]>
Commit | Line | Data |
---|---|---|
1 | // Merlok, 2011, 2012 | |
2 | // people from mifare@nethemba.com, 2010 | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // mifare commands | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include "mifarehost.h" | |
12 | ||
13 | #include <inttypes.h> | |
14 | #include <stdio.h> | |
15 | #include <stdlib.h> | |
16 | #include <string.h> | |
17 | #include <pthread.h> | |
18 | ||
19 | #include "crapto1/crapto1.h" | |
20 | #include "comms.h" | |
21 | #include "usb_cmd.h" | |
22 | #include "cmdmain.h" | |
23 | #include "ui.h" | |
24 | #include "parity.h" | |
25 | #include "util.h" | |
26 | #include "iso14443crc.h" | |
27 | #include "util_posix.h" | |
28 | ||
29 | #include "mifare.h" | |
30 | #include "mifare4.h" | |
31 | ||
32 | // mifare tracer flags used in mfTraceDecode() | |
33 | #define TRACE_IDLE 0x00 | |
34 | #define TRACE_AUTH1 0x01 | |
35 | #define TRACE_AUTH2 0x02 | |
36 | #define TRACE_AUTH_OK 0x03 | |
37 | #define TRACE_READ_DATA 0x04 | |
38 | #define TRACE_WRITE_OK 0x05 | |
39 | #define TRACE_WRITE_DATA 0x06 | |
40 | #define TRACE_ERROR 0xFF | |
41 | ||
42 | ||
43 | static int compare_uint64(const void *a, const void *b) { | |
44 | // didn't work: (the result is truncated to 32 bits) | |
45 | //return (*(int64_t*)b - *(int64_t*)a); | |
46 | ||
47 | // better: | |
48 | if (*(uint64_t*)b == *(uint64_t*)a) return 0; | |
49 | else if (*(uint64_t*)b < *(uint64_t*)a) return 1; | |
50 | else return -1; | |
51 | } | |
52 | ||
53 | ||
54 | // create the intersection (common members) of two sorted lists. Lists are terminated by -1. Result will be in list1. Number of elements is returned. | |
55 | static uint32_t intersection(uint64_t *list1, uint64_t *list2) | |
56 | { | |
57 | if (list1 == NULL || list2 == NULL) { | |
58 | return 0; | |
59 | } | |
60 | uint64_t *p1, *p2, *p3; | |
61 | p1 = p3 = list1; | |
62 | p2 = list2; | |
63 | ||
64 | while ( *p1 != -1 && *p2 != -1 ) { | |
65 | if (compare_uint64(p1, p2) == 0) { | |
66 | *p3++ = *p1++; | |
67 | p2++; | |
68 | } | |
69 | else { | |
70 | while (compare_uint64(p1, p2) < 0) ++p1; | |
71 | while (compare_uint64(p1, p2) > 0) ++p2; | |
72 | } | |
73 | } | |
74 | *p3 = -1; | |
75 | return p3 - list1; | |
76 | } | |
77 | ||
78 | ||
79 | // Darkside attack (hf mf mifare) | |
80 | static uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint32_t ar, uint64_t par_info, uint64_t ks_info, uint64_t **keys) { | |
81 | struct Crypto1State *states; | |
82 | uint32_t i, pos; | |
83 | uint8_t bt, ks3x[8], par[8][8]; | |
84 | uint64_t key_recovered; | |
85 | uint64_t *keylist; | |
86 | ||
87 | // Reset the last three significant bits of the reader nonce | |
88 | nr &= 0xffffff1f; | |
89 | ||
90 | for (pos=0; pos<8; pos++) { | |
91 | ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; | |
92 | bt = (par_info >> (pos*8)) & 0xff; | |
93 | for (i=0; i<8; i++) { | |
94 | par[7-pos][i] = (bt >> i) & 0x01; | |
95 | } | |
96 | } | |
97 | ||
98 | states = lfsr_common_prefix(nr, ar, ks3x, par, (par_info == 0)); | |
99 | ||
100 | if (states == NULL) { | |
101 | *keys = NULL; | |
102 | return 0; | |
103 | } | |
104 | ||
105 | keylist = (uint64_t*)states; | |
106 | ||
107 | for (i = 0; keylist[i]; i++) { | |
108 | lfsr_rollback_word(states+i, uid^nt, 0); | |
109 | crypto1_get_lfsr(states+i, &key_recovered); | |
110 | keylist[i] = key_recovered; | |
111 | } | |
112 | keylist[i] = -1; | |
113 | ||
114 | *keys = keylist; | |
115 | return i; | |
116 | } | |
117 | ||
118 | ||
119 | int mfDarkside(uint64_t *key) { | |
120 | uint32_t uid = 0; | |
121 | uint32_t nt = 0, nr = 0, ar = 0; | |
122 | uint64_t par_list = 0, ks_list = 0; | |
123 | uint64_t *keylist = NULL, *last_keylist = NULL; | |
124 | uint32_t keycount = 0; | |
125 | int16_t isOK = 0; | |
126 | ||
127 | UsbCommand c = {CMD_READER_MIFARE, {true, 0, 0}}; | |
128 | ||
129 | // message | |
130 | printf("-------------------------------------------------------------------------\n"); | |
131 | printf("Executing command. Expected execution time: 25sec on average\n"); | |
132 | printf("Press button on the proxmark3 device to abort both proxmark3 and client.\n"); | |
133 | printf("-------------------------------------------------------------------------\n"); | |
134 | ||
135 | ||
136 | while (true) { | |
137 | clearCommandBuffer(); | |
138 | SendCommand(&c); | |
139 | ||
140 | //flush queue | |
141 | while (ukbhit()) { | |
142 | int c = getchar(); (void) c; | |
143 | } | |
144 | ||
145 | // wait cycle | |
146 | while (true) { | |
147 | printf("."); | |
148 | fflush(stdout); | |
149 | if (ukbhit()) { | |
150 | return -5; | |
151 | break; | |
152 | } | |
153 | ||
154 | UsbCommand resp; | |
155 | if (WaitForResponseTimeout(CMD_ACK, &resp, 1000)) { | |
156 | isOK = resp.arg[0]; | |
157 | if (isOK < 0) { | |
158 | return isOK; | |
159 | } | |
160 | uid = (uint32_t)bytes_to_num(resp.d.asBytes + 0, 4); | |
161 | nt = (uint32_t)bytes_to_num(resp.d.asBytes + 4, 4); | |
162 | par_list = bytes_to_num(resp.d.asBytes + 8, 8); | |
163 | ks_list = bytes_to_num(resp.d.asBytes + 16, 8); | |
164 | nr = (uint32_t)bytes_to_num(resp.d.asBytes + 24, 4); | |
165 | ar = (uint32_t)bytes_to_num(resp.d.asBytes + 28, 4); | |
166 | break; | |
167 | } | |
168 | } | |
169 | ||
170 | if (par_list == 0 && c.arg[0] == true) { | |
171 | PrintAndLog("Parity is all zero. Most likely this card sends NACK on every failed authentication."); | |
172 | } | |
173 | c.arg[0] = false; | |
174 | ||
175 | keycount = nonce2key(uid, nt, nr, ar, par_list, ks_list, &keylist); | |
176 | ||
177 | if (keycount == 0) { | |
178 | PrintAndLog("Key not found (lfsr_common_prefix list is null). Nt=%08x", nt); | |
179 | PrintAndLog("This is expected to happen in 25%% of all cases. Trying again with a different reader nonce..."); | |
180 | continue; | |
181 | } | |
182 | ||
183 | if (par_list == 0) { | |
184 | qsort(keylist, keycount, sizeof(*keylist), compare_uint64); | |
185 | keycount = intersection(last_keylist, keylist); | |
186 | if (keycount == 0) { | |
187 | free(last_keylist); | |
188 | last_keylist = keylist; | |
189 | continue; | |
190 | } | |
191 | } | |
192 | ||
193 | if (keycount > 1) { | |
194 | PrintAndLog("Found %u possible keys. Trying to authenticate with each of them ...\n", keycount); | |
195 | } else { | |
196 | PrintAndLog("Found a possible key. Trying to authenticate...\n"); | |
197 | } | |
198 | ||
199 | uint8_t *keys_to_chk = malloc(keycount * 6); | |
200 | for (int i = 0; i < keycount; i++) { | |
201 | num_to_bytes(keylist[i], 6, keys_to_chk+i); | |
202 | } | |
203 | ||
204 | *key = -1; | |
205 | mfCheckKeys(0, 0, 0, false, keycount, keys_to_chk, key); | |
206 | ||
207 | free(keys_to_chk); | |
208 | ||
209 | if (*key != -1) { | |
210 | free(last_keylist); | |
211 | free(keylist); | |
212 | break; | |
213 | } else { | |
214 | PrintAndLog("Authentication failed. Trying again..."); | |
215 | free(last_keylist); | |
216 | last_keylist = keylist; | |
217 | } | |
218 | } | |
219 | ||
220 | return 0; | |
221 | } | |
222 | ||
223 | ||
224 | static int mfCheckKeysEx(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint64_t *found_key, bool fixed_nonce) { | |
225 | ||
226 | bool display_progress = false; | |
227 | uint64_t start_time = msclock(); | |
228 | uint64_t next_print_time = start_time + 5 * 1000; | |
229 | ||
230 | if (keycnt > 1000) { | |
231 | PrintAndLog("We have %d keys to check. This can take some time!", keycnt); | |
232 | PrintAndLog("Press button to abort."); | |
233 | display_progress = true; | |
234 | } | |
235 | ||
236 | uint8_t bytes_per_key = fixed_nonce ? 5 : 6; | |
237 | uint32_t max_keys = keycnt > USB_CMD_DATA_SIZE/bytes_per_key ? USB_CMD_DATA_SIZE/bytes_per_key : keycnt; | |
238 | *found_key = -1; | |
239 | bool multisectorCheck = false; | |
240 | ||
241 | for (int i = 0, ii = 0; i < keycnt; i += max_keys) { | |
242 | ||
243 | if ((i + max_keys) >= keycnt) { | |
244 | max_keys = keycnt - i; | |
245 | } | |
246 | ||
247 | bool init = (i == 0); | |
248 | bool drop_field = (max_keys == keycnt); | |
249 | uint8_t flags = clear_trace | multisectorCheck << 1 | init << 2 | drop_field << 3 | fixed_nonce << 4; | |
250 | ||
251 | UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType & 0xff) << 8)), flags | timeout14a << 16, max_keys}}; | |
252 | memcpy(c.d.asBytes, keys + i * bytes_per_key, max_keys * bytes_per_key); | |
253 | SendCommand(&c); | |
254 | ||
255 | UsbCommand resp; | |
256 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) | |
257 | return 1; | |
258 | ||
259 | if ((resp.arg[0] & 0xff) != 0x01) { | |
260 | if ((int)resp.arg[1] < 0) { // error or user aborted | |
261 | return (int)resp.arg[1]; | |
262 | } else { // nothing found yet | |
263 | if (display_progress && msclock() >= next_print_time) { | |
264 | float brute_force_per_second = (float)(i - ii) / (float)(msclock() - start_time) * 1000.0; | |
265 | ii = i; | |
266 | start_time = msclock(); | |
267 | next_print_time = start_time + 10 * 1000; | |
268 | PrintAndLog(" %8d keys left | %5.1f keys/sec | worst case %6.1f seconds remaining", keycnt - i, brute_force_per_second, (keycnt-i)/brute_force_per_second); | |
269 | } | |
270 | } | |
271 | } else { // success | |
272 | if (fixed_nonce) { | |
273 | *found_key = i + resp.arg[1] - 1; | |
274 | } else { | |
275 | *found_key = bytes_to_num(resp.d.asBytes, 6); | |
276 | } | |
277 | return 0; | |
278 | } | |
279 | } | |
280 | ||
281 | return 2; // nothing found | |
282 | } | |
283 | ||
284 | ||
285 | int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint64_t *found_key) { | |
286 | return mfCheckKeysEx(blockNo, keyType, timeout14a, clear_trace, keycnt, keys, found_key, false); | |
287 | } | |
288 | ||
289 | ||
290 | static int mfCheckKeysFixedNonce(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint32_t *key_index) { | |
291 | return mfCheckKeysEx(blockNo, keyType, timeout14a, clear_trace, keycnt, keys, (uint64_t*)key_index, true); | |
292 | } | |
293 | ||
294 | ||
295 | int mfCheckKeysSec(uint8_t sectorCnt, uint8_t keyType, uint16_t timeout14a, bool clear_trace, bool init, bool drop_field, uint8_t keycnt, uint8_t *keyBlock, sector_t *e_sector) { | |
296 | ||
297 | uint8_t keyPtr = 0; | |
298 | ||
299 | if (e_sector == NULL) | |
300 | return -1; | |
301 | ||
302 | bool multisectorCheck = true; | |
303 | uint8_t flags = clear_trace | multisectorCheck << 1 | init << 2 | drop_field << 3; | |
304 | ||
305 | UsbCommand c = {CMD_MIFARE_CHKKEYS, {((sectorCnt & 0xff) | ((keyType & 0xff) << 8)), flags | timeout14a << 16, keycnt}}; | |
306 | memcpy(c.d.asBytes, keyBlock, 6 * keycnt); | |
307 | SendCommand(&c); | |
308 | ||
309 | UsbCommand resp; | |
310 | if (!WaitForResponseTimeoutW(CMD_ACK, &resp, MAX(3000, 1000 + 13 * sectorCnt * keycnt * (keyType == 2 ? 2 : 1)), false)) return 1; // timeout: 13 ms / fail auth | |
311 | if ((resp.arg[0] & 0xff) != 0x01) return 2; | |
312 | ||
313 | bool foundAKey = false; | |
314 | for(int sec = 0; sec < sectorCnt; sec++){ | |
315 | for(int keyAB = 0; keyAB < 2; keyAB++){ | |
316 | keyPtr = *(resp.d.asBytes + keyAB * 40 + sec); | |
317 | if (keyPtr){ | |
318 | e_sector[sec].foundKey[keyAB] = true; | |
319 | e_sector[sec].Key[keyAB] = bytes_to_num(keyBlock + (keyPtr - 1) * 6, 6); | |
320 | foundAKey = true; | |
321 | } | |
322 | } | |
323 | } | |
324 | return foundAKey ? 0 : 3; | |
325 | } | |
326 | ||
327 | // Compare 16 Bits out of cryptostate | |
328 | int Compare16Bits(const void * a, const void * b) { | |
329 | if ((*(uint64_t*)b & 0x00ff000000ff0000) == (*(uint64_t*)a & 0x00ff000000ff0000)) return 0; | |
330 | else if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1; | |
331 | else return -1; | |
332 | } | |
333 | ||
334 | typedef | |
335 | struct { | |
336 | union { | |
337 | struct Crypto1State *slhead; | |
338 | uint64_t *keyhead; | |
339 | } head; | |
340 | union { | |
341 | struct Crypto1State *sltail; | |
342 | uint64_t *keytail; | |
343 | } tail; | |
344 | uint32_t len; | |
345 | uint32_t uid; | |
346 | uint32_t blockNo; | |
347 | uint32_t keyType; | |
348 | uint32_t nt; | |
349 | uint32_t ks1; | |
350 | } StateList_t; | |
351 | ||
352 | ||
353 | // wrapper function for multi-threaded lfsr_recovery32 | |
354 | void | |
355 | #ifdef __has_attribute | |
356 | #if __has_attribute(force_align_arg_pointer) | |
357 | __attribute__((force_align_arg_pointer)) | |
358 | #endif | |
359 | #endif | |
360 | *nested_worker_thread(void *arg) { | |
361 | struct Crypto1State *p1; | |
362 | StateList_t *statelist = arg; | |
363 | ||
364 | statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid); | |
365 | for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++); | |
366 | statelist->len = p1 - statelist->head.slhead; | |
367 | statelist->tail.sltail = --p1; | |
368 | qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits); | |
369 | ||
370 | return statelist->head.slhead; | |
371 | } | |
372 | ||
373 | ||
374 | static int nested_fixed_nonce(StateList_t statelist, uint32_t fixed_nt, uint32_t authentication_timeout, uint8_t *resultKey) { | |
375 | // We have a tag with a fixed nonce (nt) and therefore only one (usually long) list of possible crypto states. | |
376 | // Instead of testing all those keys on the device with a complete authentication cycle, we do all of the crypto operations here. | |
377 | uint8_t nr_enc[4] = NESTED_FIXED_NR_ENC; // we use a fixed {nr} | |
378 | uint8_t ar[4]; | |
379 | num_to_bytes(prng_successor(fixed_nt, 64), 4, ar); // ... and ar is fixed too | |
380 | ||
381 | // create an array of possible {ar} and parity bits | |
382 | uint32_t num_ar_par = statelist.len; | |
383 | uint8_t *ar_par = calloc(num_ar_par, 5); | |
384 | if (ar_par == NULL) { | |
385 | free(statelist.head.slhead); | |
386 | return -4; | |
387 | } | |
388 | ||
389 | for (int i = 0; i < num_ar_par; i++) { | |
390 | // roll back to initial state using the nt observed with the nested authentication | |
391 | lfsr_rollback_word(statelist.head.slhead + i, statelist.nt ^ statelist.uid, 0); | |
392 | // instead feed in the fixed_nt for the first authentication | |
393 | struct Crypto1State cs = *(statelist.head.slhead + i); | |
394 | crypto1_word(&cs, fixed_nt ^ statelist.uid, 0); | |
395 | // determine nr such that the resulting {nr} is constant and feed it into the cypher. Calculate the encrypted parity bits | |
396 | uint8_t par_enc = 0; | |
397 | for (int j = 0; j < 4; j++) { | |
398 | uint8_t nr_byte = crypto1_byte(&cs, nr_enc[j], 1) ^ nr_enc[j]; | |
399 | par_enc |= (((filter(cs.odd) ^ oddparity8(nr_byte)) & 0x01) << (7-j)); | |
400 | } | |
401 | // calculate the encrypted reader response {ar} and its parity bits | |
402 | for (int j = 0; j < 4; j++) { | |
403 | ar_par[5*i + j] = crypto1_byte(&cs, 0, 0) ^ ar[j]; | |
404 | par_enc |= ((filter(cs.odd) ^ oddparity8(ar[j])) & 0x01) << (3-j); | |
405 | } | |
406 | ar_par[5*i + 4] = par_enc; | |
407 | } | |
408 | ||
409 | // test each {ar} response | |
410 | uint32_t key_index; | |
411 | ||
412 | int isOK = mfCheckKeysFixedNonce(statelist.blockNo, statelist.keyType, authentication_timeout, true, num_ar_par, ar_par, &key_index); | |
413 | ||
414 | if (isOK == 0) { // success, key found | |
415 | // key_index contains the index into the cypher state list | |
416 | struct Crypto1State *p1 = statelist.head.slhead + key_index; | |
417 | uint64_t key64; | |
418 | crypto1_get_lfsr(p1, &key64); | |
419 | num_to_bytes(key64, 6, resultKey); | |
420 | } | |
421 | if (isOK == 1) { // timeout | |
422 | isOK = -1; | |
423 | } | |
424 | free(statelist.head.slhead); | |
425 | free(ar_par); | |
426 | return isOK; | |
427 | } | |
428 | ||
429 | ||
430 | static int nested_standard(StateList_t statelists[2], uint32_t authentication_timeout, uint8_t *resultKey) { | |
431 | ||
432 | // the first 16 Bits of the crypto states already contain part of our key. | |
433 | // Create the intersection of the two lists based on these 16 Bits and | |
434 | // roll back the crypto state for the remaining states | |
435 | struct Crypto1State *p1, *p2, *p3, *p4; | |
436 | p1 = p3 = statelists[0].head.slhead; | |
437 | p2 = p4 = statelists[1].head.slhead; | |
438 | while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) { | |
439 | if (Compare16Bits(p1, p2) == 0) { | |
440 | struct Crypto1State savestate, *savep = &savestate; | |
441 | savestate = *p1; | |
442 | while (Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) { | |
443 | *p3 = *p1; | |
444 | lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0); | |
445 | p3++; | |
446 | p1++; | |
447 | } | |
448 | savestate = *p2; | |
449 | while (Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) { | |
450 | *p4 = *p2; | |
451 | lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0); | |
452 | p4++; | |
453 | p2++; | |
454 | } | |
455 | } | |
456 | else { | |
457 | while (Compare16Bits(p1, p2) == -1) p1++; | |
458 | while (Compare16Bits(p1, p2) == 1) p2++; | |
459 | } | |
460 | } | |
461 | *(uint64_t*)p3 = -1; | |
462 | *(uint64_t*)p4 = -1; | |
463 | statelists[0].len = p3 - statelists[0].head.slhead; | |
464 | statelists[1].len = p4 - statelists[1].head.slhead; | |
465 | statelists[0].tail.sltail=--p3; | |
466 | statelists[1].tail.sltail=--p4; | |
467 | ||
468 | // the statelists now contain possible crypto states initialized with the key. The key we are searching for | |
469 | // must be in the intersection of both lists. Sort the lists and create the intersection: | |
470 | qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compare_uint64); | |
471 | qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compare_uint64); | |
472 | statelists[0].len = intersection(statelists[0].head.keyhead, statelists[1].head.keyhead); | |
473 | ||
474 | // create an array of the possible keys | |
475 | uint32_t num_keys = statelists[0].len; | |
476 | uint8_t *keys = calloc(num_keys, 6); | |
477 | if (keys == NULL) { | |
478 | free(statelists[0].head.slhead); | |
479 | free(statelists[1].head.slhead); | |
480 | return -4; | |
481 | } | |
482 | ||
483 | uint64_t key64 = 0; | |
484 | for (int i = 0; i < num_keys; i++) { | |
485 | crypto1_get_lfsr(statelists[0].head.slhead + i, &key64); | |
486 | num_to_bytes(key64, 6, keys + i*6); | |
487 | } | |
488 | ||
489 | // and test each key with mfCheckKeys | |
490 | int isOK = mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, authentication_timeout, true, num_keys, keys, &key64); | |
491 | ||
492 | if (isOK == 0) { // success, key found | |
493 | num_to_bytes(key64, 6, resultKey); | |
494 | } | |
495 | if (isOK == 1) { // timeout | |
496 | isOK = -1; | |
497 | } | |
498 | free(statelists[0].head.slhead); | |
499 | free(statelists[1].head.slhead); | |
500 | free(keys); | |
501 | return isOK; | |
502 | } | |
503 | ||
504 | ||
505 | int mfnested(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate) { | |
506 | ||
507 | // flush queue | |
508 | clearCommandBuffer(); | |
509 | ||
510 | UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}}; | |
511 | memcpy(c.d.asBytes, key, 6); | |
512 | SendCommand(&c); | |
513 | ||
514 | UsbCommand resp; | |
515 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { | |
516 | return -1; | |
517 | } | |
518 | ||
519 | if ((int)resp.arg[0]) { | |
520 | return (int)resp.arg[0]; // error during nested | |
521 | } | |
522 | ||
523 | uint32_t uid; | |
524 | memcpy(&uid, resp.d.asBytes, 4); | |
525 | PrintAndLog("uid:%08x trgbl=%d trgkey=%x", uid, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8); | |
526 | ||
527 | StateList_t statelists[2]; | |
528 | for (int i = 0; i < 2; i++) { | |
529 | statelists[i].blockNo = resp.arg[2] & 0xff; | |
530 | statelists[i].keyType = (resp.arg[2] >> 8) & 0xff; | |
531 | statelists[i].uid = uid; | |
532 | memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4); | |
533 | memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4); | |
534 | } | |
535 | ||
536 | uint32_t authentication_timeout; | |
537 | memcpy(&authentication_timeout, resp.d.asBytes + 20, 4); | |
538 | PrintAndLog("Setting authentication timeout to %" PRIu32 "us", authentication_timeout * 1000 / 106); | |
539 | ||
540 | uint8_t num_unique_nonces; | |
541 | uint32_t fixed_nt = 0; | |
542 | if (statelists[0].nt == statelists[1].nt && statelists[0].ks1 == statelists[1].ks1) { | |
543 | num_unique_nonces = 1; | |
544 | memcpy(&fixed_nt, resp.d.asBytes + 24, 4); | |
545 | PrintAndLog("Fixed nt detected: %08" PRIx32 " on first authentication, %08" PRIx32 " on nested authentication", fixed_nt, statelists[0].nt); | |
546 | } else { | |
547 | num_unique_nonces = 2; | |
548 | } | |
549 | ||
550 | // create and run worker threads to calculate possible crypto states | |
551 | pthread_t thread_id[2]; | |
552 | for (int i = 0; i < num_unique_nonces; i++) { | |
553 | pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]); | |
554 | } | |
555 | // wait for threads to terminate: | |
556 | for (int i = 0; i < num_unique_nonces; i++) { | |
557 | pthread_join(thread_id[i], (void*)&statelists[i].head.slhead); | |
558 | } | |
559 | ||
560 | if (num_unique_nonces == 2) { | |
561 | return nested_standard(statelists, authentication_timeout, resultKey); | |
562 | } else { | |
563 | return nested_fixed_nonce(statelists[0], fixed_nt, authentication_timeout, resultKey); | |
564 | } | |
565 | } | |
566 | ||
567 | ||
568 | // MIFARE | |
569 | int mfReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *data) { | |
570 | ||
571 | UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}}; | |
572 | memcpy(c.d.asBytes, key, 6); | |
573 | clearCommandBuffer(); | |
574 | SendCommand(&c); | |
575 | ||
576 | UsbCommand resp; | |
577 | if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { | |
578 | uint8_t isOK = resp.arg[0] & 0xff; | |
579 | ||
580 | if (isOK) { | |
581 | memcpy(data, resp.d.asBytes, mfNumBlocksPerSector(sectorNo) * 16); | |
582 | return 0; | |
583 | } else { | |
584 | return 1; | |
585 | } | |
586 | } else { | |
587 | PrintAndLogEx(ERR, "Command execute timeout"); | |
588 | return 2; | |
589 | } | |
590 | ||
591 | return 0; | |
592 | } | |
593 | ||
594 | // EMULATOR | |
595 | ||
596 | int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) { | |
597 | UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}}; | |
598 | SendCommand(&c); | |
599 | ||
600 | UsbCommand resp; | |
601 | if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1; | |
602 | memcpy(data, resp.d.asBytes, blocksCount * 16); | |
603 | return 0; | |
604 | } | |
605 | ||
606 | int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) { | |
607 | UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, 0}}; | |
608 | memcpy(c.d.asBytes, data, blocksCount * 16); | |
609 | SendCommand(&c); | |
610 | return 0; | |
611 | } | |
612 | ||
613 | // "MAGIC" CARD | |
614 | ||
615 | int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) { | |
616 | uint8_t isOK = 0; | |
617 | ||
618 | UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}}; | |
619 | SendCommand(&c); | |
620 | ||
621 | UsbCommand resp; | |
622 | if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { | |
623 | isOK = resp.arg[0] & 0xff; | |
624 | memcpy(data, resp.d.asBytes, 16); | |
625 | if (!isOK) return 2; | |
626 | } else { | |
627 | PrintAndLog("Command execute timeout"); | |
628 | return 1; | |
629 | } | |
630 | return 0; | |
631 | } | |
632 | ||
633 | int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, bool wantWipe, uint8_t params) { | |
634 | ||
635 | uint8_t isOK = 0; | |
636 | UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}}; | |
637 | memcpy(c.d.asBytes, data, 16); | |
638 | SendCommand(&c); | |
639 | ||
640 | UsbCommand resp; | |
641 | if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { | |
642 | isOK = resp.arg[0] & 0xff; | |
643 | if (uid != NULL) | |
644 | memcpy(uid, resp.d.asBytes, 4); | |
645 | if (!isOK) | |
646 | return 2; | |
647 | } else { | |
648 | PrintAndLog("Command execute timeout"); | |
649 | return 1; | |
650 | } | |
651 | ||
652 | return 0; | |
653 | } | |
654 | ||
655 | int mfCWipe(uint32_t numSectors, bool gen1b, bool wantWipe, bool wantFill) { | |
656 | uint8_t isOK = 0; | |
657 | uint8_t cmdParams = wantWipe + wantFill * 0x02 + gen1b * 0x04; | |
658 | UsbCommand c = {CMD_MIFARE_CWIPE, {numSectors, cmdParams, 0}}; | |
659 | SendCommand(&c); | |
660 | ||
661 | UsbCommand resp; | |
662 | WaitForResponse(CMD_ACK,&resp); | |
663 | isOK = resp.arg[0] & 0xff; | |
664 | ||
665 | return isOK; | |
666 | } | |
667 | ||
668 | int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID) { | |
669 | uint8_t oldblock0[16] = {0x00}; | |
670 | uint8_t block0[16] = {0x00}; | |
671 | int gen = 0, res; | |
672 | ||
673 | gen = mfCIdentify(); | |
674 | ||
675 | /* generation 1a magic card by default */ | |
676 | uint8_t cmdParams = CSETBLOCK_SINGLE_OPER; | |
677 | if (gen == 2) { | |
678 | /* generation 1b magic card */ | |
679 | cmdParams = CSETBLOCK_SINGLE_OPER | CSETBLOCK_MAGIC_1B; | |
680 | } | |
681 | ||
682 | res = mfCGetBlock(0, oldblock0, cmdParams); | |
683 | ||
684 | if (res == 0) { | |
685 | memcpy(block0, oldblock0, 16); | |
686 | PrintAndLog("old block 0: %s", sprint_hex(block0,16)); | |
687 | } else { | |
688 | PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0."); | |
689 | } | |
690 | ||
691 | // fill in the new values | |
692 | // UID | |
693 | memcpy(block0, uid, 4); | |
694 | // Mifare UID BCC | |
695 | block0[4] = block0[0] ^ block0[1] ^ block0[2] ^ block0[3]; | |
696 | // mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed) | |
697 | if (sak != NULL) | |
698 | block0[5] = sak[0]; | |
699 | if (atqa != NULL) { | |
700 | block0[6] = atqa[1]; | |
701 | block0[7] = atqa[0]; | |
702 | } | |
703 | PrintAndLog("new block 0: %s", sprint_hex(block0, 16)); | |
704 | ||
705 | res = mfCSetBlock(0, block0, oldUID, false, cmdParams); | |
706 | if (res) { | |
707 | PrintAndLog("Can't set block 0. Error: %d", res); | |
708 | return res; | |
709 | } | |
710 | ||
711 | return 0; | |
712 | } | |
713 | ||
714 | int mfCIdentify() { | |
715 | UsbCommand c = {CMD_MIFARE_CIDENT, {0, 0, 0}}; | |
716 | SendCommand(&c); | |
717 | UsbCommand resp; | |
718 | WaitForResponse(CMD_ACK,&resp); | |
719 | ||
720 | uint8_t isGeneration = resp.arg[0] & 0xff; | |
721 | switch( isGeneration ){ | |
722 | case 1: PrintAndLog("Chinese magic backdoor commands (GEN 1a) detected"); break; | |
723 | case 2: PrintAndLog("Chinese magic backdoor command (GEN 1b) detected"); break; | |
724 | default: PrintAndLog("No chinese magic backdoor command detected"); break; | |
725 | } | |
726 | ||
727 | return (int) isGeneration; | |
728 | } | |
729 | ||
730 | ||
731 | // SNIFFER | |
732 | ||
733 | // constants | |
734 | static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00}; | |
735 | ||
736 | // variables | |
737 | char logHexFileName[FILE_PATH_SIZE] = {0x00}; | |
738 | static uint8_t traceCard[4096] = {0x00}; | |
739 | static char traceFileName[FILE_PATH_SIZE] = {0x00}; | |
740 | static int traceState = TRACE_IDLE; | |
741 | static uint8_t traceCurBlock = 0; | |
742 | static uint8_t traceCurKey = 0; | |
743 | ||
744 | struct Crypto1State *traceCrypto1 = NULL; | |
745 | ||
746 | struct Crypto1State *revstate; | |
747 | uint64_t lfsr; | |
748 | uint64_t ui64Key; | |
749 | uint32_t ks2; | |
750 | uint32_t ks3; | |
751 | ||
752 | uint32_t uid; // serial number | |
753 | uint32_t nt; // tag challenge | |
754 | uint32_t nt_enc; // encrypted tag challenge | |
755 | uint8_t nt_enc_par; // encrypted tag challenge parity | |
756 | uint32_t nr_enc; // encrypted reader challenge | |
757 | uint32_t ar_enc; // encrypted reader response | |
758 | uint8_t ar_enc_par; // encrypted reader response parity | |
759 | uint32_t at_enc; // encrypted tag response | |
760 | uint8_t at_enc_par; // encrypted tag response parity | |
761 | ||
762 | int isTraceCardEmpty(void) { | |
763 | return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0)); | |
764 | } | |
765 | ||
766 | int isBlockEmpty(int blockN) { | |
767 | for (int i = 0; i < 16; i++) | |
768 | if (traceCard[blockN * 16 + i] != 0) return 0; | |
769 | ||
770 | return 1; | |
771 | } | |
772 | ||
773 | int isBlockTrailer(int blockN) { | |
774 | return ((blockN & 0x03) == 0x03); | |
775 | } | |
776 | ||
777 | int saveTraceCard(void) { | |
778 | FILE * f; | |
779 | ||
780 | if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0; | |
781 | ||
782 | f = fopen(traceFileName, "w+"); | |
783 | if ( !f ) return 1; | |
784 | ||
785 | for (int i = 0; i < 64; i++) { // blocks | |
786 | for (int j = 0; j < 16; j++) // bytes | |
787 | fprintf(f, "%02x", *(traceCard + i * 16 + j)); | |
788 | if (i < 63) | |
789 | fprintf(f,"\n"); | |
790 | } | |
791 | fclose(f); | |
792 | return 0; | |
793 | } | |
794 | ||
795 | int loadTraceCard(uint8_t *tuid) { | |
796 | FILE * f; | |
797 | char buf[64] = {0x00}; | |
798 | uint8_t buf8[64] = {0x00}; | |
799 | int i, blockNum; | |
800 | ||
801 | if (!isTraceCardEmpty()) | |
802 | saveTraceCard(); | |
803 | ||
804 | memset(traceCard, 0x00, 4096); | |
805 | memcpy(traceCard, tuid + 3, 4); | |
806 | ||
807 | FillFileNameByUID(traceFileName, tuid, ".eml", 7); | |
808 | ||
809 | f = fopen(traceFileName, "r"); | |
810 | if (!f) return 1; | |
811 | ||
812 | blockNum = 0; | |
813 | ||
814 | while(!feof(f)){ | |
815 | ||
816 | memset(buf, 0, sizeof(buf)); | |
817 | if (fgets(buf, sizeof(buf), f) == NULL) { | |
818 | PrintAndLog("File reading error."); | |
819 | fclose(f); | |
820 | return 2; | |
821 | } | |
822 | ||
823 | if (strlen(buf) < 32){ | |
824 | if (feof(f)) break; | |
825 | PrintAndLog("File content error. Block data must include 32 HEX symbols"); | |
826 | fclose(f); | |
827 | return 2; | |
828 | } | |
829 | for (i = 0; i < 32; i += 2) | |
830 | sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]); | |
831 | ||
832 | memcpy(traceCard + blockNum * 16, buf8, 16); | |
833 | ||
834 | blockNum++; | |
835 | } | |
836 | fclose(f); | |
837 | ||
838 | return 0; | |
839 | } | |
840 | ||
841 | int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) { | |
842 | ||
843 | if (traceCrypto1) | |
844 | crypto1_destroy(traceCrypto1); | |
845 | ||
846 | traceCrypto1 = NULL; | |
847 | ||
848 | if (wantSaveToEmlFile) | |
849 | loadTraceCard(tuid); | |
850 | ||
851 | traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3]; | |
852 | traceCard[5] = sak; | |
853 | memcpy(&traceCard[6], atqa, 2); | |
854 | traceCurBlock = 0; | |
855 | uid = bytes_to_num(tuid + 3, 4); | |
856 | ||
857 | traceState = TRACE_IDLE; | |
858 | ||
859 | return 0; | |
860 | } | |
861 | ||
862 | void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){ | |
863 | uint8_t bt = 0; | |
864 | int i; | |
865 | ||
866 | if (len != 1) { | |
867 | for (i = 0; i < len; i++) | |
868 | data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i]; | |
869 | } else { | |
870 | bt = 0; | |
871 | for (i = 0; i < 4; i++) | |
872 | bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], i)) << i; | |
873 | ||
874 | data[0] = bt; | |
875 | } | |
876 | return; | |
877 | } | |
878 | ||
879 | bool NTParityCheck(uint32_t ntx) { | |
880 | if ( | |
881 | (oddparity8(ntx >> 8 & 0xff) ^ (ntx & 0x01) ^ ((nt_enc_par >> 5) & 0x01) ^ (nt_enc & 0x01)) || | |
882 | (oddparity8(ntx >> 16 & 0xff) ^ (ntx >> 8 & 0x01) ^ ((nt_enc_par >> 6) & 0x01) ^ (nt_enc >> 8 & 0x01)) || | |
883 | (oddparity8(ntx >> 24 & 0xff) ^ (ntx >> 16 & 0x01) ^ ((nt_enc_par >> 7) & 0x01) ^ (nt_enc >> 16 & 0x01)) | |
884 | ) | |
885 | return false; | |
886 | ||
887 | uint32_t ar = prng_successor(ntx, 64); | |
888 | if ( | |
889 | (oddparity8(ar >> 8 & 0xff) ^ (ar & 0x01) ^ ((ar_enc_par >> 5) & 0x01) ^ (ar_enc & 0x01)) || | |
890 | (oddparity8(ar >> 16 & 0xff) ^ (ar >> 8 & 0x01) ^ ((ar_enc_par >> 6) & 0x01) ^ (ar_enc >> 8 & 0x01)) || | |
891 | (oddparity8(ar >> 24 & 0xff) ^ (ar >> 16 & 0x01) ^ ((ar_enc_par >> 7) & 0x01) ^ (ar_enc >> 16 & 0x01)) | |
892 | ) | |
893 | return false; | |
894 | ||
895 | uint32_t at = prng_successor(ntx, 96); | |
896 | if ( | |
897 | (oddparity8(ar & 0xff) ^ (at >> 24 & 0x01) ^ ((ar_enc_par >> 4) & 0x01) ^ (at_enc >> 24 & 0x01)) || | |
898 | (oddparity8(at >> 8 & 0xff) ^ (at & 0x01) ^ ((at_enc_par >> 5) & 0x01) ^ (at_enc & 0x01)) || | |
899 | (oddparity8(at >> 16 & 0xff) ^ (at >> 8 & 0x01) ^ ((at_enc_par >> 6) & 0x01) ^ (at_enc >> 8 & 0x01)) || | |
900 | (oddparity8(at >> 24 & 0xff) ^ (at >> 16 & 0x01) ^ ((at_enc_par >> 7) & 0x01) ^ (at_enc >> 16 & 0x01)) | |
901 | ) | |
902 | return false; | |
903 | ||
904 | return true; | |
905 | } | |
906 | ||
907 | ||
908 | int mfTraceDecode(uint8_t *data_src, int len, uint8_t parity, bool wantSaveToEmlFile) { | |
909 | uint8_t data[64]; | |
910 | ||
911 | if (traceState == TRACE_ERROR) return 1; | |
912 | if (len > 64) { | |
913 | traceState = TRACE_ERROR; | |
914 | return 1; | |
915 | } | |
916 | ||
917 | memcpy(data, data_src, len); | |
918 | if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) { | |
919 | mf_crypto1_decrypt(traceCrypto1, data, len, 0); | |
920 | uint8_t parity[16]; | |
921 | oddparitybuf(data, len, parity); | |
922 | PrintAndLog("dec> %s [%s]", sprint_hex(data, len), printBitsPar(parity, len)); | |
923 | AddLogHex(logHexFileName, "dec> ", data, len); | |
924 | } | |
925 | ||
926 | switch (traceState) { | |
927 | case TRACE_IDLE: | |
928 | // check packet crc16! | |
929 | if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) { | |
930 | PrintAndLog("dec> CRC ERROR!!!"); | |
931 | AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!"); | |
932 | traceState = TRACE_ERROR; // do not decrypt the next commands | |
933 | return 1; | |
934 | } | |
935 | ||
936 | // AUTHENTICATION | |
937 | if ((len ==4) && ((data[0] == 0x60) || (data[0] == 0x61))) { | |
938 | traceState = TRACE_AUTH1; | |
939 | traceCurBlock = data[1]; | |
940 | traceCurKey = data[0] == 60 ? 1:0; | |
941 | return 0; | |
942 | } | |
943 | ||
944 | // READ | |
945 | if ((len ==4) && ((data[0] == 0x30))) { | |
946 | traceState = TRACE_READ_DATA; | |
947 | traceCurBlock = data[1]; | |
948 | return 0; | |
949 | } | |
950 | ||
951 | // WRITE | |
952 | if ((len ==4) && ((data[0] == 0xA0))) { | |
953 | traceState = TRACE_WRITE_OK; | |
954 | traceCurBlock = data[1]; | |
955 | return 0; | |
956 | } | |
957 | ||
958 | // HALT | |
959 | if ((len ==4) && ((data[0] == 0x50) && (data[1] == 0x00))) { | |
960 | traceState = TRACE_ERROR; // do not decrypt the next commands | |
961 | return 0; | |
962 | } | |
963 | ||
964 | return 0; | |
965 | break; | |
966 | ||
967 | case TRACE_READ_DATA: | |
968 | if (len == 18) { | |
969 | traceState = TRACE_IDLE; | |
970 | ||
971 | if (isBlockTrailer(traceCurBlock)) { | |
972 | memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4); | |
973 | } else { | |
974 | memcpy(traceCard + traceCurBlock * 16, data, 16); | |
975 | } | |
976 | if (wantSaveToEmlFile) saveTraceCard(); | |
977 | return 0; | |
978 | } else { | |
979 | traceState = TRACE_ERROR; | |
980 | return 1; | |
981 | } | |
982 | break; | |
983 | ||
984 | case TRACE_WRITE_OK: | |
985 | if ((len == 1) && (data[0] == 0x0a)) { | |
986 | traceState = TRACE_WRITE_DATA; | |
987 | ||
988 | return 0; | |
989 | } else { | |
990 | traceState = TRACE_ERROR; | |
991 | return 1; | |
992 | } | |
993 | break; | |
994 | ||
995 | case TRACE_WRITE_DATA: | |
996 | if (len == 18) { | |
997 | traceState = TRACE_IDLE; | |
998 | ||
999 | memcpy(traceCard + traceCurBlock * 16, data, 16); | |
1000 | if (wantSaveToEmlFile) saveTraceCard(); | |
1001 | return 0; | |
1002 | } else { | |
1003 | traceState = TRACE_ERROR; | |
1004 | return 1; | |
1005 | } | |
1006 | break; | |
1007 | ||
1008 | case TRACE_AUTH1: | |
1009 | if (len == 4) { | |
1010 | traceState = TRACE_AUTH2; | |
1011 | if (!traceCrypto1) { | |
1012 | nt = bytes_to_num(data, 4); | |
1013 | } else { | |
1014 | nt_enc = bytes_to_num(data, 4); | |
1015 | nt_enc_par = parity; | |
1016 | } | |
1017 | return 0; | |
1018 | } else { | |
1019 | traceState = TRACE_ERROR; | |
1020 | return 1; | |
1021 | } | |
1022 | break; | |
1023 | ||
1024 | case TRACE_AUTH2: | |
1025 | if (len == 8) { | |
1026 | traceState = TRACE_AUTH_OK; | |
1027 | ||
1028 | nr_enc = bytes_to_num(data, 4); | |
1029 | ar_enc = bytes_to_num(data + 4, 4); | |
1030 | ar_enc_par = parity << 4; | |
1031 | return 0; | |
1032 | } else { | |
1033 | traceState = TRACE_ERROR; | |
1034 | return 1; | |
1035 | } | |
1036 | break; | |
1037 | ||
1038 | case TRACE_AUTH_OK: | |
1039 | if (len ==4) { | |
1040 | traceState = TRACE_IDLE; | |
1041 | ||
1042 | at_enc = bytes_to_num(data, 4); | |
1043 | at_enc_par = parity; | |
1044 | if (!traceCrypto1) { | |
1045 | ||
1046 | // decode key here) | |
1047 | ks2 = ar_enc ^ prng_successor(nt, 64); | |
1048 | ks3 = at_enc ^ prng_successor(nt, 96); | |
1049 | revstate = lfsr_recovery64(ks2, ks3); | |
1050 | lfsr_rollback_word(revstate, 0, 0); | |
1051 | lfsr_rollback_word(revstate, 0, 0); | |
1052 | lfsr_rollback_word(revstate, nr_enc, 1); | |
1053 | lfsr_rollback_word(revstate, uid ^ nt, 0); | |
1054 | ||
1055 | crypto1_get_lfsr(revstate, &lfsr); | |
1056 | crypto1_destroy(revstate); | |
1057 | ui64Key = lfsr; | |
1058 | printf("key> probable key:%x%x Prng:%s ks2:%08x ks3:%08x\n", | |
1059 | (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF), | |
1060 | validate_prng_nonce(nt) ? "WEAK": "HARDEND", | |
1061 | ks2, | |
1062 | ks3); | |
1063 | AddLogUint64(logHexFileName, "key> ", lfsr); | |
1064 | } else { | |
1065 | if (validate_prng_nonce(nt)) { | |
1066 | struct Crypto1State *pcs; | |
1067 | pcs = crypto1_create(ui64Key); | |
1068 | uint32_t nt1 = crypto1_word(pcs, nt_enc ^ uid, 1) ^ nt_enc; | |
1069 | uint32_t ar = prng_successor(nt1, 64); | |
1070 | uint32_t at = prng_successor(nt1, 96); | |
1071 | printf("key> nested auth uid: %08x nt: %08x nt_parity: %s ar: %08x at: %08x\n", uid, nt1, printBitsPar(&nt_enc_par, 4), ar, at); | |
1072 | uint32_t nr1 = crypto1_word(pcs, nr_enc, 1) ^ nr_enc; | |
1073 | uint32_t ar1 = crypto1_word(pcs, 0, 0) ^ ar_enc; | |
1074 | uint32_t at1 = crypto1_word(pcs, 0, 0) ^ at_enc; | |
1075 | crypto1_destroy(pcs); | |
1076 | printf("key> the same key test. nr1: %08x ar1: %08x at1: %08x \n", nr1, ar1, at1); | |
1077 | ||
1078 | if (NTParityCheck(nt1)) | |
1079 | printf("key> the same key test OK. key=%x%x\n", (unsigned int)((ui64Key & 0xFFFFFFFF00000000) >> 32), (unsigned int)(ui64Key & 0xFFFFFFFF)); | |
1080 | else | |
1081 | printf("key> the same key test. check nt parity error.\n"); | |
1082 | ||
1083 | uint32_t ntc = prng_successor(nt, 90); | |
1084 | uint32_t ntx = 0; | |
1085 | int ntcnt = 0; | |
1086 | for (int i = 0; i < 16383; i++) { | |
1087 | ntc = prng_successor(ntc, 1); | |
1088 | if (NTParityCheck(ntc)){ | |
1089 | if (!ntcnt) | |
1090 | ntx = ntc; | |
1091 | ntcnt++; | |
1092 | } | |
1093 | } | |
1094 | if (ntcnt) | |
1095 | printf("key> nt candidate=%08x nonce distance=%d candidates count=%d\n", ntx, nonce_distance(nt, ntx), ntcnt); | |
1096 | else | |
1097 | printf("key> don't have any nt candidate( \n"); | |
1098 | ||
1099 | nt = ntx; | |
1100 | ks2 = ar_enc ^ prng_successor(ntx, 64); | |
1101 | ks3 = at_enc ^ prng_successor(ntx, 96); | |
1102 | ||
1103 | // decode key | |
1104 | revstate = lfsr_recovery64(ks2, ks3); | |
1105 | lfsr_rollback_word(revstate, 0, 0); | |
1106 | lfsr_rollback_word(revstate, 0, 0); | |
1107 | lfsr_rollback_word(revstate, nr_enc, 1); | |
1108 | lfsr_rollback_word(revstate, uid ^ nt, 0); | |
1109 | ||
1110 | crypto1_get_lfsr(revstate, &lfsr); | |
1111 | crypto1_destroy(revstate); | |
1112 | ui64Key = lfsr; | |
1113 | printf("key> probable key:%x%x ks2:%08x ks3:%08x\n", | |
1114 | (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF), | |
1115 | ks2, | |
1116 | ks3); | |
1117 | AddLogUint64(logHexFileName, "key> ", lfsr); | |
1118 | } else { | |
1119 | printf("key> hardnested not implemented!\n"); | |
1120 | ||
1121 | crypto1_destroy(traceCrypto1); | |
1122 | ||
1123 | // not implemented | |
1124 | traceState = TRACE_ERROR; | |
1125 | } | |
1126 | } | |
1127 | ||
1128 | int blockShift = ((traceCurBlock & 0xFC) + 3) * 16; | |
1129 | if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4); | |
1130 | ||
1131 | if (traceCurKey) { | |
1132 | num_to_bytes(lfsr, 6, traceCard + blockShift + 10); | |
1133 | } else { | |
1134 | num_to_bytes(lfsr, 6, traceCard + blockShift); | |
1135 | } | |
1136 | if (wantSaveToEmlFile) saveTraceCard(); | |
1137 | ||
1138 | if (traceCrypto1) { | |
1139 | crypto1_destroy(traceCrypto1); | |
1140 | } | |
1141 | ||
1142 | // set cryptosystem state | |
1143 | traceCrypto1 = lfsr_recovery64(ks2, ks3); | |
1144 | return 0; | |
1145 | } else { | |
1146 | traceState = TRACE_ERROR; | |
1147 | return 1; | |
1148 | } | |
1149 | break; | |
1150 | ||
1151 | default: | |
1152 | traceState = TRACE_ERROR; | |
1153 | return 1; | |
1154 | } | |
1155 | ||
1156 | return 0; | |
1157 | } | |
1158 | ||
1159 | // DECODING | |
1160 | ||
1161 | int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len){ | |
1162 | /* | |
1163 | uint32_t nt; // tag challenge | |
1164 | uint32_t ar_enc; // encrypted reader response | |
1165 | uint32_t at_enc; // encrypted tag response | |
1166 | */ | |
1167 | if (traceCrypto1) { | |
1168 | crypto1_destroy(traceCrypto1); | |
1169 | } | |
1170 | ks2 = ar_enc ^ prng_successor(nt, 64); | |
1171 | ks3 = at_enc ^ prng_successor(nt, 96); | |
1172 | traceCrypto1 = lfsr_recovery64(ks2, ks3); | |
1173 | ||
1174 | mf_crypto1_decrypt(traceCrypto1, data, len, 0); | |
1175 | ||
1176 | PrintAndLog("Decrypted data: [%s]", sprint_hex(data,len) ); | |
1177 | crypto1_destroy(traceCrypto1); | |
1178 | return 0; | |
1179 | } | |
1180 | ||
1181 | /** validate_prng_nonce | |
1182 | * Determine if nonce is deterministic. ie: Suspectable to Darkside attack. | |
1183 | * returns | |
1184 | * true = weak prng | |
1185 | * false = hardend prng | |
1186 | */ | |
1187 | bool validate_prng_nonce(uint32_t nonce) { | |
1188 | uint16_t *dist = 0; | |
1189 | uint16_t x, i; | |
1190 | ||
1191 | dist = malloc(2 << 16); | |
1192 | if(!dist) | |
1193 | return -1; | |
1194 | ||
1195 | // init prng table: | |
1196 | for (x = i = 1; i; ++i) { | |
1197 | dist[(x & 0xff) << 8 | x >> 8] = i; | |
1198 | x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15; | |
1199 | } | |
1200 | ||
1201 | uint32_t res = (65535 - dist[nonce >> 16] + dist[nonce & 0xffff]) % 65535; | |
1202 | ||
1203 | free(dist); | |
1204 | return (res == 16); | |
1205 | } | |
1206 | ||
1207 | /* Detect Tag Prng, | |
1208 | * function performs a partial AUTH, where it tries to authenticate against block0, key A, but only collects tag nonce. | |
1209 | * the tag nonce is check to see if it has a predictable PRNG. | |
1210 | * @returns | |
1211 | * TRUE if tag uses WEAK prng (ie Now the NACK bug also needs to be present for Darkside attack) | |
1212 | * FALSE is tag uses HARDEND prng (ie hardnested attack possible, with known key) | |
1213 | */ | |
1214 | int DetectClassicPrng(void){ | |
1215 | ||
1216 | UsbCommand resp, respA; | |
1217 | uint8_t cmd[] = {0x60, 0x00}; // MIFARE_AUTH_KEYA | |
1218 | uint32_t flags = ISO14A_CONNECT | ISO14A_RAW | ISO14A_APPEND_CRC | ISO14A_NO_RATS; | |
1219 | ||
1220 | UsbCommand c = {CMD_READER_ISO_14443a, {flags, sizeof(cmd), 0}}; | |
1221 | memcpy(c.d.asBytes, cmd, sizeof(cmd)); | |
1222 | ||
1223 | clearCommandBuffer(); | |
1224 | SendCommand(&c); | |
1225 | if (!WaitForResponseTimeout(CMD_NACK, &resp, 2000)) { | |
1226 | PrintAndLog("PRNG UID: Reply timeout."); | |
1227 | return -1; | |
1228 | } | |
1229 | ||
1230 | // if select tag failed. | |
1231 | if (resp.arg[0] == 0) { | |
1232 | PrintAndLog("PRNG error: selecting tag failed, can't detect prng."); | |
1233 | return -1; | |
1234 | } | |
1235 | ||
1236 | if (!WaitForResponseTimeout(CMD_ACK, &respA, 5000)) { | |
1237 | PrintAndLog("PRNG data: Reply timeout."); | |
1238 | return -1; | |
1239 | } | |
1240 | ||
1241 | // check respA | |
1242 | if (respA.arg[0] != 4) { | |
1243 | PrintAndLog("PRNG data error: Wrong length: %d", respA.arg[0]); | |
1244 | return -1; | |
1245 | } | |
1246 | ||
1247 | uint32_t nonce = bytes_to_num(respA.d.asBytes, respA.arg[0]); | |
1248 | return validate_prng_nonce(nonce); | |
1249 | } |