]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
0ed1c0c3063a934fa36f77662cacc39cac43f4b5
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "../common/lfdemod.h"
18
19
20 /**
21 * Does the sample acquisition. If threshold is specified, the actual sampling
22 * is not commenced until the threshold has been reached.
23 * @param trigger_threshold - the threshold
24 * @param silent - is true, now outputs are made. If false, dbprints the status
25 */
26 void DoAcquisition125k_internal(int trigger_threshold,bool silent)
27 {
28 uint8_t *dest = (uint8_t *)BigBuf;
29 int n = sizeof(BigBuf);
30 int i;
31
32 memset(dest, 0, n);
33 i = 0;
34 for(;;) {
35 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
36 AT91C_BASE_SSC->SSC_THR = 0x43;
37 LED_D_ON();
38 }
39 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
40 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
41 LED_D_OFF();
42 if (trigger_threshold != -1 && dest[i] < trigger_threshold)
43 continue;
44 else
45 trigger_threshold = -1;
46 if (++i >= n) break;
47 }
48 }
49 if(!silent)
50 {
51 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
52 dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
53
54 }
55 }
56 /**
57 * Perform sample aquisition.
58 */
59 void DoAcquisition125k(int trigger_threshold)
60 {
61 DoAcquisition125k_internal(trigger_threshold, false);
62 }
63
64 /**
65 * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
66 * if not already loaded, sets divisor and starts up the antenna.
67 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
68 * 0 or 95 ==> 125 KHz
69 *
70 **/
71 void LFSetupFPGAForADC(int divisor, bool lf_field)
72 {
73 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
74 if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
75 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
76 else if (divisor == 0)
77 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
78 else
79 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
80
81 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
82
83 // Connect the A/D to the peak-detected low-frequency path.
84 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
85 // Give it a bit of time for the resonant antenna to settle.
86 SpinDelay(50);
87 // Now set up the SSC to get the ADC samples that are now streaming at us.
88 FpgaSetupSsc();
89 }
90 /**
91 * Initializes the FPGA, and acquires the samples.
92 **/
93 void AcquireRawAdcSamples125k(int divisor)
94 {
95 LFSetupFPGAForADC(divisor, true);
96 // Now call the acquisition routine
97 DoAcquisition125k_internal(-1,false);
98 }
99 /**
100 * Initializes the FPGA for snoop-mode, and acquires the samples.
101 **/
102
103 void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
104 {
105 LFSetupFPGAForADC(divisor, false);
106 DoAcquisition125k(trigger_threshold);
107 }
108
109 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
110 {
111
112 /* Make sure the tag is reset */
113 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
115 SpinDelay(2500);
116
117
118 int divisor_used = 95; // 125 KHz
119 // see if 'h' was specified
120
121 if (command[strlen((char *) command) - 1] == 'h')
122 divisor_used = 88; // 134.8 KHz
123
124
125 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
126 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
127 // Give it a bit of time for the resonant antenna to settle.
128 SpinDelay(50);
129
130 // And a little more time for the tag to fully power up
131 SpinDelay(2000);
132
133 // Now set up the SSC to get the ADC samples that are now streaming at us.
134 FpgaSetupSsc();
135
136 // now modulate the reader field
137 while(*command != '\0' && *command != ' ') {
138 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
139 LED_D_OFF();
140 SpinDelayUs(delay_off);
141 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
142
143 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
144 LED_D_ON();
145 if(*(command++) == '0')
146 SpinDelayUs(period_0);
147 else
148 SpinDelayUs(period_1);
149 }
150 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
151 LED_D_OFF();
152 SpinDelayUs(delay_off);
153 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
154
155 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
156
157 // now do the read
158 DoAcquisition125k(-1);
159 }
160
161 /* blank r/w tag data stream
162 ...0000000000000000 01111111
163 1010101010101010101010101010101010101010101010101010101010101010
164 0011010010100001
165 01111111
166 101010101010101[0]000...
167
168 [5555fe852c5555555555555555fe0000]
169 */
170 void ReadTItag(void)
171 {
172 // some hardcoded initial params
173 // when we read a TI tag we sample the zerocross line at 2Mhz
174 // TI tags modulate a 1 as 16 cycles of 123.2Khz
175 // TI tags modulate a 0 as 16 cycles of 134.2Khz
176 #define FSAMPLE 2000000
177 #define FREQLO 123200
178 #define FREQHI 134200
179
180 signed char *dest = (signed char *)BigBuf;
181 int n = sizeof(BigBuf);
182 // int *dest = GraphBuffer;
183 // int n = GraphTraceLen;
184
185 // 128 bit shift register [shift3:shift2:shift1:shift0]
186 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
187
188 int i, cycles=0, samples=0;
189 // how many sample points fit in 16 cycles of each frequency
190 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
191 // when to tell if we're close enough to one freq or another
192 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
193
194 // TI tags charge at 134.2Khz
195 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
196 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
197
198 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
199 // connects to SSP_DIN and the SSP_DOUT logic level controls
200 // whether we're modulating the antenna (high)
201 // or listening to the antenna (low)
202 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
203
204 // get TI tag data into the buffer
205 AcquireTiType();
206
207 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
208
209 for (i=0; i<n-1; i++) {
210 // count cycles by looking for lo to hi zero crossings
211 if ( (dest[i]<0) && (dest[i+1]>0) ) {
212 cycles++;
213 // after 16 cycles, measure the frequency
214 if (cycles>15) {
215 cycles=0;
216 samples=i-samples; // number of samples in these 16 cycles
217
218 // TI bits are coming to us lsb first so shift them
219 // right through our 128 bit right shift register
220 shift0 = (shift0>>1) | (shift1 << 31);
221 shift1 = (shift1>>1) | (shift2 << 31);
222 shift2 = (shift2>>1) | (shift3 << 31);
223 shift3 >>= 1;
224
225 // check if the cycles fall close to the number
226 // expected for either the low or high frequency
227 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
228 // low frequency represents a 1
229 shift3 |= (1<<31);
230 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
231 // high frequency represents a 0
232 } else {
233 // probably detected a gay waveform or noise
234 // use this as gaydar or discard shift register and start again
235 shift3 = shift2 = shift1 = shift0 = 0;
236 }
237 samples = i;
238
239 // for each bit we receive, test if we've detected a valid tag
240
241 // if we see 17 zeroes followed by 6 ones, we might have a tag
242 // remember the bits are backwards
243 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
244 // if start and end bytes match, we have a tag so break out of the loop
245 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
246 cycles = 0xF0B; //use this as a flag (ugly but whatever)
247 break;
248 }
249 }
250 }
251 }
252 }
253
254 // if flag is set we have a tag
255 if (cycles!=0xF0B) {
256 DbpString("Info: No valid tag detected.");
257 } else {
258 // put 64 bit data into shift1 and shift0
259 shift0 = (shift0>>24) | (shift1 << 8);
260 shift1 = (shift1>>24) | (shift2 << 8);
261
262 // align 16 bit crc into lower half of shift2
263 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
264
265 // if r/w tag, check ident match
266 if ( shift3&(1<<15) ) {
267 DbpString("Info: TI tag is rewriteable");
268 // only 15 bits compare, last bit of ident is not valid
269 if ( ((shift3>>16)^shift0)&0x7fff ) {
270 DbpString("Error: Ident mismatch!");
271 } else {
272 DbpString("Info: TI tag ident is valid");
273 }
274 } else {
275 DbpString("Info: TI tag is readonly");
276 }
277
278 // WARNING the order of the bytes in which we calc crc below needs checking
279 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
280 // bytes in reverse or something
281 // calculate CRC
282 uint32_t crc=0;
283
284 crc = update_crc16(crc, (shift0)&0xff);
285 crc = update_crc16(crc, (shift0>>8)&0xff);
286 crc = update_crc16(crc, (shift0>>16)&0xff);
287 crc = update_crc16(crc, (shift0>>24)&0xff);
288 crc = update_crc16(crc, (shift1)&0xff);
289 crc = update_crc16(crc, (shift1>>8)&0xff);
290 crc = update_crc16(crc, (shift1>>16)&0xff);
291 crc = update_crc16(crc, (shift1>>24)&0xff);
292
293 Dbprintf("Info: Tag data: %x%08x, crc=%x",
294 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
295 if (crc != (shift2&0xffff)) {
296 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
297 } else {
298 DbpString("Info: CRC is good");
299 }
300 }
301 }
302
303 void WriteTIbyte(uint8_t b)
304 {
305 int i = 0;
306
307 // modulate 8 bits out to the antenna
308 for (i=0; i<8; i++)
309 {
310 if (b&(1<<i)) {
311 // stop modulating antenna
312 LOW(GPIO_SSC_DOUT);
313 SpinDelayUs(1000);
314 // modulate antenna
315 HIGH(GPIO_SSC_DOUT);
316 SpinDelayUs(1000);
317 } else {
318 // stop modulating antenna
319 LOW(GPIO_SSC_DOUT);
320 SpinDelayUs(300);
321 // modulate antenna
322 HIGH(GPIO_SSC_DOUT);
323 SpinDelayUs(1700);
324 }
325 }
326 }
327
328 void AcquireTiType(void)
329 {
330 int i, j, n;
331 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
332 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
333 #define TIBUFLEN 1250
334
335 // clear buffer
336 memset(BigBuf,0,sizeof(BigBuf));
337
338 // Set up the synchronous serial port
339 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
340 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
341
342 // steal this pin from the SSP and use it to control the modulation
343 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
344 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
345
346 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
347 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
348
349 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
350 // 48/2 = 24 MHz clock must be divided by 12
351 AT91C_BASE_SSC->SSC_CMR = 12;
352
353 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
354 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
355 AT91C_BASE_SSC->SSC_TCMR = 0;
356 AT91C_BASE_SSC->SSC_TFMR = 0;
357
358 LED_D_ON();
359
360 // modulate antenna
361 HIGH(GPIO_SSC_DOUT);
362
363 // Charge TI tag for 50ms.
364 SpinDelay(50);
365
366 // stop modulating antenna and listen
367 LOW(GPIO_SSC_DOUT);
368
369 LED_D_OFF();
370
371 i = 0;
372 for(;;) {
373 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
374 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
375 i++; if(i >= TIBUFLEN) break;
376 }
377 WDT_HIT();
378 }
379
380 // return stolen pin to SSP
381 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
382 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
383
384 char *dest = (char *)BigBuf;
385 n = TIBUFLEN*32;
386 // unpack buffer
387 for (i=TIBUFLEN-1; i>=0; i--) {
388 for (j=0; j<32; j++) {
389 if(BigBuf[i] & (1 << j)) {
390 dest[--n] = 1;
391 } else {
392 dest[--n] = -1;
393 }
394 }
395 }
396 }
397
398 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
399 // if crc provided, it will be written with the data verbatim (even if bogus)
400 // if not provided a valid crc will be computed from the data and written.
401 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
402 {
403 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
404 if(crc == 0) {
405 crc = update_crc16(crc, (idlo)&0xff);
406 crc = update_crc16(crc, (idlo>>8)&0xff);
407 crc = update_crc16(crc, (idlo>>16)&0xff);
408 crc = update_crc16(crc, (idlo>>24)&0xff);
409 crc = update_crc16(crc, (idhi)&0xff);
410 crc = update_crc16(crc, (idhi>>8)&0xff);
411 crc = update_crc16(crc, (idhi>>16)&0xff);
412 crc = update_crc16(crc, (idhi>>24)&0xff);
413 }
414 Dbprintf("Writing to tag: %x%08x, crc=%x",
415 (unsigned int) idhi, (unsigned int) idlo, crc);
416
417 // TI tags charge at 134.2Khz
418 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
419 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
420 // connects to SSP_DIN and the SSP_DOUT logic level controls
421 // whether we're modulating the antenna (high)
422 // or listening to the antenna (low)
423 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
424 LED_A_ON();
425
426 // steal this pin from the SSP and use it to control the modulation
427 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
428 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
429
430 // writing algorithm:
431 // a high bit consists of a field off for 1ms and field on for 1ms
432 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
433 // initiate a charge time of 50ms (field on) then immediately start writing bits
434 // start by writing 0xBB (keyword) and 0xEB (password)
435 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
436 // finally end with 0x0300 (write frame)
437 // all data is sent lsb firts
438 // finish with 15ms programming time
439
440 // modulate antenna
441 HIGH(GPIO_SSC_DOUT);
442 SpinDelay(50); // charge time
443
444 WriteTIbyte(0xbb); // keyword
445 WriteTIbyte(0xeb); // password
446 WriteTIbyte( (idlo )&0xff );
447 WriteTIbyte( (idlo>>8 )&0xff );
448 WriteTIbyte( (idlo>>16)&0xff );
449 WriteTIbyte( (idlo>>24)&0xff );
450 WriteTIbyte( (idhi )&0xff );
451 WriteTIbyte( (idhi>>8 )&0xff );
452 WriteTIbyte( (idhi>>16)&0xff );
453 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
454 WriteTIbyte( (crc )&0xff ); // crc lo
455 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
456 WriteTIbyte(0x00); // write frame lo
457 WriteTIbyte(0x03); // write frame hi
458 HIGH(GPIO_SSC_DOUT);
459 SpinDelay(50); // programming time
460
461 LED_A_OFF();
462
463 // get TI tag data into the buffer
464 AcquireTiType();
465
466 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
467 DbpString("Now use tiread to check");
468 }
469
470 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
471 {
472 int i;
473 uint8_t *tab = (uint8_t *)BigBuf;
474
475 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
476 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
477
478 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
479
480 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
481 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
482
483 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
484 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
485
486 i = 0;
487 for(;;) {
488 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
489 if(BUTTON_PRESS()) {
490 DbpString("Stopped");
491 return;
492 }
493 WDT_HIT();
494 }
495
496 if (ledcontrol)
497 LED_D_ON();
498
499 if(tab[i])
500 OPEN_COIL();
501 else
502 SHORT_COIL();
503
504 if (ledcontrol)
505 LED_D_OFF();
506
507 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
508 if(BUTTON_PRESS()) {
509 DbpString("Stopped");
510 return;
511 }
512 WDT_HIT();
513 }
514
515 i++;
516 if(i == period) {
517 i = 0;
518 if (gap) {
519 SHORT_COIL();
520 SpinDelayUs(gap);
521 }
522 }
523 }
524 }
525
526 #define DEBUG_FRAME_CONTENTS 1
527 void SimulateTagLowFrequencyBidir(int divisor, int t0)
528 {
529 }
530
531 // compose fc/8 fc/10 waveform
532 static void fc(int c, int *n) {
533 uint8_t *dest = (uint8_t *)BigBuf;
534 int idx;
535
536 // for when we want an fc8 pattern every 4 logical bits
537 if(c==0) {
538 dest[((*n)++)]=1;
539 dest[((*n)++)]=1;
540 dest[((*n)++)]=0;
541 dest[((*n)++)]=0;
542 dest[((*n)++)]=0;
543 dest[((*n)++)]=0;
544 dest[((*n)++)]=0;
545 dest[((*n)++)]=0;
546 }
547 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
548 if(c==8) {
549 for (idx=0; idx<6; idx++) {
550 dest[((*n)++)]=1;
551 dest[((*n)++)]=1;
552 dest[((*n)++)]=0;
553 dest[((*n)++)]=0;
554 dest[((*n)++)]=0;
555 dest[((*n)++)]=0;
556 dest[((*n)++)]=0;
557 dest[((*n)++)]=0;
558 }
559 }
560
561 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
562 if(c==10) {
563 for (idx=0; idx<5; idx++) {
564 dest[((*n)++)]=1;
565 dest[((*n)++)]=1;
566 dest[((*n)++)]=1;
567 dest[((*n)++)]=0;
568 dest[((*n)++)]=0;
569 dest[((*n)++)]=0;
570 dest[((*n)++)]=0;
571 dest[((*n)++)]=0;
572 dest[((*n)++)]=0;
573 dest[((*n)++)]=0;
574 }
575 }
576 }
577
578 // prepare a waveform pattern in the buffer based on the ID given then
579 // simulate a HID tag until the button is pressed
580 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
581 {
582 int n=0, i=0;
583 /*
584 HID tag bitstream format
585 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
586 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
587 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
588 A fc8 is inserted before every 4 bits
589 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
590 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
591 */
592
593 if (hi>0xFFF) {
594 DbpString("Tags can only have 44 bits.");
595 return;
596 }
597 fc(0,&n);
598 // special start of frame marker containing invalid bit sequences
599 fc(8, &n); fc(8, &n); // invalid
600 fc(8, &n); fc(10, &n); // logical 0
601 fc(10, &n); fc(10, &n); // invalid
602 fc(8, &n); fc(10, &n); // logical 0
603
604 WDT_HIT();
605 // manchester encode bits 43 to 32
606 for (i=11; i>=0; i--) {
607 if ((i%4)==3) fc(0,&n);
608 if ((hi>>i)&1) {
609 fc(10, &n); fc(8, &n); // low-high transition
610 } else {
611 fc(8, &n); fc(10, &n); // high-low transition
612 }
613 }
614
615 WDT_HIT();
616 // manchester encode bits 31 to 0
617 for (i=31; i>=0; i--) {
618 if ((i%4)==3) fc(0,&n);
619 if ((lo>>i)&1) {
620 fc(10, &n); fc(8, &n); // low-high transition
621 } else {
622 fc(8, &n); fc(10, &n); // high-low transition
623 }
624 }
625
626 if (ledcontrol)
627 LED_A_ON();
628 SimulateTagLowFrequency(n, 0, ledcontrol);
629
630 if (ledcontrol)
631 LED_A_OFF();
632 }
633 /*
634 //translate wave to 11111100000 (1 for each short wave 0 for each long wave)
635 size_t fsk_demod(uint8_t * dest, size_t size)
636 {
637 uint32_t last_transition = 0;
638 uint32_t idx = 1;
639 uint32_t maxVal=0;
640 // // we don't care about actual value, only if it's more or less than a
641 // // threshold essentially we capture zero crossings for later analysis
642
643 // we do care about the actual value as sometimes near the center of the
644 // wave we may get static that changes direction of wave for one value
645 // if our value is too low it might affect the read. and if our tag or
646 // antenna is weak a setting too high might not see anything. [marshmellow]
647 if (size<100) return size;
648 for(idx=1; idx<100; idx++){
649 if(maxVal<dest[idx]) maxVal = dest[idx];
650 }
651 // set close to the top of the wave threshold with 13% margin for error
652 // less likely to get a false transition up there.
653 // (but have to be careful not to go too high and miss some short waves)
654 uint32_t threshold_value = (uint32_t)(maxVal*.87); idx=1;
655 //uint8_t threshold_value = 127;
656
657 // sync to first lo-hi transition, and threshold
658
659 // Need to threshold first sample
660 if(dest[0] < threshold_value) dest[0] = 0;
661 else dest[0] = 1;
662
663 size_t numBits = 0;
664 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
665 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
666 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
667 for(idx = 1; idx < size; idx++) {
668 // threshold current value
669 if (dest[idx] < threshold_value) dest[idx] = 0;
670 else dest[idx] = 1;
671
672 // Check for 0->1 transition
673 if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
674 if (idx-last_transition<6){
675 //do nothing with extra garbage
676 } else if (idx-last_transition < 9) {
677 dest[numBits]=1;
678 } else {
679 dest[numBits]=0;
680 }
681 last_transition = idx;
682 numBits++;
683 }
684 }
685 return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
686 }
687
688 uint32_t myround(float f)
689 {
690 if (f >= 2000) return 2000;//something bad happened
691 return (uint32_t) (f + (float)0.5);
692 }
693
694 //translate 11111100000 to 10
695 size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value,
696 {
697 uint8_t lastval=dest[0];
698 uint32_t idx=0;
699 size_t numBits=0;
700 uint32_t n=1;
701
702 for( idx=1; idx < size; idx++) {
703
704 if (dest[idx]==lastval) {
705 n++;
706 continue;
707 }
708 //if lastval was 1, we have a 1->0 crossing
709 if ( dest[idx-1]==1 ) {
710 n=myround((float)(n+1)/((float)(rfLen)/(float)8));
711 //n=(n+1) / h2l_crossing_value;
712 } else {// 0->1 crossing
713 n=myround((float)(n+1)/((float)(rfLen-2)/(float)10));
714 //n=(n+1) / l2h_crossing_value;
715 }
716 if (n == 0) n = 1;
717
718 if(n < maxConsequtiveBits) //Consecutive
719 {
720 if(invert==0){ //invert bits
721 memset(dest+numBits, dest[idx-1] , n);
722 }else{
723 memset(dest+numBits, dest[idx-1]^1 , n);
724 }
725 numBits += n;
726 }
727 n=0;
728 lastval=dest[idx];
729 }//end for
730 return numBits;
731 }
732 */
733
734 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
735 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
736 {
737 uint8_t *dest = (uint8_t *)BigBuf;
738
739 size_t size=0; //, found=0;
740 uint32_t hi2=0, hi=0, lo=0;
741
742 // Configure to go in 125Khz listen mode
743 LFSetupFPGAForADC(95, true);
744
745 while(!BUTTON_PRESS()) {
746
747 WDT_HIT();
748 if (ledcontrol) LED_A_ON();
749
750 DoAcquisition125k_internal(-1,true);
751 size = sizeof(BigBuf);
752 if (size < 2000) continue;
753 // FSK demodulator
754
755 int bitLen = HIDdemodFSK(dest,size,&hi2,&hi,&lo);
756
757 WDT_HIT();
758
759 if (bitLen>0 && lo>0){
760 // final loop, go over previously decoded manchester data and decode into usable tag ID
761 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
762 if (hi2 != 0){ //extra large HID tags
763 Dbprintf("TAG ID: %x%08x%08x (%d)",
764 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
765 }else { //standard HID tags <38 bits
766 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
767 uint8_t bitlen = 0;
768 uint32_t fc = 0;
769 uint32_t cardnum = 0;
770 if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
771 uint32_t lo2=0;
772 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
773 uint8_t idx3 = 1;
774 while(lo2>1){ //find last bit set to 1 (format len bit)
775 lo2=lo2>>1;
776 idx3++;
777 }
778 bitlen =idx3+19;
779 fc =0;
780 cardnum=0;
781 if(bitlen==26){
782 cardnum = (lo>>1)&0xFFFF;
783 fc = (lo>>17)&0xFF;
784 }
785 if(bitlen==37){
786 cardnum = (lo>>1)&0x7FFFF;
787 fc = ((hi&0xF)<<12)|(lo>>20);
788 }
789 if(bitlen==34){
790 cardnum = (lo>>1)&0xFFFF;
791 fc= ((hi&1)<<15)|(lo>>17);
792 }
793 if(bitlen==35){
794 cardnum = (lo>>1)&0xFFFFF;
795 fc = ((hi&1)<<11)|(lo>>21);
796 }
797 }
798 else { //if bit 38 is not set then 37 bit format is used
799 bitlen= 37;
800 fc =0;
801 cardnum=0;
802 if(bitlen==37){
803 cardnum = (lo>>1)&0x7FFFF;
804 fc = ((hi&0xF)<<12)|(lo>>20);
805 }
806 }
807 //Dbprintf("TAG ID: %x%08x (%d)",
808 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
809 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
810 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
811 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
812 }
813 if (findone){
814 if (ledcontrol) LED_A_OFF();
815 return;
816 }
817 // reset
818 hi2 = hi = lo = 0;
819 }
820 WDT_HIT();
821 }
822 DbpString("Stopped");
823 if (ledcontrol) LED_A_OFF();
824 }
825
826 /*
827 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
828 void CmdHIDdemodFSK2(int findone, int *high, int *low, int ledcontrol)
829 {
830 uint8_t *dest = (uint8_t *)BigBuf;
831
832 size_t size=0,idx=0; //, found=0;
833 uint32_t hi2=0, hi=0, lo=0;
834
835 // Configure to go in 125Khz listen mode
836 LFSetupFPGAForADC(95, true);
837
838 while(!BUTTON_PRESS()) {
839
840 WDT_HIT();
841 if (ledcontrol) LED_A_ON();
842
843 DoAcquisition125k_internal(-1,true);
844 size = sizeof(BigBuf);
845 if (size < 2000) continue;
846 // FSK demodulator
847 size = fsk_demod(dest, size);
848
849 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
850 // 1->0 : fc/8 in sets of 6 (RF/50 / 8 = 6.25)
851 // 0->1 : fc/10 in sets of 5 (RF/50 / 10= 5)
852 // do not invert
853 size = aggregate_bits(dest,size, 50,5,0); //6,5,5,0
854
855 WDT_HIT();
856
857 // final loop, go over previously decoded manchester data and decode into usable tag ID
858 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
859 uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
860 int numshifts = 0;
861 idx = 0;
862 //one scan
863 uint8_t sameCardCount =0;
864 while( idx + sizeof(frame_marker_mask) < size) {
865 // search for a start of frame marker
866 if (sameCardCount>2) break; //only up to 2 valid sets of data for the same read of looping card data
867 if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
868 { // frame marker found
869 idx+=sizeof(frame_marker_mask);
870 while(dest[idx] != dest[idx+1] && idx < size-2)
871 {
872 // Keep going until next frame marker (or error)
873 // Shift in a bit. Start by shifting high registers
874 hi2 = (hi2<<1)|(hi>>31);
875 hi = (hi<<1)|(lo>>31);
876 //Then, shift in a 0 or one into low
877 if (dest[idx] && !dest[idx+1]) // 1 0
878 lo=(lo<<1)|0;
879 else // 0 1
880 lo=(lo<<1)|
881 1;
882 numshifts++;
883 idx += 2;
884 }
885 //Dbprintf("Num shifts: %d ", numshifts);
886 // Hopefully, we read a tag and hit upon the next frame marker
887 if(idx + sizeof(frame_marker_mask) < size)
888 {
889 if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
890 {
891 if (hi2 != 0){ //extra large HID tags
892 Dbprintf("TAG ID: %x%08x%08x (%d)",
893 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
894 }
895 else { //standard HID tags <38 bits
896 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
897 uint8_t bitlen = 0;
898 uint32_t fc = 0;
899 uint32_t cardnum = 0;
900 if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
901 uint32_t lo2=0;
902 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
903 uint8_t idx3 = 1;
904 while(lo2>1){ //find last bit set to 1 (format len bit)
905 lo2=lo2>>1;
906 idx3++;
907 }
908 bitlen =idx3+19;
909 fc =0;
910 cardnum=0;
911 if(bitlen==26){
912 cardnum = (lo>>1)&0xFFFF;
913 fc = (lo>>17)&0xFF;
914 }
915 if(bitlen==37){
916 cardnum = (lo>>1)&0x7FFFF;
917 fc = ((hi&0xF)<<12)|(lo>>20);
918 }
919 if(bitlen==34){
920 cardnum = (lo>>1)&0xFFFF;
921 fc= ((hi&1)<<15)|(lo>>17);
922 }
923 if(bitlen==35){
924 cardnum = (lo>>1)&0xFFFFF;
925 fc = ((hi&1)<<11)|(lo>>21);
926 }
927 }
928 else { //if bit 38 is not set then 37 bit format is used
929 bitlen= 37;
930 fc =0;
931 cardnum=0;
932 if(bitlen==37){
933 cardnum = (lo>>1)&0x7FFFF;
934 fc = ((hi&0xF)<<12)|(lo>>20);
935 }
936 }
937 //Dbprintf("TAG ID: %x%08x (%d)",
938 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
939 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
940 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
941 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
942 }
943 sameCardCount++;
944 if (findone){
945 if (ledcontrol) LED_A_OFF();
946 return;
947 }
948 }
949 }
950 // reset
951 hi2 = hi = lo = 0;
952 numshifts = 0;
953 }else
954 {
955 idx++;
956 }
957 }
958 WDT_HIT();
959
960 }
961 DbpString("Stopped");
962 if (ledcontrol) LED_A_OFF();
963 }
964 */
965
966 /*
967 uint32_t bytebits_to_byte(uint8_t* src, int numbits)
968 {
969 uint32_t num = 0;
970 for(int i = 0 ; i < numbits ; i++)
971 {
972 num = (num << 1) | (*src);
973 src++;
974 }
975 return num;
976 }
977 */
978
979 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
980 {
981 uint8_t *dest = (uint8_t *)BigBuf;
982 size_t size=0;
983 int idx=0;
984 uint32_t code=0, code2=0;
985
986 // Configure to go in 125Khz listen mode
987 LFSetupFPGAForADC(95, true);
988
989 while(!BUTTON_PRESS()) {
990 WDT_HIT();
991 if (ledcontrol) LED_A_ON();
992 DoAcquisition125k_internal(-1,true);
993 size = sizeof(BigBuf);
994 //make sure buffer has data
995 if (size < 2000) continue;
996 //fskdemod and get start index
997 idx = IOdemodFSK(dest,size);
998 if (idx>0){
999 //valid tag found
1000
1001 //Index map
1002 //0 10 20 30 40 50 60
1003 //| | | | | | |
1004 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1005 //-----------------------------------------------------------------------------
1006 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1007 //
1008 //XSF(version)facility:codeone+codetwo
1009 //Handle the data
1010 if(findone){ //only print binary if we are doing one
1011 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1012 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1013 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1014 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1015 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1016 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1017 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1018 }
1019 code = bytebits_to_byte(dest+idx,32);
1020 code2 = bytebits_to_byte(dest+idx+32,32);
1021 short version = bytebits_to_byte(dest+idx+27,8); //14,4
1022 uint8_t facilitycode = bytebits_to_byte(dest+idx+19,8) ;
1023 uint16_t number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1024
1025 Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2);
1026 // if we're only looking for one tag
1027 if (findone){
1028 if (ledcontrol) LED_A_OFF();
1029 //LED_A_OFF();
1030 return;
1031 }
1032 }
1033 WDT_HIT();
1034 }
1035 DbpString("Stopped");
1036 if (ledcontrol) LED_A_OFF();
1037 }
1038 /*
1039 void CmdIOdemodFSK2(int findone, int *high, int *low, int ledcontrol)
1040 {
1041 uint8_t *dest = (uint8_t *)BigBuf;
1042 size_t size=0, idx=0;
1043 uint32_t code=0, code2=0;
1044
1045 // Configure to go in 125Khz listen mode
1046 LFSetupFPGAForADC(95, true);
1047
1048 while(!BUTTON_PRESS()) {
1049 WDT_HIT();
1050 if (ledcontrol) LED_A_ON();
1051 DoAcquisition125k_internal(-1,true);
1052 size = sizeof(BigBuf);
1053 //make sure buffer has data
1054 if (size < 64) return;
1055 //test samples are not just noise
1056 uint8_t testMax=0;
1057 for(idx=0;idx<64;idx++){
1058 if (testMax<dest[idx]) testMax=dest[idx];
1059 }
1060 idx=0;
1061 //if not just noise
1062 if (testMax>170){
1063 //Dbprintf("testMax: %d",testMax);
1064 // FSK demodulator
1065 size = fsk_demod(dest, size);
1066 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
1067 // 1->0 : fc/8 in sets of 7 (RF/64 / 8 = 8)
1068 // 0->1 : fc/10 in sets of 6 (RF/64 / 10 = 6.4)
1069 size = aggregate_bits(dest, size, 64, 13, 1); //13 max Consecutive should be ok as most 0s in row should be 10 for init seq - invert bits
1070 WDT_HIT();
1071 //Index map
1072 //0 10 20 30 40 50 60
1073 //| | | | | | |
1074 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1075 //-----------------------------------------------------------------------------
1076 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1077 //
1078 //XSF(version)facility:codeone+codetwo
1079 //Handle the data
1080 uint8_t sameCardCount=0;
1081 uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
1082 for( idx=0; idx < (size - 74); idx++) {
1083 if (sameCardCount>2) break;
1084 if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
1085 //frame marker found
1086 if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){
1087 //confirmed proper separator bits found
1088 if(findone){ //only print binary if we are doing one
1089 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1090 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1091 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1092 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1093 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1094 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1095 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1096 }
1097 code = bytebits_to_byte(dest+idx,32);
1098 code2 = bytebits_to_byte(dest+idx+32,32);
1099 short version = bytebits_to_byte(dest+idx+27,8); //14,4
1100 uint8_t facilitycode = bytebits_to_byte(dest+idx+19,8) ;
1101 uint16_t number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1102
1103 Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2);
1104 // if we're only looking for one tag
1105 if (findone){
1106 if (ledcontrol) LED_A_OFF();
1107 //LED_A_OFF();
1108 return;
1109 }
1110 sameCardCount++;
1111 }
1112 }
1113 }
1114 }
1115 WDT_HIT();
1116 }
1117 DbpString("Stopped");
1118 if (ledcontrol) LED_A_OFF();
1119 }
1120 */
1121
1122 /*------------------------------
1123 * T5555/T5557/T5567 routines
1124 *------------------------------
1125 */
1126
1127 /* T55x7 configuration register definitions */
1128 #define T55x7_POR_DELAY 0x00000001
1129 #define T55x7_ST_TERMINATOR 0x00000008
1130 #define T55x7_PWD 0x00000010
1131 #define T55x7_MAXBLOCK_SHIFT 5
1132 #define T55x7_AOR 0x00000200
1133 #define T55x7_PSKCF_RF_2 0
1134 #define T55x7_PSKCF_RF_4 0x00000400
1135 #define T55x7_PSKCF_RF_8 0x00000800
1136 #define T55x7_MODULATION_DIRECT 0
1137 #define T55x7_MODULATION_PSK1 0x00001000
1138 #define T55x7_MODULATION_PSK2 0x00002000
1139 #define T55x7_MODULATION_PSK3 0x00003000
1140 #define T55x7_MODULATION_FSK1 0x00004000
1141 #define T55x7_MODULATION_FSK2 0x00005000
1142 #define T55x7_MODULATION_FSK1a 0x00006000
1143 #define T55x7_MODULATION_FSK2a 0x00007000
1144 #define T55x7_MODULATION_MANCHESTER 0x00008000
1145 #define T55x7_MODULATION_BIPHASE 0x00010000
1146 #define T55x7_BITRATE_RF_8 0
1147 #define T55x7_BITRATE_RF_16 0x00040000
1148 #define T55x7_BITRATE_RF_32 0x00080000
1149 #define T55x7_BITRATE_RF_40 0x000C0000
1150 #define T55x7_BITRATE_RF_50 0x00100000
1151 #define T55x7_BITRATE_RF_64 0x00140000
1152 #define T55x7_BITRATE_RF_100 0x00180000
1153 #define T55x7_BITRATE_RF_128 0x001C0000
1154
1155 /* T5555 (Q5) configuration register definitions */
1156 #define T5555_ST_TERMINATOR 0x00000001
1157 #define T5555_MAXBLOCK_SHIFT 0x00000001
1158 #define T5555_MODULATION_MANCHESTER 0
1159 #define T5555_MODULATION_PSK1 0x00000010
1160 #define T5555_MODULATION_PSK2 0x00000020
1161 #define T5555_MODULATION_PSK3 0x00000030
1162 #define T5555_MODULATION_FSK1 0x00000040
1163 #define T5555_MODULATION_FSK2 0x00000050
1164 #define T5555_MODULATION_BIPHASE 0x00000060
1165 #define T5555_MODULATION_DIRECT 0x00000070
1166 #define T5555_INVERT_OUTPUT 0x00000080
1167 #define T5555_PSK_RF_2 0
1168 #define T5555_PSK_RF_4 0x00000100
1169 #define T5555_PSK_RF_8 0x00000200
1170 #define T5555_USE_PWD 0x00000400
1171 #define T5555_USE_AOR 0x00000800
1172 #define T5555_BITRATE_SHIFT 12
1173 #define T5555_FAST_WRITE 0x00004000
1174 #define T5555_PAGE_SELECT 0x00008000
1175
1176 /*
1177 * Relevant times in microsecond
1178 * To compensate antenna falling times shorten the write times
1179 * and enlarge the gap ones.
1180 */
1181 #define START_GAP 250
1182 #define WRITE_GAP 160
1183 #define WRITE_0 144 // 192
1184 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
1185
1186 // Write one bit to card
1187 void T55xxWriteBit(int bit)
1188 {
1189 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1190 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1191 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1192 if (bit == 0)
1193 SpinDelayUs(WRITE_0);
1194 else
1195 SpinDelayUs(WRITE_1);
1196 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1197 SpinDelayUs(WRITE_GAP);
1198 }
1199
1200 // Write one card block in page 0, no lock
1201 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
1202 {
1203 //unsigned int i; //enio adjustment 12/10/14
1204 uint32_t i;
1205
1206 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1207 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1208 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1209
1210 // Give it a bit of time for the resonant antenna to settle.
1211 // And for the tag to fully power up
1212 SpinDelay(150);
1213
1214 // Now start writting
1215 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1216 SpinDelayUs(START_GAP);
1217
1218 // Opcode
1219 T55xxWriteBit(1);
1220 T55xxWriteBit(0); //Page 0
1221 if (PwdMode == 1){
1222 // Pwd
1223 for (i = 0x80000000; i != 0; i >>= 1)
1224 T55xxWriteBit(Pwd & i);
1225 }
1226 // Lock bit
1227 T55xxWriteBit(0);
1228
1229 // Data
1230 for (i = 0x80000000; i != 0; i >>= 1)
1231 T55xxWriteBit(Data & i);
1232
1233 // Block
1234 for (i = 0x04; i != 0; i >>= 1)
1235 T55xxWriteBit(Block & i);
1236
1237 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1238 // so wait a little more)
1239 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1240 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1241 SpinDelay(20);
1242 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1243 }
1244
1245 // Read one card block in page 0
1246 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
1247 {
1248 uint8_t *dest = (uint8_t *)BigBuf;
1249 //int m=0, i=0; //enio adjustment 12/10/14
1250 uint32_t m=0, i=0;
1251 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1252 m = sizeof(BigBuf);
1253 // Clear destination buffer before sending the command
1254 memset(dest, 128, m);
1255 // Connect the A/D to the peak-detected low-frequency path.
1256 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1257 // Now set up the SSC to get the ADC samples that are now streaming at us.
1258 FpgaSetupSsc();
1259
1260 LED_D_ON();
1261 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1262 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1263
1264 // Give it a bit of time for the resonant antenna to settle.
1265 // And for the tag to fully power up
1266 SpinDelay(150);
1267
1268 // Now start writting
1269 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1270 SpinDelayUs(START_GAP);
1271
1272 // Opcode
1273 T55xxWriteBit(1);
1274 T55xxWriteBit(0); //Page 0
1275 if (PwdMode == 1){
1276 // Pwd
1277 for (i = 0x80000000; i != 0; i >>= 1)
1278 T55xxWriteBit(Pwd & i);
1279 }
1280 // Lock bit
1281 T55xxWriteBit(0);
1282 // Block
1283 for (i = 0x04; i != 0; i >>= 1)
1284 T55xxWriteBit(Block & i);
1285
1286 // Turn field on to read the response
1287 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1288 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1289
1290 // Now do the acquisition
1291 i = 0;
1292 for(;;) {
1293 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1294 AT91C_BASE_SSC->SSC_THR = 0x43;
1295 }
1296 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1297 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1298 // we don't care about actual value, only if it's more or less than a
1299 // threshold essentially we capture zero crossings for later analysis
1300 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1301 i++;
1302 if (i >= m) break;
1303 }
1304 }
1305
1306 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1307 LED_D_OFF();
1308 DbpString("DONE!");
1309 }
1310
1311 // Read card traceability data (page 1)
1312 void T55xxReadTrace(void){
1313 uint8_t *dest = (uint8_t *)BigBuf;
1314 int m=0, i=0;
1315
1316 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1317 m = sizeof(BigBuf);
1318 // Clear destination buffer before sending the command
1319 memset(dest, 128, m);
1320 // Connect the A/D to the peak-detected low-frequency path.
1321 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1322 // Now set up the SSC to get the ADC samples that are now streaming at us.
1323 FpgaSetupSsc();
1324
1325 LED_D_ON();
1326 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1327 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1328
1329 // Give it a bit of time for the resonant antenna to settle.
1330 // And for the tag to fully power up
1331 SpinDelay(150);
1332
1333 // Now start writting
1334 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1335 SpinDelayUs(START_GAP);
1336
1337 // Opcode
1338 T55xxWriteBit(1);
1339 T55xxWriteBit(1); //Page 1
1340
1341 // Turn field on to read the response
1342 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1343 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1344
1345 // Now do the acquisition
1346 i = 0;
1347 for(;;) {
1348 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1349 AT91C_BASE_SSC->SSC_THR = 0x43;
1350 }
1351 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1352 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1353 i++;
1354 if (i >= m) break;
1355 }
1356 }
1357
1358 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1359 LED_D_OFF();
1360 DbpString("DONE!");
1361 }
1362
1363 /*-------------- Cloning routines -----------*/
1364 // Copy HID id to card and setup block 0 config
1365 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1366 {
1367 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1368 int last_block = 0;
1369
1370 if (longFMT){
1371 // Ensure no more than 84 bits supplied
1372 if (hi2>0xFFFFF) {
1373 DbpString("Tags can only have 84 bits.");
1374 return;
1375 }
1376 // Build the 6 data blocks for supplied 84bit ID
1377 last_block = 6;
1378 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1379 for (int i=0;i<4;i++) {
1380 if (hi2 & (1<<(19-i)))
1381 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1382 else
1383 data1 |= (1<<((3-i)*2)); // 0 -> 01
1384 }
1385
1386 data2 = 0;
1387 for (int i=0;i<16;i++) {
1388 if (hi2 & (1<<(15-i)))
1389 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1390 else
1391 data2 |= (1<<((15-i)*2)); // 0 -> 01
1392 }
1393
1394 data3 = 0;
1395 for (int i=0;i<16;i++) {
1396 if (hi & (1<<(31-i)))
1397 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1398 else
1399 data3 |= (1<<((15-i)*2)); // 0 -> 01
1400 }
1401
1402 data4 = 0;
1403 for (int i=0;i<16;i++) {
1404 if (hi & (1<<(15-i)))
1405 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1406 else
1407 data4 |= (1<<((15-i)*2)); // 0 -> 01
1408 }
1409
1410 data5 = 0;
1411 for (int i=0;i<16;i++) {
1412 if (lo & (1<<(31-i)))
1413 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1414 else
1415 data5 |= (1<<((15-i)*2)); // 0 -> 01
1416 }
1417
1418 data6 = 0;
1419 for (int i=0;i<16;i++) {
1420 if (lo & (1<<(15-i)))
1421 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1422 else
1423 data6 |= (1<<((15-i)*2)); // 0 -> 01
1424 }
1425 }
1426 else {
1427 // Ensure no more than 44 bits supplied
1428 if (hi>0xFFF) {
1429 DbpString("Tags can only have 44 bits.");
1430 return;
1431 }
1432
1433 // Build the 3 data blocks for supplied 44bit ID
1434 last_block = 3;
1435
1436 data1 = 0x1D000000; // load preamble
1437
1438 for (int i=0;i<12;i++) {
1439 if (hi & (1<<(11-i)))
1440 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1441 else
1442 data1 |= (1<<((11-i)*2)); // 0 -> 01
1443 }
1444
1445 data2 = 0;
1446 for (int i=0;i<16;i++) {
1447 if (lo & (1<<(31-i)))
1448 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1449 else
1450 data2 |= (1<<((15-i)*2)); // 0 -> 01
1451 }
1452
1453 data3 = 0;
1454 for (int i=0;i<16;i++) {
1455 if (lo & (1<<(15-i)))
1456 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1457 else
1458 data3 |= (1<<((15-i)*2)); // 0 -> 01
1459 }
1460 }
1461
1462 LED_D_ON();
1463 // Program the data blocks for supplied ID
1464 // and the block 0 for HID format
1465 T55xxWriteBlock(data1,1,0,0);
1466 T55xxWriteBlock(data2,2,0,0);
1467 T55xxWriteBlock(data3,3,0,0);
1468
1469 if (longFMT) { // if long format there are 6 blocks
1470 T55xxWriteBlock(data4,4,0,0);
1471 T55xxWriteBlock(data5,5,0,0);
1472 T55xxWriteBlock(data6,6,0,0);
1473 }
1474
1475 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1476 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1477 T55x7_MODULATION_FSK2a |
1478 last_block << T55x7_MAXBLOCK_SHIFT,
1479 0,0,0);
1480
1481 LED_D_OFF();
1482
1483 DbpString("DONE!");
1484 }
1485
1486 void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1487 {
1488 int data1=0, data2=0; //up to six blocks for long format
1489
1490 data1 = hi; // load preamble
1491 data2 = lo;
1492
1493 LED_D_ON();
1494 // Program the data blocks for supplied ID
1495 // and the block 0 for HID format
1496 T55xxWriteBlock(data1,1,0,0);
1497 T55xxWriteBlock(data2,2,0,0);
1498
1499 //Config Block
1500 T55xxWriteBlock(0x00147040,0,0,0);
1501 LED_D_OFF();
1502
1503 DbpString("DONE!");
1504 }
1505
1506 // Define 9bit header for EM410x tags
1507 #define EM410X_HEADER 0x1FF
1508 #define EM410X_ID_LENGTH 40
1509
1510 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1511 {
1512 int i, id_bit;
1513 uint64_t id = EM410X_HEADER;
1514 uint64_t rev_id = 0; // reversed ID
1515 int c_parity[4]; // column parity
1516 int r_parity = 0; // row parity
1517 uint32_t clock = 0;
1518
1519 // Reverse ID bits given as parameter (for simpler operations)
1520 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1521 if (i < 32) {
1522 rev_id = (rev_id << 1) | (id_lo & 1);
1523 id_lo >>= 1;
1524 } else {
1525 rev_id = (rev_id << 1) | (id_hi & 1);
1526 id_hi >>= 1;
1527 }
1528 }
1529
1530 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1531 id_bit = rev_id & 1;
1532
1533 if (i % 4 == 0) {
1534 // Don't write row parity bit at start of parsing
1535 if (i)
1536 id = (id << 1) | r_parity;
1537 // Start counting parity for new row
1538 r_parity = id_bit;
1539 } else {
1540 // Count row parity
1541 r_parity ^= id_bit;
1542 }
1543
1544 // First elements in column?
1545 if (i < 4)
1546 // Fill out first elements
1547 c_parity[i] = id_bit;
1548 else
1549 // Count column parity
1550 c_parity[i % 4] ^= id_bit;
1551
1552 // Insert ID bit
1553 id = (id << 1) | id_bit;
1554 rev_id >>= 1;
1555 }
1556
1557 // Insert parity bit of last row
1558 id = (id << 1) | r_parity;
1559
1560 // Fill out column parity at the end of tag
1561 for (i = 0; i < 4; ++i)
1562 id = (id << 1) | c_parity[i];
1563
1564 // Add stop bit
1565 id <<= 1;
1566
1567 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1568 LED_D_ON();
1569
1570 // Write EM410x ID
1571 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1572 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1573
1574 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1575 if (card) {
1576 // Clock rate is stored in bits 8-15 of the card value
1577 clock = (card & 0xFF00) >> 8;
1578 Dbprintf("Clock rate: %d", clock);
1579 switch (clock)
1580 {
1581 case 32:
1582 clock = T55x7_BITRATE_RF_32;
1583 break;
1584 case 16:
1585 clock = T55x7_BITRATE_RF_16;
1586 break;
1587 case 0:
1588 // A value of 0 is assumed to be 64 for backwards-compatibility
1589 // Fall through...
1590 case 64:
1591 clock = T55x7_BITRATE_RF_64;
1592 break;
1593 default:
1594 Dbprintf("Invalid clock rate: %d", clock);
1595 return;
1596 }
1597
1598 // Writing configuration for T55x7 tag
1599 T55xxWriteBlock(clock |
1600 T55x7_MODULATION_MANCHESTER |
1601 2 << T55x7_MAXBLOCK_SHIFT,
1602 0, 0, 0);
1603 }
1604 else
1605 // Writing configuration for T5555(Q5) tag
1606 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1607 T5555_MODULATION_MANCHESTER |
1608 2 << T5555_MAXBLOCK_SHIFT,
1609 0, 0, 0);
1610
1611 LED_D_OFF();
1612 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1613 (uint32_t)(id >> 32), (uint32_t)id);
1614 }
1615
1616 // Clone Indala 64-bit tag by UID to T55x7
1617 void CopyIndala64toT55x7(int hi, int lo)
1618 {
1619
1620 //Program the 2 data blocks for supplied 64bit UID
1621 // and the block 0 for Indala64 format
1622 T55xxWriteBlock(hi,1,0,0);
1623 T55xxWriteBlock(lo,2,0,0);
1624 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1625 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1626 T55x7_MODULATION_PSK1 |
1627 2 << T55x7_MAXBLOCK_SHIFT,
1628 0, 0, 0);
1629 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1630 // T5567WriteBlock(0x603E1042,0);
1631
1632 DbpString("DONE!");
1633
1634 }
1635
1636 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1637 {
1638
1639 //Program the 7 data blocks for supplied 224bit UID
1640 // and the block 0 for Indala224 format
1641 T55xxWriteBlock(uid1,1,0,0);
1642 T55xxWriteBlock(uid2,2,0,0);
1643 T55xxWriteBlock(uid3,3,0,0);
1644 T55xxWriteBlock(uid4,4,0,0);
1645 T55xxWriteBlock(uid5,5,0,0);
1646 T55xxWriteBlock(uid6,6,0,0);
1647 T55xxWriteBlock(uid7,7,0,0);
1648 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1649 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1650 T55x7_MODULATION_PSK1 |
1651 7 << T55x7_MAXBLOCK_SHIFT,
1652 0,0,0);
1653 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1654 // T5567WriteBlock(0x603E10E2,0);
1655
1656 DbpString("DONE!");
1657
1658 }
1659
1660
1661 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1662 #define max(x,y) ( x<y ? y:x)
1663
1664 int DemodPCF7931(uint8_t **outBlocks) {
1665 uint8_t BitStream[256];
1666 uint8_t Blocks[8][16];
1667 uint8_t *GraphBuffer = (uint8_t *)BigBuf;
1668 int GraphTraceLen = sizeof(BigBuf);
1669 int i, j, lastval, bitidx, half_switch;
1670 int clock = 64;
1671 int tolerance = clock / 8;
1672 int pmc, block_done;
1673 int lc, warnings = 0;
1674 int num_blocks = 0;
1675 int lmin=128, lmax=128;
1676 uint8_t dir;
1677
1678 AcquireRawAdcSamples125k(0);
1679
1680 lmin = 64;
1681 lmax = 192;
1682
1683 i = 2;
1684
1685 /* Find first local max/min */
1686 if(GraphBuffer[1] > GraphBuffer[0]) {
1687 while(i < GraphTraceLen) {
1688 if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
1689 break;
1690 i++;
1691 }
1692 dir = 0;
1693 }
1694 else {
1695 while(i < GraphTraceLen) {
1696 if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
1697 break;
1698 i++;
1699 }
1700 dir = 1;
1701 }
1702
1703 lastval = i++;
1704 half_switch = 0;
1705 pmc = 0;
1706 block_done = 0;
1707
1708 for (bitidx = 0; i < GraphTraceLen; i++)
1709 {
1710 if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
1711 {
1712 lc = i - lastval;
1713 lastval = i;
1714
1715 // Switch depending on lc length:
1716 // Tolerance is 1/8 of clock rate (arbitrary)
1717 if (abs(lc-clock/4) < tolerance) {
1718 // 16T0
1719 if((i - pmc) == lc) { /* 16T0 was previous one */
1720 /* It's a PMC ! */
1721 i += (128+127+16+32+33+16)-1;
1722 lastval = i;
1723 pmc = 0;
1724 block_done = 1;
1725 }
1726 else {
1727 pmc = i;
1728 }
1729 } else if (abs(lc-clock/2) < tolerance) {
1730 // 32TO
1731 if((i - pmc) == lc) { /* 16T0 was previous one */
1732 /* It's a PMC ! */
1733 i += (128+127+16+32+33)-1;
1734 lastval = i;
1735 pmc = 0;
1736 block_done = 1;
1737 }
1738 else if(half_switch == 1) {
1739 BitStream[bitidx++] = 0;
1740 half_switch = 0;
1741 }
1742 else
1743 half_switch++;
1744 } else if (abs(lc-clock) < tolerance) {
1745 // 64TO
1746 BitStream[bitidx++] = 1;
1747 } else {
1748 // Error
1749 warnings++;
1750 if (warnings > 10)
1751 {
1752 Dbprintf("Error: too many detection errors, aborting.");
1753 return 0;
1754 }
1755 }
1756
1757 if(block_done == 1) {
1758 if(bitidx == 128) {
1759 for(j=0; j<16; j++) {
1760 Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
1761 64*BitStream[j*8+6]+
1762 32*BitStream[j*8+5]+
1763 16*BitStream[j*8+4]+
1764 8*BitStream[j*8+3]+
1765 4*BitStream[j*8+2]+
1766 2*BitStream[j*8+1]+
1767 BitStream[j*8];
1768 }
1769 num_blocks++;
1770 }
1771 bitidx = 0;
1772 block_done = 0;
1773 half_switch = 0;
1774 }
1775 if(i < GraphTraceLen)
1776 {
1777 if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
1778 else dir = 1;
1779 }
1780 }
1781 if(bitidx==255)
1782 bitidx=0;
1783 warnings = 0;
1784 if(num_blocks == 4) break;
1785 }
1786 memcpy(outBlocks, Blocks, 16*num_blocks);
1787 return num_blocks;
1788 }
1789
1790 int IsBlock0PCF7931(uint8_t *Block) {
1791 // Assume RFU means 0 :)
1792 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1793 return 1;
1794 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1795 return 1;
1796 return 0;
1797 }
1798
1799 int IsBlock1PCF7931(uint8_t *Block) {
1800 // Assume RFU means 0 :)
1801 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1802 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1803 return 1;
1804
1805 return 0;
1806 }
1807
1808 #define ALLOC 16
1809
1810 void ReadPCF7931() {
1811 uint8_t Blocks[8][17];
1812 uint8_t tmpBlocks[4][16];
1813 int i, j, ind, ind2, n;
1814 int num_blocks = 0;
1815 int max_blocks = 8;
1816 int ident = 0;
1817 int error = 0;
1818 int tries = 0;
1819
1820 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1821
1822 do {
1823 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1824 n = DemodPCF7931((uint8_t**)tmpBlocks);
1825 if(!n)
1826 error++;
1827 if(error==10 && num_blocks == 0) {
1828 Dbprintf("Error, no tag or bad tag");
1829 return;
1830 }
1831 else if (tries==20 || error==10) {
1832 Dbprintf("Error reading the tag");
1833 Dbprintf("Here is the partial content");
1834 goto end;
1835 }
1836
1837 for(i=0; i<n; i++)
1838 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1839 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1840 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1841 if(!ident) {
1842 for(i=0; i<n; i++) {
1843 if(IsBlock0PCF7931(tmpBlocks[i])) {
1844 // Found block 0 ?
1845 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1846 // Found block 1!
1847 // \o/
1848 ident = 1;
1849 memcpy(Blocks[0], tmpBlocks[i], 16);
1850 Blocks[0][ALLOC] = 1;
1851 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1852 Blocks[1][ALLOC] = 1;
1853 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1854 // Debug print
1855 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1856 num_blocks = 2;
1857 // Handle following blocks
1858 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1859 if(j==n) j=0;
1860 if(j==i) break;
1861 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1862 Blocks[ind2][ALLOC] = 1;
1863 }
1864 break;
1865 }
1866 }
1867 }
1868 }
1869 else {
1870 for(i=0; i<n; i++) { // Look for identical block in known blocks
1871 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1872 for(j=0; j<max_blocks; j++) {
1873 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1874 // Found an identical block
1875 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1876 if(ind2 < 0)
1877 ind2 = max_blocks;
1878 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1879 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1880 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1881 Blocks[ind2][ALLOC] = 1;
1882 num_blocks++;
1883 if(num_blocks == max_blocks) goto end;
1884 }
1885 }
1886 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1887 if(ind2 > max_blocks)
1888 ind2 = 0;
1889 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1890 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1891 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1892 Blocks[ind2][ALLOC] = 1;
1893 num_blocks++;
1894 if(num_blocks == max_blocks) goto end;
1895 }
1896 }
1897 }
1898 }
1899 }
1900 }
1901 }
1902 tries++;
1903 if (BUTTON_PRESS()) return;
1904 } while (num_blocks != max_blocks);
1905 end:
1906 Dbprintf("-----------------------------------------");
1907 Dbprintf("Memory content:");
1908 Dbprintf("-----------------------------------------");
1909 for(i=0; i<max_blocks; i++) {
1910 if(Blocks[i][ALLOC]==1)
1911 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1912 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1913 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1914 else
1915 Dbprintf("<missing block %d>", i);
1916 }
1917 Dbprintf("-----------------------------------------");
1918
1919 return ;
1920 }
1921
1922
1923 //-----------------------------------
1924 // EM4469 / EM4305 routines
1925 //-----------------------------------
1926 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1927 #define FWD_CMD_WRITE 0xA
1928 #define FWD_CMD_READ 0x9
1929 #define FWD_CMD_DISABLE 0x5
1930
1931
1932 uint8_t forwardLink_data[64]; //array of forwarded bits
1933 uint8_t * forward_ptr; //ptr for forward message preparation
1934 uint8_t fwd_bit_sz; //forwardlink bit counter
1935 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1936
1937 //====================================================================
1938 // prepares command bits
1939 // see EM4469 spec
1940 //====================================================================
1941 //--------------------------------------------------------------------
1942 uint8_t Prepare_Cmd( uint8_t cmd ) {
1943 //--------------------------------------------------------------------
1944
1945 *forward_ptr++ = 0; //start bit
1946 *forward_ptr++ = 0; //second pause for 4050 code
1947
1948 *forward_ptr++ = cmd;
1949 cmd >>= 1;
1950 *forward_ptr++ = cmd;
1951 cmd >>= 1;
1952 *forward_ptr++ = cmd;
1953 cmd >>= 1;
1954 *forward_ptr++ = cmd;
1955
1956 return 6; //return number of emited bits
1957 }
1958
1959 //====================================================================
1960 // prepares address bits
1961 // see EM4469 spec
1962 //====================================================================
1963
1964 //--------------------------------------------------------------------
1965 uint8_t Prepare_Addr( uint8_t addr ) {
1966 //--------------------------------------------------------------------
1967
1968 register uint8_t line_parity;
1969
1970 uint8_t i;
1971 line_parity = 0;
1972 for(i=0;i<6;i++) {
1973 *forward_ptr++ = addr;
1974 line_parity ^= addr;
1975 addr >>= 1;
1976 }
1977
1978 *forward_ptr++ = (line_parity & 1);
1979
1980 return 7; //return number of emited bits
1981 }
1982
1983 //====================================================================
1984 // prepares data bits intreleaved with parity bits
1985 // see EM4469 spec
1986 //====================================================================
1987
1988 //--------------------------------------------------------------------
1989 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1990 //--------------------------------------------------------------------
1991
1992 register uint8_t line_parity;
1993 register uint8_t column_parity;
1994 register uint8_t i, j;
1995 register uint16_t data;
1996
1997 data = data_low;
1998 column_parity = 0;
1999
2000 for(i=0; i<4; i++) {
2001 line_parity = 0;
2002 for(j=0; j<8; j++) {
2003 line_parity ^= data;
2004 column_parity ^= (data & 1) << j;
2005 *forward_ptr++ = data;
2006 data >>= 1;
2007 }
2008 *forward_ptr++ = line_parity;
2009 if(i == 1)
2010 data = data_hi;
2011 }
2012
2013 for(j=0; j<8; j++) {
2014 *forward_ptr++ = column_parity;
2015 column_parity >>= 1;
2016 }
2017 *forward_ptr = 0;
2018
2019 return 45; //return number of emited bits
2020 }
2021
2022 //====================================================================
2023 // Forward Link send function
2024 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
2025 // fwd_bit_count set with number of bits to be sent
2026 //====================================================================
2027 void SendForward(uint8_t fwd_bit_count) {
2028
2029 fwd_write_ptr = forwardLink_data;
2030 fwd_bit_sz = fwd_bit_count;
2031
2032 LED_D_ON();
2033
2034 //Field on
2035 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
2036 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
2037 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
2038
2039 // Give it a bit of time for the resonant antenna to settle.
2040 // And for the tag to fully power up
2041 SpinDelay(150);
2042
2043 // force 1st mod pulse (start gap must be longer for 4305)
2044 fwd_bit_sz--; //prepare next bit modulation
2045 fwd_write_ptr++;
2046 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2047 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
2048 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
2049 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
2050 SpinDelayUs(16*8); //16 cycles on (8us each)
2051
2052 // now start writting
2053 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
2054 if(((*fwd_write_ptr++) & 1) == 1)
2055 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
2056 else {
2057 //These timings work for 4469/4269/4305 (with the 55*8 above)
2058 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2059 SpinDelayUs(23*8); //16-4 cycles off (8us each)
2060 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
2061 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
2062 SpinDelayUs(9*8); //16 cycles on (8us each)
2063 }
2064 }
2065 }
2066
2067 void EM4xLogin(uint32_t Password) {
2068
2069 uint8_t fwd_bit_count;
2070
2071 forward_ptr = forwardLink_data;
2072 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
2073 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
2074
2075 SendForward(fwd_bit_count);
2076
2077 //Wait for command to complete
2078 SpinDelay(20);
2079
2080 }
2081
2082 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
2083
2084 uint8_t fwd_bit_count;
2085 uint8_t *dest = (uint8_t *)BigBuf;
2086 int m=0, i=0;
2087
2088 //If password mode do login
2089 if (PwdMode == 1) EM4xLogin(Pwd);
2090
2091 forward_ptr = forwardLink_data;
2092 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
2093 fwd_bit_count += Prepare_Addr( Address );
2094
2095 m = sizeof(BigBuf);
2096 // Clear destination buffer before sending the command
2097 memset(dest, 128, m);
2098 // Connect the A/D to the peak-detected low-frequency path.
2099 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
2100 // Now set up the SSC to get the ADC samples that are now streaming at us.
2101 FpgaSetupSsc();
2102
2103 SendForward(fwd_bit_count);
2104
2105 // Now do the acquisition
2106 i = 0;
2107 for(;;) {
2108 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
2109 AT91C_BASE_SSC->SSC_THR = 0x43;
2110 }
2111 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
2112 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
2113 i++;
2114 if (i >= m) break;
2115 }
2116 }
2117 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2118 LED_D_OFF();
2119 }
2120
2121 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
2122
2123 uint8_t fwd_bit_count;
2124
2125 //If password mode do login
2126 if (PwdMode == 1) EM4xLogin(Pwd);
2127
2128 forward_ptr = forwardLink_data;
2129 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
2130 fwd_bit_count += Prepare_Addr( Address );
2131 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
2132
2133 SendForward(fwd_bit_count);
2134
2135 //Wait for write to complete
2136 SpinDelay(20);
2137 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2138 LED_D_OFF();
2139 }
Impressum, Datenschutz