| 1 | //----------------------------------------------------------------------------- |
| 2 | // Merlok - June 2011, 2012 |
| 3 | // Gerhard de Koning Gans - May 2008 |
| 4 | // Hagen Fritsch - June 2010 |
| 5 | // |
| 6 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
| 7 | // at your option, any later version. See the LICENSE.txt file for the text of |
| 8 | // the license. |
| 9 | //----------------------------------------------------------------------------- |
| 10 | // Routines to support ISO 14443 type A. |
| 11 | //----------------------------------------------------------------------------- |
| 12 | |
| 13 | #include "iso14443a.h" |
| 14 | |
| 15 | #include <stdio.h> |
| 16 | #include <string.h> |
| 17 | #include <inttypes.h> |
| 18 | |
| 19 | #include "proxmark3.h" |
| 20 | #include "apps.h" |
| 21 | #include "util.h" |
| 22 | #include "usb_cdc.h" |
| 23 | #include "iso14443crc.h" |
| 24 | #include "crapto1/crapto1.h" |
| 25 | #include "mifareutil.h" |
| 26 | #include "mifaresniff.h" |
| 27 | #include "BigBuf.h" |
| 28 | #include "protocols.h" |
| 29 | #include "parity.h" |
| 30 | #include "fpgaloader.h" |
| 31 | |
| 32 | typedef struct { |
| 33 | enum { |
| 34 | DEMOD_UNSYNCD, |
| 35 | // DEMOD_HALF_SYNCD, |
| 36 | // DEMOD_MOD_FIRST_HALF, |
| 37 | // DEMOD_NOMOD_FIRST_HALF, |
| 38 | DEMOD_MANCHESTER_DATA |
| 39 | } state; |
| 40 | uint16_t twoBits; |
| 41 | uint16_t highCnt; |
| 42 | uint16_t bitCount; |
| 43 | uint16_t collisionPos; |
| 44 | uint16_t syncBit; |
| 45 | uint8_t parityBits; |
| 46 | uint8_t parityLen; |
| 47 | uint16_t shiftReg; |
| 48 | uint16_t samples; |
| 49 | uint16_t len; |
| 50 | uint32_t startTime, endTime; |
| 51 | uint8_t *output; |
| 52 | uint8_t *parity; |
| 53 | } tDemod; |
| 54 | |
| 55 | typedef enum { |
| 56 | MOD_NOMOD = 0, |
| 57 | MOD_SECOND_HALF, |
| 58 | MOD_FIRST_HALF, |
| 59 | MOD_BOTH_HALVES |
| 60 | } Modulation_t; |
| 61 | |
| 62 | typedef struct { |
| 63 | enum { |
| 64 | STATE_UNSYNCD, |
| 65 | STATE_START_OF_COMMUNICATION, |
| 66 | STATE_MILLER_X, |
| 67 | STATE_MILLER_Y, |
| 68 | STATE_MILLER_Z, |
| 69 | // DROP_NONE, |
| 70 | // DROP_FIRST_HALF, |
| 71 | } state; |
| 72 | uint16_t shiftReg; |
| 73 | int16_t bitCount; |
| 74 | uint16_t len; |
| 75 | uint16_t byteCntMax; |
| 76 | uint16_t posCnt; |
| 77 | uint16_t syncBit; |
| 78 | uint8_t parityBits; |
| 79 | uint8_t parityLen; |
| 80 | uint32_t fourBits; |
| 81 | uint32_t startTime, endTime; |
| 82 | uint8_t *output; |
| 83 | uint8_t *parity; |
| 84 | } tUart; |
| 85 | |
| 86 | static uint32_t iso14a_timeout; |
| 87 | #define MAX_ISO14A_TIMEOUT 524288 |
| 88 | |
| 89 | int rsamples = 0; |
| 90 | uint8_t trigger = 0; |
| 91 | // the block number for the ISO14443-4 PCB |
| 92 | static uint8_t iso14_pcb_blocknum = 0; |
| 93 | |
| 94 | // |
| 95 | // ISO14443 timing: |
| 96 | // |
| 97 | // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles |
| 98 | #define REQUEST_GUARD_TIME (7000/16 + 1) |
| 99 | // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles |
| 100 | #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1) |
| 101 | // bool LastCommandWasRequest = false; |
| 102 | |
| 103 | // |
| 104 | // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz) |
| 105 | // |
| 106 | // When the PM acts as reader and is receiving tag data, it takes |
| 107 | // 3 ticks delay in the AD converter |
| 108 | // 16 ticks until the modulation detector completes and sets curbit |
| 109 | // 8 ticks until bit_to_arm is assigned from curbit |
| 110 | // 8*16 ticks for the transfer from FPGA to ARM |
| 111 | // 4*16 ticks until we measure the time |
| 112 | // - 8*16 ticks because we measure the time of the previous transfer |
| 113 | #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16) |
| 114 | |
| 115 | // When the PM acts as a reader and is sending, it takes |
| 116 | // 4*16 ticks until we can write data to the sending hold register |
| 117 | // 8*16 ticks until the SHR is transferred to the Sending Shift Register |
| 118 | // 8 ticks until the first transfer starts |
| 119 | // 8 ticks later the FPGA samples the data |
| 120 | // 1 tick to assign mod_sig_coil |
| 121 | #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1) |
| 122 | |
| 123 | // When the PM acts as tag and is receiving it takes |
| 124 | // 2 ticks delay in the RF part (for the first falling edge), |
| 125 | // 3 ticks for the A/D conversion, |
| 126 | // 8 ticks on average until the start of the SSC transfer, |
| 127 | // 8 ticks until the SSC samples the first data |
| 128 | // 7*16 ticks to complete the transfer from FPGA to ARM |
| 129 | // 8 ticks until the next ssp_clk rising edge |
| 130 | // 4*16 ticks until we measure the time |
| 131 | // - 8*16 ticks because we measure the time of the previous transfer |
| 132 | #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16) |
| 133 | |
| 134 | // The FPGA will report its internal sending delay in |
| 135 | uint16_t FpgaSendQueueDelay; |
| 136 | // the 5 first bits are the number of bits buffered in mod_sig_buf |
| 137 | // the last three bits are the remaining ticks/2 after the mod_sig_buf shift |
| 138 | #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1) |
| 139 | |
| 140 | // When the PM acts as tag and is sending, it takes |
| 141 | // 4*16 + 8 ticks until we can write data to the sending hold register |
| 142 | // 8*16 ticks until the SHR is transferred to the Sending Shift Register |
| 143 | // 8 ticks later the FPGA samples the first data |
| 144 | // + 16 ticks until assigned to mod_sig |
| 145 | // + 1 tick to assign mod_sig_coil |
| 146 | // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf) |
| 147 | #define DELAY_ARM2AIR_AS_TAG (4*16 + 8 + 8*16 + 8 + 16 + 1 + DELAY_FPGA_QUEUE) |
| 148 | |
| 149 | // When the PM acts as sniffer and is receiving tag data, it takes |
| 150 | // 3 ticks A/D conversion |
| 151 | // 14 ticks to complete the modulation detection |
| 152 | // 8 ticks (on average) until the result is stored in to_arm |
| 153 | // + the delays in transferring data - which is the same for |
| 154 | // sniffing reader and tag data and therefore not relevant |
| 155 | #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8) |
| 156 | |
| 157 | // When the PM acts as sniffer and is receiving reader data, it takes |
| 158 | // 2 ticks delay in analogue RF receiver (for the falling edge of the |
| 159 | // start bit, which marks the start of the communication) |
| 160 | // 3 ticks A/D conversion |
| 161 | // 8 ticks on average until the data is stored in to_arm. |
| 162 | // + the delays in transferring data - which is the same for |
| 163 | // sniffing reader and tag data and therefore not relevant |
| 164 | #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8) |
| 165 | |
| 166 | //variables used for timing purposes: |
| 167 | //these are in ssp_clk cycles: |
| 168 | static uint32_t NextTransferTime; |
| 169 | static uint32_t LastTimeProxToAirStart; |
| 170 | static uint32_t LastProxToAirDuration; |
| 171 | |
| 172 | |
| 173 | |
| 174 | // CARD TO READER - manchester |
| 175 | // Sequence D: 11110000 modulation with subcarrier during first half |
| 176 | // Sequence E: 00001111 modulation with subcarrier during second half |
| 177 | // Sequence F: 00000000 no modulation with subcarrier |
| 178 | // READER TO CARD - miller |
| 179 | // Sequence X: 00001100 drop after half a period |
| 180 | // Sequence Y: 00000000 no drop |
| 181 | // Sequence Z: 11000000 drop at start |
| 182 | #define SEC_D 0xf0 |
| 183 | #define SEC_E 0x0f |
| 184 | #define SEC_F 0x00 |
| 185 | #define SEC_X 0x0c |
| 186 | #define SEC_Y 0x00 |
| 187 | #define SEC_Z 0xc0 |
| 188 | |
| 189 | void iso14a_set_trigger(bool enable) { |
| 190 | trigger = enable; |
| 191 | } |
| 192 | |
| 193 | |
| 194 | void iso14a_set_timeout(uint32_t timeout) { |
| 195 | // adjust timeout by FPGA delays and 2 additional ssp_frames to detect SOF |
| 196 | iso14a_timeout = timeout + (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/(16*8) + 2; |
| 197 | if (MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %" PRIu32 " (%dms)", timeout, timeout / 106); |
| 198 | } |
| 199 | |
| 200 | |
| 201 | uint32_t iso14a_get_timeout(void) { |
| 202 | return iso14a_timeout - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/(16*8) - 2; |
| 203 | } |
| 204 | |
| 205 | //----------------------------------------------------------------------------- |
| 206 | // Generate the parity value for a byte sequence |
| 207 | // |
| 208 | //----------------------------------------------------------------------------- |
| 209 | void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par) |
| 210 | { |
| 211 | uint16_t paritybit_cnt = 0; |
| 212 | uint16_t paritybyte_cnt = 0; |
| 213 | uint8_t parityBits = 0; |
| 214 | |
| 215 | for (uint16_t i = 0; i < iLen; i++) { |
| 216 | // Generate the parity bits |
| 217 | parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt)); |
| 218 | if (paritybit_cnt == 7) { |
| 219 | par[paritybyte_cnt] = parityBits; // save 8 Bits parity |
| 220 | parityBits = 0; // and advance to next Parity Byte |
| 221 | paritybyte_cnt++; |
| 222 | paritybit_cnt = 0; |
| 223 | } else { |
| 224 | paritybit_cnt++; |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | // save remaining parity bits |
| 229 | par[paritybyte_cnt] = parityBits; |
| 230 | |
| 231 | } |
| 232 | |
| 233 | void AppendCrc14443a(uint8_t* data, int len) |
| 234 | { |
| 235 | ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); |
| 236 | } |
| 237 | |
| 238 | static void AppendCrc14443b(uint8_t* data, int len) |
| 239 | { |
| 240 | ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1); |
| 241 | } |
| 242 | |
| 243 | |
| 244 | //============================================================================= |
| 245 | // ISO 14443 Type A - Miller decoder |
| 246 | //============================================================================= |
| 247 | // Basics: |
| 248 | // This decoder is used when the PM3 acts as a tag. |
| 249 | // The reader will generate "pauses" by temporarily switching of the field. |
| 250 | // At the PM3 antenna we will therefore measure a modulated antenna voltage. |
| 251 | // The FPGA does a comparison with a threshold and would deliver e.g.: |
| 252 | // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 ....... |
| 253 | // The Miller decoder needs to identify the following sequences: |
| 254 | // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0") |
| 255 | // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information") |
| 256 | // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1") |
| 257 | // Note 1: the bitstream may start at any time. We therefore need to sync. |
| 258 | // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence. |
| 259 | //----------------------------------------------------------------------------- |
| 260 | static tUart Uart; |
| 261 | |
| 262 | // Lookup-Table to decide if 4 raw bits are a modulation. |
| 263 | // We accept the following: |
| 264 | // 0001 - a 3 tick wide pause |
| 265 | // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left |
| 266 | // 0111 - a 2 tick wide pause shifted left |
| 267 | // 1001 - a 2 tick wide pause shifted right |
| 268 | const bool Mod_Miller_LUT[] = { |
| 269 | false, true, false, true, false, false, false, true, |
| 270 | false, true, false, false, false, false, false, false |
| 271 | }; |
| 272 | #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4]) |
| 273 | #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)]) |
| 274 | |
| 275 | static void UartReset() { |
| 276 | Uart.state = STATE_UNSYNCD; |
| 277 | Uart.bitCount = 0; |
| 278 | Uart.len = 0; // number of decoded data bytes |
| 279 | Uart.parityLen = 0; // number of decoded parity bytes |
| 280 | Uart.shiftReg = 0; // shiftreg to hold decoded data bits |
| 281 | Uart.parityBits = 0; // holds 8 parity bits |
| 282 | } |
| 283 | |
| 284 | static void UartInit(uint8_t *data, uint8_t *parity) { |
| 285 | Uart.output = data; |
| 286 | Uart.parity = parity; |
| 287 | Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits |
| 288 | Uart.startTime = 0; |
| 289 | Uart.endTime = 0; |
| 290 | UartReset(); |
| 291 | } |
| 292 | |
| 293 | // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time |
| 294 | static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) { |
| 295 | |
| 296 | Uart.fourBits = (Uart.fourBits << 8) | bit; |
| 297 | |
| 298 | if (Uart.state == STATE_UNSYNCD) { // not yet synced |
| 299 | |
| 300 | Uart.syncBit = 9999; // not set |
| 301 | // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from |
| 302 | // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111) |
| 303 | // we therefore look for a ...xx11111111111100x11111xxxxxx... pattern |
| 304 | // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's) |
| 305 | #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00000111 11111111 11101111 10000000 |
| 306 | #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00000111 11111111 10001111 10000000 |
| 307 | if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7; |
| 308 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6; |
| 309 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5; |
| 310 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4; |
| 311 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3; |
| 312 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2; |
| 313 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1; |
| 314 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0; |
| 315 | |
| 316 | if (Uart.syncBit != 9999) { // found a sync bit |
| 317 | Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); |
| 318 | Uart.startTime -= Uart.syncBit; |
| 319 | Uart.endTime = Uart.startTime; |
| 320 | Uart.state = STATE_START_OF_COMMUNICATION; |
| 321 | LED_B_ON(); |
| 322 | } |
| 323 | |
| 324 | } else { |
| 325 | |
| 326 | if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) { |
| 327 | if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error |
| 328 | LED_B_OFF(); |
| 329 | UartReset(); |
| 330 | } else { // Modulation in first half = Sequence Z = logic "0" |
| 331 | if (Uart.state == STATE_MILLER_X) { // error - must not follow after X |
| 332 | LED_B_OFF(); |
| 333 | UartReset(); |
| 334 | } else { |
| 335 | Uart.bitCount++; |
| 336 | Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg |
| 337 | Uart.state = STATE_MILLER_Z; |
| 338 | Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6; |
| 339 | if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) |
| 340 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); |
| 341 | Uart.parityBits <<= 1; // make room for the parity bit |
| 342 | Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit |
| 343 | Uart.bitCount = 0; |
| 344 | Uart.shiftReg = 0; |
| 345 | if((Uart.len&0x0007) == 0) { // every 8 data bytes |
| 346 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits |
| 347 | Uart.parityBits = 0; |
| 348 | } |
| 349 | } |
| 350 | } |
| 351 | } |
| 352 | } else { |
| 353 | if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1" |
| 354 | Uart.bitCount++; |
| 355 | Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg |
| 356 | Uart.state = STATE_MILLER_X; |
| 357 | Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2; |
| 358 | if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) |
| 359 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); |
| 360 | Uart.parityBits <<= 1; // make room for the new parity bit |
| 361 | Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit |
| 362 | Uart.bitCount = 0; |
| 363 | Uart.shiftReg = 0; |
| 364 | if ((Uart.len&0x0007) == 0) { // every 8 data bytes |
| 365 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits |
| 366 | Uart.parityBits = 0; |
| 367 | } |
| 368 | } |
| 369 | } else { // no modulation in both halves - Sequence Y |
| 370 | if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication |
| 371 | LED_B_OFF(); |
| 372 | Uart.state = STATE_UNSYNCD; |
| 373 | Uart.bitCount--; // last "0" was part of EOC sequence |
| 374 | Uart.shiftReg <<= 1; // drop it |
| 375 | if(Uart.bitCount > 0) { // if we decoded some bits |
| 376 | Uart.shiftReg >>= (9 - Uart.bitCount); // right align them |
| 377 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output |
| 378 | Uart.parityBits <<= 1; // add a (void) parity bit |
| 379 | Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits |
| 380 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it |
| 381 | return true; |
| 382 | } else if (Uart.len & 0x0007) { // there are some parity bits to store |
| 383 | Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits |
| 384 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them |
| 385 | } |
| 386 | if (Uart.len) { |
| 387 | return true; // we are finished with decoding the raw data sequence |
| 388 | } else { |
| 389 | UartReset(); // Nothing received - start over |
| 390 | } |
| 391 | } |
| 392 | if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC |
| 393 | LED_B_OFF(); |
| 394 | UartReset(); |
| 395 | } else { // a logic "0" |
| 396 | Uart.bitCount++; |
| 397 | Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg |
| 398 | Uart.state = STATE_MILLER_Y; |
| 399 | if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) |
| 400 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); |
| 401 | Uart.parityBits <<= 1; // make room for the parity bit |
| 402 | Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit |
| 403 | Uart.bitCount = 0; |
| 404 | Uart.shiftReg = 0; |
| 405 | if ((Uart.len&0x0007) == 0) { // every 8 data bytes |
| 406 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits |
| 407 | Uart.parityBits = 0; |
| 408 | } |
| 409 | } |
| 410 | } |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | } |
| 415 | |
| 416 | return false; // not finished yet, need more data |
| 417 | } |
| 418 | |
| 419 | |
| 420 | |
| 421 | //============================================================================= |
| 422 | // ISO 14443 Type A - Manchester decoder |
| 423 | //============================================================================= |
| 424 | // Basics: |
| 425 | // This decoder is used when the PM3 acts as a reader. |
| 426 | // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage |
| 427 | // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following: |
| 428 | // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ....... |
| 429 | // The Manchester decoder needs to identify the following sequences: |
| 430 | // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication") |
| 431 | // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0 |
| 432 | // 8 ticks unmodulated: Sequence F = end of communication |
| 433 | // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D |
| 434 | // Note 1: the bitstream may start at any time. We therefore need to sync. |
| 435 | // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only) |
| 436 | static tDemod Demod; |
| 437 | |
| 438 | // Lookup-Table to decide if 4 raw bits are a modulation. |
| 439 | // We accept three or four "1" in any position |
| 440 | const bool Mod_Manchester_LUT[] = { |
| 441 | false, false, false, false, false, false, false, true, |
| 442 | false, false, false, true, false, true, true, true |
| 443 | }; |
| 444 | |
| 445 | #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4]) |
| 446 | #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)]) |
| 447 | |
| 448 | |
| 449 | static void DemodReset() { |
| 450 | Demod.state = DEMOD_UNSYNCD; |
| 451 | Demod.len = 0; // number of decoded data bytes |
| 452 | Demod.parityLen = 0; |
| 453 | Demod.shiftReg = 0; // shiftreg to hold decoded data bits |
| 454 | Demod.parityBits = 0; // |
| 455 | Demod.collisionPos = 0; // Position of collision bit |
| 456 | Demod.twoBits = 0xffff; // buffer for 2 Bits |
| 457 | Demod.highCnt = 0; |
| 458 | Demod.startTime = 0; |
| 459 | Demod.endTime = 0; |
| 460 | } |
| 461 | |
| 462 | static void DemodInit(uint8_t *data, uint8_t *parity) { |
| 463 | Demod.output = data; |
| 464 | Demod.parity = parity; |
| 465 | DemodReset(); |
| 466 | } |
| 467 | |
| 468 | // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time |
| 469 | static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) { |
| 470 | |
| 471 | Demod.twoBits = (Demod.twoBits << 8) | bit; |
| 472 | |
| 473 | if (Demod.state == DEMOD_UNSYNCD) { |
| 474 | |
| 475 | if (Demod.highCnt < 2) { // wait for a stable unmodulated signal |
| 476 | if (Demod.twoBits == 0x0000) { |
| 477 | Demod.highCnt++; |
| 478 | } else { |
| 479 | Demod.highCnt = 0; |
| 480 | } |
| 481 | } else { |
| 482 | Demod.syncBit = 0xFFFF; // not set |
| 483 | if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7; |
| 484 | else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6; |
| 485 | else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5; |
| 486 | else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4; |
| 487 | else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3; |
| 488 | else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2; |
| 489 | else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1; |
| 490 | else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0; |
| 491 | if (Demod.syncBit != 0xFFFF) { |
| 492 | Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); |
| 493 | Demod.startTime -= Demod.syncBit; |
| 494 | Demod.bitCount = offset; // number of decoded data bits |
| 495 | Demod.state = DEMOD_MANCHESTER_DATA; |
| 496 | LED_C_ON(); |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | } else { |
| 501 | |
| 502 | if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half |
| 503 | if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision |
| 504 | if (!Demod.collisionPos) { |
| 505 | Demod.collisionPos = (Demod.len << 3) + Demod.bitCount; |
| 506 | } |
| 507 | } // modulation in first half only - Sequence D = 1 |
| 508 | Demod.bitCount++; |
| 509 | Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg |
| 510 | if(Demod.bitCount == 9) { // if we decoded a full byte (including parity) |
| 511 | Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); |
| 512 | Demod.parityBits <<= 1; // make room for the parity bit |
| 513 | Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit |
| 514 | Demod.bitCount = 0; |
| 515 | Demod.shiftReg = 0; |
| 516 | if((Demod.len&0x0007) == 0) { // every 8 data bytes |
| 517 | Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits |
| 518 | Demod.parityBits = 0; |
| 519 | } |
| 520 | } |
| 521 | Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4; |
| 522 | } else { // no modulation in first half |
| 523 | if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0 |
| 524 | Demod.bitCount++; |
| 525 | Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg |
| 526 | if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity) |
| 527 | Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); |
| 528 | Demod.parityBits <<= 1; // make room for the new parity bit |
| 529 | Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit |
| 530 | Demod.bitCount = 0; |
| 531 | Demod.shiftReg = 0; |
| 532 | if ((Demod.len&0x0007) == 0) { // every 8 data bytes |
| 533 | Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1 |
| 534 | Demod.parityBits = 0; |
| 535 | } |
| 536 | } |
| 537 | Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1); |
| 538 | } else { // no modulation in both halves - End of communication |
| 539 | LED_C_OFF(); |
| 540 | if(Demod.bitCount > 0) { // there are some remaining data bits |
| 541 | Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits |
| 542 | Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output |
| 543 | Demod.parityBits <<= 1; // add a (void) parity bit |
| 544 | Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits |
| 545 | Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them |
| 546 | return true; |
| 547 | } else if (Demod.len & 0x0007) { // there are some parity bits to store |
| 548 | Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits |
| 549 | Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them |
| 550 | } |
| 551 | if (Demod.len) { |
| 552 | return true; // we are finished with decoding the raw data sequence |
| 553 | } else { // nothing received. Start over |
| 554 | DemodReset(); |
| 555 | } |
| 556 | } |
| 557 | } |
| 558 | |
| 559 | } |
| 560 | |
| 561 | return false; // not finished yet, need more data |
| 562 | } |
| 563 | |
| 564 | //============================================================================= |
| 565 | // Finally, a `sniffer' for ISO 14443 Type A |
| 566 | // Both sides of communication! |
| 567 | //============================================================================= |
| 568 | |
| 569 | //----------------------------------------------------------------------------- |
| 570 | // Record the sequence of commands sent by the reader to the tag, with |
| 571 | // triggering so that we start recording at the point that the tag is moved |
| 572 | // near the reader. |
| 573 | //----------------------------------------------------------------------------- |
| 574 | void RAMFUNC SnoopIso14443a(uint8_t param) { |
| 575 | // param: |
| 576 | // bit 0 - trigger from first card answer |
| 577 | // bit 1 - trigger from first reader 7-bit request |
| 578 | |
| 579 | LEDsoff(); |
| 580 | LED_A_ON(); |
| 581 | |
| 582 | iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); |
| 583 | |
| 584 | // Allocate memory from BigBuf for some buffers |
| 585 | // free all previous allocations first |
| 586 | BigBuf_free(); |
| 587 | |
| 588 | // The command (reader -> tag) that we're receiving. |
| 589 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); |
| 590 | uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); |
| 591 | |
| 592 | // The response (tag -> reader) that we're receiving. |
| 593 | uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE); |
| 594 | uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE); |
| 595 | |
| 596 | // The DMA buffer, used to stream samples from the FPGA |
| 597 | uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); |
| 598 | |
| 599 | // init trace buffer |
| 600 | clear_trace(); |
| 601 | set_tracing(true); |
| 602 | |
| 603 | uint8_t *data = dmaBuf; |
| 604 | uint8_t previous_data = 0; |
| 605 | int maxDataLen = 0; |
| 606 | int dataLen = 0; |
| 607 | bool TagIsActive = false; |
| 608 | bool ReaderIsActive = false; |
| 609 | |
| 610 | // Set up the demodulator for tag -> reader responses. |
| 611 | DemodInit(receivedResponse, receivedResponsePar); |
| 612 | |
| 613 | // Set up the demodulator for the reader -> tag commands |
| 614 | UartInit(receivedCmd, receivedCmdPar); |
| 615 | |
| 616 | // Setup and start DMA. |
| 617 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); |
| 618 | |
| 619 | // We won't start recording the frames that we acquire until we trigger; |
| 620 | // a good trigger condition to get started is probably when we see a |
| 621 | // response from the tag. |
| 622 | // triggered == false -- to wait first for card |
| 623 | bool triggered = !(param & 0x03); |
| 624 | |
| 625 | // And now we loop, receiving samples. |
| 626 | for (uint32_t rsamples = 0; true; ) { |
| 627 | |
| 628 | if (BUTTON_PRESS()) { |
| 629 | DbpString("cancelled by button"); |
| 630 | break; |
| 631 | } |
| 632 | |
| 633 | WDT_HIT(); |
| 634 | |
| 635 | int register readBufDataP = data - dmaBuf; |
| 636 | int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; |
| 637 | if (readBufDataP <= dmaBufDataP){ |
| 638 | dataLen = dmaBufDataP - readBufDataP; |
| 639 | } else { |
| 640 | dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; |
| 641 | } |
| 642 | // test for length of buffer |
| 643 | if(dataLen > maxDataLen) { |
| 644 | maxDataLen = dataLen; |
| 645 | if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) { |
| 646 | Dbprintf("blew circular buffer! dataLen=%d", dataLen); |
| 647 | break; |
| 648 | } |
| 649 | } |
| 650 | if(dataLen < 1) continue; |
| 651 | |
| 652 | // primary buffer was stopped( <-- we lost data! |
| 653 | if (!AT91C_BASE_PDC_SSC->PDC_RCR) { |
| 654 | AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; |
| 655 | AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; |
| 656 | Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary |
| 657 | } |
| 658 | // secondary buffer sets as primary, secondary buffer was stopped |
| 659 | if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { |
| 660 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; |
| 661 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; |
| 662 | } |
| 663 | |
| 664 | if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder |
| 665 | |
| 666 | if(!TagIsActive) { // no need to try decoding reader data if the tag is sending |
| 667 | uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); |
| 668 | if (MillerDecoding(readerdata, (rsamples-1)*4)) { |
| 669 | // check - if there is a short 7bit request from reader |
| 670 | if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) { |
| 671 | triggered = true; |
| 672 | } |
| 673 | if(triggered) { |
| 674 | if (!LogTrace(receivedCmd, |
| 675 | Uart.len, |
| 676 | Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, |
| 677 | Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, |
| 678 | Uart.parity, |
| 679 | true)) break; |
| 680 | } |
| 681 | /* And ready to receive another command. */ |
| 682 | UartReset(); |
| 683 | /* And also reset the demod code, which might have been */ |
| 684 | /* false-triggered by the commands from the reader. */ |
| 685 | DemodReset(); |
| 686 | } |
| 687 | ReaderIsActive = (Uart.state != STATE_UNSYNCD); |
| 688 | } |
| 689 | |
| 690 | if (!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time |
| 691 | uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); |
| 692 | if (ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) { |
| 693 | if (!LogTrace(receivedResponse, |
| 694 | Demod.len, |
| 695 | Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, |
| 696 | Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, |
| 697 | Demod.parity, |
| 698 | false)) break; |
| 699 | if ((!triggered) && (param & 0x01)) triggered = true; |
| 700 | // And ready to receive another response. |
| 701 | DemodReset(); |
| 702 | // And reset the Miller decoder including itS (now outdated) input buffer |
| 703 | UartInit(receivedCmd, receivedCmdPar); |
| 704 | } |
| 705 | TagIsActive = (Demod.state != DEMOD_UNSYNCD); |
| 706 | } |
| 707 | } |
| 708 | |
| 709 | previous_data = *data; |
| 710 | rsamples++; |
| 711 | data++; |
| 712 | if(data == dmaBuf + DMA_BUFFER_SIZE) { |
| 713 | data = dmaBuf; |
| 714 | } |
| 715 | } // main cycle |
| 716 | |
| 717 | FpgaDisableSscDma(); |
| 718 | LEDsoff(); |
| 719 | |
| 720 | DbpString("COMMAND FINISHED"); |
| 721 | Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len); |
| 722 | Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]); |
| 723 | } |
| 724 | |
| 725 | //----------------------------------------------------------------------------- |
| 726 | // Prepare tag messages |
| 727 | //----------------------------------------------------------------------------- |
| 728 | static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity) { |
| 729 | ToSendReset(); |
| 730 | |
| 731 | // Correction bit, might be removed when not needed |
| 732 | ToSendStuffBit(0); |
| 733 | ToSendStuffBit(0); |
| 734 | ToSendStuffBit(0); |
| 735 | ToSendStuffBit(0); |
| 736 | ToSendStuffBit(1); // 1 |
| 737 | ToSendStuffBit(0); |
| 738 | ToSendStuffBit(0); |
| 739 | ToSendStuffBit(0); |
| 740 | |
| 741 | // Send startbit |
| 742 | ToSend[++ToSendMax] = SEC_D; |
| 743 | LastProxToAirDuration = 8 * ToSendMax - 4; |
| 744 | |
| 745 | for (uint16_t i = 0; i < len; i++) { |
| 746 | uint8_t b = cmd[i]; |
| 747 | |
| 748 | // Data bits |
| 749 | for (uint16_t j = 0; j < 8; j++) { |
| 750 | if(b & 1) { |
| 751 | ToSend[++ToSendMax] = SEC_D; |
| 752 | } else { |
| 753 | ToSend[++ToSendMax] = SEC_E; |
| 754 | } |
| 755 | b >>= 1; |
| 756 | } |
| 757 | |
| 758 | // Get the parity bit |
| 759 | if (parity[i>>3] & (0x80>>(i&0x0007))) { |
| 760 | ToSend[++ToSendMax] = SEC_D; |
| 761 | LastProxToAirDuration = 8 * ToSendMax - 4; |
| 762 | } else { |
| 763 | ToSend[++ToSendMax] = SEC_E; |
| 764 | LastProxToAirDuration = 8 * ToSendMax; |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | // Send stopbit |
| 769 | ToSend[++ToSendMax] = SEC_F; |
| 770 | |
| 771 | // Convert from last byte pos to length |
| 772 | ToSendMax++; |
| 773 | } |
| 774 | |
| 775 | |
| 776 | static void Code4bitAnswerAsTag(uint8_t cmd) { |
| 777 | int i; |
| 778 | |
| 779 | ToSendReset(); |
| 780 | |
| 781 | // Correction bit, might be removed when not needed |
| 782 | ToSendStuffBit(0); |
| 783 | ToSendStuffBit(0); |
| 784 | ToSendStuffBit(0); |
| 785 | ToSendStuffBit(0); |
| 786 | ToSendStuffBit(1); // 1 |
| 787 | ToSendStuffBit(0); |
| 788 | ToSendStuffBit(0); |
| 789 | ToSendStuffBit(0); |
| 790 | |
| 791 | // Send startbit |
| 792 | ToSend[++ToSendMax] = SEC_D; |
| 793 | |
| 794 | uint8_t b = cmd; |
| 795 | for (i = 0; i < 4; i++) { |
| 796 | if(b & 1) { |
| 797 | ToSend[++ToSendMax] = SEC_D; |
| 798 | LastProxToAirDuration = 8 * ToSendMax - 4; |
| 799 | } else { |
| 800 | ToSend[++ToSendMax] = SEC_E; |
| 801 | LastProxToAirDuration = 8 * ToSendMax; |
| 802 | } |
| 803 | b >>= 1; |
| 804 | } |
| 805 | |
| 806 | // Send stopbit |
| 807 | ToSend[++ToSendMax] = SEC_F; |
| 808 | |
| 809 | // Convert from last byte pos to length |
| 810 | ToSendMax++; |
| 811 | } |
| 812 | |
| 813 | |
| 814 | static uint8_t *LastReaderTraceTime = NULL; |
| 815 | |
| 816 | static void EmLogTraceReader(void) { |
| 817 | // remember last reader trace start to fix timing info later |
| 818 | LastReaderTraceTime = BigBuf_get_addr() + BigBuf_get_traceLen(); |
| 819 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); |
| 820 | } |
| 821 | |
| 822 | |
| 823 | static void FixLastReaderTraceTime(uint32_t tag_StartTime) { |
| 824 | uint32_t reader_EndTime = Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG; |
| 825 | uint32_t reader_StartTime = Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG; |
| 826 | uint16_t reader_modlen = reader_EndTime - reader_StartTime; |
| 827 | uint16_t approx_fdt = tag_StartTime - reader_EndTime; |
| 828 | uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20; |
| 829 | reader_StartTime = tag_StartTime - exact_fdt - reader_modlen; |
| 830 | LastReaderTraceTime[0] = (reader_StartTime >> 0) & 0xff; |
| 831 | LastReaderTraceTime[1] = (reader_StartTime >> 8) & 0xff; |
| 832 | LastReaderTraceTime[2] = (reader_StartTime >> 16) & 0xff; |
| 833 | LastReaderTraceTime[3] = (reader_StartTime >> 24) & 0xff; |
| 834 | } |
| 835 | |
| 836 | |
| 837 | static void EmLogTraceTag(uint8_t *tag_data, uint16_t tag_len, uint8_t *tag_Parity, uint32_t ProxToAirDuration) { |
| 838 | uint32_t tag_StartTime = LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG; |
| 839 | uint32_t tag_EndTime = (LastTimeProxToAirStart + ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG; |
| 840 | LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, false); |
| 841 | FixLastReaderTraceTime(tag_StartTime); |
| 842 | } |
| 843 | |
| 844 | |
| 845 | //----------------------------------------------------------------------------- |
| 846 | // Wait for commands from reader |
| 847 | // Stop when button is pressed |
| 848 | // Or return true when command is captured |
| 849 | //----------------------------------------------------------------------------- |
| 850 | static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len) { |
| 851 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen |
| 852 | // only, since we are receiving, not transmitting). |
| 853 | // Signal field is off with the appropriate LED |
| 854 | LED_D_OFF(); |
| 855 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); |
| 856 | |
| 857 | // Now run a `software UART' on the stream of incoming samples. |
| 858 | UartInit(received, parity); |
| 859 | |
| 860 | // clear RXRDY: |
| 861 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
| 862 | |
| 863 | for (;;) { |
| 864 | WDT_HIT(); |
| 865 | |
| 866 | if(BUTTON_PRESS()) return false; |
| 867 | |
| 868 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
| 869 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
| 870 | if(MillerDecoding(b, 0)) { |
| 871 | *len = Uart.len; |
| 872 | EmLogTraceReader(); |
| 873 | return true; |
| 874 | } |
| 875 | } |
| 876 | } |
| 877 | } |
| 878 | |
| 879 | |
| 880 | int EmSend4bit(uint8_t resp); |
| 881 | static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par); |
| 882 | int EmSendCmd(uint8_t *resp, uint16_t respLen); |
| 883 | int EmSendPrecompiledCmd(tag_response_info_t *response_info); |
| 884 | |
| 885 | |
| 886 | static bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) { |
| 887 | // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes |
| 888 | // This will need the following byte array for a modulation sequence |
| 889 | // 144 data bits (18 * 8) |
| 890 | // 18 parity bits |
| 891 | // 2 Start and stop |
| 892 | // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA) |
| 893 | // 1 just for the case |
| 894 | // ----------- + |
| 895 | // 166 bytes, since every bit that needs to be send costs us a byte |
| 896 | // |
| 897 | |
| 898 | |
| 899 | // Prepare the tag modulation bits from the message |
| 900 | GetParity(response_info->response, response_info->response_n, &(response_info->par)); |
| 901 | CodeIso14443aAsTagPar(response_info->response,response_info->response_n, &(response_info->par)); |
| 902 | |
| 903 | // Make sure we do not exceed the free buffer space |
| 904 | if (ToSendMax > max_buffer_size) { |
| 905 | Dbprintf("Out of memory, when modulating bits for tag answer:"); |
| 906 | Dbhexdump(response_info->response_n, response_info->response, false); |
| 907 | return false; |
| 908 | } |
| 909 | |
| 910 | // Copy the byte array, used for this modulation to the buffer position |
| 911 | memcpy(response_info->modulation, ToSend, ToSendMax); |
| 912 | |
| 913 | // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them |
| 914 | response_info->modulation_n = ToSendMax; |
| 915 | response_info->ProxToAirDuration = LastProxToAirDuration; |
| 916 | |
| 917 | return true; |
| 918 | } |
| 919 | |
| 920 | |
| 921 | // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit. |
| 922 | // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) |
| 923 | // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits for the modulation |
| 924 | // -> need 273 bytes buffer |
| 925 | #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273 |
| 926 | |
| 927 | bool prepare_allocated_tag_modulation(tag_response_info_t* response_info, uint8_t **buffer, size_t *max_buffer_size) { |
| 928 | |
| 929 | // Retrieve and store the current buffer index |
| 930 | response_info->modulation = *buffer; |
| 931 | |
| 932 | // Forward the prepare tag modulation function to the inner function |
| 933 | if (prepare_tag_modulation(response_info, *max_buffer_size)) { |
| 934 | // Update the free buffer offset and the remaining buffer size |
| 935 | *buffer += ToSendMax; |
| 936 | *max_buffer_size -= ToSendMax; |
| 937 | return true; |
| 938 | } else { |
| 939 | return false; |
| 940 | } |
| 941 | } |
| 942 | |
| 943 | //----------------------------------------------------------------------------- |
| 944 | // Main loop of simulated tag: receive commands from reader, decide what |
| 945 | // response to send, and send it. |
| 946 | //----------------------------------------------------------------------------- |
| 947 | void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, uint8_t* data) { |
| 948 | |
| 949 | uint8_t sak; |
| 950 | |
| 951 | // The first response contains the ATQA (note: bytes are transmitted in reverse order). |
| 952 | uint8_t response1[2]; |
| 953 | |
| 954 | switch (tagType) { |
| 955 | case 1: { // MIFARE Classic |
| 956 | // Says: I am Mifare 1k - original line |
| 957 | response1[0] = 0x04; |
| 958 | response1[1] = 0x00; |
| 959 | sak = 0x08; |
| 960 | } break; |
| 961 | case 2: { // MIFARE Ultralight |
| 962 | // Says: I am a stupid memory tag, no crypto |
| 963 | response1[0] = 0x04; |
| 964 | response1[1] = 0x00; |
| 965 | sak = 0x00; |
| 966 | } break; |
| 967 | case 3: { // MIFARE DESFire |
| 968 | // Says: I am a DESFire tag, ph33r me |
| 969 | response1[0] = 0x04; |
| 970 | response1[1] = 0x03; |
| 971 | sak = 0x20; |
| 972 | } break; |
| 973 | case 4: { // ISO/IEC 14443-4 |
| 974 | // Says: I am a javacard (JCOP) |
| 975 | response1[0] = 0x04; |
| 976 | response1[1] = 0x00; |
| 977 | sak = 0x28; |
| 978 | } break; |
| 979 | case 5: { // MIFARE TNP3XXX |
| 980 | // Says: I am a toy |
| 981 | response1[0] = 0x01; |
| 982 | response1[1] = 0x0f; |
| 983 | sak = 0x01; |
| 984 | } break; |
| 985 | default: { |
| 986 | Dbprintf("Error: unkown tagtype (%d)",tagType); |
| 987 | return; |
| 988 | } break; |
| 989 | } |
| 990 | |
| 991 | // The second response contains the (mandatory) first 24 bits of the UID |
| 992 | uint8_t response2[5] = {0x00}; |
| 993 | |
| 994 | // Check if the uid uses the (optional) part |
| 995 | uint8_t response2a[5] = {0x00}; |
| 996 | |
| 997 | if (uid_2nd) { |
| 998 | response2[0] = 0x88; |
| 999 | num_to_bytes(uid_1st,3,response2+1); |
| 1000 | num_to_bytes(uid_2nd,4,response2a); |
| 1001 | response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3]; |
| 1002 | |
| 1003 | // Configure the ATQA and SAK accordingly |
| 1004 | response1[0] |= 0x40; |
| 1005 | sak |= 0x04; |
| 1006 | } else { |
| 1007 | num_to_bytes(uid_1st,4,response2); |
| 1008 | // Configure the ATQA and SAK accordingly |
| 1009 | response1[0] &= 0xBF; |
| 1010 | sak &= 0xFB; |
| 1011 | } |
| 1012 | |
| 1013 | // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID. |
| 1014 | response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3]; |
| 1015 | |
| 1016 | // Prepare the mandatory SAK (for 4 and 7 byte UID) |
| 1017 | uint8_t response3[3] = {0x00}; |
| 1018 | response3[0] = sak; |
| 1019 | ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); |
| 1020 | |
| 1021 | // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit |
| 1022 | uint8_t response3a[3] = {0x00}; |
| 1023 | response3a[0] = sak & 0xFB; |
| 1024 | ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); |
| 1025 | |
| 1026 | uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce |
| 1027 | uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS: |
| 1028 | // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present, |
| 1029 | // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1 |
| 1030 | // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us) |
| 1031 | // TC(1) = 0x02: CID supported, NAD not supported |
| 1032 | ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]); |
| 1033 | |
| 1034 | #define TAG_RESPONSE_COUNT 7 |
| 1035 | tag_response_info_t responses[TAG_RESPONSE_COUNT] = { |
| 1036 | { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type |
| 1037 | { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid |
| 1038 | { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked |
| 1039 | { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1 |
| 1040 | { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2 |
| 1041 | { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce) |
| 1042 | { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS |
| 1043 | }; |
| 1044 | |
| 1045 | // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it |
| 1046 | // Such a response is less time critical, so we can prepare them on the fly |
| 1047 | #define DYNAMIC_RESPONSE_BUFFER_SIZE 64 |
| 1048 | #define DYNAMIC_MODULATION_BUFFER_SIZE 512 |
| 1049 | uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE]; |
| 1050 | uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE]; |
| 1051 | tag_response_info_t dynamic_response_info = { |
| 1052 | .response = dynamic_response_buffer, |
| 1053 | .response_n = 0, |
| 1054 | .modulation = dynamic_modulation_buffer, |
| 1055 | .modulation_n = 0 |
| 1056 | }; |
| 1057 | |
| 1058 | // We need to listen to the high-frequency, peak-detected path. |
| 1059 | iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); |
| 1060 | |
| 1061 | BigBuf_free_keep_EM(); |
| 1062 | |
| 1063 | // allocate buffers: |
| 1064 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); |
| 1065 | uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); |
| 1066 | uint8_t *free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE); |
| 1067 | size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE; |
| 1068 | // clear trace |
| 1069 | clear_trace(); |
| 1070 | set_tracing(true); |
| 1071 | |
| 1072 | // Prepare the responses of the anticollision phase |
| 1073 | // there will be not enough time to do this at the moment the reader sends it REQA |
| 1074 | for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) { |
| 1075 | prepare_allocated_tag_modulation(&responses[i], &free_buffer_pointer, &free_buffer_size); |
| 1076 | } |
| 1077 | |
| 1078 | int len = 0; |
| 1079 | |
| 1080 | // To control where we are in the protocol |
| 1081 | int order = 0; |
| 1082 | int lastorder; |
| 1083 | |
| 1084 | // Just to allow some checks |
| 1085 | int happened = 0; |
| 1086 | int happened2 = 0; |
| 1087 | int cmdsRecvd = 0; |
| 1088 | |
| 1089 | cmdsRecvd = 0; |
| 1090 | tag_response_info_t* p_response; |
| 1091 | |
| 1092 | LED_A_ON(); |
| 1093 | for (;;) { |
| 1094 | // Clean receive command buffer |
| 1095 | if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) { |
| 1096 | DbpString("Button press"); |
| 1097 | break; |
| 1098 | } |
| 1099 | |
| 1100 | p_response = NULL; |
| 1101 | |
| 1102 | // Okay, look at the command now. |
| 1103 | lastorder = order; |
| 1104 | if(receivedCmd[0] == 0x26) { // Received a REQUEST |
| 1105 | p_response = &responses[0]; order = 1; |
| 1106 | } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP |
| 1107 | p_response = &responses[0]; order = 6; |
| 1108 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1) |
| 1109 | p_response = &responses[1]; order = 2; |
| 1110 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2) |
| 1111 | p_response = &responses[2]; order = 20; |
| 1112 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1) |
| 1113 | p_response = &responses[3]; order = 3; |
| 1114 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2) |
| 1115 | p_response = &responses[4]; order = 30; |
| 1116 | } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ |
| 1117 | EmSendCmd(data+(4*receivedCmd[1]),16); |
| 1118 | // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]); |
| 1119 | // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below |
| 1120 | p_response = NULL; |
| 1121 | } else if(receivedCmd[0] == 0x50) { // Received a HALT |
| 1122 | p_response = NULL; |
| 1123 | } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request |
| 1124 | p_response = &responses[5]; order = 7; |
| 1125 | } else if(receivedCmd[0] == 0xE0) { // Received a RATS request |
| 1126 | if (tagType == 1 || tagType == 2) { // RATS not supported |
| 1127 | EmSend4bit(CARD_NACK_NA); |
| 1128 | p_response = NULL; |
| 1129 | } else { |
| 1130 | p_response = &responses[6]; order = 70; |
| 1131 | } |
| 1132 | } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication) |
| 1133 | uint32_t nr = bytes_to_num(receivedCmd,4); |
| 1134 | uint32_t ar = bytes_to_num(receivedCmd+4,4); |
| 1135 | Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar); |
| 1136 | } else { |
| 1137 | // Check for ISO 14443A-4 compliant commands, look at left nibble |
| 1138 | switch (receivedCmd[0]) { |
| 1139 | |
| 1140 | case 0x0B: |
| 1141 | case 0x0A: { // IBlock (command) |
| 1142 | dynamic_response_info.response[0] = receivedCmd[0]; |
| 1143 | dynamic_response_info.response[1] = 0x00; |
| 1144 | dynamic_response_info.response[2] = 0x90; |
| 1145 | dynamic_response_info.response[3] = 0x00; |
| 1146 | dynamic_response_info.response_n = 4; |
| 1147 | } break; |
| 1148 | |
| 1149 | case 0x1A: |
| 1150 | case 0x1B: { // Chaining command |
| 1151 | dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1); |
| 1152 | dynamic_response_info.response_n = 2; |
| 1153 | } break; |
| 1154 | |
| 1155 | case 0xaa: |
| 1156 | case 0xbb: { |
| 1157 | dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11; |
| 1158 | dynamic_response_info.response_n = 2; |
| 1159 | } break; |
| 1160 | |
| 1161 | case 0xBA: { // |
| 1162 | memcpy(dynamic_response_info.response,"\xAB\x00",2); |
| 1163 | dynamic_response_info.response_n = 2; |
| 1164 | } break; |
| 1165 | |
| 1166 | case 0xCA: |
| 1167 | case 0xC2: { // Readers sends deselect command |
| 1168 | memcpy(dynamic_response_info.response,"\xCA\x00",2); |
| 1169 | dynamic_response_info.response_n = 2; |
| 1170 | } break; |
| 1171 | |
| 1172 | default: { |
| 1173 | // Never seen this command before |
| 1174 | Dbprintf("Received unknown command (len=%d):",len); |
| 1175 | Dbhexdump(len,receivedCmd,false); |
| 1176 | // Do not respond |
| 1177 | dynamic_response_info.response_n = 0; |
| 1178 | } break; |
| 1179 | } |
| 1180 | |
| 1181 | if (dynamic_response_info.response_n > 0) { |
| 1182 | // Copy the CID from the reader query |
| 1183 | dynamic_response_info.response[1] = receivedCmd[1]; |
| 1184 | |
| 1185 | // Add CRC bytes, always used in ISO 14443A-4 compliant cards |
| 1186 | AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n); |
| 1187 | dynamic_response_info.response_n += 2; |
| 1188 | |
| 1189 | if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) { |
| 1190 | Dbprintf("Error preparing tag response"); |
| 1191 | break; |
| 1192 | } |
| 1193 | p_response = &dynamic_response_info; |
| 1194 | } |
| 1195 | } |
| 1196 | |
| 1197 | // Count number of wakeups received after a halt |
| 1198 | if(order == 6 && lastorder == 5) { happened++; } |
| 1199 | |
| 1200 | // Count number of other messages after a halt |
| 1201 | if(order != 6 && lastorder == 5) { happened2++; } |
| 1202 | |
| 1203 | if(cmdsRecvd > 999) { |
| 1204 | DbpString("1000 commands later..."); |
| 1205 | break; |
| 1206 | } |
| 1207 | cmdsRecvd++; |
| 1208 | |
| 1209 | if (p_response != NULL) { |
| 1210 | EmSendPrecompiledCmd(p_response); |
| 1211 | } |
| 1212 | |
| 1213 | if (!get_tracing()) { |
| 1214 | Dbprintf("Trace Full. Simulation stopped."); |
| 1215 | break; |
| 1216 | } |
| 1217 | } |
| 1218 | |
| 1219 | Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); |
| 1220 | LED_A_OFF(); |
| 1221 | BigBuf_free_keep_EM(); |
| 1222 | } |
| 1223 | |
| 1224 | |
| 1225 | // prepare a delayed transfer. This simply shifts ToSend[] by a number |
| 1226 | // of bits specified in the delay parameter. |
| 1227 | static void PrepareDelayedTransfer(uint16_t delay) { |
| 1228 | uint8_t bitmask = 0; |
| 1229 | uint8_t bits_to_shift = 0; |
| 1230 | uint8_t bits_shifted = 0; |
| 1231 | |
| 1232 | delay &= 0x07; |
| 1233 | if (delay) { |
| 1234 | for (uint16_t i = 0; i < delay; i++) { |
| 1235 | bitmask |= (0x01 << i); |
| 1236 | } |
| 1237 | ToSend[ToSendMax++] = 0x00; |
| 1238 | for (uint16_t i = 0; i < ToSendMax; i++) { |
| 1239 | bits_to_shift = ToSend[i] & bitmask; |
| 1240 | ToSend[i] = ToSend[i] >> delay; |
| 1241 | ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay)); |
| 1242 | bits_shifted = bits_to_shift; |
| 1243 | } |
| 1244 | } |
| 1245 | } |
| 1246 | |
| 1247 | |
| 1248 | //------------------------------------------------------------------------------------- |
| 1249 | // Transmit the command (to the tag) that was placed in ToSend[]. |
| 1250 | // Parameter timing: |
| 1251 | // if NULL: transfer at next possible time, taking into account |
| 1252 | // request guard time, startup frame guard time and frame delay time |
| 1253 | // if == 0: transfer immediately and return time of transfer |
| 1254 | // if != 0: delay transfer until time specified |
| 1255 | //------------------------------------------------------------------------------------- |
| 1256 | static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) { |
| 1257 | LED_B_ON(); |
| 1258 | LED_D_ON(); |
| 1259 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); |
| 1260 | |
| 1261 | uint32_t ThisTransferTime = 0; |
| 1262 | |
| 1263 | if (timing) { |
| 1264 | if (*timing == 0) { // Measure time |
| 1265 | *timing = (GetCountSspClk() + 8) & 0xfffffff8; |
| 1266 | } else { |
| 1267 | PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks) |
| 1268 | } |
| 1269 | if (MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing"); |
| 1270 | while (GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks) |
| 1271 | LastTimeProxToAirStart = *timing; |
| 1272 | } else { |
| 1273 | ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8); |
| 1274 | while (GetCountSspClk() < ThisTransferTime); |
| 1275 | LastTimeProxToAirStart = ThisTransferTime; |
| 1276 | } |
| 1277 | |
| 1278 | uint16_t c = 0; |
| 1279 | for (;;) { |
| 1280 | if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
| 1281 | AT91C_BASE_SSC->SSC_THR = cmd[c]; |
| 1282 | c++; |
| 1283 | if(c >= len) { |
| 1284 | break; |
| 1285 | } |
| 1286 | } |
| 1287 | } |
| 1288 | |
| 1289 | NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME); |
| 1290 | LED_B_OFF(); |
| 1291 | } |
| 1292 | |
| 1293 | |
| 1294 | //----------------------------------------------------------------------------- |
| 1295 | // Prepare reader command (in bits, support short frames) to send to FPGA |
| 1296 | //----------------------------------------------------------------------------- |
| 1297 | static void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) { |
| 1298 | int i, j; |
| 1299 | int last; |
| 1300 | uint8_t b; |
| 1301 | |
| 1302 | ToSendReset(); |
| 1303 | |
| 1304 | // Start of Communication (Seq. Z) |
| 1305 | ToSend[++ToSendMax] = SEC_Z; |
| 1306 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; |
| 1307 | last = 0; |
| 1308 | |
| 1309 | size_t bytecount = nbytes(bits); |
| 1310 | // Generate send structure for the data bits |
| 1311 | for (i = 0; i < bytecount; i++) { |
| 1312 | // Get the current byte to send |
| 1313 | b = cmd[i]; |
| 1314 | size_t bitsleft = MIN((bits-(i*8)),8); |
| 1315 | |
| 1316 | for (j = 0; j < bitsleft; j++) { |
| 1317 | if (b & 1) { |
| 1318 | // Sequence X |
| 1319 | ToSend[++ToSendMax] = SEC_X; |
| 1320 | LastProxToAirDuration = 8 * (ToSendMax+1) - 2; |
| 1321 | last = 1; |
| 1322 | } else { |
| 1323 | if (last == 0) { |
| 1324 | // Sequence Z |
| 1325 | ToSend[++ToSendMax] = SEC_Z; |
| 1326 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; |
| 1327 | } else { |
| 1328 | // Sequence Y |
| 1329 | ToSend[++ToSendMax] = SEC_Y; |
| 1330 | last = 0; |
| 1331 | } |
| 1332 | } |
| 1333 | b >>= 1; |
| 1334 | } |
| 1335 | |
| 1336 | // Only transmit parity bit if we transmitted a complete byte |
| 1337 | if (j == 8 && parity != NULL) { |
| 1338 | // Get the parity bit |
| 1339 | if (parity[i>>3] & (0x80 >> (i&0x0007))) { |
| 1340 | // Sequence X |
| 1341 | ToSend[++ToSendMax] = SEC_X; |
| 1342 | LastProxToAirDuration = 8 * (ToSendMax+1) - 2; |
| 1343 | last = 1; |
| 1344 | } else { |
| 1345 | if (last == 0) { |
| 1346 | // Sequence Z |
| 1347 | ToSend[++ToSendMax] = SEC_Z; |
| 1348 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; |
| 1349 | } else { |
| 1350 | // Sequence Y |
| 1351 | ToSend[++ToSendMax] = SEC_Y; |
| 1352 | last = 0; |
| 1353 | } |
| 1354 | } |
| 1355 | } |
| 1356 | } |
| 1357 | |
| 1358 | // End of Communication: Logic 0 followed by Sequence Y |
| 1359 | if (last == 0) { |
| 1360 | // Sequence Z |
| 1361 | ToSend[++ToSendMax] = SEC_Z; |
| 1362 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; |
| 1363 | } else { |
| 1364 | // Sequence Y |
| 1365 | ToSend[++ToSendMax] = SEC_Y; |
| 1366 | last = 0; |
| 1367 | } |
| 1368 | ToSend[++ToSendMax] = SEC_Y; |
| 1369 | |
| 1370 | // Convert to length of command: |
| 1371 | ToSendMax++; |
| 1372 | } |
| 1373 | |
| 1374 | |
| 1375 | //----------------------------------------------------------------------------- |
| 1376 | // Wait for commands from reader |
| 1377 | // Stop when button is pressed (return 1) or field was gone (return 2) |
| 1378 | // Or return 0 when command is captured |
| 1379 | //----------------------------------------------------------------------------- |
| 1380 | int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) { |
| 1381 | uint32_t field_off_time = -1; |
| 1382 | uint32_t samples = 0; |
| 1383 | int ret = 0; |
| 1384 | uint8_t b = 0;; |
| 1385 | uint8_t dmaBuf[DMA_BUFFER_SIZE]; |
| 1386 | uint8_t *upTo = dmaBuf; |
| 1387 | |
| 1388 | *len = 0; |
| 1389 | |
| 1390 | // Run a 'software UART' on the stream of incoming samples. |
| 1391 | UartInit(received, parity); |
| 1392 | |
| 1393 | // start ADC |
| 1394 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; |
| 1395 | |
| 1396 | // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN |
| 1397 | while (GetCountSspClk() < LastTimeProxToAirStart + LastProxToAirDuration + (FpgaSendQueueDelay>>3) - 8 - 3) /* wait */ ; |
| 1398 | |
| 1399 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen |
| 1400 | // only, since we are receiving, not transmitting). |
| 1401 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); |
| 1402 | |
| 1403 | // clear receive register, measure time of next transfer |
| 1404 | uint32_t temp = AT91C_BASE_SSC->SSC_RHR; (void) temp; |
| 1405 | while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) ; |
| 1406 | uint32_t start_time = GetCountSspClk() & 0xfffffff8; |
| 1407 | |
| 1408 | // Setup and start DMA. |
| 1409 | FpgaSetupSscDma(dmaBuf, DMA_BUFFER_SIZE); |
| 1410 | |
| 1411 | for(;;) { |
| 1412 | uint16_t behindBy = ((uint8_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (DMA_BUFFER_SIZE-1); |
| 1413 | |
| 1414 | if (behindBy == 0) continue; |
| 1415 | |
| 1416 | b = *upTo++; |
| 1417 | |
| 1418 | if(upTo >= dmaBuf + DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content. |
| 1419 | upTo = dmaBuf; // start reading the circular buffer from the beginning |
| 1420 | if(behindBy > (9*DMA_BUFFER_SIZE/10)) { |
| 1421 | Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy); |
| 1422 | ret = 1; |
| 1423 | break; |
| 1424 | } |
| 1425 | } |
| 1426 | if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated. |
| 1427 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and |
| 1428 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; // DMA Next Counter registers |
| 1429 | } |
| 1430 | |
| 1431 | if (BUTTON_PRESS()) { |
| 1432 | ret = 1; |
| 1433 | break; |
| 1434 | } |
| 1435 | |
| 1436 | // check reader's HF field |
| 1437 | if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF_LOW)) { |
| 1438 | if ((MAX_ADC_HF_VOLTAGE_LOW * AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF_LOW]) >> 10 < MF_MINFIELDV) { |
| 1439 | if (GetTickCount() - field_off_time > 50) { |
| 1440 | ret = 2; // reader has switched off HF field for more than 50ms. Timeout |
| 1441 | break; |
| 1442 | } |
| 1443 | } else { |
| 1444 | field_off_time = GetTickCount(); // HF field is still there. Reset timer |
| 1445 | } |
| 1446 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; // restart ADC |
| 1447 | } |
| 1448 | |
| 1449 | if (MillerDecoding(b, start_time + samples*8)) { |
| 1450 | *len = Uart.len; |
| 1451 | EmLogTraceReader(); |
| 1452 | ret = 0; |
| 1453 | break; |
| 1454 | } |
| 1455 | |
| 1456 | samples++; |
| 1457 | } |
| 1458 | |
| 1459 | FpgaDisableSscDma(); |
| 1460 | return ret; |
| 1461 | } |
| 1462 | |
| 1463 | |
| 1464 | static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen) { |
| 1465 | LED_C_ON(); |
| 1466 | |
| 1467 | uint8_t b; |
| 1468 | uint16_t i = 0; |
| 1469 | bool correctionNeeded; |
| 1470 | |
| 1471 | // Modulate Manchester |
| 1472 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); |
| 1473 | |
| 1474 | // include correction bit if necessary |
| 1475 | if (Uart.bitCount == 7) |
| 1476 | { |
| 1477 | // Short tags (7 bits) don't have parity, determine the correct value from MSB |
| 1478 | correctionNeeded = Uart.output[0] & 0x40; |
| 1479 | } |
| 1480 | else |
| 1481 | { |
| 1482 | // Look at the last parity bit |
| 1483 | correctionNeeded = Uart.parity[(Uart.len-1)/8] & (0x80 >> ((Uart.len-1) & 7)); |
| 1484 | } |
| 1485 | |
| 1486 | if (correctionNeeded) { |
| 1487 | // 1236, so correction bit needed |
| 1488 | i = 0; |
| 1489 | } else { |
| 1490 | i = 1; |
| 1491 | } |
| 1492 | |
| 1493 | // clear receiving shift register and holding register |
| 1494 | b = AT91C_BASE_SSC->SSC_RHR; (void) b; |
| 1495 | while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); |
| 1496 | b = AT91C_BASE_SSC->SSC_RHR; (void) b; |
| 1497 | |
| 1498 | // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line) |
| 1499 | for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never |
| 1500 | while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); |
| 1501 | if (AT91C_BASE_SSC->SSC_RHR) break; |
| 1502 | } |
| 1503 | |
| 1504 | LastTimeProxToAirStart = (GetCountSspClk() & 0xfffffff8) + (correctionNeeded?8:0); |
| 1505 | |
| 1506 | // send cycle |
| 1507 | for (; i < respLen; ) { |
| 1508 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
| 1509 | AT91C_BASE_SSC->SSC_THR = resp[i++]; |
| 1510 | FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
| 1511 | } |
| 1512 | |
| 1513 | if(BUTTON_PRESS()) { |
| 1514 | break; |
| 1515 | } |
| 1516 | } |
| 1517 | |
| 1518 | LED_C_OFF(); |
| 1519 | return 0; |
| 1520 | } |
| 1521 | |
| 1522 | |
| 1523 | int EmSend4bit(uint8_t resp){ |
| 1524 | Code4bitAnswerAsTag(resp); |
| 1525 | int res = EmSendCmd14443aRaw(ToSend, ToSendMax); |
| 1526 | // Log this tag answer and fix timing of previous reader command: |
| 1527 | EmLogTraceTag(&resp, 1, NULL, LastProxToAirDuration); |
| 1528 | return res; |
| 1529 | } |
| 1530 | |
| 1531 | |
| 1532 | static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par){ |
| 1533 | CodeIso14443aAsTagPar(resp, respLen, par); |
| 1534 | int res = EmSendCmd14443aRaw(ToSend, ToSendMax); |
| 1535 | // Log this tag answer and fix timing of previous reader command: |
| 1536 | EmLogTraceTag(resp, respLen, par, LastProxToAirDuration); |
| 1537 | return res; |
| 1538 | } |
| 1539 | |
| 1540 | |
| 1541 | int EmSendCmd(uint8_t *resp, uint16_t respLen){ |
| 1542 | uint8_t par[MAX_PARITY_SIZE]; |
| 1543 | GetParity(resp, respLen, par); |
| 1544 | return EmSendCmdExPar(resp, respLen, par); |
| 1545 | } |
| 1546 | |
| 1547 | |
| 1548 | int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){ |
| 1549 | return EmSendCmdExPar(resp, respLen, par); |
| 1550 | } |
| 1551 | |
| 1552 | |
| 1553 | int EmSendPrecompiledCmd(tag_response_info_t *response_info) { |
| 1554 | int ret = EmSendCmd14443aRaw(response_info->modulation, response_info->modulation_n); |
| 1555 | // Log this tag answer and fix timing of previous reader command: |
| 1556 | EmLogTraceTag(response_info->response, response_info->response_n, &(response_info->par), response_info->ProxToAirDuration); |
| 1557 | return ret; |
| 1558 | } |
| 1559 | |
| 1560 | |
| 1561 | //----------------------------------------------------------------------------- |
| 1562 | // Wait a certain time for tag response |
| 1563 | // If a response is captured return true |
| 1564 | // If it takes too long return false |
| 1565 | //----------------------------------------------------------------------------- |
| 1566 | static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) { |
| 1567 | uint32_t c; |
| 1568 | |
| 1569 | // Set FPGA mode to "reader listen mode", no modulation (listen |
| 1570 | // only, since we are receiving, not transmitting). |
| 1571 | // Signal field is on with the appropriate LED |
| 1572 | LED_D_ON(); |
| 1573 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); |
| 1574 | |
| 1575 | // Now get the answer from the card |
| 1576 | DemodInit(receivedResponse, receivedResponsePar); |
| 1577 | |
| 1578 | // clear RXRDY: |
| 1579 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
| 1580 | |
| 1581 | c = 0; |
| 1582 | for (;;) { |
| 1583 | WDT_HIT(); |
| 1584 | |
| 1585 | if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
| 1586 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
| 1587 | if (ManchesterDecoding(b, offset, 0)) { |
| 1588 | NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD); |
| 1589 | return true; |
| 1590 | } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) { |
| 1591 | return false; |
| 1592 | } |
| 1593 | } |
| 1594 | } |
| 1595 | } |
| 1596 | |
| 1597 | |
| 1598 | void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) { |
| 1599 | |
| 1600 | CodeIso14443aBitsAsReaderPar(frame, bits, par); |
| 1601 | |
| 1602 | // Send command to tag |
| 1603 | TransmitFor14443a(ToSend, ToSendMax, timing); |
| 1604 | if (trigger) |
| 1605 | LED_A_ON(); |
| 1606 | |
| 1607 | // Log reader command in trace buffer |
| 1608 | LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, true); |
| 1609 | } |
| 1610 | |
| 1611 | |
| 1612 | void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) { |
| 1613 | ReaderTransmitBitsPar(frame, len*8, par, timing); |
| 1614 | } |
| 1615 | |
| 1616 | |
| 1617 | static void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) { |
| 1618 | // Generate parity and redirect |
| 1619 | uint8_t par[MAX_PARITY_SIZE]; |
| 1620 | GetParity(frame, len/8, par); |
| 1621 | ReaderTransmitBitsPar(frame, len, par, timing); |
| 1622 | } |
| 1623 | |
| 1624 | |
| 1625 | void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) { |
| 1626 | // Generate parity and redirect |
| 1627 | uint8_t par[MAX_PARITY_SIZE]; |
| 1628 | GetParity(frame, len, par); |
| 1629 | ReaderTransmitBitsPar(frame, len*8, par, timing); |
| 1630 | } |
| 1631 | |
| 1632 | |
| 1633 | static int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) { |
| 1634 | if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return false; |
| 1635 | LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false); |
| 1636 | return Demod.len; |
| 1637 | } |
| 1638 | |
| 1639 | |
| 1640 | int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) { |
| 1641 | if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return false; |
| 1642 | |
| 1643 | LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false); |
| 1644 | return Demod.len; |
| 1645 | } |
| 1646 | |
| 1647 | |
| 1648 | static void iso14a_set_ATS_times(uint8_t *ats) { |
| 1649 | |
| 1650 | uint8_t tb1; |
| 1651 | uint8_t fwi, sfgi; |
| 1652 | uint32_t fwt, sfgt; |
| 1653 | |
| 1654 | if (ats[0] > 1) { // there is a format byte T0 |
| 1655 | if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1) |
| 1656 | if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1) |
| 1657 | tb1 = ats[3]; |
| 1658 | } else { |
| 1659 | tb1 = ats[2]; |
| 1660 | } |
| 1661 | fwi = (tb1 & 0xf0) >> 4; // frame waiting time integer (FWI) |
| 1662 | if (fwi != 15) { |
| 1663 | fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc |
| 1664 | iso14a_set_timeout(fwt/(8*16)); |
| 1665 | } |
| 1666 | sfgi = tb1 & 0x0f; // startup frame guard time integer (SFGI) |
| 1667 | if (sfgi != 0 && sfgi != 15) { |
| 1668 | sfgt = 256 * 16 * (1 << sfgi); // startup frame guard time (SFGT) in 1/fc |
| 1669 | NextTransferTime = MAX(NextTransferTime, Demod.endTime + (sfgt - DELAY_AIR2ARM_AS_READER - DELAY_ARM2AIR_AS_READER)/16); |
| 1670 | } |
| 1671 | } |
| 1672 | } |
| 1673 | } |
| 1674 | |
| 1675 | |
| 1676 | static int GetATQA(uint8_t *resp, uint8_t *resp_par) { |
| 1677 | |
| 1678 | #define WUPA_RETRY_TIMEOUT 10 // 10ms |
| 1679 | uint8_t wupa[] = {ISO14443A_CMD_WUPA}; // 0x26 - REQA 0x52 - WAKE-UP |
| 1680 | |
| 1681 | uint32_t save_iso14a_timeout = iso14a_get_timeout(); |
| 1682 | iso14a_set_timeout(1236/(16*8)+1); // response to WUPA is expected at exactly 1236/fc. No need to wait longer. |
| 1683 | |
| 1684 | uint32_t start_time = GetTickCount(); |
| 1685 | int len; |
| 1686 | |
| 1687 | // we may need several tries if we did send an unknown command or a wrong authentication before... |
| 1688 | do { |
| 1689 | // Broadcast for a card, WUPA (0x52) will force response from all cards in the field |
| 1690 | ReaderTransmitBitsPar(wupa, 7, NULL, NULL); |
| 1691 | // Receive the ATQA |
| 1692 | len = ReaderReceive(resp, resp_par); |
| 1693 | } while (len == 0 && GetTickCount() <= start_time + WUPA_RETRY_TIMEOUT); |
| 1694 | |
| 1695 | iso14a_set_timeout(save_iso14a_timeout); |
| 1696 | return len; |
| 1697 | } |
| 1698 | |
| 1699 | |
| 1700 | // performs iso14443a anticollision (optional) and card select procedure |
| 1701 | // fills the uid and cuid pointer unless NULL |
| 1702 | // fills the card info record unless NULL |
| 1703 | // if anticollision is false, then the UID must be provided in uid_ptr[] |
| 1704 | // and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID) |
| 1705 | // requests ATS unless no_rats is true |
| 1706 | int iso14443a_select_card(uint8_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades, bool no_rats) { |
| 1707 | uint8_t sel_all[] = { 0x93,0x20 }; |
| 1708 | uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; |
| 1709 | uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 |
| 1710 | uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller |
| 1711 | uint8_t resp_par[MAX_PARITY_SIZE]; |
| 1712 | uint8_t uid_resp[4]; |
| 1713 | size_t uid_resp_len; |
| 1714 | |
| 1715 | uint8_t sak = 0x04; // cascade uid |
| 1716 | int cascade_level = 0; |
| 1717 | int len; |
| 1718 | |
| 1719 | // init card struct |
| 1720 | if (p_hi14a_card) { |
| 1721 | p_hi14a_card->uidlen = 0; |
| 1722 | memset(p_hi14a_card->uid, 0, 10); |
| 1723 | p_hi14a_card->ats_len = 0; |
| 1724 | } |
| 1725 | |
| 1726 | if (!GetATQA(resp, resp_par)) { |
| 1727 | return 0; |
| 1728 | } |
| 1729 | |
| 1730 | if (p_hi14a_card) { |
| 1731 | memcpy(p_hi14a_card->atqa, resp, 2); |
| 1732 | } |
| 1733 | |
| 1734 | if (anticollision) { |
| 1735 | // clear uid |
| 1736 | if (uid_ptr) { |
| 1737 | memset(uid_ptr,0,10); |
| 1738 | } |
| 1739 | } |
| 1740 | |
| 1741 | // check for proprietary anticollision: |
| 1742 | if ((resp[0] & 0x1F) == 0) { |
| 1743 | return 3; |
| 1744 | } |
| 1745 | |
| 1746 | // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in |
| 1747 | // which case we need to make a cascade 2 request and select - this is a long UID |
| 1748 | // While the UID is not complete, the 3rd bit (from the right) is set in the SAK. |
| 1749 | for (; sak & 0x04; cascade_level++) { |
| 1750 | // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97) |
| 1751 | sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2; |
| 1752 | |
| 1753 | if (anticollision) { |
| 1754 | // SELECT_ALL |
| 1755 | ReaderTransmit(sel_all, sizeof(sel_all), NULL); |
| 1756 | if (!ReaderReceive(resp, resp_par)) { |
| 1757 | return 0; |
| 1758 | } |
| 1759 | |
| 1760 | if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit |
| 1761 | memset(uid_resp, 0, 4); |
| 1762 | uint16_t uid_resp_bits = 0; |
| 1763 | uint16_t collision_answer_offset = 0; |
| 1764 | // anti-collision-loop: |
| 1765 | while (Demod.collisionPos) { |
| 1766 | Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos); |
| 1767 | for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point |
| 1768 | uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01; |
| 1769 | uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8); |
| 1770 | } |
| 1771 | uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position |
| 1772 | uid_resp_bits++; |
| 1773 | // construct anticollosion command: |
| 1774 | sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits |
| 1775 | for (uint16_t i = 0; i <= uid_resp_bits/8; i++) { |
| 1776 | sel_uid[2+i] = uid_resp[i]; |
| 1777 | } |
| 1778 | collision_answer_offset = uid_resp_bits%8; |
| 1779 | ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL); |
| 1780 | if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) { |
| 1781 | return 0; |
| 1782 | } |
| 1783 | } |
| 1784 | // finally, add the last bits and BCC of the UID |
| 1785 | for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) { |
| 1786 | uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01; |
| 1787 | uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8); |
| 1788 | } |
| 1789 | |
| 1790 | } else { // no collision, use the response to SELECT_ALL as current uid |
| 1791 | memcpy(uid_resp, resp, 4); |
| 1792 | } |
| 1793 | } else { |
| 1794 | if (cascade_level < num_cascades - 1) { |
| 1795 | uid_resp[0] = 0x88; |
| 1796 | memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3); |
| 1797 | } else { |
| 1798 | memcpy(uid_resp, uid_ptr+cascade_level*3, 4); |
| 1799 | } |
| 1800 | } |
| 1801 | uid_resp_len = 4; |
| 1802 | |
| 1803 | // calculate crypto UID. Always use last 4 Bytes. |
| 1804 | if(cuid_ptr) { |
| 1805 | *cuid_ptr = bytes_to_num(uid_resp, 4); |
| 1806 | } |
| 1807 | |
| 1808 | // Construct SELECT UID command |
| 1809 | sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC) |
| 1810 | memcpy(sel_uid+2, uid_resp, 4); // the UID received during anticollision, or the provided UID |
| 1811 | sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC |
| 1812 | AppendCrc14443a(sel_uid, 7); // calculate and add CRC |
| 1813 | ReaderTransmit(sel_uid, sizeof(sel_uid), NULL); |
| 1814 | |
| 1815 | // Receive the SAK |
| 1816 | if (!ReaderReceive(resp, resp_par)) { |
| 1817 | return 0; |
| 1818 | } |
| 1819 | sak = resp[0]; |
| 1820 | |
| 1821 | // Test if more parts of the uid are coming |
| 1822 | if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) { |
| 1823 | // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of: |
| 1824 | // http://www.nxp.com/documents/application_note/AN10927.pdf |
| 1825 | uid_resp[0] = uid_resp[1]; |
| 1826 | uid_resp[1] = uid_resp[2]; |
| 1827 | uid_resp[2] = uid_resp[3]; |
| 1828 | uid_resp_len = 3; |
| 1829 | } |
| 1830 | |
| 1831 | if(uid_ptr && anticollision) { |
| 1832 | memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len); |
| 1833 | } |
| 1834 | |
| 1835 | if(p_hi14a_card) { |
| 1836 | memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len); |
| 1837 | p_hi14a_card->uidlen += uid_resp_len; |
| 1838 | } |
| 1839 | } |
| 1840 | |
| 1841 | if(p_hi14a_card) { |
| 1842 | p_hi14a_card->sak = sak; |
| 1843 | } |
| 1844 | |
| 1845 | // PICC compilant with iso14443a-4 ---> (SAK & 0x20 != 0) |
| 1846 | if( (sak & 0x20) == 0) return 2; |
| 1847 | |
| 1848 | if (!no_rats) { |
| 1849 | // Request for answer to select |
| 1850 | AppendCrc14443a(rats, 2); |
| 1851 | ReaderTransmit(rats, sizeof(rats), NULL); |
| 1852 | |
| 1853 | if (!(len = ReaderReceive(resp, resp_par))) { |
| 1854 | return 0; |
| 1855 | } |
| 1856 | |
| 1857 | if(p_hi14a_card) { |
| 1858 | memcpy(p_hi14a_card->ats, resp, len); |
| 1859 | p_hi14a_card->ats_len = len; |
| 1860 | } |
| 1861 | |
| 1862 | // reset the PCB block number |
| 1863 | iso14_pcb_blocknum = 0; |
| 1864 | |
| 1865 | // set default timeout and delay next transfer based on ATS |
| 1866 | iso14a_set_ATS_times(resp); |
| 1867 | |
| 1868 | } |
| 1869 | return 1; |
| 1870 | } |
| 1871 | |
| 1872 | |
| 1873 | void iso14443a_setup(uint8_t fpga_minor_mode) { |
| 1874 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
| 1875 | // Set up the synchronous serial port |
| 1876 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A); |
| 1877 | // connect Demodulated Signal to ADC: |
| 1878 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
| 1879 | |
| 1880 | // Signal field is on with the appropriate LED |
| 1881 | if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD |
| 1882 | || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) { |
| 1883 | LED_D_ON(); |
| 1884 | } else { |
| 1885 | LED_D_OFF(); |
| 1886 | } |
| 1887 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode); |
| 1888 | |
| 1889 | // Set ADC to read field strength |
| 1890 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; |
| 1891 | AT91C_BASE_ADC->ADC_MR = |
| 1892 | ADC_MODE_PRESCALE(63) | |
| 1893 | ADC_MODE_STARTUP_TIME(1) | |
| 1894 | ADC_MODE_SAMPLE_HOLD_TIME(15); |
| 1895 | AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF_LOW); |
| 1896 | |
| 1897 | // Start the timer |
| 1898 | StartCountSspClk(); |
| 1899 | |
| 1900 | DemodReset(); |
| 1901 | UartReset(); |
| 1902 | LastTimeProxToAirStart = 0; |
| 1903 | FpgaSendQueueDelay = 0; |
| 1904 | LastProxToAirDuration = 20; // arbitrary small value. Avoid lock in EmGetCmd() |
| 1905 | NextTransferTime = 2*DELAY_ARM2AIR_AS_READER; |
| 1906 | iso14a_set_timeout(1060); // 10ms default |
| 1907 | } |
| 1908 | |
| 1909 | /* Peter Fillmore 2015 |
| 1910 | Added card id field to the function |
| 1911 | info from ISO14443A standard |
| 1912 | b1 = Block Number |
| 1913 | b2 = RFU (always 1) |
| 1914 | b3 = depends on block |
| 1915 | b4 = Card ID following if set to 1 |
| 1916 | b5 = depends on block type |
| 1917 | b6 = depends on block type |
| 1918 | b7,b8 = block type. |
| 1919 | Coding of I-BLOCK: |
| 1920 | b8 b7 b6 b5 b4 b3 b2 b1 |
| 1921 | 0 0 0 x x x 1 x |
| 1922 | b5 = chaining bit |
| 1923 | Coding of R-block: |
| 1924 | b8 b7 b6 b5 b4 b3 b2 b1 |
| 1925 | 1 0 1 x x 0 1 x |
| 1926 | b5 = ACK/NACK |
| 1927 | Coding of S-block: |
| 1928 | b8 b7 b6 b5 b4 b3 b2 b1 |
| 1929 | 1 1 x x x 0 1 0 |
| 1930 | b5,b6 = 00 - DESELECT |
| 1931 | 11 - WTX |
| 1932 | */ |
| 1933 | int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, bool send_chaining, void *data, uint8_t *res) { |
| 1934 | uint8_t parity[MAX_PARITY_SIZE]; |
| 1935 | uint8_t real_cmd[cmd_len + 4]; |
| 1936 | |
| 1937 | if (cmd_len) { |
| 1938 | // ISO 14443 APDU frame: PCB [CID] [NAD] APDU CRC PCB=0x02 |
| 1939 | real_cmd[0] = 0x02; // bnr,nad,cid,chn=0; i-block(0x00) |
| 1940 | if (send_chaining) { |
| 1941 | real_cmd[0] |= 0x10; |
| 1942 | } |
| 1943 | // put block number into the PCB |
| 1944 | real_cmd[0] |= iso14_pcb_blocknum; |
| 1945 | memcpy(real_cmd + 1, cmd, cmd_len); |
| 1946 | } else { |
| 1947 | // R-block. ACK |
| 1948 | real_cmd[0] = 0xA2; // r-block + ACK |
| 1949 | real_cmd[0] |= iso14_pcb_blocknum; |
| 1950 | } |
| 1951 | AppendCrc14443a(real_cmd, cmd_len + 1); |
| 1952 | |
| 1953 | ReaderTransmit(real_cmd, cmd_len + 3, NULL); |
| 1954 | |
| 1955 | size_t len = ReaderReceive(data, parity); |
| 1956 | uint8_t *data_bytes = (uint8_t *) data; |
| 1957 | |
| 1958 | if (!len) { |
| 1959 | return 0; //DATA LINK ERROR |
| 1960 | } else { |
| 1961 | // S-Block WTX |
| 1962 | while (len && ((data_bytes[0] & 0xF2) == 0xF2)) { |
| 1963 | uint32_t save_iso14a_timeout = iso14a_get_timeout(); |
| 1964 | // temporarily increase timeout |
| 1965 | iso14a_set_timeout(MAX((data_bytes[1] & 0x3f) * save_iso14a_timeout, MAX_ISO14A_TIMEOUT)); |
| 1966 | // Transmit WTX back |
| 1967 | // byte1 - WTXM [1..59]. command FWT=FWT*WTXM |
| 1968 | data_bytes[1] = data_bytes[1] & 0x3f; // 2 high bits mandatory set to 0b |
| 1969 | // now need to fix CRC. |
| 1970 | AppendCrc14443a(data_bytes, len - 2); |
| 1971 | // transmit S-Block |
| 1972 | ReaderTransmit(data_bytes, len, NULL); |
| 1973 | // retrieve the result again (with increased timeout) |
| 1974 | len = ReaderReceive(data, parity); |
| 1975 | data_bytes = data; |
| 1976 | // restore timeout |
| 1977 | iso14a_set_timeout(save_iso14a_timeout); |
| 1978 | } |
| 1979 | |
| 1980 | // if we received an I- or R(ACK)-Block with a block number equal to the |
| 1981 | // current block number, toggle the current block number |
| 1982 | if (len >= 3 // PCB+CRC = 3 bytes |
| 1983 | && ((data_bytes[0] & 0xC0) == 0 // I-Block |
| 1984 | || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0 |
| 1985 | && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers |
| 1986 | { |
| 1987 | iso14_pcb_blocknum ^= 1; |
| 1988 | } |
| 1989 | |
| 1990 | // if we received I-block with chaining we need to send ACK and receive another block of data |
| 1991 | if (res) |
| 1992 | *res = data_bytes[0]; |
| 1993 | |
| 1994 | // crc check |
| 1995 | if (len >= 3 && !CheckCrc14443(CRC_14443_A, data_bytes, len)) { |
| 1996 | return -1; |
| 1997 | } |
| 1998 | |
| 1999 | } |
| 2000 | |
| 2001 | if (len) { |
| 2002 | // cut frame byte |
| 2003 | len -= 1; |
| 2004 | // memmove(data_bytes, data_bytes + 1, len); |
| 2005 | for (int i = 0; i < len; i++) |
| 2006 | data_bytes[i] = data_bytes[i + 1]; |
| 2007 | } |
| 2008 | |
| 2009 | return len; |
| 2010 | } |
| 2011 | |
| 2012 | |
| 2013 | //----------------------------------------------------------------------------- |
| 2014 | // Read an ISO 14443a tag. Send out commands and store answers. |
| 2015 | // |
| 2016 | //----------------------------------------------------------------------------- |
| 2017 | void ReaderIso14443a(UsbCommand *c) { |
| 2018 | |
| 2019 | iso14a_command_t param = c->arg[0]; |
| 2020 | uint8_t *cmd = c->d.asBytes; |
| 2021 | size_t len = c->arg[1] & 0xffff; |
| 2022 | size_t lenbits = c->arg[1] >> 16; |
| 2023 | uint32_t timeout = c->arg[2]; |
| 2024 | uint32_t arg0 = 0; |
| 2025 | uint8_t buf[USB_CMD_DATA_SIZE] = {0}; |
| 2026 | uint8_t par[MAX_PARITY_SIZE]; |
| 2027 | bool cantSELECT = false; |
| 2028 | |
| 2029 | set_tracing(true); |
| 2030 | |
| 2031 | if (param & ISO14A_CLEAR_TRACE) { |
| 2032 | clear_trace(); |
| 2033 | } |
| 2034 | |
| 2035 | if (param & ISO14A_REQUEST_TRIGGER) { |
| 2036 | iso14a_set_trigger(true); |
| 2037 | } |
| 2038 | |
| 2039 | if (param & ISO14A_CONNECT) { |
| 2040 | LED_A_ON(); |
| 2041 | iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); |
| 2042 | if(!(param & ISO14A_NO_SELECT)) { |
| 2043 | iso14a_card_select_t *card = (iso14a_card_select_t*)buf; |
| 2044 | arg0 = iso14443a_select_card(NULL, card, NULL, true, 0, param & ISO14A_NO_RATS); |
| 2045 | |
| 2046 | // if we cant select then we cant send data |
| 2047 | if (arg0 != 1 && arg0 != 2) { |
| 2048 | // 1 - all is OK with ATS, 2 - without ATS |
| 2049 | cantSELECT = true; |
| 2050 | } |
| 2051 | FpgaDisableTracing(); |
| 2052 | LED_B_ON(); |
| 2053 | cmd_send(CMD_NACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t)); |
| 2054 | LED_B_OFF(); |
| 2055 | } |
| 2056 | } |
| 2057 | |
| 2058 | if (param & ISO14A_SET_TIMEOUT) { |
| 2059 | iso14a_set_timeout(timeout); |
| 2060 | } |
| 2061 | |
| 2062 | if (param & ISO14A_APDU && !cantSELECT) { |
| 2063 | uint8_t res; |
| 2064 | arg0 = iso14_apdu(cmd, len, (param & ISO14A_SEND_CHAINING), buf, &res); |
| 2065 | FpgaDisableTracing(); |
| 2066 | LED_B_ON(); |
| 2067 | cmd_send(CMD_ACK, arg0, res, 0, buf, sizeof(buf)); |
| 2068 | LED_B_OFF(); |
| 2069 | } |
| 2070 | |
| 2071 | if (param & ISO14A_RAW && !cantSELECT) { |
| 2072 | if (param & ISO14A_APPEND_CRC) { |
| 2073 | if(param & ISO14A_TOPAZMODE) { |
| 2074 | AppendCrc14443b(cmd,len); |
| 2075 | } else { |
| 2076 | AppendCrc14443a(cmd,len); |
| 2077 | } |
| 2078 | len += 2; |
| 2079 | if (lenbits) lenbits += 16; |
| 2080 | } |
| 2081 | if (lenbits > 0) { // want to send a specific number of bits (e.g. short commands) |
| 2082 | if (param & ISO14A_TOPAZMODE) { |
| 2083 | int bits_to_send = lenbits; |
| 2084 | uint16_t i = 0; |
| 2085 | ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity |
| 2086 | bits_to_send -= 7; |
| 2087 | while (bits_to_send > 0) { |
| 2088 | ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity |
| 2089 | bits_to_send -= 8; |
| 2090 | } |
| 2091 | } else { |
| 2092 | GetParity(cmd, lenbits/8, par); |
| 2093 | ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity |
| 2094 | } |
| 2095 | } else { // want to send complete bytes only |
| 2096 | if (param & ISO14A_TOPAZMODE) { |
| 2097 | uint16_t i = 0; |
| 2098 | ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy |
| 2099 | while (i < len) { |
| 2100 | ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy |
| 2101 | } |
| 2102 | } else { |
| 2103 | ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity |
| 2104 | } |
| 2105 | } |
| 2106 | arg0 = ReaderReceive(buf, par); |
| 2107 | FpgaDisableTracing(); |
| 2108 | |
| 2109 | LED_B_ON(); |
| 2110 | cmd_send(CMD_ACK, arg0, 0, 0, buf, sizeof(buf)); |
| 2111 | LED_B_OFF(); |
| 2112 | } |
| 2113 | |
| 2114 | if (param & ISO14A_REQUEST_TRIGGER) { |
| 2115 | iso14a_set_trigger(false); |
| 2116 | } |
| 2117 | |
| 2118 | if (param & ISO14A_NO_DISCONNECT) { |
| 2119 | return; |
| 2120 | } |
| 2121 | |
| 2122 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 2123 | LEDsoff(); |
| 2124 | } |
| 2125 | |
| 2126 | |
| 2127 | // Determine the distance between two nonces. |
| 2128 | // Assume that the difference is small, but we don't know which is first. |
| 2129 | // Therefore try in alternating directions. |
| 2130 | static int32_t dist_nt(uint32_t nt1, uint32_t nt2) { |
| 2131 | |
| 2132 | uint16_t i; |
| 2133 | uint32_t nttmp1, nttmp2; |
| 2134 | |
| 2135 | if (nt1 == nt2) return 0; |
| 2136 | |
| 2137 | nttmp1 = nt1; |
| 2138 | nttmp2 = nt2; |
| 2139 | |
| 2140 | for (i = 1; i < 32768; i++) { |
| 2141 | nttmp1 = prng_successor(nttmp1, 1); |
| 2142 | if (nttmp1 == nt2) return i; |
| 2143 | nttmp2 = prng_successor(nttmp2, 1); |
| 2144 | if (nttmp2 == nt1) return -i; |
| 2145 | } |
| 2146 | |
| 2147 | return(-99999); // either nt1 or nt2 are invalid nonces |
| 2148 | } |
| 2149 | |
| 2150 | |
| 2151 | //----------------------------------------------------------------------------- |
| 2152 | // Recover several bits of the cypher stream. This implements (first stages of) |
| 2153 | // the algorithm described in "The Dark Side of Security by Obscurity and |
| 2154 | // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime" |
| 2155 | // (article by Nicolas T. Courtois, 2009) |
| 2156 | //----------------------------------------------------------------------------- |
| 2157 | void ReaderMifare(bool first_try) |
| 2158 | { |
| 2159 | // Mifare AUTH |
| 2160 | uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; |
| 2161 | uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; |
| 2162 | static uint8_t mf_nr_ar3; |
| 2163 | |
| 2164 | uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; |
| 2165 | uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; |
| 2166 | |
| 2167 | iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); |
| 2168 | |
| 2169 | // free eventually allocated BigBuf memory. We want all for tracing. |
| 2170 | BigBuf_free(); |
| 2171 | |
| 2172 | clear_trace(); |
| 2173 | set_tracing(true); |
| 2174 | |
| 2175 | uint8_t nt_diff = 0; |
| 2176 | uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough |
| 2177 | static uint8_t par_low = 0; |
| 2178 | bool led_on = true; |
| 2179 | uint8_t uid[10] ={0}; |
| 2180 | uint32_t cuid; |
| 2181 | |
| 2182 | uint32_t nt = 0; |
| 2183 | uint32_t previous_nt = 0; |
| 2184 | static uint32_t nt_attacked = 0; |
| 2185 | uint8_t par_list[8] = {0x00}; |
| 2186 | uint8_t ks_list[8] = {0x00}; |
| 2187 | |
| 2188 | #define PRNG_SEQUENCE_LENGTH (1 << 16); |
| 2189 | uint32_t sync_time = GetCountSspClk() & 0xfffffff8; |
| 2190 | static int32_t sync_cycles; |
| 2191 | int catch_up_cycles = 0; |
| 2192 | int last_catch_up = 0; |
| 2193 | uint16_t elapsed_prng_sequences; |
| 2194 | uint16_t consecutive_resyncs = 0; |
| 2195 | int isOK = 0; |
| 2196 | |
| 2197 | if (first_try) { |
| 2198 | mf_nr_ar3 = 0; |
| 2199 | par[0] = par_low = 0; |
| 2200 | sync_cycles = PRNG_SEQUENCE_LENGTH; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the tag nonces). |
| 2201 | nt_attacked = 0; |
| 2202 | } |
| 2203 | else { |
| 2204 | // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same) |
| 2205 | mf_nr_ar3++; |
| 2206 | mf_nr_ar[3] = mf_nr_ar3; |
| 2207 | par[0] = par_low; |
| 2208 | } |
| 2209 | |
| 2210 | LED_A_ON(); |
| 2211 | LED_B_OFF(); |
| 2212 | LED_C_OFF(); |
| 2213 | |
| 2214 | |
| 2215 | #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up. |
| 2216 | #define MAX_SYNC_TRIES 32 |
| 2217 | #define SYNC_TIME_BUFFER 16 // if there is only SYNC_TIME_BUFFER left before next planned sync, wait for next PRNG cycle |
| 2218 | #define NUM_DEBUG_INFOS 8 // per strategy |
| 2219 | #define MAX_STRATEGY 3 |
| 2220 | uint16_t unexpected_random = 0; |
| 2221 | uint16_t sync_tries = 0; |
| 2222 | int16_t debug_info_nr = -1; |
| 2223 | uint16_t strategy = 0; |
| 2224 | int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS]; |
| 2225 | uint32_t select_time; |
| 2226 | uint32_t halt_time; |
| 2227 | |
| 2228 | for (uint16_t i = 0; true; i++) { |
| 2229 | |
| 2230 | LED_C_ON(); |
| 2231 | WDT_HIT(); |
| 2232 | |
| 2233 | // Test if the action was cancelled |
| 2234 | if(BUTTON_PRESS()) { |
| 2235 | isOK = -1; |
| 2236 | break; |
| 2237 | } |
| 2238 | |
| 2239 | if (strategy == 2) { |
| 2240 | // test with additional hlt command |
| 2241 | halt_time = 0; |
| 2242 | int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time); |
| 2243 | if (len && MF_DBGLEVEL >= 3) { |
| 2244 | Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len); |
| 2245 | } |
| 2246 | } |
| 2247 | |
| 2248 | if (strategy == 3) { |
| 2249 | // test with FPGA power off/on |
| 2250 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 2251 | SpinDelay(200); |
| 2252 | iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); |
| 2253 | SpinDelay(100); |
| 2254 | } |
| 2255 | |
| 2256 | if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) { |
| 2257 | if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card"); |
| 2258 | continue; |
| 2259 | } |
| 2260 | select_time = GetCountSspClk(); |
| 2261 | |
| 2262 | elapsed_prng_sequences = 1; |
| 2263 | if (debug_info_nr == -1) { |
| 2264 | sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles; |
| 2265 | catch_up_cycles = 0; |
| 2266 | |
| 2267 | // if we missed the sync time already or are about to miss it, advance to the next nonce repeat |
| 2268 | while(sync_time < GetCountSspClk() + SYNC_TIME_BUFFER) { |
| 2269 | elapsed_prng_sequences++; |
| 2270 | sync_time = (sync_time & 0xfffffff8) + sync_cycles; |
| 2271 | } |
| 2272 | |
| 2273 | // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) |
| 2274 | ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time); |
| 2275 | } else { |
| 2276 | // collect some information on tag nonces for debugging: |
| 2277 | #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH |
| 2278 | if (strategy == 0) { |
| 2279 | // nonce distances at fixed time after card select: |
| 2280 | sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES; |
| 2281 | } else if (strategy == 1) { |
| 2282 | // nonce distances at fixed time between authentications: |
| 2283 | sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES; |
| 2284 | } else if (strategy == 2) { |
| 2285 | // nonce distances at fixed time after halt: |
| 2286 | sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES; |
| 2287 | } else { |
| 2288 | // nonce_distances at fixed time after power on |
| 2289 | sync_time = DEBUG_FIXED_SYNC_CYCLES; |
| 2290 | } |
| 2291 | ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time); |
| 2292 | } |
| 2293 | |
| 2294 | // Receive the (4 Byte) "random" nonce |
| 2295 | if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) { |
| 2296 | if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce"); |
| 2297 | continue; |
| 2298 | } |
| 2299 | |
| 2300 | previous_nt = nt; |
| 2301 | nt = bytes_to_num(receivedAnswer, 4); |
| 2302 | |
| 2303 | // Transmit reader nonce with fake par |
| 2304 | ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL); |
| 2305 | |
| 2306 | if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet |
| 2307 | int nt_distance = dist_nt(previous_nt, nt); |
| 2308 | if (nt_distance == 0) { |
| 2309 | nt_attacked = nt; |
| 2310 | } else { |
| 2311 | if (nt_distance == -99999) { // invalid nonce received |
| 2312 | unexpected_random++; |
| 2313 | if (unexpected_random > MAX_UNEXPECTED_RANDOM) { |
| 2314 | isOK = -3; // Card has an unpredictable PRNG. Give up |
| 2315 | break; |
| 2316 | } else { |
| 2317 | continue; // continue trying... |
| 2318 | } |
| 2319 | } |
| 2320 | if (++sync_tries > MAX_SYNC_TRIES) { |
| 2321 | if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) { |
| 2322 | isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly |
| 2323 | break; |
| 2324 | } else { // continue for a while, just to collect some debug info |
| 2325 | debug_info[strategy][debug_info_nr] = nt_distance; |
| 2326 | debug_info_nr++; |
| 2327 | if (debug_info_nr == NUM_DEBUG_INFOS) { |
| 2328 | strategy++; |
| 2329 | debug_info_nr = 0; |
| 2330 | } |
| 2331 | continue; |
| 2332 | } |
| 2333 | } |
| 2334 | sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences); |
| 2335 | if (sync_cycles <= 0) { |
| 2336 | sync_cycles += PRNG_SEQUENCE_LENGTH; |
| 2337 | } |
| 2338 | if (MF_DBGLEVEL >= 3) { |
| 2339 | Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles); |
| 2340 | } |
| 2341 | continue; |
| 2342 | } |
| 2343 | } |
| 2344 | |
| 2345 | if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again... |
| 2346 | catch_up_cycles = -dist_nt(nt_attacked, nt); |
| 2347 | if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one. |
| 2348 | catch_up_cycles = 0; |
| 2349 | continue; |
| 2350 | } |
| 2351 | catch_up_cycles /= elapsed_prng_sequences; |
| 2352 | if (catch_up_cycles == last_catch_up) { |
| 2353 | consecutive_resyncs++; |
| 2354 | } |
| 2355 | else { |
| 2356 | last_catch_up = catch_up_cycles; |
| 2357 | consecutive_resyncs = 0; |
| 2358 | } |
| 2359 | if (consecutive_resyncs < 3) { |
| 2360 | if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs); |
| 2361 | } |
| 2362 | else { |
| 2363 | sync_cycles = sync_cycles + catch_up_cycles; |
| 2364 | if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles); |
| 2365 | last_catch_up = 0; |
| 2366 | catch_up_cycles = 0; |
| 2367 | consecutive_resyncs = 0; |
| 2368 | } |
| 2369 | continue; |
| 2370 | } |
| 2371 | |
| 2372 | consecutive_resyncs = 0; |
| 2373 | |
| 2374 | // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding |
| 2375 | if (ReaderReceive(receivedAnswer, receivedAnswerPar)) { |
| 2376 | catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer |
| 2377 | |
| 2378 | if (nt_diff == 0) { |
| 2379 | par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change |
| 2380 | } |
| 2381 | |
| 2382 | led_on = !led_on; |
| 2383 | if(led_on) LED_B_ON(); else LED_B_OFF(); |
| 2384 | |
| 2385 | par_list[nt_diff] = SwapBits(par[0], 8); |
| 2386 | ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; |
| 2387 | |
| 2388 | // Test if the information is complete |
| 2389 | if (nt_diff == 0x07) { |
| 2390 | isOK = 1; |
| 2391 | break; |
| 2392 | } |
| 2393 | |
| 2394 | nt_diff = (nt_diff + 1) & 0x07; |
| 2395 | mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5); |
| 2396 | par[0] = par_low; |
| 2397 | } else { |
| 2398 | if (nt_diff == 0 && first_try) |
| 2399 | { |
| 2400 | par[0]++; |
| 2401 | if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK. |
| 2402 | isOK = -2; |
| 2403 | break; |
| 2404 | } |
| 2405 | } else { |
| 2406 | par[0] = ((par[0] & 0x1F) + 1) | par_low; |
| 2407 | } |
| 2408 | } |
| 2409 | } |
| 2410 | |
| 2411 | |
| 2412 | mf_nr_ar[3] &= 0x1F; |
| 2413 | |
| 2414 | if (isOK == -4) { |
| 2415 | if (MF_DBGLEVEL >= 3) { |
| 2416 | for (uint16_t i = 0; i <= MAX_STRATEGY; i++) { |
| 2417 | for (uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) { |
| 2418 | Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]); |
| 2419 | } |
| 2420 | } |
| 2421 | } |
| 2422 | } |
| 2423 | |
| 2424 | FpgaDisableTracing(); |
| 2425 | |
| 2426 | uint8_t buf[32]; |
| 2427 | memcpy(buf + 0, uid, 4); |
| 2428 | num_to_bytes(nt, 4, buf + 4); |
| 2429 | memcpy(buf + 8, par_list, 8); |
| 2430 | memcpy(buf + 16, ks_list, 8); |
| 2431 | memcpy(buf + 24, mf_nr_ar, 8); |
| 2432 | |
| 2433 | cmd_send(CMD_ACK, isOK, 0, 0, buf, 32); |
| 2434 | |
| 2435 | // Thats it... |
| 2436 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 2437 | LEDsoff(); |
| 2438 | |
| 2439 | set_tracing(false); |
| 2440 | } |
| 2441 | |
| 2442 | |
| 2443 | //----------------------------------------------------------------------------- |
| 2444 | // MIFARE sniffer. |
| 2445 | // |
| 2446 | //----------------------------------------------------------------------------- |
| 2447 | void RAMFUNC SniffMifare(uint8_t param) { |
| 2448 | // param: |
| 2449 | // bit 0 - trigger from first card answer |
| 2450 | // bit 1 - trigger from first reader 7-bit request |
| 2451 | |
| 2452 | // C(red) A(yellow) B(green) |
| 2453 | LEDsoff(); |
| 2454 | LED_A_ON(); |
| 2455 | |
| 2456 | // init trace buffer |
| 2457 | clear_trace(); |
| 2458 | set_tracing(true); |
| 2459 | |
| 2460 | // The command (reader -> tag) that we're receiving. |
| 2461 | // The length of a received command will in most cases be no more than 18 bytes. |
| 2462 | // So 32 should be enough! |
| 2463 | uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; |
| 2464 | uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE]; |
| 2465 | // The response (tag -> reader) that we're receiving. |
| 2466 | uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE]; |
| 2467 | uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE]; |
| 2468 | |
| 2469 | iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); |
| 2470 | |
| 2471 | // free eventually allocated BigBuf memory |
| 2472 | BigBuf_free(); |
| 2473 | // allocate the DMA buffer, used to stream samples from the FPGA |
| 2474 | uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); |
| 2475 | uint8_t *data = dmaBuf; |
| 2476 | uint8_t previous_data = 0; |
| 2477 | int maxDataLen = 0; |
| 2478 | int dataLen = 0; |
| 2479 | bool ReaderIsActive = false; |
| 2480 | bool TagIsActive = false; |
| 2481 | |
| 2482 | // Set up the demodulator for tag -> reader responses. |
| 2483 | DemodInit(receivedResponse, receivedResponsePar); |
| 2484 | |
| 2485 | // Set up the demodulator for the reader -> tag commands |
| 2486 | UartInit(receivedCmd, receivedCmdPar); |
| 2487 | |
| 2488 | // Setup for the DMA. |
| 2489 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. |
| 2490 | |
| 2491 | // init sniffer |
| 2492 | MfSniffInit(); |
| 2493 | |
| 2494 | // And now we loop, receiving samples. |
| 2495 | for (uint32_t sniffCounter = 0; true; ) { |
| 2496 | |
| 2497 | if(BUTTON_PRESS()) { |
| 2498 | DbpString("Canceled by button."); |
| 2499 | break; |
| 2500 | } |
| 2501 | |
| 2502 | WDT_HIT(); |
| 2503 | |
| 2504 | if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time |
| 2505 | // check if a transaction is completed (timeout after 2000ms). |
| 2506 | // if yes, stop the DMA transfer and send what we have so far to the client |
| 2507 | if (MfSniffSend(2000)) { |
| 2508 | // Reset everything - we missed some sniffed data anyway while the DMA was stopped |
| 2509 | sniffCounter = 0; |
| 2510 | data = dmaBuf; |
| 2511 | maxDataLen = 0; |
| 2512 | ReaderIsActive = false; |
| 2513 | TagIsActive = false; |
| 2514 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. |
| 2515 | } |
| 2516 | } |
| 2517 | |
| 2518 | int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far |
| 2519 | int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred |
| 2520 | if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred |
| 2521 | dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed |
| 2522 | } else { |
| 2523 | dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed |
| 2524 | } |
| 2525 | // test for length of buffer |
| 2526 | if(dataLen > maxDataLen) { // we are more behind than ever... |
| 2527 | maxDataLen = dataLen; |
| 2528 | if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) { |
| 2529 | Dbprintf("blew circular buffer! dataLen=0x%x", dataLen); |
| 2530 | break; |
| 2531 | } |
| 2532 | } |
| 2533 | if(dataLen < 1) continue; |
| 2534 | |
| 2535 | // primary buffer was stopped ( <-- we lost data! |
| 2536 | if (!AT91C_BASE_PDC_SSC->PDC_RCR) { |
| 2537 | AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; |
| 2538 | AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; |
| 2539 | Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary |
| 2540 | } |
| 2541 | // secondary buffer sets as primary, secondary buffer was stopped |
| 2542 | if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { |
| 2543 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; |
| 2544 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; |
| 2545 | } |
| 2546 | |
| 2547 | if (sniffCounter & 0x01) { |
| 2548 | |
| 2549 | if(!TagIsActive) { // no need to try decoding tag data if the reader is sending |
| 2550 | uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); |
| 2551 | if(MillerDecoding(readerdata, (sniffCounter-1)*4)) { |
| 2552 | |
| 2553 | if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, true)) break; |
| 2554 | |
| 2555 | /* And ready to receive another command. */ |
| 2556 | UartInit(receivedCmd, receivedCmdPar); |
| 2557 | |
| 2558 | /* And also reset the demod code */ |
| 2559 | DemodReset(); |
| 2560 | } |
| 2561 | ReaderIsActive = (Uart.state != STATE_UNSYNCD); |
| 2562 | } |
| 2563 | |
| 2564 | if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending |
| 2565 | uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); |
| 2566 | if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) { |
| 2567 | |
| 2568 | if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, false)) break; |
| 2569 | |
| 2570 | // And ready to receive another response. |
| 2571 | DemodReset(); |
| 2572 | // And reset the Miller decoder including its (now outdated) input buffer |
| 2573 | UartInit(receivedCmd, receivedCmdPar); |
| 2574 | } |
| 2575 | TagIsActive = (Demod.state != DEMOD_UNSYNCD); |
| 2576 | } |
| 2577 | } |
| 2578 | |
| 2579 | previous_data = *data; |
| 2580 | sniffCounter++; |
| 2581 | data++; |
| 2582 | if(data == dmaBuf + DMA_BUFFER_SIZE) { |
| 2583 | data = dmaBuf; |
| 2584 | } |
| 2585 | |
| 2586 | } // main cycle |
| 2587 | |
| 2588 | FpgaDisableTracing(); |
| 2589 | FpgaDisableSscDma(); |
| 2590 | LEDsoff(); |
| 2591 | |
| 2592 | DbpString("COMMAND FINISHED."); |
| 2593 | |
| 2594 | MfSniffEnd(); |
| 2595 | |
| 2596 | Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len); |
| 2597 | } |