 | } | |
1163 | cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d); | |
1164 | if (simulationMode == ICLASS_SIM_MODE_FULL) { | |
1165 | memcpy(emulator + current_page*page_size + 8*3, diversified_key_d, 8); | |
1166 | } | |
1167 | } else if (blockNo == 4) { // update Kc | |
1168 | for (int i = 0; i < 8; i++) { | |
1169 | if (personalization_mode) { | |
1170 | diversified_key_c[i] = receivedCmd[2 + i]; | |
1171 | } else { | |
1172 | diversified_key_c[i] ^= receivedCmd[2 + i]; | |
1173 | } | |
1174 | } | |
1175 | cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c); | |
1176 | if (simulationMode == ICLASS_SIM_MODE_FULL) { | |
1177 | memcpy(emulator + current_page*page_size + 8*4, diversified_key_c, 8); | |
1178 | } | |
1179 | } else if (simulationMode == ICLASS_SIM_MODE_FULL) { // update any other data block | |
1180 | memcpy(emulator + current_page*page_size + 8*blockNo, receivedCmd+2, 8); | |
1181 | } | |
1182 | memcpy(data_generic_trace, receivedCmd + 2, 8); | |
1183 | AppendCrc(data_generic_trace, 8); | |
1184 | trace_data = data_generic_trace; | |
1185 | trace_data_size = 10; | |
1186 | CodeIso15693AsTag(trace_data, trace_data_size); | |
1187 | memcpy(data_response, ToSend, ToSendMax); | |
1188 | modulated_response = data_response; | |
1189 | modulated_response_size = ToSendMax; | |
1190 | } | |
1191 | ||
1192 | } else if (receivedCmd[0] == ICLASS_CMD_PAGESEL && len == 4) { | |
1193 | // Pagesel | |
1194 | // Chips with a single page will not answer to this command | |
1195 | // Otherwise, we should answer 8bytes (conf block 1) + 2bytes CRC | |
1196 | if (chip_state == SELECTED) { | |
1197 | if (simulationMode == ICLASS_SIM_MODE_FULL && max_page > 0) { | |
1198 | current_page = receivedCmd[1]; | |
1199 | memcpy(data_generic_trace, emulator + current_page*page_size + 8*1, 8); | |
1200 | memcpy(diversified_key_d, emulator + current_page*page_size + 8*3, 8); | |
1201 | memcpy(diversified_key_c, emulator + current_page*page_size + 8*4, 8); | |
1202 | cipher_state = &cipher_state_KD[current_page]; | |
1203 | personalization_mode = data_generic_trace[7] & 0x80; | |
1204 | AppendCrc(data_generic_trace, 8); | |
1205 | trace_data = data_generic_trace; | |
1206 | trace_data_size = 10; | |
1207 | CodeIso15693AsTag(trace_data, trace_data_size); | |
1208 | memcpy(data_response, ToSend, ToSendMax); | |
1209 | modulated_response = data_response; | |
1210 | modulated_response_size = ToSendMax; | |
1211 | } | |
1212 | } | |
1213 | ||
1214 | } else if (receivedCmd[0] == 0x26 && len == 5) { | |
1215 | // standard ISO15693 INVENTORY command. Ignore. | |
1216 | ||
1217 | } else { | |
1218 | // don't know how to handle this command | |
1219 | char debug_message[250]; // should be enough | |
1220 | sprintf(debug_message, "Unhandled command (len = %d) received from reader:", len); | |
1221 | for (int i = 0; i < len && strlen(debug_message) < sizeof(debug_message) - 3 - 1; i++) { | |
1222 | sprintf(debug_message + strlen(debug_message), " %02x", receivedCmd[i]); | |
1223 | } | |
1224 | Dbprintf("%s", debug_message); | |
1225 | // Do not respond | |
1226 | } | |
1227 | ||
1228 | /** | |
1229 | A legit tag has about 273,4us delay between reader EOT and tag SOF. | |
1230 | **/ | |
1231 | if (modulated_response_size > 0) { | |
1232 | uint32_t response_time = reader_eof_time + DELAY_ICLASS_VCD_TO_VICC_SIM; | |
1233 | TransmitTo15693Reader(modulated_response, modulated_response_size, &response_time, 0, false); | |
1234 | LogTrace_ISO15693(trace_data, trace_data_size, response_time*32, response_time*32 + modulated_response_size/2, NULL, false); | |
1235 | } | |
1236 | ||
1237 | } | |
1238 | ||
1239 | if (buttonPressed) | |
1240 | { | |
1241 | DbpString("Button pressed"); | |
1242 | } | |
1243 | return buttonPressed; | |
1244 | } | |
1245 | ||
1246 | /** | |
1247 | * @brief SimulateIClass simulates an iClass card. | |
1248 | * @param arg0 type of simulation | |
1249 | * - 0 uses the first 8 bytes in usb data as CSN | |
1250 | * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified | |
1251 | * in the usb data. This mode collects MAC from the reader, in order to do an offline | |
1252 | * attack on the keys. For more info, see "dismantling iclass" and proxclone.com. | |
1253 | * - Other : Uses the default CSN (031fec8af7ff12e0) | |
1254 | * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only) | |
1255 | * @param arg2 | |
1256 | * @param datain | |
1257 | */ | |
1258 | void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) { | |
1259 | ||
1260 | LED_A_ON(); | |
1261 | ||
1262 | uint32_t simType = arg0; | |
1263 | uint32_t numberOfCSNS = arg1; | |
1264 | ||
1265 | // setup hardware for simulation: | |
1266 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1267 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1268 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); | |
1269 | LED_D_OFF(); | |
1270 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR); | |
1271 | StartCountSspClk(); | |
1272 | ||
1273 | // Enable and clear the trace | |
1274 | set_tracing(true); | |
1275 | clear_trace(); | |
1276 | //Use the emulator memory for SIM | |
1277 | uint8_t *emulator = BigBuf_get_EM_addr(); | |
1278 | ||
1279 | if (simType == ICLASS_SIM_MODE_CSN) { | |
1280 | // Use the CSN from commandline | |
1281 | memcpy(emulator, datain, 8); | |
1282 | doIClassSimulation(ICLASS_SIM_MODE_CSN, NULL); | |
1283 | } else if (simType == ICLASS_SIM_MODE_CSN_DEFAULT) { | |
1284 | //Default CSN | |
1285 | uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; | |
1286 | // Use the CSN from commandline | |
1287 | memcpy(emulator, csn_crc, 8); | |
1288 | doIClassSimulation(ICLASS_SIM_MODE_CSN, NULL); | |
1289 | } else if (simType == ICLASS_SIM_MODE_READER_ATTACK) { | |
1290 | uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 }; | |
1291 | Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS); | |
1292 | // In this mode, a number of csns are within datain. We'll simulate each one, one at a time | |
1293 | // in order to collect MAC's from the reader. This can later be used in an offline-attack | |
1294 | // in order to obtain the keys, as in the "dismantling iclass"-paper. | |
1295 | int i; | |
1296 | for (i = 0; i < numberOfCSNS && i*16+16 <= USB_CMD_DATA_SIZE; i++) { | |
1297 | // The usb data is 512 bytes, fitting 32 responses (8 byte CC + 4 Byte NR + 4 Byte MAC = 16 Byte response). | |
1298 | memcpy(emulator, datain+(i*8), 8); | |
1299 | if (doIClassSimulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC, mac_responses+i*16)) { | |
1300 | // Button pressed | |
1301 | break; | |
1302 | } | |
1303 | Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x", | |
1304 | datain[i*8+0], datain[i*8+1], datain[i*8+2], datain[i*8+3], | |
1305 | datain[i*8+4], datain[i*8+5], datain[i*8+6], datain[i*8+7]); | |
1306 | Dbprintf("NR,MAC: %02x %02x %02x %02x %02x %02x %02x %02x", | |
1307 | mac_responses[i*16+ 8], mac_responses[i*16+ 9], mac_responses[i*16+10], mac_responses[i*16+11], | |
1308 | mac_responses[i*16+12], mac_responses[i*16+13], mac_responses[i*16+14], mac_responses[i*16+15]); | |
1309 | SpinDelay(100); // give the reader some time to prepare for next CSN | |
1310 | } | |
1311 | cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i, 0, mac_responses, i*16); | |
1312 | } else if (simType == ICLASS_SIM_MODE_FULL) { | |
1313 | //This is 'full sim' mode, where we use the emulator storage for data. | |
1314 | doIClassSimulation(ICLASS_SIM_MODE_FULL, NULL); | |
1315 | } else { | |
1316 | // We may want a mode here where we hardcode the csns to use (from proxclone). | |
1317 | // That will speed things up a little, but not required just yet. | |
1318 | Dbprintf("The mode is not implemented, reserved for future use"); | |
1319 | } | |
1320 | ||
1321 | Dbprintf("Done..."); | |
1322 | ||
1323 | LED_A_OFF(); | |
1324 | } | |
1325 | ||
1326 | ||
1327 | /// THE READER CODE | |
1328 | ||
1329 | static void ReaderTransmitIClass(uint8_t *frame, int len, uint32_t *start_time) { | |
1330 | ||
1331 | CodeIso15693AsReader(frame, len); | |
1332 | ||
1333 | TransmitTo15693Tag(ToSend, ToSendMax, start_time); | |
1334 | ||
1335 | uint32_t end_time = *start_time + 32*(8*ToSendMax-4); // substract the 4 padding bits after EOF | |
1336 | LogTrace_ISO15693(frame, len, *start_time*4, end_time*4, NULL, true); | |
1337 | } | |
1338 | ||
1339 | ||
1340 | static bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, size_t max_resp_size, | |
1341 | uint8_t expected_size, uint8_t retries, uint32_t start_time, uint32_t *eof_time) { | |
1342 | while (retries-- > 0) { | |
1343 | ReaderTransmitIClass(command, cmdsize, &start_time); | |
1344 | if (expected_size == GetIso15693AnswerFromTag(resp, max_resp_size, ICLASS_READER_TIMEOUT_OTHERS, eof_time)) { | |
1345 | return true; | |
1346 | } | |
1347 | } | |
1348 | return false;//Error | |
1349 | } | |
1350 | ||
1351 | /** | |
1352 | * @brief Selects an iclass tag | |
1353 | * @param card_data where the CSN is stored for return | |
1354 | * @return false = fail | |
1355 | * true = success | |
1356 | */ | |
1357 | static bool selectIclassTag(uint8_t *card_data, uint32_t *eof_time) { | |
1358 | uint8_t act_all[] = { 0x0a }; | |
1359 | uint8_t identify[] = { 0x0c }; | |
1360 | uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1361 | ||
1362 | uint8_t resp[ICLASS_BUFFER_SIZE]; | |
1363 | ||
1364 | uint32_t start_time = GetCountSspClk(); | |
1365 | ||
1366 | // Send act_all | |
1367 | ReaderTransmitIClass(act_all, 1, &start_time); | |
1368 | // Card present? | |
1369 | if (GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_ACTALL, eof_time) < 0) return false;//Fail | |
1370 | ||
1371 | //Send Identify | |
1372 | start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; | |
1373 | ReaderTransmitIClass(identify, 1, &start_time); | |
1374 | //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC | |
1375 | uint8_t len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time); | |
1376 | if (len != 10) return false;//Fail | |
1377 | ||
1378 | //Copy the Anti-collision CSN to our select-packet | |
1379 | memcpy(&select[1], resp, 8); | |
1380 | //Select the card | |
1381 | start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; | |
1382 | ReaderTransmitIClass(select, sizeof(select), &start_time); | |
1383 | //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC | |
1384 | len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time); | |
1385 | if (len != 10) return false;//Fail | |
1386 | ||
1387 | //Success - we got CSN | |
1388 | //Save CSN in response data | |
1389 | memcpy(card_data, resp, 8); | |
1390 | ||
1391 | return true; | |
1392 | } | |
1393 | ||
1394 | ||
1395 | // Select an iClass tag and read all blocks which are always readable without authentication | |
1396 | void ReaderIClass(uint8_t arg0) { | |
1397 | ||
1398 | LED_A_ON(); | |
1399 | ||
1400 | uint8_t card_data[6 * 8] = {0}; | |
1401 | memset(card_data, 0xFF, sizeof(card_data)); | |
1402 | uint8_t resp[ICLASS_BUFFER_SIZE]; | |
1403 | //Read conf block CRC(0x01) => 0xfa 0x22 | |
1404 | uint8_t readConf[] = {ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22}; | |
1405 | //Read e-purse block CRC(0x02) => 0x61 0x10 | |
1406 | uint8_t readEpurse[] = {ICLASS_CMD_READ_OR_IDENTIFY, 0x02, 0x61, 0x10}; | |
1407 | //Read App Issuer Area block CRC(0x05) => 0xde 0x64 | |
1408 | uint8_t readAA[] = {ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64}; | |
1409 | ||
1410 | uint8_t result_status = 0; | |
1411 | ||
1412 | // test flags for what blocks to be sure to read | |
1413 | uint8_t flagReadConfig = arg0 & FLAG_ICLASS_READER_CONF; | |
1414 | uint8_t flagReadCC = arg0 & FLAG_ICLASS_READER_CC; | |
1415 | uint8_t flagReadAA = arg0 & FLAG_ICLASS_READER_AA; | |
1416 | ||
1417 | set_tracing(true); | |
1418 | clear_trace(); | |
1419 | Iso15693InitReader(); | |
1420 | ||
1421 | StartCountSspClk(); | |
1422 | uint32_t start_time = 0; | |
1423 | uint32_t eof_time = 0; | |
1424 | ||
1425 | if (selectIclassTag(resp, &eof_time)) { | |
1426 | result_status = FLAG_ICLASS_READER_CSN; | |
1427 | memcpy(card_data, resp, 8); | |
1428 | } | |
1429 | ||
1430 | start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; | |
1431 | ||
1432 | //Read block 1, config | |
1433 | if (flagReadConfig) { | |
1434 | if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, sizeof(resp), 10, 10, start_time, &eof_time)) { | |
1435 | result_status |= FLAG_ICLASS_READER_CONF; | |
1436 | memcpy(card_data+8, resp, 8); | |
1437 | } else { | |
1438 | Dbprintf("Failed to read config block"); | |
1439 | } | |
1440 | start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; | |
1441 | } | |
1442 | ||
1443 | //Read block 2, e-purse | |
1444 | if (flagReadCC) { | |
1445 | if (sendCmdGetResponseWithRetries(readEpurse, sizeof(readEpurse), resp, sizeof(resp), 10, 10, start_time, &eof_time)) { | |
1446 | result_status |= FLAG_ICLASS_READER_CC; | |
1447 | memcpy(card_data + (8*2), resp, 8); | |
1448 | } else { | |
1449 | Dbprintf("Failed to read e-purse"); | |
1450 | } | |
1451 | start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; | |
1452 | } | |
1453 | ||
1454 | //Read block 5, AA | |
1455 | if (flagReadAA) { | |
1456 | if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, sizeof(resp), 10, 10, start_time, &eof_time)) { | |
1457 | result_status |= FLAG_ICLASS_READER_AA; | |
1458 | memcpy(card_data + (8*5), resp, 8); | |
1459 | } else { | |
1460 | Dbprintf("Failed to read AA block"); | |
1461 | } | |
1462 | } | |
1463 | ||
1464 | cmd_send(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data)); | |
1465 | ||
1466 | LED_A_OFF(); | |
1467 | } | |
1468 | ||
1469 | ||
1470 | void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) { | |
1471 | ||
1472 | LED_A_ON(); | |
1473 | ||
1474 | bool use_credit_key = false; | |
1475 | uint8_t card_data[USB_CMD_DATA_SIZE]={0}; | |
1476 | uint16_t block_crc_LUT[255] = {0}; | |
1477 | ||
1478 | //Generate a lookup table for block crc | |
1479 | for (int block = 0; block < 255; block++){ | |
1480 | char bl = block; | |
1481 | block_crc_LUT[block] = iclass_crc16(&bl ,1); | |
1482 | } | |
1483 | //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]); | |
1484 | ||
1485 | uint8_t readcheck_cc[] = { ICLASS_CMD_READCHECK_KD, 0x02 }; | |
1486 | if (use_credit_key) | |
1487 | readcheck_cc[0] = ICLASS_CMD_READCHECK_KC; | |
1488 | uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1489 | uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 }; | |
1490 | ||
1491 | uint16_t crc = 0; | |
1492 | uint8_t cardsize = 0; | |
1493 | uint8_t mem = 0; | |
1494 | ||
1495 | static struct memory_t { | |
1496 | int k16; | |
1497 | int book; | |
1498 | int k2; | |
1499 | int lockauth; | |
1500 | int keyaccess; | |
1501 | } memory; | |
1502 | ||
1503 | uint8_t resp[ICLASS_BUFFER_SIZE]; | |
1504 | ||
1505 | set_tracing(true); | |
1506 | clear_trace(); | |
1507 | Iso15693InitReader(); | |
1508 | ||
1509 | StartCountSspClk(); | |
1510 | uint32_t start_time = 0; | |
1511 | uint32_t eof_time = 0; | |
1512 | ||
1513 | while (!BUTTON_PRESS()) { | |
1514 | ||
1515 | WDT_HIT(); | |
1516 | ||
1517 | if (!get_tracing()) { | |
1518 | DbpString("Trace full"); | |
1519 | break; | |
1520 | } | |
1521 | ||
1522 | if (!selectIclassTag(card_data, &eof_time)) continue; | |
1523 | ||
1524 | start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; | |
1525 | if (!sendCmdGetResponseWithRetries(readcheck_cc, sizeof(readcheck_cc), resp, sizeof(resp), 8, 3, start_time, &eof_time)) continue; | |
1526 | ||
1527 | // replay captured auth (cc must not have been updated) | |
1528 | memcpy(check+5, MAC, 4); | |
1529 | ||
1530 | start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; | |
1531 | if (!sendCmdGetResponseWithRetries(check, sizeof(check), resp, sizeof(resp), 4, 5, start_time, &eof_time)) { | |
1532 | Dbprintf("Error: Authentication Fail!"); | |
1533 | continue; | |
1534 | } | |
1535 | ||
1536 | //first get configuration block (block 1) | |
1537 | crc = block_crc_LUT[1]; | |
1538 | read[1] = 1; | |
1539 | read[2] = crc >> 8; | |
1540 | read[3] = crc & 0xff; | |
1541 | ||
1542 | start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; | |
1543 | if (!sendCmdGetResponseWithRetries(read, sizeof(read), resp, sizeof(resp), 10, 10, start_time, &eof_time)) { | |
1544 | start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; | |
1545 | Dbprintf("Dump config (block 1) failed"); | |
1546 | continue; | |
1547 | } | |
1548 | ||
1549 | mem = resp[5]; | |
1550 | memory.k16 = (mem & 0x80); | |
1551 | memory.book = (mem & 0x20); | |
1552 | memory.k2 = (mem & 0x8); | |
1553 | memory.lockauth = (mem & 0x2); | |
1554 | memory.keyaccess = (mem & 0x1); | |
1555 | ||
1556 | cardsize = memory.k16 ? 255 : 32; | |
1557 | WDT_HIT(); | |
1558 | //Set card_data to all zeroes, we'll fill it with data | |
1559 | memset(card_data, 0x0, USB_CMD_DATA_SIZE); | |
1560 | uint8_t failedRead = 0; | |
1561 | uint32_t stored_data_length = 0; | |
1562 | //then loop around remaining blocks | |
1563 | for (int block = 0; block < cardsize; block++) { | |
1564 | read[1] = block; | |
1565 | crc = block_crc_LUT[block]; | |
1566 | read[2] = crc >> 8; | |
1567 | read[3] = crc & 0xff; | |
1568 | ||
1569 | start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; | |
1570 | if (sendCmdGetResponseWithRetries(read, sizeof(read), resp, sizeof(resp), 10, 10, start_time, &eof_time)) { | |
1571 | Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x", | |
1572 | block, resp[0], resp[1], resp[2], | |
1573 | resp[3], resp[4], resp[5], | |
1574 | resp[6], resp[7]); | |
1575 | ||
1576 | //Fill up the buffer | |
1577 | memcpy(card_data+stored_data_length, resp, 8); | |
1578 | stored_data_length += 8; | |
1579 | if (stored_data_length +8 > USB_CMD_DATA_SIZE) { | |
1580 | //Time to send this off and start afresh | |
1581 | cmd_send(CMD_ACK, | |
1582 | stored_data_length,//data length | |
1583 | failedRead,//Failed blocks? | |
1584 | 0,//Not used ATM | |
1585 | card_data, stored_data_length); | |
1586 | //reset | |
1587 | stored_data_length = 0; | |
1588 | failedRead = 0; | |
1589 | } | |
1590 | ||
1591 | } else { | |
1592 | failedRead = 1; | |
1593 | stored_data_length += 8;//Otherwise, data becomes misaligned | |
1594 | Dbprintf("Failed to dump block %d", block); | |
1595 | } | |
1596 | } | |
1597 | ||
1598 | //Send off any remaining data | |
1599 | if (stored_data_length > 0) { | |
1600 | cmd_send(CMD_ACK, | |
1601 | stored_data_length,//data length | |
1602 | failedRead,//Failed blocks? | |
1603 | 0,//Not used ATM | |
1604 | card_data, | |
1605 | stored_data_length); | |
1606 | } | |
1607 | //If we got here, let's break | |
1608 | break; | |
1609 | } | |
1610 | //Signal end of transmission | |
1611 | cmd_send(CMD_ACK, | |
1612 | 0,//data length | |
1613 | 0,//Failed blocks? | |
1614 | 0,//Not used ATM | |
1615 | card_data, | |
1616 | 0); | |
1617 | ||
1618 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1619 | LED_D_OFF(); | |
1620 | LED_A_OFF(); | |
1621 | } | |
1622 | ||
1623 | ||
1624 | void iClass_Check(uint8_t *MAC) { | |
1625 | uint8_t check[9] = {ICLASS_CMD_CHECK_KD, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; | |
1626 | uint8_t resp[4]; | |
1627 | memcpy(check+5, MAC, 4); | |
1628 | uint32_t eof_time; | |
1629 | bool isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, sizeof(resp), 4, 6, 0, &eof_time); | |
1630 | cmd_send(CMD_ACK, isOK, 0, 0, resp, sizeof(resp)); | |
1631 | } | |
1632 | ||
1633 | ||
1634 | void iClass_Readcheck(uint8_t block, bool use_credit_key) { | |
1635 | uint8_t readcheck[2] = {ICLASS_CMD_READCHECK_KD, block}; | |
1636 | if (use_credit_key) { | |
1637 | readcheck[0] = ICLASS_CMD_READCHECK_KC; | |
1638 | } | |
1639 | uint8_t resp[8]; | |
1640 | uint32_t eof_time; | |
1641 | bool isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 8, 6, 0, &eof_time); | |
1642 | cmd_send(CMD_ACK, isOK, 0, 0, resp, sizeof(resp)); | |
1643 | } | |
1644 | ||
1645 | ||
1646 | static bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) { | |
1647 | uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C? | |
1648 | char bl = blockNo; | |
1649 | uint16_t rdCrc = iclass_crc16(&bl, 1); | |
1650 | readcmd[2] = rdCrc >> 8; | |
1651 | readcmd[3] = rdCrc & 0xff; | |
1652 | uint8_t resp[10]; | |
1653 | bool isOK = false; | |
1654 | uint32_t eof_time; | |
1655 | ||
1656 | isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, sizeof(resp), 10, 10, 0, &eof_time); | |
1657 | memcpy(readdata, resp, sizeof(resp)); | |
1658 | ||
1659 | return isOK; | |
1660 | } | |
1661 | ||
1662 | ||
1663 | void iClass_ReadBlk(uint8_t blockno) { | |
1664 | ||
1665 | LED_A_ON(); | |
1666 | ||
1667 | uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0}; | |
1668 | bool isOK = false; | |
1669 | isOK = iClass_ReadBlock(blockno, readblockdata); | |
1670 | cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8); | |
1671 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1672 | LED_D_OFF(); | |
1673 | ||
1674 | LED_A_OFF(); | |
1675 | } | |
1676 | ||
1677 | void iClass_Dump(uint8_t blockno, uint8_t numblks) { | |
1678 | ||
1679 | LED_A_ON(); | |
1680 | ||
1681 | uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0}; | |
1682 | bool isOK = false; | |
1683 | uint8_t blkCnt = 0; | |
1684 | ||
1685 | BigBuf_free(); | |
1686 | uint8_t *dataout = BigBuf_malloc(255*8); | |
1687 | if (dataout == NULL) { | |
1688 | Dbprintf("out of memory"); | |
1689 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1690 | LED_D_OFF(); | |
1691 | cmd_send(CMD_ACK, 0, 1, 0, 0, 0); | |
1692 | LED_A_OFF(); | |
1693 | return; | |
1694 | } | |
1695 | memset(dataout, 0xFF, 255*8); | |
1696 | ||
1697 | for ( ; blkCnt < numblks; blkCnt++) { | |
1698 | isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata); | |
1699 | if (!isOK || (readblockdata[0] == 0xBB || readblockdata[7] == 0xBB || readblockdata[2] == 0xBB)) { //try again | |
1700 | isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata); | |
1701 | if (!isOK) { | |
1702 | Dbprintf("Block %02X failed to read", blkCnt+blockno); | |
1703 | break; | |
1704 | } | |
1705 | } | |
1706 | memcpy(dataout + (blkCnt*8), readblockdata, 8); | |
1707 | } | |
1708 | //return pointer to dump memory in arg3 | |
1709 | cmd_send(CMD_ACK, isOK, blkCnt, BigBuf_max_traceLen(), 0, 0); | |
1710 | ||
1711 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1712 | LED_D_OFF(); | |
1713 | BigBuf_free(); | |
1714 | ||
1715 | LED_A_OFF(); | |
1716 | } | |
1717 | ||
1718 | ||
1719 | static bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) { | |
1720 | ||
1721 | LED_A_ON(); | |
1722 | ||
1723 | uint8_t write[] = { ICLASS_CMD_UPDATE, blockNo, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1724 | //uint8_t readblockdata[10]; | |
1725 | //write[1] = blockNo; | |
1726 | memcpy(write+2, data, 12); // data + mac | |
1727 | char *wrCmd = (char *)(write+1); | |
1728 | uint16_t wrCrc = iclass_crc16(wrCmd, 13); | |
1729 | write[14] = wrCrc >> 8; | |
1730 | write[15] = wrCrc & 0xff; | |
1731 | uint8_t resp[10]; | |
1732 | bool isOK = false; | |
1733 | uint32_t eof_time = 0; | |
1734 | ||
1735 | isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10, 10, 0, &eof_time); | |
1736 | uint32_t start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; | |
1737 | if (isOK) { //if reader responded correctly | |
1738 | //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]); | |
1739 | if (memcmp(write+2, resp, 8)) { //if response is not equal to write values | |
1740 | if (blockNo != 3 && blockNo != 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data) | |
1741 | //error try again | |
1742 | isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10, 10, start_time, &eof_time); | |
1743 | } | |
1744 | } | |
1745 | } | |
1746 | ||
1747 | LED_A_OFF(); | |
1748 | ||
1749 | return isOK; | |
1750 | } | |
1751 | ||
1752 | ||
1753 | void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) { | |
1754 | ||
1755 | LED_A_ON(); | |
1756 | ||
1757 | bool isOK = iClass_WriteBlock_ext(blockNo, data); | |
1758 | if (isOK){ | |
1759 | Dbprintf("Write block [%02x] successful", blockNo); | |
1760 | } else { | |
1761 | Dbprintf("Write block [%02x] failed", blockNo); | |
1762 | } | |
1763 | cmd_send(CMD_ACK, isOK, 0, 0, 0, 0); | |
1764 | ||
1765 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1766 | LED_D_OFF(); | |
1767 | ||
1768 | LED_A_OFF(); | |
1769 | } | |
1770 | ||
1771 | void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) { | |
1772 | int i; | |
1773 | int written = 0; | |
1774 | int total_block = (endblock - startblock) + 1; | |
1775 | for (i = 0; i < total_block; i++) { | |
1776 | // block number | |
1777 | if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){ | |
1778 | Dbprintf("Write block [%02x] successful", i + startblock); | |
1779 | written++; | |
1780 | } else { | |
1781 | if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){ | |
1782 | Dbprintf("Write block [%02x] successful", i + startblock); | |
1783 | written++; | |
1784 | } else { | |
1785 | Dbprintf("Write block [%02x] failed", i + startblock); | |
1786 | } | |
1787 | } | |
1788 | } | |
1789 | if (written == total_block) | |
1790 | Dbprintf("Clone complete"); | |
1791 | else | |
1792 | Dbprintf("Clone incomplete"); | |
1793 | ||
1794 | cmd_send(CMD_ACK, 1, 0, 0, 0, 0); | |
1795 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1796 | LED_D_OFF(); | |
1797 | LED_A_OFF(); | |
1798 | } |