1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
17 #include "../common/lfdemod.h"
21 * Does the sample acquisition. If threshold is specified, the actual sampling
22 * is not commenced until the threshold has been reached.
23 * @param trigger_threshold - the threshold
24 * @param silent - is true, now outputs are made. If false, dbprints the status
26 void DoAcquisition125k_internal(int trigger_threshold
,bool silent
)
28 uint8_t *dest
= (uint8_t *)BigBuf
;
29 int n
= sizeof(BigBuf
);
35 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
36 AT91C_BASE_SSC
->SSC_THR
= 0x43;
39 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
40 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
42 if (trigger_threshold
!= -1 && dest
[i
] < trigger_threshold
)
45 trigger_threshold
= -1;
51 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
52 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
57 * Perform sample aquisition.
59 void DoAcquisition125k(int trigger_threshold
)
61 DoAcquisition125k_internal(trigger_threshold
, false);
65 * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
66 * if not already loaded, sets divisor and starts up the antenna.
67 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
71 void LFSetupFPGAForADC(int divisor
, bool lf_field
)
73 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
74 if ( (divisor
== 1) || (divisor
< 0) || (divisor
> 255) )
75 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
76 else if (divisor
== 0)
77 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
79 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
81 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| (lf_field
? FPGA_LF_ADC_READER_FIELD
: 0));
83 // Connect the A/D to the peak-detected low-frequency path.
84 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
85 // Give it a bit of time for the resonant antenna to settle.
87 // Now set up the SSC to get the ADC samples that are now streaming at us.
91 * Initializes the FPGA, and acquires the samples.
93 void AcquireRawAdcSamples125k(int divisor
)
95 LFSetupFPGAForADC(divisor
, true);
96 // Now call the acquisition routine
97 DoAcquisition125k_internal(-1,false);
100 * Initializes the FPGA for snoop-mode, and acquires the samples.
103 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
)
105 LFSetupFPGAForADC(divisor
, false);
106 DoAcquisition125k(trigger_threshold
);
109 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
112 /* Make sure the tag is reset */
113 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
118 int divisor_used
= 95; // 125 KHz
119 // see if 'h' was specified
121 if (command
[strlen((char *) command
) - 1] == 'h')
122 divisor_used
= 88; // 134.8 KHz
125 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
126 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
127 // Give it a bit of time for the resonant antenna to settle.
130 // And a little more time for the tag to fully power up
133 // Now set up the SSC to get the ADC samples that are now streaming at us.
136 // now modulate the reader field
137 while(*command
!= '\0' && *command
!= ' ') {
138 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
140 SpinDelayUs(delay_off
);
141 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
143 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
145 if(*(command
++) == '0')
146 SpinDelayUs(period_0
);
148 SpinDelayUs(period_1
);
150 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
152 SpinDelayUs(delay_off
);
153 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
155 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
158 DoAcquisition125k(-1);
161 /* blank r/w tag data stream
162 ...0000000000000000 01111111
163 1010101010101010101010101010101010101010101010101010101010101010
166 101010101010101[0]000...
168 [5555fe852c5555555555555555fe0000]
172 // some hardcoded initial params
173 // when we read a TI tag we sample the zerocross line at 2Mhz
174 // TI tags modulate a 1 as 16 cycles of 123.2Khz
175 // TI tags modulate a 0 as 16 cycles of 134.2Khz
176 #define FSAMPLE 2000000
177 #define FREQLO 123200
178 #define FREQHI 134200
180 signed char *dest
= (signed char *)BigBuf
;
181 int n
= sizeof(BigBuf
);
182 // int *dest = GraphBuffer;
183 // int n = GraphTraceLen;
185 // 128 bit shift register [shift3:shift2:shift1:shift0]
186 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
188 int i
, cycles
=0, samples
=0;
189 // how many sample points fit in 16 cycles of each frequency
190 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
191 // when to tell if we're close enough to one freq or another
192 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
194 // TI tags charge at 134.2Khz
195 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
196 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
198 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
199 // connects to SSP_DIN and the SSP_DOUT logic level controls
200 // whether we're modulating the antenna (high)
201 // or listening to the antenna (low)
202 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
204 // get TI tag data into the buffer
207 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
209 for (i
=0; i
<n
-1; i
++) {
210 // count cycles by looking for lo to hi zero crossings
211 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
213 // after 16 cycles, measure the frequency
216 samples
=i
-samples
; // number of samples in these 16 cycles
218 // TI bits are coming to us lsb first so shift them
219 // right through our 128 bit right shift register
220 shift0
= (shift0
>>1) | (shift1
<< 31);
221 shift1
= (shift1
>>1) | (shift2
<< 31);
222 shift2
= (shift2
>>1) | (shift3
<< 31);
225 // check if the cycles fall close to the number
226 // expected for either the low or high frequency
227 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
228 // low frequency represents a 1
230 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
231 // high frequency represents a 0
233 // probably detected a gay waveform or noise
234 // use this as gaydar or discard shift register and start again
235 shift3
= shift2
= shift1
= shift0
= 0;
239 // for each bit we receive, test if we've detected a valid tag
241 // if we see 17 zeroes followed by 6 ones, we might have a tag
242 // remember the bits are backwards
243 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
244 // if start and end bytes match, we have a tag so break out of the loop
245 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
246 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
254 // if flag is set we have a tag
256 DbpString("Info: No valid tag detected.");
258 // put 64 bit data into shift1 and shift0
259 shift0
= (shift0
>>24) | (shift1
<< 8);
260 shift1
= (shift1
>>24) | (shift2
<< 8);
262 // align 16 bit crc into lower half of shift2
263 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
265 // if r/w tag, check ident match
266 if ( shift3
&(1<<15) ) {
267 DbpString("Info: TI tag is rewriteable");
268 // only 15 bits compare, last bit of ident is not valid
269 if ( ((shift3
>>16)^shift0
)&0x7fff ) {
270 DbpString("Error: Ident mismatch!");
272 DbpString("Info: TI tag ident is valid");
275 DbpString("Info: TI tag is readonly");
278 // WARNING the order of the bytes in which we calc crc below needs checking
279 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
280 // bytes in reverse or something
284 crc
= update_crc16(crc
, (shift0
)&0xff);
285 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
286 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
287 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
288 crc
= update_crc16(crc
, (shift1
)&0xff);
289 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
290 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
291 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
293 Dbprintf("Info: Tag data: %x%08x, crc=%x",
294 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
295 if (crc
!= (shift2
&0xffff)) {
296 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
298 DbpString("Info: CRC is good");
303 void WriteTIbyte(uint8_t b
)
307 // modulate 8 bits out to the antenna
311 // stop modulating antenna
318 // stop modulating antenna
328 void AcquireTiType(void)
331 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
332 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
333 #define TIBUFLEN 1250
336 memset(BigBuf
,0,sizeof(BigBuf
));
338 // Set up the synchronous serial port
339 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
340 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
342 // steal this pin from the SSP and use it to control the modulation
343 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
344 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
346 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
347 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
349 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
350 // 48/2 = 24 MHz clock must be divided by 12
351 AT91C_BASE_SSC
->SSC_CMR
= 12;
353 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
354 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
355 AT91C_BASE_SSC
->SSC_TCMR
= 0;
356 AT91C_BASE_SSC
->SSC_TFMR
= 0;
363 // Charge TI tag for 50ms.
366 // stop modulating antenna and listen
373 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
374 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
375 i
++; if(i
>= TIBUFLEN
) break;
380 // return stolen pin to SSP
381 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
382 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
384 char *dest
= (char *)BigBuf
;
387 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
388 for (j
=0; j
<32; j
++) {
389 if(BigBuf
[i
] & (1 << j
)) {
398 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
399 // if crc provided, it will be written with the data verbatim (even if bogus)
400 // if not provided a valid crc will be computed from the data and written.
401 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
403 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
405 crc
= update_crc16(crc
, (idlo
)&0xff);
406 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
407 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
408 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
409 crc
= update_crc16(crc
, (idhi
)&0xff);
410 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
411 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
412 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
414 Dbprintf("Writing to tag: %x%08x, crc=%x",
415 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
417 // TI tags charge at 134.2Khz
418 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
419 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
420 // connects to SSP_DIN and the SSP_DOUT logic level controls
421 // whether we're modulating the antenna (high)
422 // or listening to the antenna (low)
423 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
426 // steal this pin from the SSP and use it to control the modulation
427 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
428 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
430 // writing algorithm:
431 // a high bit consists of a field off for 1ms and field on for 1ms
432 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
433 // initiate a charge time of 50ms (field on) then immediately start writing bits
434 // start by writing 0xBB (keyword) and 0xEB (password)
435 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
436 // finally end with 0x0300 (write frame)
437 // all data is sent lsb firts
438 // finish with 15ms programming time
442 SpinDelay(50); // charge time
444 WriteTIbyte(0xbb); // keyword
445 WriteTIbyte(0xeb); // password
446 WriteTIbyte( (idlo
)&0xff );
447 WriteTIbyte( (idlo
>>8 )&0xff );
448 WriteTIbyte( (idlo
>>16)&0xff );
449 WriteTIbyte( (idlo
>>24)&0xff );
450 WriteTIbyte( (idhi
)&0xff );
451 WriteTIbyte( (idhi
>>8 )&0xff );
452 WriteTIbyte( (idhi
>>16)&0xff );
453 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
454 WriteTIbyte( (crc
)&0xff ); // crc lo
455 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
456 WriteTIbyte(0x00); // write frame lo
457 WriteTIbyte(0x03); // write frame hi
459 SpinDelay(50); // programming time
463 // get TI tag data into the buffer
466 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
467 DbpString("Now use tiread to check");
470 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
473 uint8_t *tab
= (uint8_t *)BigBuf
;
475 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
476 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
478 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
480 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
481 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
483 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
484 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
488 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
490 DbpString("Stopped");
507 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
509 DbpString("Stopped");
526 #define DEBUG_FRAME_CONTENTS 1
527 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
531 // compose fc/8 fc/10 waveform
532 static void fc(int c
, int *n
) {
533 uint8_t *dest
= (uint8_t *)BigBuf
;
536 // for when we want an fc8 pattern every 4 logical bits
547 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
549 for (idx
=0; idx
<6; idx
++) {
561 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
563 for (idx
=0; idx
<5; idx
++) {
578 // prepare a waveform pattern in the buffer based on the ID given then
579 // simulate a HID tag until the button is pressed
580 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
584 HID tag bitstream format
585 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
586 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
587 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
588 A fc8 is inserted before every 4 bits
589 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
590 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
594 DbpString("Tags can only have 44 bits.");
598 // special start of frame marker containing invalid bit sequences
599 fc(8, &n
); fc(8, &n
); // invalid
600 fc(8, &n
); fc(10, &n
); // logical 0
601 fc(10, &n
); fc(10, &n
); // invalid
602 fc(8, &n
); fc(10, &n
); // logical 0
605 // manchester encode bits 43 to 32
606 for (i
=11; i
>=0; i
--) {
607 if ((i
%4)==3) fc(0,&n
);
609 fc(10, &n
); fc(8, &n
); // low-high transition
611 fc(8, &n
); fc(10, &n
); // high-low transition
616 // manchester encode bits 31 to 0
617 for (i
=31; i
>=0; i
--) {
618 if ((i
%4)==3) fc(0,&n
);
620 fc(10, &n
); fc(8, &n
); // low-high transition
622 fc(8, &n
); fc(10, &n
); // high-low transition
628 SimulateTagLowFrequency(n
, 0, ledcontrol
);
634 //translate wave to 11111100000 (1 for each short wave 0 for each long wave)
635 size_t fsk_demod(uint8_t * dest, size_t size)
637 uint32_t last_transition = 0;
640 // // we don't care about actual value, only if it's more or less than a
641 // // threshold essentially we capture zero crossings for later analysis
643 // we do care about the actual value as sometimes near the center of the
644 // wave we may get static that changes direction of wave for one value
645 // if our value is too low it might affect the read. and if our tag or
646 // antenna is weak a setting too high might not see anything. [marshmellow]
647 if (size<100) return size;
648 for(idx=1; idx<100; idx++){
649 if(maxVal<dest[idx]) maxVal = dest[idx];
651 // set close to the top of the wave threshold with 13% margin for error
652 // less likely to get a false transition up there.
653 // (but have to be careful not to go too high and miss some short waves)
654 uint32_t threshold_value = (uint32_t)(maxVal*.87); idx=1;
655 //uint8_t threshold_value = 127;
657 // sync to first lo-hi transition, and threshold
659 // Need to threshold first sample
660 if(dest[0] < threshold_value) dest[0] = 0;
664 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
665 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
666 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
667 for(idx = 1; idx < size; idx++) {
668 // threshold current value
669 if (dest[idx] < threshold_value) dest[idx] = 0;
672 // Check for 0->1 transition
673 if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
674 if (idx-last_transition<6){
675 //do nothing with extra garbage
676 } else if (idx-last_transition < 9) {
681 last_transition = idx;
685 return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
688 uint32_t myround(float f)
690 if (f >= 2000) return 2000;//something bad happened
691 return (uint32_t) (f + (float)0.5);
694 //translate 11111100000 to 10
695 size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value,
697 uint8_t lastval=dest[0];
702 for( idx=1; idx < size; idx++) {
704 if (dest[idx]==lastval) {
708 //if lastval was 1, we have a 1->0 crossing
709 if ( dest[idx-1]==1 ) {
710 n=myround((float)(n+1)/((float)(rfLen)/(float)8));
711 //n=(n+1) / h2l_crossing_value;
712 } else {// 0->1 crossing
713 n=myround((float)(n+1)/((float)(rfLen-2)/(float)10));
714 //n=(n+1) / l2h_crossing_value;
718 if(n < maxConsequtiveBits) //Consecutive
720 if(invert==0){ //invert bits
721 memset(dest+numBits, dest[idx-1] , n);
723 memset(dest+numBits, dest[idx-1]^1 , n);
734 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
735 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
737 uint8_t *dest
= (uint8_t *)BigBuf
;
739 size_t size
=0; //, found=0;
740 uint32_t hi2
=0, hi
=0, lo
=0;
742 // Configure to go in 125Khz listen mode
743 LFSetupFPGAForADC(95, true);
745 while(!BUTTON_PRESS()) {
748 if (ledcontrol
) LED_A_ON();
750 DoAcquisition125k_internal(-1,true);
751 size
= sizeof(BigBuf
);
752 if (size
< 2000) continue;
755 int bitLen
= HIDdemodFSK(dest
,size
,&hi2
,&hi
,&lo
);
759 if (bitLen
>0 && lo
>0){
760 // final loop, go over previously decoded manchester data and decode into usable tag ID
761 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
762 if (hi2
!= 0){ //extra large HID tags
763 Dbprintf("TAG ID: %x%08x%08x (%d)",
764 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
765 }else { //standard HID tags <38 bits
766 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
769 uint32_t cardnum
= 0;
770 if (((hi
>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
772 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
774 while(lo2
>1){ //find last bit set to 1 (format len bit)
782 cardnum
= (lo
>>1)&0xFFFF;
786 cardnum
= (lo
>>1)&0x7FFFF;
787 fc
= ((hi
&0xF)<<12)|(lo
>>20);
790 cardnum
= (lo
>>1)&0xFFFF;
791 fc
= ((hi
&1)<<15)|(lo
>>17);
794 cardnum
= (lo
>>1)&0xFFFFF;
795 fc
= ((hi
&1)<<11)|(lo
>>21);
798 else { //if bit 38 is not set then 37 bit format is used
803 cardnum
= (lo
>>1)&0x7FFFF;
804 fc
= ((hi
&0xF)<<12)|(lo
>>20);
807 //Dbprintf("TAG ID: %x%08x (%d)",
808 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
809 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
810 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF,
811 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
814 if (ledcontrol
) LED_A_OFF();
822 DbpString("Stopped");
823 if (ledcontrol
) LED_A_OFF();
827 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
828 void CmdHIDdemodFSK2(int findone, int *high, int *low, int ledcontrol)
830 uint8_t *dest = (uint8_t *)BigBuf;
832 size_t size=0,idx=0; //, found=0;
833 uint32_t hi2=0, hi=0, lo=0;
835 // Configure to go in 125Khz listen mode
836 LFSetupFPGAForADC(95, true);
838 while(!BUTTON_PRESS()) {
841 if (ledcontrol) LED_A_ON();
843 DoAcquisition125k_internal(-1,true);
844 size = sizeof(BigBuf);
845 if (size < 2000) continue;
847 size = fsk_demod(dest, size);
849 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
850 // 1->0 : fc/8 in sets of 6 (RF/50 / 8 = 6.25)
851 // 0->1 : fc/10 in sets of 5 (RF/50 / 10= 5)
853 size = aggregate_bits(dest,size, 50,5,0); //6,5,5,0
857 // final loop, go over previously decoded manchester data and decode into usable tag ID
858 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
859 uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
863 uint8_t sameCardCount =0;
864 while( idx + sizeof(frame_marker_mask) < size) {
865 // search for a start of frame marker
866 if (sameCardCount>2) break; //only up to 2 valid sets of data for the same read of looping card data
867 if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
868 { // frame marker found
869 idx+=sizeof(frame_marker_mask);
870 while(dest[idx] != dest[idx+1] && idx < size-2)
872 // Keep going until next frame marker (or error)
873 // Shift in a bit. Start by shifting high registers
874 hi2 = (hi2<<1)|(hi>>31);
875 hi = (hi<<1)|(lo>>31);
876 //Then, shift in a 0 or one into low
877 if (dest[idx] && !dest[idx+1]) // 1 0
885 //Dbprintf("Num shifts: %d ", numshifts);
886 // Hopefully, we read a tag and hit upon the next frame marker
887 if(idx + sizeof(frame_marker_mask) < size)
889 if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
891 if (hi2 != 0){ //extra large HID tags
892 Dbprintf("TAG ID: %x%08x%08x (%d)",
893 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
895 else { //standard HID tags <38 bits
896 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
899 uint32_t cardnum = 0;
900 if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
902 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
904 while(lo2>1){ //find last bit set to 1 (format len bit)
912 cardnum = (lo>>1)&0xFFFF;
916 cardnum = (lo>>1)&0x7FFFF;
917 fc = ((hi&0xF)<<12)|(lo>>20);
920 cardnum = (lo>>1)&0xFFFF;
921 fc= ((hi&1)<<15)|(lo>>17);
924 cardnum = (lo>>1)&0xFFFFF;
925 fc = ((hi&1)<<11)|(lo>>21);
928 else { //if bit 38 is not set then 37 bit format is used
933 cardnum = (lo>>1)&0x7FFFF;
934 fc = ((hi&0xF)<<12)|(lo>>20);
937 //Dbprintf("TAG ID: %x%08x (%d)",
938 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
939 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
940 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
941 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
945 if (ledcontrol) LED_A_OFF();
961 DbpString("Stopped");
962 if (ledcontrol) LED_A_OFF();
967 uint32_t bytebits_to_byte(uint8_t* src, int numbits)
970 for(int i = 0 ; i < numbits ; i++)
972 num = (num << 1) | (*src);
979 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
981 uint8_t *dest
= (uint8_t *)BigBuf
;
984 uint32_t code
=0, code2
=0;
986 // Configure to go in 125Khz listen mode
987 LFSetupFPGAForADC(95, true);
989 while(!BUTTON_PRESS()) {
991 if (ledcontrol
) LED_A_ON();
992 DoAcquisition125k_internal(-1,true);
993 size
= sizeof(BigBuf
);
994 //make sure buffer has data
995 if (size
< 2000) continue;
996 //fskdemod and get start index
997 idx
= IOdemodFSK(dest
,size
);
1002 //0 10 20 30 40 50 60
1004 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1005 //-----------------------------------------------------------------------------
1006 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1008 //XSF(version)facility:codeone+codetwo
1010 if(findone
){ //only print binary if we are doing one
1011 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
1012 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
1013 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
1014 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
1015 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
1016 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
1017 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
1019 code
= bytebits_to_byte(dest
+idx
,32);
1020 code2
= bytebits_to_byte(dest
+idx
+32,32);
1021 short version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
1022 uint8_t facilitycode
= bytebits_to_byte(dest
+idx
+19,8) ;
1023 uint16_t number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
1025 Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version
,facilitycode
,number
,code
,code2
);
1026 // if we're only looking for one tag
1028 if (ledcontrol
) LED_A_OFF();
1035 DbpString("Stopped");
1036 if (ledcontrol
) LED_A_OFF();
1039 void CmdIOdemodFSK2(int findone, int *high, int *low, int ledcontrol)
1041 uint8_t *dest = (uint8_t *)BigBuf;
1042 size_t size=0, idx=0;
1043 uint32_t code=0, code2=0;
1045 // Configure to go in 125Khz listen mode
1046 LFSetupFPGAForADC(95, true);
1048 while(!BUTTON_PRESS()) {
1050 if (ledcontrol) LED_A_ON();
1051 DoAcquisition125k_internal(-1,true);
1052 size = sizeof(BigBuf);
1053 //make sure buffer has data
1054 if (size < 64) return;
1055 //test samples are not just noise
1057 for(idx=0;idx<64;idx++){
1058 if (testMax<dest[idx]) testMax=dest[idx];
1063 //Dbprintf("testMax: %d",testMax);
1065 size = fsk_demod(dest, size);
1066 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
1067 // 1->0 : fc/8 in sets of 7 (RF/64 / 8 = 8)
1068 // 0->1 : fc/10 in sets of 6 (RF/64 / 10 = 6.4)
1069 size = aggregate_bits(dest, size, 64, 13, 1); //13 max Consecutive should be ok as most 0s in row should be 10 for init seq - invert bits
1072 //0 10 20 30 40 50 60
1074 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1075 //-----------------------------------------------------------------------------
1076 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1078 //XSF(version)facility:codeone+codetwo
1080 uint8_t sameCardCount=0;
1081 uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
1082 for( idx=0; idx < (size - 74); idx++) {
1083 if (sameCardCount>2) break;
1084 if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
1085 //frame marker found
1086 if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){
1087 //confirmed proper separator bits found
1088 if(findone){ //only print binary if we are doing one
1089 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1090 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1091 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1092 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1093 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1094 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1095 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1097 code = bytebits_to_byte(dest+idx,32);
1098 code2 = bytebits_to_byte(dest+idx+32,32);
1099 short version = bytebits_to_byte(dest+idx+27,8); //14,4
1100 uint8_t facilitycode = bytebits_to_byte(dest+idx+19,8) ;
1101 uint16_t number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1103 Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2);
1104 // if we're only looking for one tag
1106 if (ledcontrol) LED_A_OFF();
1117 DbpString("Stopped");
1118 if (ledcontrol) LED_A_OFF();
1122 /*------------------------------
1123 * T5555/T5557/T5567 routines
1124 *------------------------------
1127 /* T55x7 configuration register definitions */
1128 #define T55x7_POR_DELAY 0x00000001
1129 #define T55x7_ST_TERMINATOR 0x00000008
1130 #define T55x7_PWD 0x00000010
1131 #define T55x7_MAXBLOCK_SHIFT 5
1132 #define T55x7_AOR 0x00000200
1133 #define T55x7_PSKCF_RF_2 0
1134 #define T55x7_PSKCF_RF_4 0x00000400
1135 #define T55x7_PSKCF_RF_8 0x00000800
1136 #define T55x7_MODULATION_DIRECT 0
1137 #define T55x7_MODULATION_PSK1 0x00001000
1138 #define T55x7_MODULATION_PSK2 0x00002000
1139 #define T55x7_MODULATION_PSK3 0x00003000
1140 #define T55x7_MODULATION_FSK1 0x00004000
1141 #define T55x7_MODULATION_FSK2 0x00005000
1142 #define T55x7_MODULATION_FSK1a 0x00006000
1143 #define T55x7_MODULATION_FSK2a 0x00007000
1144 #define T55x7_MODULATION_MANCHESTER 0x00008000
1145 #define T55x7_MODULATION_BIPHASE 0x00010000
1146 #define T55x7_BITRATE_RF_8 0
1147 #define T55x7_BITRATE_RF_16 0x00040000
1148 #define T55x7_BITRATE_RF_32 0x00080000
1149 #define T55x7_BITRATE_RF_40 0x000C0000
1150 #define T55x7_BITRATE_RF_50 0x00100000
1151 #define T55x7_BITRATE_RF_64 0x00140000
1152 #define T55x7_BITRATE_RF_100 0x00180000
1153 #define T55x7_BITRATE_RF_128 0x001C0000
1155 /* T5555 (Q5) configuration register definitions */
1156 #define T5555_ST_TERMINATOR 0x00000001
1157 #define T5555_MAXBLOCK_SHIFT 0x00000001
1158 #define T5555_MODULATION_MANCHESTER 0
1159 #define T5555_MODULATION_PSK1 0x00000010
1160 #define T5555_MODULATION_PSK2 0x00000020
1161 #define T5555_MODULATION_PSK3 0x00000030
1162 #define T5555_MODULATION_FSK1 0x00000040
1163 #define T5555_MODULATION_FSK2 0x00000050
1164 #define T5555_MODULATION_BIPHASE 0x00000060
1165 #define T5555_MODULATION_DIRECT 0x00000070
1166 #define T5555_INVERT_OUTPUT 0x00000080
1167 #define T5555_PSK_RF_2 0
1168 #define T5555_PSK_RF_4 0x00000100
1169 #define T5555_PSK_RF_8 0x00000200
1170 #define T5555_USE_PWD 0x00000400
1171 #define T5555_USE_AOR 0x00000800
1172 #define T5555_BITRATE_SHIFT 12
1173 #define T5555_FAST_WRITE 0x00004000
1174 #define T5555_PAGE_SELECT 0x00008000
1177 * Relevant times in microsecond
1178 * To compensate antenna falling times shorten the write times
1179 * and enlarge the gap ones.
1181 #define START_GAP 250
1182 #define WRITE_GAP 160
1183 #define WRITE_0 144 // 192
1184 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
1186 // Write one bit to card
1187 void T55xxWriteBit(int bit
)
1189 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1190 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1191 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1193 SpinDelayUs(WRITE_0
);
1195 SpinDelayUs(WRITE_1
);
1196 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1197 SpinDelayUs(WRITE_GAP
);
1200 // Write one card block in page 0, no lock
1201 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1203 //unsigned int i; //enio adjustment 12/10/14
1206 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1207 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1208 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1210 // Give it a bit of time for the resonant antenna to settle.
1211 // And for the tag to fully power up
1214 // Now start writting
1215 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1216 SpinDelayUs(START_GAP
);
1220 T55xxWriteBit(0); //Page 0
1223 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1224 T55xxWriteBit(Pwd
& i
);
1230 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1231 T55xxWriteBit(Data
& i
);
1234 for (i
= 0x04; i
!= 0; i
>>= 1)
1235 T55xxWriteBit(Block
& i
);
1237 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1238 // so wait a little more)
1239 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1240 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1242 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1245 // Read one card block in page 0
1246 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1248 uint8_t *dest
= (uint8_t *)BigBuf
;
1249 //int m=0, i=0; //enio adjustment 12/10/14
1251 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1253 // Clear destination buffer before sending the command
1254 memset(dest
, 128, m
);
1255 // Connect the A/D to the peak-detected low-frequency path.
1256 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1257 // Now set up the SSC to get the ADC samples that are now streaming at us.
1261 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1262 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1264 // Give it a bit of time for the resonant antenna to settle.
1265 // And for the tag to fully power up
1268 // Now start writting
1269 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1270 SpinDelayUs(START_GAP
);
1274 T55xxWriteBit(0); //Page 0
1277 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1278 T55xxWriteBit(Pwd
& i
);
1283 for (i
= 0x04; i
!= 0; i
>>= 1)
1284 T55xxWriteBit(Block
& i
);
1286 // Turn field on to read the response
1287 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1288 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1290 // Now do the acquisition
1293 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1294 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1296 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1297 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1298 // we don't care about actual value, only if it's more or less than a
1299 // threshold essentially we capture zero crossings for later analysis
1300 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1306 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1311 // Read card traceability data (page 1)
1312 void T55xxReadTrace(void){
1313 uint8_t *dest
= (uint8_t *)BigBuf
;
1316 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1318 // Clear destination buffer before sending the command
1319 memset(dest
, 128, m
);
1320 // Connect the A/D to the peak-detected low-frequency path.
1321 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1322 // Now set up the SSC to get the ADC samples that are now streaming at us.
1326 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1327 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1329 // Give it a bit of time for the resonant antenna to settle.
1330 // And for the tag to fully power up
1333 // Now start writting
1334 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1335 SpinDelayUs(START_GAP
);
1339 T55xxWriteBit(1); //Page 1
1341 // Turn field on to read the response
1342 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1343 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1345 // Now do the acquisition
1348 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1349 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1351 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1352 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1358 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1363 /*-------------- Cloning routines -----------*/
1364 // Copy HID id to card and setup block 0 config
1365 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1367 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1371 // Ensure no more than 84 bits supplied
1373 DbpString("Tags can only have 84 bits.");
1376 // Build the 6 data blocks for supplied 84bit ID
1378 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1379 for (int i
=0;i
<4;i
++) {
1380 if (hi2
& (1<<(19-i
)))
1381 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1383 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1387 for (int i
=0;i
<16;i
++) {
1388 if (hi2
& (1<<(15-i
)))
1389 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1391 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1395 for (int i
=0;i
<16;i
++) {
1396 if (hi
& (1<<(31-i
)))
1397 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1399 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1403 for (int i
=0;i
<16;i
++) {
1404 if (hi
& (1<<(15-i
)))
1405 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1407 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1411 for (int i
=0;i
<16;i
++) {
1412 if (lo
& (1<<(31-i
)))
1413 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1415 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1419 for (int i
=0;i
<16;i
++) {
1420 if (lo
& (1<<(15-i
)))
1421 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1423 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1427 // Ensure no more than 44 bits supplied
1429 DbpString("Tags can only have 44 bits.");
1433 // Build the 3 data blocks for supplied 44bit ID
1436 data1
= 0x1D000000; // load preamble
1438 for (int i
=0;i
<12;i
++) {
1439 if (hi
& (1<<(11-i
)))
1440 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1442 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1446 for (int i
=0;i
<16;i
++) {
1447 if (lo
& (1<<(31-i
)))
1448 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1450 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1454 for (int i
=0;i
<16;i
++) {
1455 if (lo
& (1<<(15-i
)))
1456 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1458 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1463 // Program the data blocks for supplied ID
1464 // and the block 0 for HID format
1465 T55xxWriteBlock(data1
,1,0,0);
1466 T55xxWriteBlock(data2
,2,0,0);
1467 T55xxWriteBlock(data3
,3,0,0);
1469 if (longFMT
) { // if long format there are 6 blocks
1470 T55xxWriteBlock(data4
,4,0,0);
1471 T55xxWriteBlock(data5
,5,0,0);
1472 T55xxWriteBlock(data6
,6,0,0);
1475 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1476 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1477 T55x7_MODULATION_FSK2a
|
1478 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1486 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1488 int data1
=0, data2
=0; //up to six blocks for long format
1490 data1
= hi
; // load preamble
1494 // Program the data blocks for supplied ID
1495 // and the block 0 for HID format
1496 T55xxWriteBlock(data1
,1,0,0);
1497 T55xxWriteBlock(data2
,2,0,0);
1500 T55xxWriteBlock(0x00147040,0,0,0);
1506 // Define 9bit header for EM410x tags
1507 #define EM410X_HEADER 0x1FF
1508 #define EM410X_ID_LENGTH 40
1510 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1513 uint64_t id
= EM410X_HEADER
;
1514 uint64_t rev_id
= 0; // reversed ID
1515 int c_parity
[4]; // column parity
1516 int r_parity
= 0; // row parity
1519 // Reverse ID bits given as parameter (for simpler operations)
1520 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1522 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1525 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1530 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1531 id_bit
= rev_id
& 1;
1534 // Don't write row parity bit at start of parsing
1536 id
= (id
<< 1) | r_parity
;
1537 // Start counting parity for new row
1544 // First elements in column?
1546 // Fill out first elements
1547 c_parity
[i
] = id_bit
;
1549 // Count column parity
1550 c_parity
[i
% 4] ^= id_bit
;
1553 id
= (id
<< 1) | id_bit
;
1557 // Insert parity bit of last row
1558 id
= (id
<< 1) | r_parity
;
1560 // Fill out column parity at the end of tag
1561 for (i
= 0; i
< 4; ++i
)
1562 id
= (id
<< 1) | c_parity
[i
];
1567 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1571 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1572 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1574 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1576 // Clock rate is stored in bits 8-15 of the card value
1577 clock
= (card
& 0xFF00) >> 8;
1578 Dbprintf("Clock rate: %d", clock
);
1582 clock
= T55x7_BITRATE_RF_32
;
1585 clock
= T55x7_BITRATE_RF_16
;
1588 // A value of 0 is assumed to be 64 for backwards-compatibility
1591 clock
= T55x7_BITRATE_RF_64
;
1594 Dbprintf("Invalid clock rate: %d", clock
);
1598 // Writing configuration for T55x7 tag
1599 T55xxWriteBlock(clock
|
1600 T55x7_MODULATION_MANCHESTER
|
1601 2 << T55x7_MAXBLOCK_SHIFT
,
1605 // Writing configuration for T5555(Q5) tag
1606 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1607 T5555_MODULATION_MANCHESTER
|
1608 2 << T5555_MAXBLOCK_SHIFT
,
1612 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1613 (uint32_t)(id
>> 32), (uint32_t)id
);
1616 // Clone Indala 64-bit tag by UID to T55x7
1617 void CopyIndala64toT55x7(int hi
, int lo
)
1620 //Program the 2 data blocks for supplied 64bit UID
1621 // and the block 0 for Indala64 format
1622 T55xxWriteBlock(hi
,1,0,0);
1623 T55xxWriteBlock(lo
,2,0,0);
1624 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1625 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1626 T55x7_MODULATION_PSK1
|
1627 2 << T55x7_MAXBLOCK_SHIFT
,
1629 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1630 // T5567WriteBlock(0x603E1042,0);
1636 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1639 //Program the 7 data blocks for supplied 224bit UID
1640 // and the block 0 for Indala224 format
1641 T55xxWriteBlock(uid1
,1,0,0);
1642 T55xxWriteBlock(uid2
,2,0,0);
1643 T55xxWriteBlock(uid3
,3,0,0);
1644 T55xxWriteBlock(uid4
,4,0,0);
1645 T55xxWriteBlock(uid5
,5,0,0);
1646 T55xxWriteBlock(uid6
,6,0,0);
1647 T55xxWriteBlock(uid7
,7,0,0);
1648 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1649 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1650 T55x7_MODULATION_PSK1
|
1651 7 << T55x7_MAXBLOCK_SHIFT
,
1653 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1654 // T5567WriteBlock(0x603E10E2,0);
1661 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1662 #define max(x,y) ( x<y ? y:x)
1664 int DemodPCF7931(uint8_t **outBlocks
) {
1665 uint8_t BitStream
[256];
1666 uint8_t Blocks
[8][16];
1667 uint8_t *GraphBuffer
= (uint8_t *)BigBuf
;
1668 int GraphTraceLen
= sizeof(BigBuf
);
1669 int i
, j
, lastval
, bitidx
, half_switch
;
1671 int tolerance
= clock
/ 8;
1672 int pmc
, block_done
;
1673 int lc
, warnings
= 0;
1675 int lmin
=128, lmax
=128;
1678 AcquireRawAdcSamples125k(0);
1685 /* Find first local max/min */
1686 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1687 while(i
< GraphTraceLen
) {
1688 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1695 while(i
< GraphTraceLen
) {
1696 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1708 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1710 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1715 // Switch depending on lc length:
1716 // Tolerance is 1/8 of clock rate (arbitrary)
1717 if (abs(lc
-clock
/4) < tolerance
) {
1719 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1721 i
+= (128+127+16+32+33+16)-1;
1729 } else if (abs(lc
-clock
/2) < tolerance
) {
1731 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1733 i
+= (128+127+16+32+33)-1;
1738 else if(half_switch
== 1) {
1739 BitStream
[bitidx
++] = 0;
1744 } else if (abs(lc
-clock
) < tolerance
) {
1746 BitStream
[bitidx
++] = 1;
1752 Dbprintf("Error: too many detection errors, aborting.");
1757 if(block_done
== 1) {
1759 for(j
=0; j
<16; j
++) {
1760 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1761 64*BitStream
[j
*8+6]+
1762 32*BitStream
[j
*8+5]+
1763 16*BitStream
[j
*8+4]+
1775 if(i
< GraphTraceLen
)
1777 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1784 if(num_blocks
== 4) break;
1786 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1790 int IsBlock0PCF7931(uint8_t *Block
) {
1791 // Assume RFU means 0 :)
1792 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1794 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1799 int IsBlock1PCF7931(uint8_t *Block
) {
1800 // Assume RFU means 0 :)
1801 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1802 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1810 void ReadPCF7931() {
1811 uint8_t Blocks
[8][17];
1812 uint8_t tmpBlocks
[4][16];
1813 int i
, j
, ind
, ind2
, n
;
1820 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1823 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1824 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1827 if(error
==10 && num_blocks
== 0) {
1828 Dbprintf("Error, no tag or bad tag");
1831 else if (tries
==20 || error
==10) {
1832 Dbprintf("Error reading the tag");
1833 Dbprintf("Here is the partial content");
1838 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1839 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1840 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1842 for(i
=0; i
<n
; i
++) {
1843 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1845 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1849 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1850 Blocks
[0][ALLOC
] = 1;
1851 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1852 Blocks
[1][ALLOC
] = 1;
1853 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1855 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1857 // Handle following blocks
1858 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1861 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1862 Blocks
[ind2
][ALLOC
] = 1;
1870 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1871 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1872 for(j
=0; j
<max_blocks
; j
++) {
1873 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1874 // Found an identical block
1875 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1878 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1879 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1880 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1881 Blocks
[ind2
][ALLOC
] = 1;
1883 if(num_blocks
== max_blocks
) goto end
;
1886 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1887 if(ind2
> max_blocks
)
1889 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1890 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1891 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1892 Blocks
[ind2
][ALLOC
] = 1;
1894 if(num_blocks
== max_blocks
) goto end
;
1903 if (BUTTON_PRESS()) return;
1904 } while (num_blocks
!= max_blocks
);
1906 Dbprintf("-----------------------------------------");
1907 Dbprintf("Memory content:");
1908 Dbprintf("-----------------------------------------");
1909 for(i
=0; i
<max_blocks
; i
++) {
1910 if(Blocks
[i
][ALLOC
]==1)
1911 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1912 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1913 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1915 Dbprintf("<missing block %d>", i
);
1917 Dbprintf("-----------------------------------------");
1923 //-----------------------------------
1924 // EM4469 / EM4305 routines
1925 //-----------------------------------
1926 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1927 #define FWD_CMD_WRITE 0xA
1928 #define FWD_CMD_READ 0x9
1929 #define FWD_CMD_DISABLE 0x5
1932 uint8_t forwardLink_data
[64]; //array of forwarded bits
1933 uint8_t * forward_ptr
; //ptr for forward message preparation
1934 uint8_t fwd_bit_sz
; //forwardlink bit counter
1935 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1937 //====================================================================
1938 // prepares command bits
1940 //====================================================================
1941 //--------------------------------------------------------------------
1942 uint8_t Prepare_Cmd( uint8_t cmd
) {
1943 //--------------------------------------------------------------------
1945 *forward_ptr
++ = 0; //start bit
1946 *forward_ptr
++ = 0; //second pause for 4050 code
1948 *forward_ptr
++ = cmd
;
1950 *forward_ptr
++ = cmd
;
1952 *forward_ptr
++ = cmd
;
1954 *forward_ptr
++ = cmd
;
1956 return 6; //return number of emited bits
1959 //====================================================================
1960 // prepares address bits
1962 //====================================================================
1964 //--------------------------------------------------------------------
1965 uint8_t Prepare_Addr( uint8_t addr
) {
1966 //--------------------------------------------------------------------
1968 register uint8_t line_parity
;
1973 *forward_ptr
++ = addr
;
1974 line_parity
^= addr
;
1978 *forward_ptr
++ = (line_parity
& 1);
1980 return 7; //return number of emited bits
1983 //====================================================================
1984 // prepares data bits intreleaved with parity bits
1986 //====================================================================
1988 //--------------------------------------------------------------------
1989 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1990 //--------------------------------------------------------------------
1992 register uint8_t line_parity
;
1993 register uint8_t column_parity
;
1994 register uint8_t i
, j
;
1995 register uint16_t data
;
2000 for(i
=0; i
<4; i
++) {
2002 for(j
=0; j
<8; j
++) {
2003 line_parity
^= data
;
2004 column_parity
^= (data
& 1) << j
;
2005 *forward_ptr
++ = data
;
2008 *forward_ptr
++ = line_parity
;
2013 for(j
=0; j
<8; j
++) {
2014 *forward_ptr
++ = column_parity
;
2015 column_parity
>>= 1;
2019 return 45; //return number of emited bits
2022 //====================================================================
2023 // Forward Link send function
2024 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
2025 // fwd_bit_count set with number of bits to be sent
2026 //====================================================================
2027 void SendForward(uint8_t fwd_bit_count
) {
2029 fwd_write_ptr
= forwardLink_data
;
2030 fwd_bit_sz
= fwd_bit_count
;
2035 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
2036 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
2037 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
2039 // Give it a bit of time for the resonant antenna to settle.
2040 // And for the tag to fully power up
2043 // force 1st mod pulse (start gap must be longer for 4305)
2044 fwd_bit_sz
--; //prepare next bit modulation
2046 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
2047 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
2048 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
2049 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
2050 SpinDelayUs(16*8); //16 cycles on (8us each)
2052 // now start writting
2053 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
2054 if(((*fwd_write_ptr
++) & 1) == 1)
2055 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
2057 //These timings work for 4469/4269/4305 (with the 55*8 above)
2058 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
2059 SpinDelayUs(23*8); //16-4 cycles off (8us each)
2060 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
2061 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
2062 SpinDelayUs(9*8); //16 cycles on (8us each)
2067 void EM4xLogin(uint32_t Password
) {
2069 uint8_t fwd_bit_count
;
2071 forward_ptr
= forwardLink_data
;
2072 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
2073 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
2075 SendForward(fwd_bit_count
);
2077 //Wait for command to complete
2082 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
2084 uint8_t fwd_bit_count
;
2085 uint8_t *dest
= (uint8_t *)BigBuf
;
2088 //If password mode do login
2089 if (PwdMode
== 1) EM4xLogin(Pwd
);
2091 forward_ptr
= forwardLink_data
;
2092 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
2093 fwd_bit_count
+= Prepare_Addr( Address
);
2096 // Clear destination buffer before sending the command
2097 memset(dest
, 128, m
);
2098 // Connect the A/D to the peak-detected low-frequency path.
2099 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
2100 // Now set up the SSC to get the ADC samples that are now streaming at us.
2103 SendForward(fwd_bit_count
);
2105 // Now do the acquisition
2108 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
2109 AT91C_BASE_SSC
->SSC_THR
= 0x43;
2111 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
2112 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
2117 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
2121 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
2123 uint8_t fwd_bit_count
;
2125 //If password mode do login
2126 if (PwdMode
== 1) EM4xLogin(Pwd
);
2128 forward_ptr
= forwardLink_data
;
2129 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
2130 fwd_bit_count
+= Prepare_Addr( Address
);
2131 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
2133 SendForward(fwd_bit_count
);
2135 //Wait for write to complete
2137 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off