1 //----------------------------------------------------------------------------- 
   2 // This code is licensed to you under the terms of the GNU GPL, version 2 or, 
   3 // at your option, any later version. See the LICENSE.txt file for the text of 
   5 //----------------------------------------------------------------------------- 
   6 // Miscellaneous routines for low frequency tag operations. 
   7 // Tags supported here so far are Texas Instruments (TI), HID 
   8 // Also routines for raw mode reading/simulating of LF waveform 
   9 //----------------------------------------------------------------------------- 
  11 #include "../include/proxmark3.h" 
  14 #include "../include/hitag2.h" 
  15 #include "../common/crc16.h" 
  18 #include "mifareutil.h" 
  20 #define SHORT_COIL()    LOW(GPIO_SSC_DOUT) 
  21 #define OPEN_COIL()             HIGH(GPIO_SSC_DOUT) 
  23 void LFSetupFPGAForADC(int divisor
, bool lf_field
) 
  25         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
  26         if ( (divisor 
== 1) || (divisor 
< 0) || (divisor 
> 255) ) 
  27                 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
  28         else if (divisor 
== 0) 
  29                 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
  31                 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
); 
  33         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| (lf_field 
? FPGA_LF_ADC_READER_FIELD 
: 0)); 
  35         // Connect the A/D to the peak-detected low-frequency path. 
  36         SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
  38         // Give it a bit of time for the resonant antenna to settle. 
  41         // Now set up the SSC to get the ADC samples that are now streaming at us. 
  45 void AcquireRawAdcSamples125k(int divisor
) 
  47         LFSetupFPGAForADC(divisor
, true); 
  51 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
) 
  53         LFSetupFPGAForADC(divisor
, false); 
  54         DoAcquisition125k_threshold(trigger_threshold
); 
  57 // split into two routines so we can avoid timing issues after sending commands // 
  58 void DoAcquisition125k_internal(int trigger_threshold
, bool silent
) 
  60         uint8_t *dest 
=  mifare_get_bigbufptr(); 
  63         memset(dest
, 0x00, n
); 
  66                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
  67                         AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
  70                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
  71                         dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
  73                         if (trigger_threshold 
!= -1 && dest
[i
] < trigger_threshold
) 
  76                                 trigger_threshold 
= -1; 
  81                 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", 
  82                         dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]); 
  85 void DoAcquisition125k_threshold(int trigger_threshold
) { 
  86          DoAcquisition125k_internal(trigger_threshold
, true); 
  88 void DoAcquisition125k() { 
  89          DoAcquisition125k_internal(-1, true); 
  92 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
) 
  95         /* Make sure the tag is reset */ 
  96         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
  97         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 100         int divisor_used 
= 95; // 125 KHz 
 101         // see if 'h' was specified 
 103         if (command
[strlen((char *) command
) - 1] == 'h') 
 104                 divisor_used 
= 88; // 134.8 KHz 
 106         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);  
 107         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 108         // Give it a bit of time for the resonant antenna to settle. 
 112         // And a little more time for the tag to fully power up 
 115         // Now set up the SSC to get the ADC samples that are now streaming at us. 
 118         // now modulate the reader field 
 119         while(*command 
!= '\0' && *command 
!= ' ') { 
 120                 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 122                 SpinDelayUs(delay_off
); 
 123                 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);  
 125                 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 127                 if(*(command
++) == '0') 
 128                         SpinDelayUs(period_0
); 
 130                         SpinDelayUs(period_1
); 
 132         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 134         SpinDelayUs(delay_off
); 
 135         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);  
 137         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 140         DoAcquisition125k(-1); 
 143 /* blank r/w tag data stream 
 144 ...0000000000000000 01111111 
 145 1010101010101010101010101010101010101010101010101010101010101010 
 148 101010101010101[0]000... 
 150 [5555fe852c5555555555555555fe0000] 
 154         // some hardcoded initial params 
 155         // when we read a TI tag we sample the zerocross line at 2Mhz 
 156         // TI tags modulate a 1 as 16 cycles of 123.2Khz 
 157         // TI tags modulate a 0 as 16 cycles of 134.2Khz 
 158         #define FSAMPLE 2000000 
 159         #define FREQLO 123200 
 160         #define FREQHI 134200 
 162         signed char *dest 
= (signed char *)BigBuf
; 
 163         int n 
= sizeof(BigBuf
); 
 164 //      int *dest = GraphBuffer; 
 165 //      int n = GraphTraceLen; 
 167         // 128 bit shift register [shift3:shift2:shift1:shift0] 
 168         uint32_t shift3 
= 0, shift2 
= 0, shift1 
= 0, shift0 
= 0; 
 170         int i
, cycles
=0, samples
=0; 
 171         // how many sample points fit in 16 cycles of each frequency 
 172         uint32_t sampleslo 
= (FSAMPLE
<<4)/FREQLO
, sampleshi 
= (FSAMPLE
<<4)/FREQHI
; 
 173         // when to tell if we're close enough to one freq or another 
 174         uint32_t threshold 
= (sampleslo 
- sampleshi 
+ 1)>>1; 
 176         // TI tags charge at 134.2Khz 
 177         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 178         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
 180         // Place FPGA in passthrough mode, in this mode the CROSS_LO line 
 181         // connects to SSP_DIN and the SSP_DOUT logic level controls 
 182         // whether we're modulating the antenna (high) 
 183         // or listening to the antenna (low) 
 184         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
); 
 186         // get TI tag data into the buffer 
 189         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 191         for (i
=0; i
<n
-1; i
++) { 
 192                 // count cycles by looking for lo to hi zero crossings 
 193                 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) { 
 195                         // after 16 cycles, measure the frequency 
 198                                 samples
=i
-samples
; // number of samples in these 16 cycles 
 200                                 // TI bits are coming to us lsb first so shift them 
 201                                 // right through our 128 bit right shift register 
 202                           shift0 
= (shift0
>>1) | (shift1 
<< 31); 
 203                           shift1 
= (shift1
>>1) | (shift2 
<< 31); 
 204                           shift2 
= (shift2
>>1) | (shift3 
<< 31); 
 207                                 // check if the cycles fall close to the number 
 208                                 // expected for either the low or high frequency 
 209                                 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) { 
 210                                         // low frequency represents a 1 
 212                                 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) { 
 213                                         // high frequency represents a 0 
 215                                         // probably detected a gay waveform or noise 
 216                                         // use this as gaydar or discard shift register and start again 
 217                                         shift3 
= shift2 
= shift1 
= shift0 
= 0; 
 221                                 // for each bit we receive, test if we've detected a valid tag 
 223                                 // if we see 17 zeroes followed by 6 ones, we might have a tag 
 224                                 // remember the bits are backwards 
 225                                 if ( ((shift0 
& 0x7fffff) == 0x7e0000) ) { 
 226                                         // if start and end bytes match, we have a tag so break out of the loop 
 227                                         if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) { 
 228                                                 cycles 
= 0xF0B; //use this as a flag (ugly but whatever) 
 236         // if flag is set we have a tag 
 238                 DbpString("Info: No valid tag detected."); 
 240           // put 64 bit data into shift1 and shift0 
 241           shift0 
= (shift0
>>24) | (shift1 
<< 8); 
 242           shift1 
= (shift1
>>24) | (shift2 
<< 8); 
 244                 // align 16 bit crc into lower half of shift2 
 245           shift2 
= ((shift2
>>24) | (shift3 
<< 8)) & 0x0ffff; 
 247                 // if r/w tag, check ident match 
 248                 if ( shift3
&(1<<15) ) { 
 249                         DbpString("Info: TI tag is rewriteable"); 
 250                         // only 15 bits compare, last bit of ident is not valid 
 251                         if ( ((shift3
>>16)^shift0
)&0x7fff ) { 
 252                                 DbpString("Error: Ident mismatch!"); 
 254                                 DbpString("Info: TI tag ident is valid"); 
 257                         DbpString("Info: TI tag is readonly"); 
 260                 // WARNING the order of the bytes in which we calc crc below needs checking 
 261                 // i'm 99% sure the crc algorithm is correct, but it may need to eat the 
 262                 // bytes in reverse or something 
 266                 crc 
= update_crc16(crc
, (shift0
)&0xff); 
 267                 crc 
= update_crc16(crc
, (shift0
>>8)&0xff); 
 268                 crc 
= update_crc16(crc
, (shift0
>>16)&0xff); 
 269                 crc 
= update_crc16(crc
, (shift0
>>24)&0xff); 
 270                 crc 
= update_crc16(crc
, (shift1
)&0xff); 
 271                 crc 
= update_crc16(crc
, (shift1
>>8)&0xff); 
 272                 crc 
= update_crc16(crc
, (shift1
>>16)&0xff); 
 273                 crc 
= update_crc16(crc
, (shift1
>>24)&0xff); 
 275                 Dbprintf("Info: Tag data: %x%08x, crc=%x", 
 276                         (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2 
& 0xFFFF); 
 277                 if (crc 
!= (shift2
&0xffff)) { 
 278                         Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
); 
 280                         DbpString("Info: CRC is good"); 
 285 void WriteTIbyte(uint8_t b
) 
 289         // modulate 8 bits out to the antenna 
 293                         // stop modulating antenna 
 300                         // stop modulating antenna 
 310 void AcquireTiType(void) 
 313         // tag transmission is <20ms, sampling at 2M gives us 40K samples max 
 314         // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t 
 315         #define TIBUFLEN 1250 
 318         memset(BigBuf
,0,sizeof(BigBuf
)); 
 320         // Set up the synchronous serial port 
 321         AT91C_BASE_PIOA
->PIO_PDR 
= GPIO_SSC_DIN
; 
 322         AT91C_BASE_PIOA
->PIO_ASR 
= GPIO_SSC_DIN
; 
 324         // steal this pin from the SSP and use it to control the modulation 
 325         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 326         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 328         AT91C_BASE_SSC
->SSC_CR 
= AT91C_SSC_SWRST
; 
 329         AT91C_BASE_SSC
->SSC_CR 
= AT91C_SSC_RXEN 
| AT91C_SSC_TXEN
; 
 331         // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long 
 332         // 48/2 = 24 MHz clock must be divided by 12 
 333         AT91C_BASE_SSC
->SSC_CMR 
= 12; 
 335         AT91C_BASE_SSC
->SSC_RCMR 
= SSC_CLOCK_MODE_SELECT(0); 
 336         AT91C_BASE_SSC
->SSC_RFMR 
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
; 
 337         AT91C_BASE_SSC
->SSC_TCMR 
= 0; 
 338         AT91C_BASE_SSC
->SSC_TFMR 
= 0; 
 345         // Charge TI tag for 50ms. 
 348         // stop modulating antenna and listen 
 355                 if(AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
 356                         BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
;    // store 32 bit values in buffer 
 357                         i
++; if(i 
>= TIBUFLEN
) break; 
 362         // return stolen pin to SSP 
 363         AT91C_BASE_PIOA
->PIO_PDR 
= GPIO_SSC_DOUT
; 
 364         AT91C_BASE_PIOA
->PIO_ASR 
= GPIO_SSC_DIN 
| GPIO_SSC_DOUT
; 
 366         char *dest 
= (char *)BigBuf
; 
 369         for (i
=TIBUFLEN
-1; i
>=0; i
--) { 
 370                 for (j
=0; j
<32; j
++) { 
 371                         if(BigBuf
[i
] & (1 << j
)) { 
 380 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc 
 381 // if crc provided, it will be written with the data verbatim (even if bogus) 
 382 // if not provided a valid crc will be computed from the data and written. 
 383 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
) 
 385         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);    
 387                 crc 
= update_crc16(crc
, (idlo
)&0xff); 
 388                 crc 
= update_crc16(crc
, (idlo
>>8)&0xff); 
 389                 crc 
= update_crc16(crc
, (idlo
>>16)&0xff); 
 390                 crc 
= update_crc16(crc
, (idlo
>>24)&0xff); 
 391                 crc 
= update_crc16(crc
, (idhi
)&0xff); 
 392                 crc 
= update_crc16(crc
, (idhi
>>8)&0xff); 
 393                 crc 
= update_crc16(crc
, (idhi
>>16)&0xff); 
 394                 crc 
= update_crc16(crc
, (idhi
>>24)&0xff); 
 396         Dbprintf("Writing to tag: %x%08x, crc=%x", 
 397                 (unsigned int) idhi
, (unsigned int) idlo
, crc
); 
 399         // TI tags charge at 134.2Khz 
 400         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
 401         // Place FPGA in passthrough mode, in this mode the CROSS_LO line 
 402         // connects to SSP_DIN and the SSP_DOUT logic level controls 
 403         // whether we're modulating the antenna (high) 
 404         // or listening to the antenna (low) 
 405         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
); 
 408         // steal this pin from the SSP and use it to control the modulation 
 409         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 410         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 412         // writing algorithm: 
 413         // a high bit consists of a field off for 1ms and field on for 1ms 
 414         // a low bit consists of a field off for 0.3ms and field on for 1.7ms 
 415         // initiate a charge time of 50ms (field on) then immediately start writing bits 
 416         // start by writing 0xBB (keyword) and 0xEB (password) 
 417         // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) 
 418         // finally end with 0x0300 (write frame) 
 419         // all data is sent lsb firts 
 420         // finish with 15ms programming time 
 424         SpinDelay(50);  // charge time 
 426         WriteTIbyte(0xbb); // keyword 
 427         WriteTIbyte(0xeb); // password 
 428         WriteTIbyte( (idlo    
)&0xff ); 
 429         WriteTIbyte( (idlo
>>8 )&0xff ); 
 430         WriteTIbyte( (idlo
>>16)&0xff ); 
 431         WriteTIbyte( (idlo
>>24)&0xff ); 
 432         WriteTIbyte( (idhi    
)&0xff ); 
 433         WriteTIbyte( (idhi
>>8 )&0xff ); 
 434         WriteTIbyte( (idhi
>>16)&0xff ); 
 435         WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo 
 436         WriteTIbyte( (crc     
)&0xff ); // crc lo 
 437         WriteTIbyte( (crc
>>8  )&0xff ); // crc hi 
 438         WriteTIbyte(0x00); // write frame lo 
 439         WriteTIbyte(0x03); // write frame hi 
 441         SpinDelay(50);  // programming time 
 445         // get TI tag data into the buffer 
 448         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 449         DbpString("Now use tiread to check"); 
 454 // PIO_CODR = Clear Output Data Register 
 455 // PIO_SODR = Set Output Data Register 
 456 //#define LOW(x)         AT91C_BASE_PIOA->PIO_CODR = (x) 
 457 //#define HIGH(x)        AT91C_BASE_PIOA->PIO_SODR = (x) 
 458 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
) 
 461         uint8_t *buf 
= (uint8_t *)BigBuf
; 
 463         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 464         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
 465         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
); 
 467         // Connect the A/D to the peak-detected low-frequency path. 
 468         SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
 470         // Now set up the SSC to get the ADC samples that are now streaming at us. 
 473         // Configure output and enable pin that is connected to the FPGA (for modulating) 
 474         // AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; // (PIO_PER) PIO Enable Register 
 475         // AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;    // (PIO_OER) Output Enable Register 
 476         // AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;     // (PIO_ODR) Output Disable Register 
 478         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_PCK0
; 
 480         while(!BUTTON_PRESS()) {  
 483                 // PIO_PDSR = Pin Data Status Register   
 484                 // GPIO_SSC_CLK  = SSC Transmit Clock 
 485                 // wait ssp_clk == high 
 486                 while(!(AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_CLK
)) {   
 488                                  DbpString("Stopped at 0"); 
 500            DbpString("Enter Sim3"); 
 501             // wait ssp_clk == low 
 502                  while( (AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_CLK
) ) {   
 504                                 DbpString("stopped at 1"); 
 510                 DbpString("Enter Sim4 "); 
 522         DbpString("Stopped"); 
 526 #define DEBUG_FRAME_CONTENTS 1 
 527 void SimulateTagLowFrequencyBidir(int divisor
, int t0
) 
 531 // compose fc/8 fc/10 waveform 
 532 static void fc(int c
, int *n
) { 
 533         uint8_t *dest 
= (uint8_t *)BigBuf
; 
 536         // for when we want an fc8 pattern every 4 logical bits 
 547         //      an fc/8  encoded bit is a bit pattern of  11000000  x6 = 48 samples 
 549                 for (idx
=0; idx
<6; idx
++) { 
 561         //      an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples 
 563                 for (idx
=0; idx
<5; idx
++) { 
 578 // prepare a waveform pattern in the buffer based on the ID given then 
 579 // simulate a HID tag until the button is pressed 
 580 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
) 
 584          HID tag bitstream format 
 585          The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits 
 586          A 1 bit is represented as 6 fc8 and 5 fc10 patterns 
 587          A 0 bit is represented as 5 fc10 and 6 fc8 patterns 
 588          A fc8 is inserted before every 4 bits 
 589          A special start of frame pattern is used consisting a0b0 where a and b are neither 0 
 590          nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) 
 594                 DbpString("Tags can only have 44 bits."); 
 598         // special start of frame marker containing invalid bit sequences 
 599         fc(8,  &n
);     fc(8,  &n
);     // invalid 
 600         fc(8,  &n
);     fc(10, &n
); // logical 0 
 601         fc(10, &n
);     fc(10, &n
); // invalid 
 602         fc(8,  &n
);     fc(10, &n
); // logical 0 
 605         // manchester encode bits 43 to 32 
 606         for (i
=11; i
>=0; i
--) { 
 607                 if ((i%4
)==3) fc(0,&n
); 
 609                         fc(10, &n
);     fc(8,  &n
);             // low-high transition 
 611                         fc(8,  &n
);     fc(10, &n
);             // high-low transition 
 616         // manchester encode bits 31 to 0 
 617         for (i
=31; i
>=0; i
--) { 
 618                 if ((i%4
)==3) fc(0,&n
); 
 620                         fc(10, &n
);     fc(8,  &n
);             // low-high transition 
 622                         fc(8,  &n
);     fc(10, &n
);             // high-low transition 
 629         SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 635 size_t fsk_demod(uint8_t * dest
, size_t size
) 
 637         uint32_t last_transition 
= 0; 
 640         // we don't care about actual value, only if it's more or less than a 
 641         // threshold essentially we capture zero crossings for later analysis 
 642         uint8_t threshold_value 
= 127; 
 644         // sync to first lo-hi transition, and threshold 
 646         //Need to threshold first sample 
 647         dest
[0] = (dest
[0] < threshold_value
) ? 0 : 1; 
 650         // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) 
 651         // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere 
 652         // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 
 653         for(idx 
= 1; idx 
< size
; idx
++) { 
 654                 // threshold current value 
 655                 dest
[idx
] = (dest
[idx
] < threshold_value
) ? 0 : 1; 
 657                 // Check for 0->1 transition 
 658                 if (dest
[idx
-1] < dest
[idx
]) { // 0 -> 1 transition 
 660                         dest
[numBits
] =  (idx
-last_transition 
<  9) ? 1 : 0; 
 661                         last_transition 
= idx
; 
 665         return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 
 669 size_t aggregate_bits(uint8_t *dest
,size_t size
, uint8_t h2l_crossing_value
,uint8_t l2h_crossing_value
, uint8_t maxConsequtiveBits 
) 
 671         uint8_t lastval
=dest
[0]; 
 676         for( idx
=1; idx 
< size
; idx
++) { 
 678                 if (dest
[idx
]==lastval
) { 
 682                 //if lastval was 1, we have a 1->0 crossing 
 684                         n
=(n
+1) / h2l_crossing_value
; 
 685                 } else {// 0->1 crossing 
 686                         n
=(n
+1) / l2h_crossing_value
; 
 690                 if(n 
< maxConsequtiveBits
) 
 692                         memset(dest
+numBits
, dest
[idx
-1] , n
); 
 702 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it 
 703 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 705         uint8_t *dest 
= (uint8_t *)BigBuf
; 
 707         size_t size
=0,idx
=0; //, found=0; 
 708   uint32_t hi2
=0, hi
=0, lo
=0; 
 710         // Configure to go in 125Khz listen mode 
 711         LFSetupFPGAForADC(0, true); 
 713         while(!BUTTON_PRESS()) { 
 716                 if (ledcontrol
) LED_A_ON(); 
 718                 DoAcquisition125k_internal(-1,true); 
 719                 size  
= sizeof(BigBuf
); 
 722                 size 
= fsk_demod(dest
, size
); 
 724                 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns 
 725                 // 1->0 : fc/8 in sets of 6 
 726                 // 0->1 : fc/10 in sets of 5 
 727                 size 
= aggregate_bits(dest
,size
, 6,5,5); 
 731                 // final loop, go over previously decoded manchester data and decode into usable tag ID 
 732                 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 
 733                 uint8_t frame_marker_mask
[] = {1,1,1,0,0,0}; 
 736                 while( idx 
+ sizeof(frame_marker_mask
) < size
) { 
 737                         // search for a start of frame marker 
 738                         if ( memcmp(dest
+idx
, frame_marker_mask
, sizeof(frame_marker_mask
)) == 0) 
 739                         { // frame marker found 
 740                                 idx
+=sizeof(frame_marker_mask
); 
 742                                 while(dest
[idx
] != dest
[idx
+1] && idx 
< size
-2) 
 744                                         // Keep going until next frame marker (or error) 
 745                                         // Shift in a bit. Start by shifting high registers 
 746           hi2
=(hi2
<<1)|(hi
>>31); 
 748                                         //Then, shift in a 0 or one into low 
 749                                         if (dest
[idx
] && !dest
[idx
+1])  // 1 0 
 757                                 //Dbprintf("Num shifts: %d ", numshifts); 
 758                                 // Hopefully, we read a tag and  hit upon the next frame marker 
 759                                 if(idx 
+ sizeof(frame_marker_mask
) < size
) 
 761                                 if ( memcmp(dest
+idx
, frame_marker_mask
, sizeof(frame_marker_mask
)) == 0) 
 764                                                 Dbprintf("TAG ID: %x%08x%08x (%d)", 
 765                                                          (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF); 
 768                                                 Dbprintf("TAG ID: %x%08x (%d)", 
 769                                                  (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF); 
 786         DbpString("Stopped"); 
 787         if (ledcontrol
) LED_A_OFF(); 
 790 uint32_t bytebits_to_byte(uint8_t* src
, int numbits
) 
 793         for(int i 
= 0 ; i 
< numbits 
; i
++) 
 795                 num 
= (num 
<< 1) | (*src
); 
 802 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 804         uint8_t *dest 
= (uint8_t *)BigBuf
; 
 806         size_t size
=0, idx
=0; 
 807         uint32_t code
=0, code2
=0; 
 809         // Configure to go in 125Khz listen mode 
 810         LFSetupFPGAForADC(0, true); 
 812         while(!BUTTON_PRESS()) { 
 814                 if (ledcontrol
) LED_A_ON(); 
 816                 DoAcquisition125k_internal(-1,true); 
 817                 size  
= sizeof(BigBuf
); 
 820                 size 
= fsk_demod(dest
, size
); 
 822                 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns 
 823                 // 1->0 : fc/8 in sets of 7 
 824                 // 0->1 : fc/10 in sets of 6 
 825                 size 
= aggregate_bits(dest
, size
, 7,6,13); 
 830             uint8_t mask
[] = {0,0,0,0,0,0,0,0,0,1}; 
 831                 for( idx
=0; idx 
< size 
- 64; idx
++) { 
 833                 if ( memcmp(dest 
+ idx
, mask
, sizeof(mask
)) ) continue; 
 835                     Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
],   dest
[idx
+1],   dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7]); 
 836                     Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+8], dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15]);                          
 837                     Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+16],dest
[idx
+17],dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23]); 
 838                     Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+24],dest
[idx
+25],dest
[idx
+26],dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31]); 
 839                     Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35],dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39]); 
 840                     Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44],dest
[idx
+45],dest
[idx
+46],dest
[idx
+47]); 
 841                     Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53],dest
[idx
+54],dest
[idx
+55]); 
 842                     Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]); 
 844                     code 
= bytebits_to_byte(dest
+idx
,32); 
 845                     code2 
= bytebits_to_byte(dest
+idx
+32,32);  
 847                     short version 
= bytebits_to_byte(dest
+idx
+14,4);  
 848                     char unknown 
= bytebits_to_byte(dest
+idx
+19,8) ; 
 849                     uint16_t number 
= bytebits_to_byte(dest
+idx
+36,9);  
 851                     Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version
,unknown
,number
,code
,code2
); 
 852                     if (ledcontrol
)     LED_D_OFF(); 
 854                 // if we're only looking for one tag  
 862         DbpString("Stopped"); 
 863         if (ledcontrol
) LED_A_OFF(); 
 866 /*------------------------------ 
 867  * T5555/T5557/T5567 routines 
 868  *------------------------------ 
 871 /* T55x7 configuration register definitions */ 
 872 #define T55x7_POR_DELAY                         0x00000001 
 873 #define T55x7_ST_TERMINATOR                     0x00000008 
 874 #define T55x7_PWD                                       0x00000010 
 875 #define T55x7_MAXBLOCK_SHIFT            5 
 876 #define T55x7_AOR                                       0x00000200 
 877 #define T55x7_PSKCF_RF_2                        0 
 878 #define T55x7_PSKCF_RF_4                        0x00000400 
 879 #define T55x7_PSKCF_RF_8                        0x00000800 
 880 #define T55x7_MODULATION_DIRECT         0 
 881 #define T55x7_MODULATION_PSK1           0x00001000 
 882 #define T55x7_MODULATION_PSK2           0x00002000 
 883 #define T55x7_MODULATION_PSK3           0x00003000 
 884 #define T55x7_MODULATION_FSK1           0x00004000 
 885 #define T55x7_MODULATION_FSK2           0x00005000 
 886 #define T55x7_MODULATION_FSK1a          0x00006000 
 887 #define T55x7_MODULATION_FSK2a          0x00007000 
 888 #define T55x7_MODULATION_MANCHESTER     0x00008000 
 889 #define T55x7_MODULATION_BIPHASE        0x00010000 
 890 #define T55x7_BITRATE_RF_8                      0 
 891 #define T55x7_BITRATE_RF_16                     0x00040000 
 892 #define T55x7_BITRATE_RF_32                     0x00080000 
 893 #define T55x7_BITRATE_RF_40                     0x000C0000 
 894 #define T55x7_BITRATE_RF_50                     0x00100000 
 895 #define T55x7_BITRATE_RF_64                     0x00140000 
 896 #define T55x7_BITRATE_RF_100            0x00180000 
 897 #define T55x7_BITRATE_RF_128            0x001C0000 
 899 /* T5555 (Q5) configuration register definitions */ 
 900 #define T5555_ST_TERMINATOR                     0x00000001 
 901 #define T5555_MAXBLOCK_SHIFT            0x00000001 
 902 #define T5555_MODULATION_MANCHESTER     0 
 903 #define T5555_MODULATION_PSK1           0x00000010 
 904 #define T5555_MODULATION_PSK2           0x00000020 
 905 #define T5555_MODULATION_PSK3           0x00000030 
 906 #define T5555_MODULATION_FSK1           0x00000040 
 907 #define T5555_MODULATION_FSK2           0x00000050 
 908 #define T5555_MODULATION_BIPHASE        0x00000060 
 909 #define T5555_MODULATION_DIRECT         0x00000070 
 910 #define T5555_INVERT_OUTPUT                     0x00000080 
 911 #define T5555_PSK_RF_2                          0 
 912 #define T5555_PSK_RF_4                          0x00000100 
 913 #define T5555_PSK_RF_8                          0x00000200 
 914 #define T5555_USE_PWD                           0x00000400 
 915 #define T5555_USE_AOR                           0x00000800 
 916 #define T5555_BITRATE_SHIFT                     12 
 917 #define T5555_FAST_WRITE                        0x00004000 
 918 #define T5555_PAGE_SELECT                       0x00008000 
 921  * Relevant times in microsecond 
 922  * To compensate antenna falling times shorten the write times 
 923  * and enlarge the gap ones. 
 925 #define START_GAP 30*8 // 10 - 50fc 250 
 926 #define WRITE_GAP 20*8 //  8 - 30fc 
 927 #define WRITE_0   24*8 // 16 - 31fc 24fc 192 
 928 #define WRITE_1   54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550 
 930 //  VALUES TAKEN FROM EM4x function: SendForward 
 931 //  START_GAP = 440;       (55*8) cycles at 125Khz (8us = 1cycle) 
 932 //  WRITE_GAP = 128;       (16*8) 
 933 //  WRITE_1   = 256 32*8;  (32*8)  
 935 //  These timings work for 4469/4269/4305 (with the 55*8 above) 
 936 //  WRITE_0 = 23*8 , 9*8  SpinDelayUs(23*8);  
 938 #define T55xx_SAMPLES_SIZE              12000 // 32 x 32 x 10  (32 bit times numofblock (7), times clock skip..) 
 940 // Write one bit to card 
 941 void T55xxWriteBit(int bit
) 
 943         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 944         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
 945         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 947                 SpinDelayUs(WRITE_0
); 
 949                 SpinDelayUs(WRITE_1
); 
 950         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 951         SpinDelayUs(WRITE_GAP
); 
 954 // Write one card block in page 0, no lock 
 955 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
) 
 959         // Set up FPGA, 125kHz 
 960         // Wait for config.. (192+8190xPOW)x8 == 67ms 
 961         LFSetupFPGAForADC(0, true); 
 963         // Now start writting 
 964         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 965         SpinDelayUs(START_GAP
); 
 969         T55xxWriteBit(0); //Page 0 
 972                 for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
 973                         T55xxWriteBit(Pwd 
& i
); 
 979         for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
 980                 T55xxWriteBit(Data 
& i
); 
 983         for (i 
= 0x04; i 
!= 0; i 
>>= 1) 
 984                 T55xxWriteBit(Block 
& i
); 
 986         // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, 
 987         // so wait a little more) 
 988         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
 989         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 991         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 994 // Read one card block in page 0 
 995 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
) 
 997         uint8_t *dest 
=  mifare_get_bigbufptr(); 
 998         uint16_t bufferlength 
= T55xx_SAMPLES_SIZE
; 
1001         // Clear destination buffer before sending the command  0x80 = average. 
1002         memset(dest
, 0x80, bufferlength
); 
1004         // Set up FPGA, 125kHz 
1005         // Wait for config.. (192+8190xPOW)x8 == 67ms 
1006         LFSetupFPGAForADC(0, true); 
1008         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1009         SpinDelayUs(START_GAP
); 
1013         T55xxWriteBit(0); //Page 0 
1016                 for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1017                         T55xxWriteBit(Pwd 
& i
); 
1022         for (i 
= 0x04; i 
!= 0; i 
>>= 1) 
1023                 T55xxWriteBit(Block 
& i
); 
1025         // Turn field on to read the response 
1028         // Now do the acquisition 
1031                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1032                         AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1035                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1036                         dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1039                         if (i 
> bufferlength
) break; 
1043         cmd_send(CMD_ACK
,0,0,0,0,0); 
1044     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1048 // Read card traceability data (page 1) 
1049 void T55xxReadTrace(void){ 
1050         uint8_t *dest 
=  mifare_get_bigbufptr(); 
1051         uint16_t bufferlength 
= T55xx_SAMPLES_SIZE
; 
1054         // Clear destination buffer before sending the command 0x80 = average 
1055         memset(dest
, 0x80, bufferlength
);   
1057         LFSetupFPGAForADC(0, true); 
1059         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1060         SpinDelayUs(START_GAP
); 
1064         T55xxWriteBit(1); //Page 1 
1066         // Turn field on to read the response 
1069         // Now do the acquisition 
1071                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1072                         AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1075                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1076                         dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1080                         if (i 
>= bufferlength
) break; 
1084         cmd_send(CMD_ACK
,0,0,0,0,0); 
1085         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1089 void TurnReadLFOn(){ 
1090         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1091         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1092         // Give it a bit of time for the resonant antenna to settle. 
1097 /*-------------- Cloning routines -----------*/ 
1098 // Copy HID id to card and setup block 0 config 
1099 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
) 
1101         int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format 
1105           // Ensure no more than 84 bits supplied 
1107                   DbpString("Tags can only have 84 bits."); 
1110     // Build the 6 data blocks for supplied 84bit ID 
1112     data1 
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) 
1113           for (int i
=0;i
<4;i
++) { 
1114                   if (hi2 
& (1<<(19-i
))) 
1115                           data1 
|= (1<<(((3-i
)*2)+1)); // 1 -> 10 
1117                           data1 
|= (1<<((3-i
)*2)); // 0 -> 01 
1121         for (int i
=0;i
<16;i
++) { 
1122                 if (hi2 
& (1<<(15-i
))) 
1123                         data2 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1125                         data2 
|= (1<<((15-i
)*2)); // 0 -> 01 
1129         for (int i
=0;i
<16;i
++) { 
1130                 if (hi 
& (1<<(31-i
))) 
1131                         data3 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1133                         data3 
|= (1<<((15-i
)*2)); // 0 -> 01 
1137         for (int i
=0;i
<16;i
++) { 
1138                 if (hi 
& (1<<(15-i
))) 
1139                         data4 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1141                         data4 
|= (1<<((15-i
)*2)); // 0 -> 01 
1145         for (int i
=0;i
<16;i
++) { 
1146                 if (lo 
& (1<<(31-i
))) 
1147                         data5 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1149                         data5 
|= (1<<((15-i
)*2)); // 0 -> 01 
1153         for (int i
=0;i
<16;i
++) { 
1154                 if (lo 
& (1<<(15-i
))) 
1155                         data6 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1157                         data6 
|= (1<<((15-i
)*2)); // 0 -> 01 
1161           // Ensure no more than 44 bits supplied 
1163                   DbpString("Tags can only have 44 bits."); 
1167         // Build the 3 data blocks for supplied 44bit ID 
1170         data1 
= 0x1D000000; // load preamble 
1172     for (int i
=0;i
<12;i
++) { 
1173       if (hi 
& (1<<(11-i
))) 
1174         data1 
|= (1<<(((11-i
)*2)+1)); // 1 -> 10 
1176         data1 
|= (1<<((11-i
)*2)); // 0 -> 01 
1180         for (int i
=0;i
<16;i
++) { 
1181                 if (lo 
& (1<<(31-i
))) 
1182                         data2 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1184                         data2 
|= (1<<((15-i
)*2)); // 0 -> 01 
1188         for (int i
=0;i
<16;i
++) { 
1189                 if (lo 
& (1<<(15-i
))) 
1190                         data3 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1192                         data3 
|= (1<<((15-i
)*2)); // 0 -> 01 
1197         // Program the data blocks for supplied ID 
1198         // and the block 0 for HID format 
1199         T55xxWriteBlock(data1
,1,0,0); 
1200         T55xxWriteBlock(data2
,2,0,0); 
1201         T55xxWriteBlock(data3
,3,0,0); 
1203         if (longFMT
) { // if long format there are 6 blocks 
1204           T55xxWriteBlock(data4
,4,0,0); 
1205           T55xxWriteBlock(data5
,5,0,0); 
1206           T55xxWriteBlock(data6
,6,0,0); 
1209         // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) 
1210         T55xxWriteBlock(T55x7_BITRATE_RF_50  
| 
1211                   T55x7_MODULATION_FSK2a 
| 
1212                   last_block 
<< T55x7_MAXBLOCK_SHIFT
, 
1220 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
) 
1222    int data1
=0, data2
=0; //up to six blocks for long format 
1224     data1 
= hi
;  // load preamble 
1228     // Program the data blocks for supplied ID 
1229     // and the block 0 for HID format 
1230     T55xxWriteBlock(data1
,1,0,0); 
1231     T55xxWriteBlock(data2
,2,0,0); 
1234     T55xxWriteBlock(0x00147040,0,0,0); 
1240 // Define 9bit header for EM410x tags 
1241 #define EM410X_HEADER           0x1FF 
1242 #define EM410X_ID_LENGTH        40 
1244 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
) 
1247         uint64_t id 
= EM410X_HEADER
; 
1248         uint64_t rev_id 
= 0;    // reversed ID 
1249         int c_parity
[4];        // column parity 
1250         int r_parity 
= 0;       // row parity 
1253         // Reverse ID bits given as parameter (for simpler operations) 
1254         for (i 
= 0; i 
< EM410X_ID_LENGTH
; ++i
) { 
1256                         rev_id 
= (rev_id 
<< 1) | (id_lo 
& 1); 
1259                         rev_id 
= (rev_id 
<< 1) | (id_hi 
& 1); 
1264         for (i 
= 0; i 
< EM410X_ID_LENGTH
; ++i
) { 
1265                 id_bit 
= rev_id 
& 1; 
1268                         // Don't write row parity bit at start of parsing 
1270                                 id 
= (id 
<< 1) | r_parity
; 
1271                         // Start counting parity for new row 
1278                 // First elements in column? 
1280                         // Fill out first elements 
1281                         c_parity
[i
] = id_bit
; 
1283                         // Count column parity 
1284                         c_parity
[i 
% 4] ^= id_bit
; 
1287                 id 
= (id 
<< 1) | id_bit
; 
1291         // Insert parity bit of last row 
1292         id 
= (id 
<< 1) | r_parity
; 
1294         // Fill out column parity at the end of tag 
1295         for (i 
= 0; i 
< 4; ++i
) 
1296                 id 
= (id 
<< 1) | c_parity
[i
]; 
1301         Dbprintf("Started writing %s tag ...", card 
? "T55x7":"T5555"); 
1305         T55xxWriteBlock((uint32_t)(id 
>> 32), 1, 0, 0); 
1306         T55xxWriteBlock((uint32_t)id
, 2, 0, 0); 
1308         // Config for EM410x (RF/64, Manchester, Maxblock=2) 
1310                 // Clock rate is stored in bits 8-15 of the card value 
1311                 clock 
= (card 
& 0xFF00) >> 8; 
1312                 Dbprintf("Clock rate: %d", clock
); 
1316                                 clock 
= T55x7_BITRATE_RF_32
; 
1319                                 clock 
= T55x7_BITRATE_RF_16
; 
1322                                 // A value of 0 is assumed to be 64 for backwards-compatibility 
1325                                 clock 
= T55x7_BITRATE_RF_64
; 
1328                                 Dbprintf("Invalid clock rate: %d", clock
); 
1332                 // Writing configuration for T55x7 tag 
1333                 T55xxWriteBlock(clock       
| 
1334                                 T55x7_MODULATION_MANCHESTER 
| 
1335                                 2 << T55x7_MAXBLOCK_SHIFT
, 
1339                 // Writing configuration for T5555(Q5) tag 
1340                 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT 
| 
1341                                 T5555_MODULATION_MANCHESTER   
| 
1342                                 2 << T5555_MAXBLOCK_SHIFT
, 
1346         Dbprintf("Tag %s written with 0x%08x%08x\n", card 
? "T55x7":"T5555", 
1347                                         (uint32_t)(id 
>> 32), (uint32_t)id
); 
1350 // Clone Indala 64-bit tag by UID to T55x7 
1351 void CopyIndala64toT55x7(int hi
, int lo
) 
1353         //Program the 2 data blocks for supplied 64bit UID 
1354         // and the block 0 for Indala64 format 
1355         T55xxWriteBlock(hi
,1,0,0); 
1356         T55xxWriteBlock(lo
,2,0,0); 
1357         //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) 
1358         T55xxWriteBlock(T55x7_BITRATE_RF_32    
| 
1359                         T55x7_MODULATION_PSK1 
| 
1360                         2 << T55x7_MAXBLOCK_SHIFT
, 
1362         //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) 
1363         //      T5567WriteBlock(0x603E1042,0); 
1368 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
) 
1370         //Program the 7 data blocks for supplied 224bit UID 
1371         // and the block 0 for Indala224 format 
1372         T55xxWriteBlock(uid1
,1,0,0); 
1373         T55xxWriteBlock(uid2
,2,0,0); 
1374         T55xxWriteBlock(uid3
,3,0,0); 
1375         T55xxWriteBlock(uid4
,4,0,0); 
1376         T55xxWriteBlock(uid5
,5,0,0); 
1377         T55xxWriteBlock(uid6
,6,0,0); 
1378         T55xxWriteBlock(uid7
,7,0,0); 
1379         //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) 
1380         T55xxWriteBlock(T55x7_BITRATE_RF_32    
| 
1381                         T55x7_MODULATION_PSK1 
| 
1382                         7 << T55x7_MAXBLOCK_SHIFT
, 
1384         //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) 
1385         //      T5567WriteBlock(0x603E10E2,0); 
1391 #define abs(x) ( ((x)<0) ? -(x) : (x) ) 
1392 #define max(x,y) ( x<y ? y:x) 
1394 int DemodPCF7931(uint8_t **outBlocks
) { 
1395         uint8_t BitStream
[256]; 
1396         uint8_t Blocks
[8][16]; 
1397         uint8_t *GraphBuffer 
= (uint8_t *)BigBuf
; 
1398         int GraphTraceLen 
= sizeof(BigBuf
); 
1399         int i
, j
, lastval
, bitidx
, half_switch
; 
1401         int tolerance 
= clock 
/ 8; 
1402         int pmc
, block_done
; 
1403         int lc
, warnings 
= 0; 
1405         int lmin
=128, lmax
=128; 
1408         AcquireRawAdcSamples125k(0); 
1415         /* Find first local max/min */ 
1416         if(GraphBuffer
[1] > GraphBuffer
[0]) { 
1417     while(i 
< GraphTraceLen
) { 
1418       if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
) 
1425     while(i 
< GraphTraceLen
) { 
1426       if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
) 
1438         for (bitidx 
= 0; i 
< GraphTraceLen
; i
++) 
1440     if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir 
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir 
== 0 && GraphBuffer
[i
] < lmin
)) 
1445       // Switch depending on lc length: 
1446       // Tolerance is 1/8 of clock rate (arbitrary) 
1447       if (abs(lc
-clock
/4) < tolerance
) { 
1449         if((i 
- pmc
) == lc
) { /* 16T0 was previous one */ 
1451           i 
+= (128+127+16+32+33+16)-1; 
1459       } else if (abs(lc
-clock
/2) < tolerance
) { 
1461         if((i 
- pmc
) == lc
) { /* 16T0 was previous one */ 
1463           i 
+= (128+127+16+32+33)-1; 
1468         else if(half_switch 
== 1) { 
1469           BitStream
[bitidx
++] = 0; 
1474       } else if (abs(lc
-clock
) < tolerance
) { 
1476         BitStream
[bitidx
++] = 1; 
1482           Dbprintf("Error: too many detection errors, aborting."); 
1487       if(block_done 
== 1) { 
1489           for(j
=0; j
<16; j
++) { 
1490             Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+ 
1491             64*BitStream
[j
*8+6]+ 
1492             32*BitStream
[j
*8+5]+ 
1493             16*BitStream
[j
*8+4]+ 
1505       if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0; 
1511     if(num_blocks 
== 4) break; 
1513         memcpy(outBlocks
, Blocks
, 16*num_blocks
); 
1517 int IsBlock0PCF7931(uint8_t *Block
) { 
1518         // Assume RFU means 0 :) 
1519         if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled 
1521         if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ? 
1526 int IsBlock1PCF7931(uint8_t *Block
) { 
1527         // Assume RFU means 0 :) 
1528         if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0) 
1529     if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9) 
1536 void ReadPCF7931() { 
1537         uint8_t Blocks
[8][17]; 
1538         uint8_t tmpBlocks
[4][16]; 
1539         int i
, j
, ind
, ind2
, n
; 
1546         memset(Blocks
, 0, 8*17*sizeof(uint8_t)); 
1549     memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t)); 
1550     n 
= DemodPCF7931((uint8_t**)tmpBlocks
); 
1553     if(error
==10 && num_blocks 
== 0) { 
1554       Dbprintf("Error, no tag or bad tag"); 
1557     else if (tries
==20 || error
==10) { 
1558       Dbprintf("Error reading the tag"); 
1559       Dbprintf("Here is the partial content"); 
1564       Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", 
1565                tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7], 
1566                tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]); 
1568       for(i
=0; i
<n
; i
++) { 
1569         if(IsBlock0PCF7931(tmpBlocks
[i
])) { 
1571           if(i 
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) { 
1575             memcpy(Blocks
[0], tmpBlocks
[i
], 16); 
1576             Blocks
[0][ALLOC
] = 1; 
1577             memcpy(Blocks
[1], tmpBlocks
[i
+1], 16); 
1578             Blocks
[1][ALLOC
] = 1; 
1579             max_blocks 
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1; 
1581             Dbprintf("(dbg) Max blocks: %d", max_blocks
); 
1583             // Handle following blocks 
1584             for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) { 
1587               memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16); 
1588               Blocks
[ind2
][ALLOC
] = 1; 
1596       for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks 
1597         if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00 
1598           for(j
=0; j
<max_blocks
; j
++) { 
1599             if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) { 
1600               // Found an identical block 
1601               for(ind
=i
-1,ind2
=j
-1; ind 
>= 0; ind
--,ind2
--) { 
1604                 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found 
1605                   // Dbprintf("Tmp %d -> Block %d", ind, ind2); 
1606                   memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16); 
1607                   Blocks
[ind2
][ALLOC
] = 1; 
1609                   if(num_blocks 
== max_blocks
) goto end
; 
1612               for(ind
=i
+1,ind2
=j
+1; ind 
< n
; ind
++,ind2
++) { 
1613                 if(ind2 
> max_blocks
) 
1615                 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found 
1616                   // Dbprintf("Tmp %d -> Block %d", ind, ind2); 
1617                   memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16); 
1618                   Blocks
[ind2
][ALLOC
] = 1; 
1620                   if(num_blocks 
== max_blocks
) goto end
; 
1629     if (BUTTON_PRESS()) return; 
1630         } while (num_blocks 
!= max_blocks
); 
1632         Dbprintf("-----------------------------------------"); 
1633         Dbprintf("Memory content:"); 
1634         Dbprintf("-----------------------------------------"); 
1635         for(i
=0; i
<max_blocks
; i
++) { 
1636     if(Blocks
[i
][ALLOC
]==1) 
1637       Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", 
1638                Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7], 
1639                Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]); 
1641       Dbprintf("<missing block %d>", i
); 
1643         Dbprintf("-----------------------------------------"); 
1649 //----------------------------------- 
1650 // EM4469 / EM4305 routines 
1651 //----------------------------------- 
1652 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored 
1653 #define FWD_CMD_WRITE 0xA 
1654 #define FWD_CMD_READ 0x9 
1655 #define FWD_CMD_DISABLE 0x5 
1658 uint8_t forwardLink_data
[64]; //array of forwarded bits 
1659 uint8_t * forward_ptr
; //ptr for forward message preparation 
1660 uint8_t fwd_bit_sz
; //forwardlink bit counter 
1661 uint8_t * fwd_write_ptr
; //forwardlink bit pointer 
1663 //==================================================================== 
1664 // prepares command bits 
1666 //==================================================================== 
1667 //-------------------------------------------------------------------- 
1668 uint8_t Prepare_Cmd( uint8_t cmd 
) { 
1669   //-------------------------------------------------------------------- 
1671   *forward_ptr
++ = 0; //start bit 
1672   *forward_ptr
++ = 0; //second pause for 4050 code 
1674   *forward_ptr
++ = cmd
; 
1676   *forward_ptr
++ = cmd
; 
1678   *forward_ptr
++ = cmd
; 
1680   *forward_ptr
++ = cmd
; 
1682   return 6; //return number of emited bits 
1685 //==================================================================== 
1686 // prepares address bits 
1688 //==================================================================== 
1690 //-------------------------------------------------------------------- 
1691 uint8_t Prepare_Addr( uint8_t addr 
) { 
1692   //-------------------------------------------------------------------- 
1694   register uint8_t line_parity
; 
1699     *forward_ptr
++ = addr
; 
1700     line_parity 
^= addr
; 
1704   *forward_ptr
++ = (line_parity 
& 1); 
1706   return 7; //return number of emited bits 
1709 //==================================================================== 
1710 // prepares data bits intreleaved with parity bits 
1712 //==================================================================== 
1714 //-------------------------------------------------------------------- 
1715 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) { 
1716   //-------------------------------------------------------------------- 
1718   register uint8_t line_parity
; 
1719   register uint8_t column_parity
; 
1720   register uint8_t i
, j
; 
1721   register uint16_t data
; 
1726   for(i
=0; i
<4; i
++) { 
1728     for(j
=0; j
<8; j
++) { 
1729       line_parity 
^= data
; 
1730       column_parity 
^= (data 
& 1) << j
; 
1731       *forward_ptr
++ = data
; 
1734     *forward_ptr
++ = line_parity
; 
1739   for(j
=0; j
<8; j
++) { 
1740     *forward_ptr
++ = column_parity
; 
1741     column_parity 
>>= 1; 
1745   return 45; //return number of emited bits 
1748 //==================================================================== 
1749 // Forward Link send function 
1750 // Requires: forwarLink_data filled with valid bits (1 bit per byte) 
1751 // fwd_bit_count set with number of bits to be sent 
1752 //==================================================================== 
1753 void SendForward(uint8_t fwd_bit_count
) { 
1755   fwd_write_ptr 
= forwardLink_data
; 
1756   fwd_bit_sz 
= fwd_bit_count
; 
1761   FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
1762   FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1763   FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1765   // Give it a bit of time for the resonant antenna to settle. 
1766   // And for the tag to fully power up 
1769   // force 1st mod pulse (start gap must be longer for 4305) 
1770   fwd_bit_sz
--; //prepare next bit modulation 
1772   FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1773   SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 
1774   FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1775   FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
);//field on 
1776   SpinDelayUs(16*8); //16 cycles on (8us each) 
1778   // now start writting 
1779   while(fwd_bit_sz
-- > 0) { //prepare next bit modulation 
1780     if(((*fwd_write_ptr
++) & 1) == 1) 
1781       SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) 
1783       //These timings work for 4469/4269/4305 (with the 55*8 above) 
1784       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1785       SpinDelayUs(23*8); //16-4 cycles off (8us each) 
1786       FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1787       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
);//field on 
1788       SpinDelayUs(9*8); //16 cycles on (8us each) 
1794 void EM4xLogin(uint32_t Password
) { 
1796   uint8_t fwd_bit_count
; 
1798   forward_ptr 
= forwardLink_data
; 
1799   fwd_bit_count 
= Prepare_Cmd( FWD_CMD_LOGIN 
); 
1800   fwd_bit_count 
+= Prepare_Data( Password
&0xFFFF, Password
>>16 ); 
1802   SendForward(fwd_bit_count
); 
1804   //Wait for command to complete 
1809 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) { 
1811         uint8_t *dest 
=  mifare_get_bigbufptr(); 
1812         uint16_t bufferlength 
= 12000; 
1815         // Clear destination buffer before sending the command  0x80 = average. 
1816         memset(dest
, 0x80, bufferlength
); 
1818         uint8_t fwd_bit_count
; 
1820         //If password mode do login 
1821         if (PwdMode 
== 1) EM4xLogin(Pwd
); 
1823         forward_ptr 
= forwardLink_data
; 
1824         fwd_bit_count 
= Prepare_Cmd( FWD_CMD_READ 
); 
1825         fwd_bit_count 
+= Prepare_Addr( Address 
); 
1827         // Connect the A/D to the peak-detected low-frequency path. 
1828         SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
1829         // Now set up the SSC to get the ADC samples that are now streaming at us. 
1832         SendForward(fwd_bit_count
); 
1834         // // Turn field on to read the response 
1837         // Now do the acquisition 
1840                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1841                         AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1843                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1844                         dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1846                         if (i 
>= bufferlength
) break; 
1850         cmd_send(CMD_ACK
,0,0,0,0,0); 
1851         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1855 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) { 
1857   uint8_t fwd_bit_count
; 
1859   //If password mode do login 
1860   if (PwdMode 
== 1) EM4xLogin(Pwd
); 
1862   forward_ptr 
= forwardLink_data
; 
1863   fwd_bit_count 
= Prepare_Cmd( FWD_CMD_WRITE 
); 
1864   fwd_bit_count 
+= Prepare_Addr( Address 
); 
1865   fwd_bit_count 
+= Prepare_Data( Data
&0xFFFF, Data
>>16 ); 
1867   SendForward(fwd_bit_count
); 
1869   //Wait for write to complete 
1871   FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off