1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "../include/proxmark3.h"
14 #include "../include/hitag2.h"
15 #include "../common/crc16.h"
18 #include "mifareutil.h"
20 void LFSetupFPGAForADC(int divisor
, bool lf_field
)
22 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
23 if ( (divisor
== 1) || (divisor
< 0) || (divisor
> 255) )
24 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
25 else if (divisor
== 0)
26 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
28 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
30 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| (lf_field
? FPGA_LF_ADC_READER_FIELD
: 0));
32 // Connect the A/D to the peak-detected low-frequency path.
33 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
35 // Give it a bit of time for the resonant antenna to settle.
38 // Now set up the SSC to get the ADC samples that are now streaming at us.
42 void AcquireRawAdcSamples125k(int divisor
)
44 LFSetupFPGAForADC(divisor
, true);
45 DoAcquisition125k(-1);
48 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
)
50 LFSetupFPGAForADC(divisor
, false);
51 DoAcquisition125k(trigger_threshold
);
54 // split into two routines so we can avoid timing issues after sending commands //
55 void DoAcquisition125k(int trigger_threshold
)
57 uint8_t *dest
= (uint8_t *)BigBuf
;
58 int n
= sizeof(BigBuf
);
64 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
65 AT91C_BASE_SSC
->SSC_THR
= 0x43;
68 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
69 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
71 if (trigger_threshold
!= -1 && dest
[i
] < trigger_threshold
)
74 trigger_threshold
= -1;
78 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
79 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
82 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
86 /* Make sure the tag is reset */
87 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
88 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
91 // see if 'h' was specified
92 if (command
[strlen((char *) command
) - 1] == 'h')
98 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
100 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
102 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
104 // Give it a bit of time for the resonant antenna to settle.
106 // And a little more time for the tag to fully power up
109 // Now set up the SSC to get the ADC samples that are now streaming at us.
112 // now modulate the reader field
113 while(*command
!= '\0' && *command
!= ' ') {
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
116 SpinDelayUs(delay_off
);
118 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
120 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
122 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
124 if(*(command
++) == '0')
125 SpinDelayUs(period_0
);
127 SpinDelayUs(period_1
);
129 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
131 SpinDelayUs(delay_off
);
133 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
135 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
137 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
140 DoAcquisition125k(-1);
143 /* blank r/w tag data stream
144 ...0000000000000000 01111111
145 1010101010101010101010101010101010101010101010101010101010101010
148 101010101010101[0]000...
150 [5555fe852c5555555555555555fe0000]
154 // some hardcoded initial params
155 // when we read a TI tag we sample the zerocross line at 2Mhz
156 // TI tags modulate a 1 as 16 cycles of 123.2Khz
157 // TI tags modulate a 0 as 16 cycles of 134.2Khz
158 #define FSAMPLE 2000000
159 #define FREQLO 123200
160 #define FREQHI 134200
162 signed char *dest
= (signed char *)BigBuf
;
163 int n
= sizeof(BigBuf
);
164 // int *dest = GraphBuffer;
165 // int n = GraphTraceLen;
167 // 128 bit shift register [shift3:shift2:shift1:shift0]
168 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
170 int i
, cycles
=0, samples
=0;
171 // how many sample points fit in 16 cycles of each frequency
172 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
173 // when to tell if we're close enough to one freq or another
174 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
176 // TI tags charge at 134.2Khz
177 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
178 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
180 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
181 // connects to SSP_DIN and the SSP_DOUT logic level controls
182 // whether we're modulating the antenna (high)
183 // or listening to the antenna (low)
184 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
186 // get TI tag data into the buffer
189 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
191 for (i
=0; i
<n
-1; i
++) {
192 // count cycles by looking for lo to hi zero crossings
193 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
195 // after 16 cycles, measure the frequency
198 samples
=i
-samples
; // number of samples in these 16 cycles
200 // TI bits are coming to us lsb first so shift them
201 // right through our 128 bit right shift register
202 shift0
= (shift0
>>1) | (shift1
<< 31);
203 shift1
= (shift1
>>1) | (shift2
<< 31);
204 shift2
= (shift2
>>1) | (shift3
<< 31);
207 // check if the cycles fall close to the number
208 // expected for either the low or high frequency
209 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
210 // low frequency represents a 1
212 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
213 // high frequency represents a 0
215 // probably detected a gay waveform or noise
216 // use this as gaydar or discard shift register and start again
217 shift3
= shift2
= shift1
= shift0
= 0;
221 // for each bit we receive, test if we've detected a valid tag
223 // if we see 17 zeroes followed by 6 ones, we might have a tag
224 // remember the bits are backwards
225 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
226 // if start and end bytes match, we have a tag so break out of the loop
227 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
228 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
236 // if flag is set we have a tag
238 DbpString("Info: No valid tag detected.");
240 // put 64 bit data into shift1 and shift0
241 shift0
= (shift0
>>24) | (shift1
<< 8);
242 shift1
= (shift1
>>24) | (shift2
<< 8);
244 // align 16 bit crc into lower half of shift2
245 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
247 // if r/w tag, check ident match
248 if ( shift3
&(1<<15) ) {
249 DbpString("Info: TI tag is rewriteable");
250 // only 15 bits compare, last bit of ident is not valid
251 if ( ((shift3
>>16)^shift0
)&0x7fff ) {
252 DbpString("Error: Ident mismatch!");
254 DbpString("Info: TI tag ident is valid");
257 DbpString("Info: TI tag is readonly");
260 // WARNING the order of the bytes in which we calc crc below needs checking
261 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
262 // bytes in reverse or something
266 crc
= update_crc16(crc
, (shift0
)&0xff);
267 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
268 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
269 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
270 crc
= update_crc16(crc
, (shift1
)&0xff);
271 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
272 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
273 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
275 Dbprintf("Info: Tag data: %x%08x, crc=%x",
276 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
277 if (crc
!= (shift2
&0xffff)) {
278 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
280 DbpString("Info: CRC is good");
285 void WriteTIbyte(uint8_t b
)
289 // modulate 8 bits out to the antenna
293 // stop modulating antenna
300 // stop modulating antenna
310 void AcquireTiType(void)
313 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
314 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
315 #define TIBUFLEN 1250
318 memset(BigBuf
,0,sizeof(BigBuf
));
320 // Set up the synchronous serial port
321 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
322 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
324 // steal this pin from the SSP and use it to control the modulation
325 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
326 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
328 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
329 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
331 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
332 // 48/2 = 24 MHz clock must be divided by 12
333 AT91C_BASE_SSC
->SSC_CMR
= 12;
335 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
336 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
337 AT91C_BASE_SSC
->SSC_TCMR
= 0;
338 AT91C_BASE_SSC
->SSC_TFMR
= 0;
345 // Charge TI tag for 50ms.
348 // stop modulating antenna and listen
355 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
356 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
357 i
++; if(i
>= TIBUFLEN
) break;
362 // return stolen pin to SSP
363 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
364 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
366 char *dest
= (char *)BigBuf
;
369 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
370 for (j
=0; j
<32; j
++) {
371 if(BigBuf
[i
] & (1 << j
)) {
380 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
381 // if crc provided, it will be written with the data verbatim (even if bogus)
382 // if not provided a valid crc will be computed from the data and written.
383 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
385 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
387 crc
= update_crc16(crc
, (idlo
)&0xff);
388 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
389 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
390 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
391 crc
= update_crc16(crc
, (idhi
)&0xff);
392 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
393 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
394 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
396 Dbprintf("Writing to tag: %x%08x, crc=%x",
397 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
399 // TI tags charge at 134.2Khz
400 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
401 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
402 // connects to SSP_DIN and the SSP_DOUT logic level controls
403 // whether we're modulating the antenna (high)
404 // or listening to the antenna (low)
405 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
408 // steal this pin from the SSP and use it to control the modulation
409 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
410 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
412 // writing algorithm:
413 // a high bit consists of a field off for 1ms and field on for 1ms
414 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
415 // initiate a charge time of 50ms (field on) then immediately start writing bits
416 // start by writing 0xBB (keyword) and 0xEB (password)
417 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
418 // finally end with 0x0300 (write frame)
419 // all data is sent lsb firts
420 // finish with 15ms programming time
424 SpinDelay(50); // charge time
426 WriteTIbyte(0xbb); // keyword
427 WriteTIbyte(0xeb); // password
428 WriteTIbyte( (idlo
)&0xff );
429 WriteTIbyte( (idlo
>>8 )&0xff );
430 WriteTIbyte( (idlo
>>16)&0xff );
431 WriteTIbyte( (idlo
>>24)&0xff );
432 WriteTIbyte( (idhi
)&0xff );
433 WriteTIbyte( (idhi
>>8 )&0xff );
434 WriteTIbyte( (idhi
>>16)&0xff );
435 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
436 WriteTIbyte( (crc
)&0xff ); // crc lo
437 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
438 WriteTIbyte(0x00); // write frame lo
439 WriteTIbyte(0x03); // write frame hi
441 SpinDelay(50); // programming time
445 // get TI tag data into the buffer
448 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
449 DbpString("Now use tiread to check");
452 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
455 uint8_t *tab
= (uint8_t *)BigBuf
;
457 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
458 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
460 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
462 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
463 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
465 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
466 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
470 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
472 DbpString("Stopped");
489 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
491 DbpString("Stopped");
508 #define DEBUG_FRAME_CONTENTS 1
509 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
513 // compose fc/8 fc/10 waveform
514 static void fc(int c
, int *n
) {
515 uint8_t *dest
= (uint8_t *)BigBuf
;
518 // for when we want an fc8 pattern every 4 logical bits
529 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
531 for (idx
=0; idx
<6; idx
++) {
543 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
545 for (idx
=0; idx
<5; idx
++) {
560 // prepare a waveform pattern in the buffer based on the ID given then
561 // simulate a HID tag until the button is pressed
562 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
566 HID tag bitstream format
567 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
568 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
569 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
570 A fc8 is inserted before every 4 bits
571 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
572 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
576 DbpString("Tags can only have 44 bits.");
580 // special start of frame marker containing invalid bit sequences
581 fc(8, &n
); fc(8, &n
); // invalid
582 fc(8, &n
); fc(10, &n
); // logical 0
583 fc(10, &n
); fc(10, &n
); // invalid
584 fc(8, &n
); fc(10, &n
); // logical 0
587 // manchester encode bits 43 to 32
588 for (i
=11; i
>=0; i
--) {
589 if ((i
%4)==3) fc(0,&n
);
591 fc(10, &n
); fc(8, &n
); // low-high transition
593 fc(8, &n
); fc(10, &n
); // high-low transition
598 // manchester encode bits 31 to 0
599 for (i
=31; i
>=0; i
--) {
600 if ((i
%4)==3) fc(0,&n
);
602 fc(10, &n
); fc(8, &n
); // low-high transition
604 fc(8, &n
); fc(10, &n
); // high-low transition
610 SimulateTagLowFrequency(n
, 0, ledcontrol
);
617 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
618 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
620 uint8_t *dest
= (uint8_t *)BigBuf
;
621 int m
=0, n
=0, i
=0, idx
=0, found
=0, lastval
=0;
622 uint32_t hi2
=0, hi
=0, lo
=0;
624 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
625 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
626 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
628 // Connect the A/D to the peak-detected low-frequency path.
629 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
631 // Give it a bit of time for the resonant antenna to settle.
634 // Now set up the SSC to get the ADC samples that are now streaming at us.
642 DbpString("Stopped");
652 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
653 AT91C_BASE_SSC
->SSC_THR
= 0x43;
657 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
658 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
659 // we don't care about actual value, only if it's more or less than a
660 // threshold essentially we capture zero crossings for later analysis
661 if(dest
[i
] < 127) dest
[i
] = 0; else dest
[i
] = 1;
673 // sync to first lo-hi transition
674 for( idx
=1; idx
<m
; idx
++) {
675 if (dest
[idx
-1]<dest
[idx
])
681 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
682 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
683 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
684 for( i
=0; idx
<m
; idx
++) {
685 if (dest
[idx
-1]<dest
[idx
]) {
700 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
705 for( idx
=0; idx
<m
; idx
++) {
706 if (dest
[idx
]==lastval
) {
709 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
710 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
711 // swallowed up by rounding
712 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
713 // special start of frame markers use invalid manchester states (no transitions) by using sequences
716 n
=(n
+1)/6; // fc/8 in sets of 6
718 n
=(n
+1)/5; // fc/10 in sets of 5
720 switch (n
) { // stuff appropriate bits in buffer
723 dest
[i
++]=dest
[idx
-1];
726 dest
[i
++]=dest
[idx
-1];
727 dest
[i
++]=dest
[idx
-1];
729 case 3: // 3 bit start of frame markers
730 dest
[i
++]=dest
[idx
-1];
731 dest
[i
++]=dest
[idx
-1];
732 dest
[i
++]=dest
[idx
-1];
734 // When a logic 0 is immediately followed by the start of the next transmisson
735 // (special pattern) a pattern of 4 bit duration lengths is created.
737 dest
[i
++]=dest
[idx
-1];
738 dest
[i
++]=dest
[idx
-1];
739 dest
[i
++]=dest
[idx
-1];
740 dest
[i
++]=dest
[idx
-1];
742 default: // this shouldn't happen, don't stuff any bits
752 // final loop, go over previously decoded manchester data and decode into usable tag ID
753 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
754 for( idx
=0; idx
<m
-6; idx
++) {
755 // search for a start of frame marker
756 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
760 if (found
&& (hi2
|hi
|lo
)) {
762 Dbprintf("TAG ID: %x%08x%08x (%d)",
763 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
766 Dbprintf("TAG ID: %x%08x (%d)",
767 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
769 /* if we're only looking for one tag */
783 if (dest
[idx
] && (!dest
[idx
+1]) ) {
784 hi2
=(hi2
<<1)|(hi
>>31);
787 } else if ( (!dest
[idx
]) && dest
[idx
+1]) {
788 hi2
=(hi2
<<1)|(hi
>>31);
799 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
803 if (found
&& (hi
|lo
)) {
805 Dbprintf("TAG ID: %x%08x%08x (%d)",
806 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
809 Dbprintf("TAG ID: %x%08x (%d)",
810 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
812 /* if we're only looking for one tag */
830 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
832 uint8_t *dest
= (uint8_t *)BigBuf
;
833 int m
=0, n
=0, i
=0, idx
=0, lastval
=0;
835 uint32_t code
=0, code2
=0;
836 //uint32_t hi2=0, hi=0, lo=0;
838 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
839 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
840 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
842 // Connect the A/D to the peak-detected low-frequency path.
843 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
845 // Give it a bit of time for the resonant antenna to settle.
848 // Now set up the SSC to get the ADC samples that are now streaming at us.
856 DbpString("Stopped");
866 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
867 AT91C_BASE_SSC
->SSC_THR
= 0x43;
871 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
872 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
873 // we don't care about actual value, only if it's more or less than a
874 // threshold essentially we capture zero crossings for later analysis
875 if(dest
[i
] < 127) dest
[i
] = 0; else dest
[i
] = 1;
887 // sync to first lo-hi transition
888 for( idx
=1; idx
<m
; idx
++) {
889 if (dest
[idx
-1]<dest
[idx
])
895 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
896 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
897 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
898 for( i
=0; idx
<m
; idx
++) {
899 if (dest
[idx
-1]<dest
[idx
]) {
914 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
919 for( idx
=0; idx
<m
; idx
++) {
920 if (dest
[idx
]==lastval
) {
923 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
924 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
925 // swallowed up by rounding
926 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
927 // special start of frame markers use invalid manchester states (no transitions) by using sequences
930 n
=(n
+1)/7; // fc/8 in sets of 7
932 n
=(n
+1)/6; // fc/10 in sets of 6
934 switch (n
) { // stuff appropriate bits in buffer
937 dest
[i
++]=dest
[idx
-1]^1;
938 //Dbprintf("%d",dest[idx-1]);
941 dest
[i
++]=dest
[idx
-1]^1;
942 dest
[i
++]=dest
[idx
-1]^1;
943 //Dbprintf("%d",dest[idx-1]);
944 //Dbprintf("%d",dest[idx-1]);
946 case 3: // 3 bit start of frame markers
947 for(int j
=0; j
<3; j
++){
948 dest
[i
++]=dest
[idx
-1]^1;
949 // Dbprintf("%d",dest[idx-1]);
953 for(int j
=0; j
<4; j
++){
954 dest
[i
++]=dest
[idx
-1]^1;
955 // Dbprintf("%d",dest[idx-1]);
959 for(int j
=0; j
<5; j
++){
960 dest
[i
++]=dest
[idx
-1]^1;
961 // Dbprintf("%d",dest[idx-1]);
965 for(int j
=0; j
<6; j
++){
966 dest
[i
++]=dest
[idx
-1]^1;
967 // Dbprintf("%d",dest[idx-1]);
971 for(int j
=0; j
<7; j
++){
972 dest
[i
++]=dest
[idx
-1]^1;
973 // Dbprintf("%d",dest[idx-1]);
977 for(int j
=0; j
<8; j
++){
978 dest
[i
++]=dest
[idx
-1]^1;
979 // Dbprintf("%d",dest[idx-1]);
983 for(int j
=0; j
<9; j
++){
984 dest
[i
++]=dest
[idx
-1]^1;
985 // Dbprintf("%d",dest[idx-1]);
989 for(int j
=0; j
<10; j
++){
990 dest
[i
++]=dest
[idx
-1]^1;
991 // Dbprintf("%d",dest[idx-1]);
995 for(int j
=0; j
<11; j
++){
996 dest
[i
++]=dest
[idx
-1]^1;
997 // Dbprintf("%d",dest[idx-1]);
1001 for(int j
=0; j
<12; j
++){
1002 dest
[i
++]=dest
[idx
-1]^1;
1003 // Dbprintf("%d",dest[idx-1]);
1006 default: // this shouldn't happen, don't stuff any bits
1007 //Dbprintf("%d",dest[idx-1]);
1014 /*for(int j=0; j<64;j+=8){
1015 Dbprintf("%d%d%d%d%d%d%d%d",dest[j],dest[j+1],dest[j+2],dest[j+3],dest[j+4],dest[j+5],dest[j+6],dest[j+7]);
1021 for( idx
=0; idx
<m
-9; idx
++) {
1022 if ( !(dest
[idx
]) && !(dest
[idx
+1]) && !(dest
[idx
+2]) && !(dest
[idx
+3]) && !(dest
[idx
+4]) && !(dest
[idx
+5]) && !(dest
[idx
+6]) && !(dest
[idx
+7]) && !(dest
[idx
+8])&& (dest
[idx
+9])){
1026 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7]);
1027 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+8], dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15]);
1028 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+16],dest
[idx
+17],dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23]);
1029 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+24],dest
[idx
+25],dest
[idx
+26],dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31]);
1030 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35],dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39]);
1031 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44],dest
[idx
+45],dest
[idx
+46],dest
[idx
+47]);
1032 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53],dest
[idx
+54],dest
[idx
+55]);
1033 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
1035 short version
='\x00';
1036 char unknown
='\x00';
1038 for(int j
=14;j
<18;j
++){
1039 //Dbprintf("%d",dest[idx+j]);
1041 if (dest
[idx
+j
]) version
|= 1;
1043 for(int j
=19;j
<27;j
++){
1044 //Dbprintf("%d",dest[idx+j]);
1046 if (dest
[idx
+j
]) unknown
|= 1;
1048 for(int j
=36;j
<45;j
++){
1049 //Dbprintf("%d",dest[idx+j]);
1051 if (dest
[idx
+j
]) number
|= 1;
1053 for(int j
=46;j
<53;j
++){
1054 //Dbprintf("%d",dest[idx+j]);
1056 if (dest
[idx
+j
]) number
|= 1;
1058 for(int j
=0; j
<32; j
++){
1060 if(dest
[idx
+j
]) code
|= 1;
1062 for(int j
=32; j
<64; j
++){
1064 if(dest
[idx
+j
]) code2
|= 1;
1067 Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version
,unknown
,number
,code
,code2
);
1071 // if we're only looking for one tag
1089 /*------------------------------
1090 * T5555/T5557/T5567 routines
1091 *------------------------------
1094 /* T55x7 configuration register definitions */
1095 #define T55x7_POR_DELAY 0x00000001
1096 #define T55x7_ST_TERMINATOR 0x00000008
1097 #define T55x7_PWD 0x00000010
1098 #define T55x7_MAXBLOCK_SHIFT 5
1099 #define T55x7_AOR 0x00000200
1100 #define T55x7_PSKCF_RF_2 0
1101 #define T55x7_PSKCF_RF_4 0x00000400
1102 #define T55x7_PSKCF_RF_8 0x00000800
1103 #define T55x7_MODULATION_DIRECT 0
1104 #define T55x7_MODULATION_PSK1 0x00001000
1105 #define T55x7_MODULATION_PSK2 0x00002000
1106 #define T55x7_MODULATION_PSK3 0x00003000
1107 #define T55x7_MODULATION_FSK1 0x00004000
1108 #define T55x7_MODULATION_FSK2 0x00005000
1109 #define T55x7_MODULATION_FSK1a 0x00006000
1110 #define T55x7_MODULATION_FSK2a 0x00007000
1111 #define T55x7_MODULATION_MANCHESTER 0x00008000
1112 #define T55x7_MODULATION_BIPHASE 0x00010000
1113 #define T55x7_BITRATE_RF_8 0
1114 #define T55x7_BITRATE_RF_16 0x00040000
1115 #define T55x7_BITRATE_RF_32 0x00080000
1116 #define T55x7_BITRATE_RF_40 0x000C0000
1117 #define T55x7_BITRATE_RF_50 0x00100000
1118 #define T55x7_BITRATE_RF_64 0x00140000
1119 #define T55x7_BITRATE_RF_100 0x00180000
1120 #define T55x7_BITRATE_RF_128 0x001C0000
1122 /* T5555 (Q5) configuration register definitions */
1123 #define T5555_ST_TERMINATOR 0x00000001
1124 #define T5555_MAXBLOCK_SHIFT 0x00000001
1125 #define T5555_MODULATION_MANCHESTER 0
1126 #define T5555_MODULATION_PSK1 0x00000010
1127 #define T5555_MODULATION_PSK2 0x00000020
1128 #define T5555_MODULATION_PSK3 0x00000030
1129 #define T5555_MODULATION_FSK1 0x00000040
1130 #define T5555_MODULATION_FSK2 0x00000050
1131 #define T5555_MODULATION_BIPHASE 0x00000060
1132 #define T5555_MODULATION_DIRECT 0x00000070
1133 #define T5555_INVERT_OUTPUT 0x00000080
1134 #define T5555_PSK_RF_2 0
1135 #define T5555_PSK_RF_4 0x00000100
1136 #define T5555_PSK_RF_8 0x00000200
1137 #define T5555_USE_PWD 0x00000400
1138 #define T5555_USE_AOR 0x00000800
1139 #define T5555_BITRATE_SHIFT 12
1140 #define T5555_FAST_WRITE 0x00004000
1141 #define T5555_PAGE_SELECT 0x00008000
1144 * Relevant times in microsecond
1145 * To compensate antenna falling times shorten the write times
1146 * and enlarge the gap ones.
1148 #define START_GAP 30*8 // 10 - 50fc 250
1149 #define WRITE_GAP 20*8 // 8 - 30fc
1150 #define WRITE_0 24*8 // 16 - 31fc 24fc 192
1151 #define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
1153 // VALUES TAKEN FROM EM4x function: SendForward
1154 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1155 // WRITE_GAP = 128; (16*8)
1156 // WRITE_1 = 256 32*8; (32*8)
1158 // These timings work for 4469/4269/4305 (with the 55*8 above)
1159 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1161 #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
1163 // Write one bit to card
1164 void T55xxWriteBit(int bit
)
1166 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1167 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1168 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1170 SpinDelayUs(WRITE_0
);
1172 SpinDelayUs(WRITE_1
);
1173 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1174 SpinDelayUs(WRITE_GAP
);
1177 // Write one card block in page 0, no lock
1178 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1182 // Set up FPGA, 125kHz
1183 // Wait for config.. (192+8190xPOW)x8 == 67ms
1184 LFSetupFPGAForADC(0, true);
1186 // Now start writting
1187 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1188 SpinDelayUs(START_GAP
);
1192 T55xxWriteBit(0); //Page 0
1195 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1196 T55xxWriteBit(Pwd
& i
);
1202 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1203 T55xxWriteBit(Data
& i
);
1206 for (i
= 0x04; i
!= 0; i
>>= 1)
1207 T55xxWriteBit(Block
& i
);
1209 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1210 // so wait a little more)
1211 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1212 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1214 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1217 // Read one card block in page 0
1218 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1220 uint8_t *dest
= mifare_get_bigbufptr();
1221 uint16_t bufferlength
= T55xx_SAMPLES_SIZE
;
1224 // Clear destination buffer before sending the command 0x80 = average.
1225 memset(dest
, 0x80, bufferlength
);
1227 // Set up FPGA, 125kHz
1228 // Wait for config.. (192+8190xPOW)x8 == 67ms
1229 LFSetupFPGAForADC(0, true);
1231 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1232 SpinDelayUs(START_GAP
);
1236 T55xxWriteBit(0); //Page 0
1239 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1240 T55xxWriteBit(Pwd
& i
);
1245 for (i
= 0x04; i
!= 0; i
>>= 1)
1246 T55xxWriteBit(Block
& i
);
1248 // Turn field on to read the response
1251 // Now do the acquisition
1254 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1255 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1258 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1259 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1262 if (i
> bufferlength
) break;
1266 cmd_send(CMD_ACK
,0,0,0,0,0);
1267 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1271 // Read card traceability data (page 1)
1272 void T55xxReadTrace(void){
1273 uint8_t *dest
= mifare_get_bigbufptr();
1274 uint16_t bufferlength
= T55xx_SAMPLES_SIZE
;
1277 // Clear destination buffer before sending the command 0x80 = average
1278 memset(dest
, 0x80, bufferlength
);
1280 LFSetupFPGAForADC(0, true);
1282 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1283 SpinDelayUs(START_GAP
);
1287 T55xxWriteBit(1); //Page 1
1289 // Turn field on to read the response
1292 // Now do the acquisition
1294 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1295 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1298 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1299 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1303 if (i
>= bufferlength
) break;
1307 cmd_send(CMD_ACK
,0,0,0,0,0);
1308 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1312 void TurnReadLFOn(){
1313 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1314 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1315 // Give it a bit of time for the resonant antenna to settle.
1320 /*-------------- Cloning routines -----------*/
1321 // Copy HID id to card and setup block 0 config
1322 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1324 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1328 // Ensure no more than 84 bits supplied
1330 DbpString("Tags can only have 84 bits.");
1333 // Build the 6 data blocks for supplied 84bit ID
1335 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1336 for (int i
=0;i
<4;i
++) {
1337 if (hi2
& (1<<(19-i
)))
1338 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1340 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1344 for (int i
=0;i
<16;i
++) {
1345 if (hi2
& (1<<(15-i
)))
1346 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1348 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1352 for (int i
=0;i
<16;i
++) {
1353 if (hi
& (1<<(31-i
)))
1354 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1356 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1360 for (int i
=0;i
<16;i
++) {
1361 if (hi
& (1<<(15-i
)))
1362 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1364 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1368 for (int i
=0;i
<16;i
++) {
1369 if (lo
& (1<<(31-i
)))
1370 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1372 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1376 for (int i
=0;i
<16;i
++) {
1377 if (lo
& (1<<(15-i
)))
1378 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1380 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1384 // Ensure no more than 44 bits supplied
1386 DbpString("Tags can only have 44 bits.");
1390 // Build the 3 data blocks for supplied 44bit ID
1393 data1
= 0x1D000000; // load preamble
1395 for (int i
=0;i
<12;i
++) {
1396 if (hi
& (1<<(11-i
)))
1397 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1399 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1403 for (int i
=0;i
<16;i
++) {
1404 if (lo
& (1<<(31-i
)))
1405 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1407 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1411 for (int i
=0;i
<16;i
++) {
1412 if (lo
& (1<<(15-i
)))
1413 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1415 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1420 // Program the data blocks for supplied ID
1421 // and the block 0 for HID format
1422 T55xxWriteBlock(data1
,1,0,0);
1423 T55xxWriteBlock(data2
,2,0,0);
1424 T55xxWriteBlock(data3
,3,0,0);
1426 if (longFMT
) { // if long format there are 6 blocks
1427 T55xxWriteBlock(data4
,4,0,0);
1428 T55xxWriteBlock(data5
,5,0,0);
1429 T55xxWriteBlock(data6
,6,0,0);
1432 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1433 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1434 T55x7_MODULATION_FSK2a
|
1435 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1443 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1445 int data1
=0, data2
=0; //up to six blocks for long format
1447 data1
= hi
; // load preamble
1451 // Program the data blocks for supplied ID
1452 // and the block 0 for HID format
1453 T55xxWriteBlock(data1
,1,0,0);
1454 T55xxWriteBlock(data2
,2,0,0);
1457 T55xxWriteBlock(0x00147040,0,0,0);
1463 // Define 9bit header for EM410x tags
1464 #define EM410X_HEADER 0x1FF
1465 #define EM410X_ID_LENGTH 40
1467 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1470 uint64_t id
= EM410X_HEADER
;
1471 uint64_t rev_id
= 0; // reversed ID
1472 int c_parity
[4]; // column parity
1473 int r_parity
= 0; // row parity
1476 // Reverse ID bits given as parameter (for simpler operations)
1477 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1479 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1482 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1487 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1488 id_bit
= rev_id
& 1;
1491 // Don't write row parity bit at start of parsing
1493 id
= (id
<< 1) | r_parity
;
1494 // Start counting parity for new row
1501 // First elements in column?
1503 // Fill out first elements
1504 c_parity
[i
] = id_bit
;
1506 // Count column parity
1507 c_parity
[i
% 4] ^= id_bit
;
1510 id
= (id
<< 1) | id_bit
;
1514 // Insert parity bit of last row
1515 id
= (id
<< 1) | r_parity
;
1517 // Fill out column parity at the end of tag
1518 for (i
= 0; i
< 4; ++i
)
1519 id
= (id
<< 1) | c_parity
[i
];
1524 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1528 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1529 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1531 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1533 // Clock rate is stored in bits 8-15 of the card value
1534 clock
= (card
& 0xFF00) >> 8;
1535 Dbprintf("Clock rate: %d", clock
);
1539 clock
= T55x7_BITRATE_RF_32
;
1542 clock
= T55x7_BITRATE_RF_16
;
1545 // A value of 0 is assumed to be 64 for backwards-compatibility
1548 clock
= T55x7_BITRATE_RF_64
;
1551 Dbprintf("Invalid clock rate: %d", clock
);
1555 // Writing configuration for T55x7 tag
1556 T55xxWriteBlock(clock
|
1557 T55x7_MODULATION_MANCHESTER
|
1558 2 << T55x7_MAXBLOCK_SHIFT
,
1562 // Writing configuration for T5555(Q5) tag
1563 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1564 T5555_MODULATION_MANCHESTER
|
1565 2 << T5555_MAXBLOCK_SHIFT
,
1569 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1570 (uint32_t)(id
>> 32), (uint32_t)id
);
1573 // Clone Indala 64-bit tag by UID to T55x7
1574 void CopyIndala64toT55x7(int hi
, int lo
)
1576 //Program the 2 data blocks for supplied 64bit UID
1577 // and the block 0 for Indala64 format
1578 T55xxWriteBlock(hi
,1,0,0);
1579 T55xxWriteBlock(lo
,2,0,0);
1580 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1581 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1582 T55x7_MODULATION_PSK1
|
1583 2 << T55x7_MAXBLOCK_SHIFT
,
1585 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1586 // T5567WriteBlock(0x603E1042,0);
1591 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1593 //Program the 7 data blocks for supplied 224bit UID
1594 // and the block 0 for Indala224 format
1595 T55xxWriteBlock(uid1
,1,0,0);
1596 T55xxWriteBlock(uid2
,2,0,0);
1597 T55xxWriteBlock(uid3
,3,0,0);
1598 T55xxWriteBlock(uid4
,4,0,0);
1599 T55xxWriteBlock(uid5
,5,0,0);
1600 T55xxWriteBlock(uid6
,6,0,0);
1601 T55xxWriteBlock(uid7
,7,0,0);
1602 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1603 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1604 T55x7_MODULATION_PSK1
|
1605 7 << T55x7_MAXBLOCK_SHIFT
,
1607 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1608 // T5567WriteBlock(0x603E10E2,0);
1614 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1615 #define max(x,y) ( x<y ? y:x)
1617 int DemodPCF7931(uint8_t **outBlocks
) {
1618 uint8_t BitStream
[256];
1619 uint8_t Blocks
[8][16];
1620 uint8_t *GraphBuffer
= (uint8_t *)BigBuf
;
1621 int GraphTraceLen
= sizeof(BigBuf
);
1622 int i
, j
, lastval
, bitidx
, half_switch
;
1624 int tolerance
= clock
/ 8;
1625 int pmc
, block_done
;
1626 int lc
, warnings
= 0;
1628 int lmin
=128, lmax
=128;
1631 AcquireRawAdcSamples125k(0);
1638 /* Find first local max/min */
1639 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1640 while(i
< GraphTraceLen
) {
1641 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1648 while(i
< GraphTraceLen
) {
1649 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1661 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1663 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1668 // Switch depending on lc length:
1669 // Tolerance is 1/8 of clock rate (arbitrary)
1670 if (abs(lc
-clock
/4) < tolerance
) {
1672 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1674 i
+= (128+127+16+32+33+16)-1;
1682 } else if (abs(lc
-clock
/2) < tolerance
) {
1684 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1686 i
+= (128+127+16+32+33)-1;
1691 else if(half_switch
== 1) {
1692 BitStream
[bitidx
++] = 0;
1697 } else if (abs(lc
-clock
) < tolerance
) {
1699 BitStream
[bitidx
++] = 1;
1705 Dbprintf("Error: too many detection errors, aborting.");
1710 if(block_done
== 1) {
1712 for(j
=0; j
<16; j
++) {
1713 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1714 64*BitStream
[j
*8+6]+
1715 32*BitStream
[j
*8+5]+
1716 16*BitStream
[j
*8+4]+
1728 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1734 if(num_blocks
== 4) break;
1736 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1740 int IsBlock0PCF7931(uint8_t *Block
) {
1741 // Assume RFU means 0 :)
1742 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1744 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1749 int IsBlock1PCF7931(uint8_t *Block
) {
1750 // Assume RFU means 0 :)
1751 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1752 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1759 void ReadPCF7931() {
1760 uint8_t Blocks
[8][17];
1761 uint8_t tmpBlocks
[4][16];
1762 int i
, j
, ind
, ind2
, n
;
1769 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1772 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1773 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1776 if(error
==10 && num_blocks
== 0) {
1777 Dbprintf("Error, no tag or bad tag");
1780 else if (tries
==20 || error
==10) {
1781 Dbprintf("Error reading the tag");
1782 Dbprintf("Here is the partial content");
1787 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1788 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1789 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1791 for(i
=0; i
<n
; i
++) {
1792 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1794 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1798 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1799 Blocks
[0][ALLOC
] = 1;
1800 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1801 Blocks
[1][ALLOC
] = 1;
1802 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1804 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1806 // Handle following blocks
1807 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1810 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1811 Blocks
[ind2
][ALLOC
] = 1;
1819 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1820 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1821 for(j
=0; j
<max_blocks
; j
++) {
1822 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1823 // Found an identical block
1824 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1827 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1828 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1829 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1830 Blocks
[ind2
][ALLOC
] = 1;
1832 if(num_blocks
== max_blocks
) goto end
;
1835 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1836 if(ind2
> max_blocks
)
1838 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1839 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1840 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1841 Blocks
[ind2
][ALLOC
] = 1;
1843 if(num_blocks
== max_blocks
) goto end
;
1852 if (BUTTON_PRESS()) return;
1853 } while (num_blocks
!= max_blocks
);
1855 Dbprintf("-----------------------------------------");
1856 Dbprintf("Memory content:");
1857 Dbprintf("-----------------------------------------");
1858 for(i
=0; i
<max_blocks
; i
++) {
1859 if(Blocks
[i
][ALLOC
]==1)
1860 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1861 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1862 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1864 Dbprintf("<missing block %d>", i
);
1866 Dbprintf("-----------------------------------------");
1872 //-----------------------------------
1873 // EM4469 / EM4305 routines
1874 //-----------------------------------
1875 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1876 #define FWD_CMD_WRITE 0xA
1877 #define FWD_CMD_READ 0x9
1878 #define FWD_CMD_DISABLE 0x5
1881 uint8_t forwardLink_data
[64]; //array of forwarded bits
1882 uint8_t * forward_ptr
; //ptr for forward message preparation
1883 uint8_t fwd_bit_sz
; //forwardlink bit counter
1884 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1886 //====================================================================
1887 // prepares command bits
1889 //====================================================================
1890 //--------------------------------------------------------------------
1891 uint8_t Prepare_Cmd( uint8_t cmd
) {
1892 //--------------------------------------------------------------------
1894 *forward_ptr
++ = 0; //start bit
1895 *forward_ptr
++ = 0; //second pause for 4050 code
1897 *forward_ptr
++ = cmd
;
1899 *forward_ptr
++ = cmd
;
1901 *forward_ptr
++ = cmd
;
1903 *forward_ptr
++ = cmd
;
1905 return 6; //return number of emited bits
1908 //====================================================================
1909 // prepares address bits
1911 //====================================================================
1913 //--------------------------------------------------------------------
1914 uint8_t Prepare_Addr( uint8_t addr
) {
1915 //--------------------------------------------------------------------
1917 register uint8_t line_parity
;
1922 *forward_ptr
++ = addr
;
1923 line_parity
^= addr
;
1927 *forward_ptr
++ = (line_parity
& 1);
1929 return 7; //return number of emited bits
1932 //====================================================================
1933 // prepares data bits intreleaved with parity bits
1935 //====================================================================
1937 //--------------------------------------------------------------------
1938 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1939 //--------------------------------------------------------------------
1941 register uint8_t line_parity
;
1942 register uint8_t column_parity
;
1943 register uint8_t i
, j
;
1944 register uint16_t data
;
1949 for(i
=0; i
<4; i
++) {
1951 for(j
=0; j
<8; j
++) {
1952 line_parity
^= data
;
1953 column_parity
^= (data
& 1) << j
;
1954 *forward_ptr
++ = data
;
1957 *forward_ptr
++ = line_parity
;
1962 for(j
=0; j
<8; j
++) {
1963 *forward_ptr
++ = column_parity
;
1964 column_parity
>>= 1;
1968 return 45; //return number of emited bits
1971 //====================================================================
1972 // Forward Link send function
1973 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1974 // fwd_bit_count set with number of bits to be sent
1975 //====================================================================
1976 void SendForward(uint8_t fwd_bit_count
) {
1978 fwd_write_ptr
= forwardLink_data
;
1979 fwd_bit_sz
= fwd_bit_count
;
1984 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1985 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1986 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1988 // Give it a bit of time for the resonant antenna to settle.
1989 // And for the tag to fully power up
1992 // force 1st mod pulse (start gap must be longer for 4305)
1993 fwd_bit_sz
--; //prepare next bit modulation
1995 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1996 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1997 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1998 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1999 SpinDelayUs(16*8); //16 cycles on (8us each)
2001 // now start writting
2002 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
2003 if(((*fwd_write_ptr
++) & 1) == 1)
2004 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
2006 //These timings work for 4469/4269/4305 (with the 55*8 above)
2007 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
2008 SpinDelayUs(23*8); //16-4 cycles off (8us each)
2009 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
2010 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
2011 SpinDelayUs(9*8); //16 cycles on (8us each)
2017 void EM4xLogin(uint32_t Password
) {
2019 uint8_t fwd_bit_count
;
2021 forward_ptr
= forwardLink_data
;
2022 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
2023 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
2025 SendForward(fwd_bit_count
);
2027 //Wait for command to complete
2032 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
2034 uint8_t *dest
= mifare_get_bigbufptr();
2035 uint16_t bufferlength
= 12000;
2038 // Clear destination buffer before sending the command 0x80 = average.
2039 memset(dest
, 0x80, bufferlength
);
2041 uint8_t fwd_bit_count
;
2043 //If password mode do login
2044 if (PwdMode
== 1) EM4xLogin(Pwd
);
2046 forward_ptr
= forwardLink_data
;
2047 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
2048 fwd_bit_count
+= Prepare_Addr( Address
);
2050 // Connect the A/D to the peak-detected low-frequency path.
2051 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
2052 // Now set up the SSC to get the ADC samples that are now streaming at us.
2055 SendForward(fwd_bit_count
);
2057 // // Turn field on to read the response
2060 // Now do the acquisition
2063 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
2064 AT91C_BASE_SSC
->SSC_THR
= 0x43;
2066 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
2067 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
2069 if (i
>= bufferlength
) break;
2073 cmd_send(CMD_ACK
,0,0,0,0,0);
2074 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
2078 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
2080 uint8_t fwd_bit_count
;
2082 //If password mode do login
2083 if (PwdMode
== 1) EM4xLogin(Pwd
);
2085 forward_ptr
= forwardLink_data
;
2086 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
2087 fwd_bit_count
+= Prepare_Addr( Address
);
2088 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
2090 SendForward(fwd_bit_count
);
2092 //Wait for write to complete
2094 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off