1 //----------------------------------------------------------------------------- 
   2 // (c) 2009 Henryk Plötz <henryk@ploetzli.ch> 
   4 // This code is licensed to you under the terms of the GNU GPL, version 2 or, 
   5 // at your option, any later version. See the LICENSE.txt file for the text of 
   7 //----------------------------------------------------------------------------- 
   8 // LEGIC RF simulation code 
   9 //----------------------------------------------------------------------------- 
  12 static struct legic_frame 
{ 
  23 static crc_t    legic_crc
; 
  24 static int      legic_read_count
; 
  25 static uint32_t legic_prng_bc
; 
  26 static uint32_t legic_prng_iv
; 
  28 static int      legic_phase_drift
; 
  29 static int      legic_frame_drift
; 
  30 static int      legic_reqresp_drift
; 
  36 static void setup_timer(void) { 
  37         // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging 
  38         // this it won't be terribly accurate but should be good enough. 
  40         AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); 
  41         timer = AT91C_BASE_TC1; 
  42         timer->TC_CCR = AT91C_TC_CLKDIS; 
  43         timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; 
  44         timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; 
  47     // Set up Timer 2 to use for measuring time between frames in  
  48     // tag simulation mode. Runs 4x faster as Timer 1 
  50     AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2); 
  51     prng_timer = AT91C_BASE_TC2; 
  52     prng_timer->TC_CCR = AT91C_TC_CLKDIS; 
  53         prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK; 
  54     prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; 
  57         AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14); 
  58         AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE; 
  61         AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable 
  62         AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks 
  63                                                                 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR | 
  64                                                                 AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET; 
  65         AT91C_BASE_TC0->TC_RA = 1; 
  66         AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000 
  70 // At TIMER_CLOCK3 (MCK/32) 
  71 //#define RWD_TIME_1 150     /* RWD_TIME_PAUSE off, 80us on = 100us */ 
  72 //#define RWD_TIME_0 90      /* RWD_TIME_PAUSE off, 40us on = 60us */ 
  73 //#define RWD_TIME_PAUSE 30  /* 20us */ 
  75 // testing calculating in (us) microseconds. 
  76 #define RWD_TIME_1 120          // READER_TIME_PAUSE 20us off, 80us on = 100us  80 * 1.5 == 120ticks 
  77 #define RWD_TIME_0 60           // READER_TIME_PAUSE 20us off, 40us on = 60us   40 * 1.5 == 60ticks  
  78 #define RWD_TIME_PAUSE 30       // 20us == 20 * 1.5 == 30ticks */ 
  79 #define TAG_BIT_PERIOD 150      // 100us == 100 * 1.5 == 150ticks 
  80 #define TAG_FRAME_WAIT 495  // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495 
  82 #define RWD_TIME_FUZZ 20   // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit 
  84 #define SIM_DIVISOR  586   /* prng_time/SIM_DIVISOR count prng needs to be forwared */ 
  85 #define SIM_SHIFT    900   /* prng_time+SIM_SHIFT shift of delayed start */ 
  87 #define OFFSET_LOG 1024 
  89 #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz))) 
  92 # define SHORT_COIL     LOW(GPIO_SSC_DOUT); 
  95 # define OPEN_COIL      HIGH(GPIO_SSC_DOUT); 
  98 uint32_t sendFrameStop 
= 0; 
 100 // Pause pulse,  off in 20us / 30ticks, 
 101 // ONE / ZERO bit pulse,   
 102 //    one == 80us / 120ticks 
 103 //    zero == 40us / 60ticks 
 105 # define COIL_PULSE(x) \ 
 108                 WaitTicks( (RWD_TIME_PAUSE) ); \ 
 114 // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.  
 115 // Historically it used to be FREE_BUFFER_SIZE, which was 2744. 
 116 #define LEGIC_CARD_MEMSIZE 1024 
 117 static uint8_t* cardmem
; 
 119 static void frame_append_bit(struct legic_frame 
* const f
, uint8_t bit
) { 
 120         // Overflow, won't happen 
 121    if (f
->bits 
>= 31) return; 
 123    f
->data 
|= (bit 
<< f
->bits
); 
 127 static void frame_clean(struct legic_frame 
* const f
) { 
 132 // Prng works when waiting in 99.1us cycles. 
 133 // and while sending/receiving in bit frames (100, 60) 
 134 /*static void CalibratePrng( uint32_t time){ 
 135         // Calculate Cycles based on timer 100us 
 136         uint32_t i =  (time - sendFrameStop) / 100 ; 
 138         // substract cycles of finished frames 
 139         int k =  i - legic_prng_count()+1;  
 141         // substract current frame length, rewind to beginning 
 143                 legic_prng_forward(k); 
 147 /* Generate Keystream */ 
 148 uint32_t get_key_stream(int skip
, int count
) { 
 152         // Use int to enlarge timer tc to 32bit 
 153         legic_prng_bc 
+= prng_timer
->TC_CV
; 
 155         // reset the prng timer. 
 156         ResetTimer(prng_timer
); 
 158         /* If skip == -1, forward prng time based */ 
 160                 i  
= (legic_prng_bc 
+ SIM_SHIFT
)/SIM_DIVISOR
; /* Calculate Cycles based on timer */ 
 161                 i 
-= legic_prng_count(); /* substract cycles of finished frames */ 
 162                 i 
-= count
; /* substract current frame length, rewind to beginning */ 
 163                 legic_prng_forward(i
); 
 165                 legic_prng_forward(skip
); 
 168         i 
= (count 
== 6) ? -1 : legic_read_count
; 
 170         /* Write Time Data into LOG */ 
 171         // uint8_t *BigBuf = BigBuf_get_addr(); 
 172         // BigBuf[OFFSET_LOG+128+i] = legic_prng_count(); 
 173         // BigBuf[OFFSET_LOG+256+i*4]   = (legic_prng_bc >> 0) & 0xff; 
 174         // BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff; 
 175         // BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff; 
 176         // BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff; 
 177         // BigBuf[OFFSET_LOG+384+i] = count; 
 179         /* Generate KeyStream */ 
 180         for(i
=0; i
<count
; i
++) { 
 181                 key 
|= legic_prng_get_bit() << i
; 
 182                 legic_prng_forward(1); 
 187 /* Send a frame in tag mode, the FPGA must have been set up by 
 190 void frame_send_tag(uint16_t response
, uint8_t bits
, uint8_t crypt
) { 
 191         /* Bitbang the response */ 
 193         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 194         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 196         /* Use time to crypt frame */ 
 198                 legic_prng_forward(2); /* TAG_FRAME_WAIT -> shift by 2 */ 
 199                 response 
^= legic_prng_get_bits(bits
); 
 202         /* Wait for the frame start */ 
 203         WaitUS( TAG_FRAME_WAIT 
); 
 206         for(int i 
= 0; i 
< bits
; i
++) { 
 221 /* Send a frame in reader mode, the FPGA must have been set up by 
 224 void frame_sendAsReader(uint32_t data
, uint8_t bits
){ 
 226         uint32_t starttime 
= GET_TICKS
, send 
= 0; 
 228         uint8_t prngstart 
= legic_prng_count() ; 
 230         // xor lsfr onto data. 
 231         send 
= data 
^ legic_prng_get_bits(bits
); 
 233         for (; mask 
< BITMASK(bits
); mask 
<<= 1) {       
 235                         COIL_PULSE(RWD_TIME_1
); 
 237                         COIL_PULSE(RWD_TIME_0
); 
 241         // Final pause to mark the end of the frame 
 244         sendFrameStop 
= GET_TICKS
; 
 245         uint8_t cmdbytes
[] = { 
 254         LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, sendFrameStop
, NULL
, TRUE
); 
 257 /* Receive a frame from the card in reader emulation mode, the FPGA and 
 258  * timer must have been set up by LegicRfReader and frame_sendAsReader. 
 260  * The LEGIC RF protocol from card to reader does not include explicit 
 261  * frame start/stop information or length information. The reader must 
 262  * know beforehand how many bits it wants to receive. (Notably: a card 
 263  * sending a stream of 0-bits is indistinguishable from no card present.) 
 265  * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but 
 266  * I'm not smart enough to use it. Instead I have patched hi_read_tx to output 
 267  * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look 
 268  * for edges. Count the edges in each bit interval. If they are approximately 
 269  * 0 this was a 0-bit, if they are approximately equal to the number of edges 
 270  * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the 
 271  * timer that's still running from frame_sendAsReader in order to get a synchronization 
 272  * with the frame that we just sent. 
 274  * FIXME: Because we're relying on the hysteresis to just do the right thing 
 275  * the range is severely reduced (and you'll probably also need a good antenna). 
 276  * So this should be fixed some time in the future for a proper receiver. 
 278 static void frame_receiveAsReader(struct legic_frame 
* const f
, uint8_t bits
) { 
 281         if ( bits 
> 32 ) return; 
 283         uint8_t i 
= bits
, edges 
= 0;     
 285         uint32_t the_bit 
= 1, next_bit_at 
= 0, data
; 
 287         int old_level 
= 0, level 
= 0; 
 289         AT91C_BASE_PIOA
->PIO_ODR 
= GPIO_SSC_DIN
; 
 290         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DIN
; 
 292         // calibrate the prng. 
 294         legic_prng_forward(2); 
 296         // precompute the cipher 
 297         uint8_t prngstart 
=  legic_prng_count() ; 
 299         data 
= lsfr 
= legic_prng_get_bits(bits
); 
 301         //FIXED time between sending frame and now listening frame. 330us 
 302         // 387 = 0x19  0001 1001 
 304         // 500 = 0x1C  0001 1100 
 305         uint32_t starttime 
= GET_TICKS
; 
 306         //uint16_t mywait =  TAG_FRAME_WAIT - (starttime - sendFrameStop); 
 307         //uint16_t mywait =  495 - (starttime - sendFrameStop); 
 309                 //Dbprintf("6 WAIT %d", 495 - 9 - 9 ); 
 310                 WaitTicks( 495 - 9 - 9 ); 
 312                 //Dbprintf("x WAIT %d", mywait ); 
 313                 //WaitTicks( mywait ); 
 317         next_bit_at 
=  GET_TICKS 
+ TAG_BIT_PERIOD
; 
 322                 while  ( GET_TICKS 
< next_bit_at
) { 
 324                         level 
= (AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_DIN
); 
 326                         if (level 
!= old_level
) 
 331                         if(edges 
> 20 && adjust 
== 0) { 
 337                 next_bit_at 
+= TAG_BIT_PERIOD
; 
 339                 // We expect 42 edges  == ONE 
 340                 //if (edges > 20 && edges < 64) 
 351         uint8_t cmdbytes
[] = { 
 355                 BYTEx(data
, 0) ^ BYTEx(lsfr
,0), 
 356                 BYTEx(data
, 1) ^ BYTEx(lsfr
,1), 
 360         LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, GET_TICKS
, NULL
, FALSE
); 
 363 // Setup pm3 as a Legic Reader 
 364 static uint32_t setup_phase_reader(uint8_t iv
) { 
 366         // Switch on carrier and let the tag charge for 1ms 
 376         frame_sendAsReader(iv
, 7); 
 378         // Now both tag and reader has same IV. Prng can start. 
 381         frame_receiveAsReader(¤t_frame
, 6); 
 383         // fixed delay before sending ack. 
 384         WaitTicks(366);  // 244us 
 385         legic_prng_forward(1);  //240us / 100 == 2.4 iterations 
 387         // Send obsfuscated acknowledgment frame. 
 388         // 0x19 = 0x18 MIM22, 0x01 LSB READCMD  
 389         // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD  
 390         switch ( current_frame
.data  
) { 
 391                 case 0x0D: frame_sendAsReader(0x19, 6); break; 
 393                 case 0x3D: frame_sendAsReader(0x39, 6); break; 
 396         return current_frame
.data
; 
 399 static void LegicCommonInit(void) { 
 401         FpgaDownloadAndGo(FPGA_BITSTREAM_HF
); 
 402         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
); 
 403         SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); 
 405         /* Bitbang the transmitter */ 
 407         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 408         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 410         // reserve a cardmem,  meaning we can use the tracelog function in bigbuff easier. 
 411         cardmem 
= BigBuf_malloc(LEGIC_CARD_MEMSIZE
); 
 412         memset(cardmem
, 0x00, LEGIC_CARD_MEMSIZE
); 
 416         crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0); 
 421 // Switch off carrier, make sure tag is reset 
 422 static void switch_off_tag_rwd(void) { 
 429 // calculate crc4 for a legic READ command  
 430 // 5,8,10 address size. 
 431 static uint32_t legic4Crc(uint8_t legicCmd
, uint16_t byte_index
, uint8_t value
, uint8_t cmd_sz
) { 
 432         crc_clear(&legic_crc
);   
 433         //uint32_t temp =  (value << cmd_sz) | (byte_index << 1) | legicCmd; 
 434         //crc_update(&legic_crc, temp, cmd_sz + 8 ); 
 435         crc_update(&legic_crc
, 1, 1); /* CMD_READ */ 
 436         crc_update(&legic_crc
, byte_index
, cmd_sz
-1); 
 437         crc_update(&legic_crc
, value
, 8); 
 438         return crc_finish(&legic_crc
); 
 441 int legic_read_byte(int byte_index
, int cmd_sz
) { 
 443         uint8_t byte 
= 0, crc 
= 0, calcCrc 
= 0; 
 444         uint32_t cmd 
= (byte_index 
<< 1) | LEGIC_READ
; 
 453         legic_prng_forward(4); // 460 / 100 = 4.6  iterations 
 455         frame_sendAsReader(cmd
, cmd_sz
); 
 456         frame_receiveAsReader(¤t_frame
, 12); 
 458         byte 
= BYTEx(current_frame
.data
, 0); 
 459         calcCrc 
= legic4Crc(LEGIC_READ
, byte_index
, byte
, cmd_sz
); 
 460         crc 
= BYTEx(current_frame
.data
, 1); 
 462         if( calcCrc 
!= crc 
) { 
 463                 Dbprintf("!!! crc mismatch: expected %x but got %x !!!",  calcCrc
, crc
); 
 470  * - assemble a write_cmd_frame with crc and send it 
 471  * - wait until the tag sends back an ACK ('1' bit unencrypted) 
 472  * - forward the prng based on the timing 
 474 //int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) { 
 475 int legic_write_byte(uint8_t byte
, uint16_t addr
, uint8_t addr_sz
) { 
 477     //do not write UID, CRC at offset 0-4. 
 478         if (addr 
<= 4) return 0; 
 481         crc_clear(&legic_crc
); 
 482         crc_update(&legic_crc
, 0, 1); /* CMD_WRITE */ 
 483         crc_update(&legic_crc
, addr
, addr_sz
); 
 484         crc_update(&legic_crc
, byte
, 8); 
 485         uint32_t crc 
= crc_finish(&legic_crc
); 
 487         uint32_t crc2 
= legic4Crc(LEGIC_WRITE
, addr
, byte
, addr_sz
+1); 
 489                 Dbprintf("crc is missmatch"); 
 491         // send write command 
 492         uint32_t cmd 
= ((crc     
<<(addr_sz
+1+8)) //CRC 
 493                    |(byte    
<<(addr_sz
+1))   //Data 
 494                    |(addr    
<<1)             //Address 
 495                    | LEGIC_WRITE
);             //CMD = Write 
 497     uint32_t cmd_sz 
= addr_sz
+1+8+4;          //crc+data+cmd 
 499     legic_prng_forward(2); /* we wait anyways */ 
 501         WaitUS(TAG_FRAME_WAIT
); 
 503         frame_sendAsReader(cmd
, cmd_sz
); 
 505         // wllm-rbnt doesnt have these 
 506         AT91C_BASE_PIOA
->PIO_ODR 
= GPIO_SSC_DIN
; 
 507         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DIN
; 
 510     int t
, old_level 
= 0, edges 
= 0; 
 513         WaitUS(TAG_FRAME_WAIT
); 
 515     for( t 
= 0; t 
< 80; ++t
) { 
 517                 next_bit_at 
+= TAG_BIT_PERIOD
; 
 518         while(timer
->TC_CV 
< next_bit_at
) { 
 519             int level 
= (AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_DIN
); 
 520             if(level 
!= old_level
) 
 525         if(edges 
> 20 && edges 
< 60) { /* expected are 42 edges */ 
 526                         int t 
= timer
->TC_CV
; 
 527                         int c 
= t 
/ TAG_BIT_PERIOD
; 
 530                         legic_prng_forward(c
); 
 539 int LegicRfReader(int offset
, int bytes
, int iv
) { 
 541         uint16_t byte_index 
= 0; 
 542         uint8_t cmd_sz 
= 0, isOK 
= 1; 
 547         uint32_t tag_type 
= setup_phase_reader(iv
); 
 549         switch_off_tag_rwd(); 
 553                         if ( MF_DBGLEVEL 
>= 2) DbpString("MIM22 card found, reading card"); 
 558                         if ( MF_DBGLEVEL 
>= 2) DbpString("MIM256 card found, reading card"); 
 563                         if ( MF_DBGLEVEL 
>= 2) DbpString("MIM1024 card found, reading card"); 
 568                         if ( MF_DBGLEVEL 
>= 1) Dbprintf("Unknown card format: %x", tag_type
); 
 576         if (bytes 
+ offset 
>= card_sz
) 
 577                 bytes 
= card_sz 
- offset
; 
 579         // Start setup and read bytes. 
 580         setup_phase_reader(iv
); 
 583         while (byte_index 
< bytes
) { 
 584                 int r 
= legic_read_byte(byte_index 
+ offset
, cmd_sz
); 
 586                 if (r 
== -1 || BUTTON_PRESS()) {                         
 587                 if ( MF_DBGLEVEL 
>= 3) DbpString("operation aborted"); 
 591                 cardmem
[++byte_index
] = r
; 
 597         switch_off_tag_rwd(); 
 599         uint8_t len 
= (bytes 
& 0x3FF); 
 600         cmd_send(CMD_ACK
,isOK
,len
,0,cardmem
,len
); 
 604 /*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) { 
 608         setup_phase_reader(iv); 
 609     //legic_prng_forward(2); 
 610         while(byte_index < bytes) { 
 613                 //check if the DCF should be changed 
 614                 if ( (offset == 0x05) && (bytes == 0x02) ) { 
 615                         //write DCF in reverse order (addr 0x06 before 0x05) 
 616                         r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); 
 617                         //legic_prng_forward(1); 
 620                                 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); 
 622                         //legic_prng_forward(1); 
 625                         r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue); 
 627                 if((r != 0) || BUTTON_PRESS()) { 
 628                         Dbprintf("operation aborted @ 0x%03.3x", byte_index); 
 629         switch_off_tag_rwd(); 
 637         if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF(); 
 641     DbpString("write successful"); 
 645 void LegicRfWriter(int offset
, int bytes
, int iv
) { 
 647         int byte_index 
= 0, addr_sz 
= 0;                                                                   
 651         if ( MF_DBGLEVEL 
>= 2)  DbpString("setting up legic card"); 
 653         uint32_t tag_type 
= setup_phase_reader(iv
); 
 655         switch_off_tag_rwd(); 
 659                         if(offset
+bytes 
> 22) { 
 660                                 Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset 
+ bytes
); 
 664                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset
, offset 
+ bytes
); 
 667                         if(offset
+bytes 
> 0x100) { 
 668                                 Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset 
+ bytes
); 
 672                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset
, offset 
+ bytes
); 
 675                         if(offset
+bytes 
> 0x400) { 
 676                         Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset 
+ bytes
); 
 680                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset
, offset 
+ bytes
); 
 683                         Dbprintf("No or unknown card found, aborting"); 
 688         setup_phase_reader(iv
); 
 690         while(byte_index 
< bytes
) { 
 692                 //check if the DCF should be changed 
 693                 if ( ((byte_index
+offset
) == 0x05) && (bytes 
>= 0x02) ) { 
 694                         //write DCF in reverse order (addr 0x06 before 0x05) 
 695                         r 
= legic_write_byte(cardmem
[(0x06-byte_index
)], (0x06-byte_index
), addr_sz
); 
 697                         // write second byte on success... 
 700                                 r 
= legic_write_byte(cardmem
[(0x06-byte_index
)], (0x06-byte_index
), addr_sz
); 
 704                         r 
= legic_write_byte(cardmem
[byte_index
+offset
], byte_index
+offset
, addr_sz
); 
 707                 if ((r 
!= 0) || BUTTON_PRESS()) { 
 708                         Dbprintf("operation aborted @ 0x%03.3x", byte_index
); 
 709                         switch_off_tag_rwd(); 
 718     if ( MF_DBGLEVEL 
>= 1) DbpString("write successful"); 
 721 void LegicRfRawWriter(int address
, int byte
, int iv
) { 
 723         int byte_index 
= 0, addr_sz 
= 0; 
 727         if ( MF_DBGLEVEL 
>= 2) DbpString("setting up legic card"); 
 729         uint32_t tag_type 
= setup_phase_reader(iv
); 
 731         switch_off_tag_rwd(); 
 736                                 Dbprintf("Error: can not write to 0x%03.3x on MIM22", address
); 
 740                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address
, byte
); 
 743                         if(address 
> 0x100) { 
 744                                 Dbprintf("Error: can not write to 0x%03.3x on MIM256", address
); 
 748                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address
, byte
); 
 751                         if(address 
> 0x400) { 
 752                         Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address
); 
 756                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address
, byte
); 
 759                         Dbprintf("No or unknown card found, aborting"); 
 763         Dbprintf("integer value: %d address: %d  addr_sz: %d", byte
, address
, addr_sz
); 
 766         setup_phase_reader(iv
); 
 768         int r 
= legic_write_byte(byte
, address
, addr_sz
); 
 770         if((r 
!= 0) || BUTTON_PRESS()) { 
 771                 Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index
, r
); 
 772                 switch_off_tag_rwd(); 
 778     if ( MF_DBGLEVEL 
>= 1) DbpString("write successful"); 
 781 void LegicRfInfo(void){ 
 784         uint32_t tag_type 
= setup_phase_reader(0x55); 
 786         uint16_t card_sz 
= 0; 
 802                         cmd_send(CMD_ACK
,0,0,0,0,0); 
 807         uint8_t uid
[] = {0,0,0,0}; 
 808         for ( uint8_t i 
= 0; i 
< sizeof(uid
); ++i
) { 
 809                 int r 
= legic_read_byte(i
, cmd_sz
); 
 811                         cmd_send(CMD_ACK
,0,0,0,0,0); 
 817         cmd_send(CMD_ACK
,1,card_sz
,0,uid
,sizeof(uid
)); 
 819         switch_off_tag_rwd(); 
 824 /* Handle (whether to respond) a frame in tag mode 
 825  * Only called when simulating a tag. 
 827 static void frame_handle_tag(struct legic_frame 
const * const f
) 
 829         uint8_t *BigBuf 
= BigBuf_get_addr(); 
 831    /* First Part of Handshake (IV) */ 
 837                 ResetTimer(prng_timer
); 
 839         legic_prng_init(f
->data
); 
 840         frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1B */ 
 841         legic_state 
= STATE_IV
; 
 842         legic_read_count 
= 0; 
 844         legic_prng_iv 
= f
->data
; 
 853    if(legic_state 
== STATE_IV
) { 
 854       int local_key 
= get_key_stream(3, 6); 
 855       int xored 
= 0x39 ^ local_key
; 
 856       if((f
->bits 
== 6) && (f
->data 
== xored
)) { 
 857          legic_state 
= STATE_CON
; 
 864          legic_state 
= STATE_DISCON
; 
 866          Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv
, f
->data
, local_key
, xored
); 
 873       if(legic_state 
== STATE_CON
) { 
 874          int key   
= get_key_stream(2, 11); //legic_phase_drift, 11); 
 875          int addr  
= f
->data 
^ key
; addr 
= addr 
>> 1; 
 876          int data 
= BigBuf
[addr
]; 
 877          int hash 
= legic4Crc(LEGIC_READ
, addr
, data
, 11) << 8; 
 878          BigBuf
[OFFSET_LOG
+legic_read_count
] = (uint8_t)addr
; 
 881          //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c); 
 882          legic_prng_forward(legic_reqresp_drift
); 
 884          frame_send_tag(hash 
| data
, 12, 1); 
 887          legic_prng_forward(2); 
 895       int key   
= get_key_stream(-1, 23); //legic_frame_drift, 23); 
 896       int addr  
= f
->data 
^ key
; addr 
= addr 
>> 1; addr 
= addr 
& 0x3ff; 
 897       int data  
= f
->data 
^ key
; data 
= data 
>> 11; data 
= data 
& 0xff; 
 900       legic_state 
= STATE_DISCON
; 
 902       Dbprintf("write - addr: %x, data: %x", addr
, data
); 
 906    if(legic_state 
!= STATE_DISCON
) { 
 907       Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f
->bits
, f
->data
, legic_state
, legic_read_count
); 
 909       Dbprintf("IV: %03.3x", legic_prng_iv
); 
 910       for(i 
= 0; i
<legic_read_count
; i
++) { 
 911          Dbprintf("Read Nb: %u, Addr: %u", i
, BigBuf
[OFFSET_LOG
+i
]); 
 914       for(i 
= -1; i
<legic_read_count
; i
++) { 
 916          t  
= BigBuf
[OFFSET_LOG
+256+i
*4]; 
 917          t 
|= BigBuf
[OFFSET_LOG
+256+i
*4+1] << 8; 
 918          t 
|= BigBuf
[OFFSET_LOG
+256+i
*4+2] <<16; 
 919          t 
|= BigBuf
[OFFSET_LOG
+256+i
*4+3] <<24; 
 921          Dbprintf("Cycles: %u, Frame Length: %u, Time: %u",  
 922             BigBuf
[OFFSET_LOG
+128+i
], 
 923             BigBuf
[OFFSET_LOG
+384+i
], 
 927    legic_state 
= STATE_DISCON
;  
 928    legic_read_count 
= 0; 
 934 /* Read bit by bit untill full frame is received 
 935  * Call to process frame end answer 
 937 static void emit(int bit
) { 
 941                         frame_append_bit(¤t_frame
, 1); 
 944                         frame_append_bit(¤t_frame
, 0); 
 947                         if(current_frame
.bits 
<= 4) { 
 948                                 frame_clean(¤t_frame
); 
 950                                 frame_handle_tag(¤t_frame
); 
 951                                 frame_clean(¤t_frame
); 
 958 void LegicRfSimulate(int phase
, int frame
, int reqresp
) 
 960   /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,  
 961    * modulation mode set to 212kHz subcarrier. We are getting the incoming raw 
 962    * envelope waveform on DIN and should send our response on DOUT. 
 964    * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll 
 965    * measure the time between two rising edges on DIN, and no encoding on the 
 966    * subcarrier from card to reader, so we'll just shift out our verbatim data 
 967    * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear, 
 968    * seems to be 300us-ish. 
 971         legic_phase_drift 
= phase
; 
 972         legic_frame_drift 
= frame
; 
 973         legic_reqresp_drift 
= reqresp
; 
 975         FpgaDownloadAndGo(FPGA_BITSTREAM_HF
); 
 976         SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); 
 978         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR 
| FPGA_HF_SIMULATOR_MODULATE_212K
); 
 980         /* Bitbang the receiver */ 
 981         AT91C_BASE_PIOA
->PIO_ODR 
= GPIO_SSC_DIN
; 
 982         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DIN
; 
 985         crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0); 
 989         legic_state 
= STATE_DISCON
; 
 992         DbpString("Starting Legic emulator, press button to end"); 
 994         while(!BUTTON_PRESS() && !usb_poll_validate_length()) { 
 995                 int level 
= !!(AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_DIN
); 
 996                 int time 
= timer
->TC_CV
; 
 998                 if(level 
!= old_level
) { 
1000                                 timer
->TC_CCR 
= AT91C_TC_CLKEN 
| AT91C_TC_SWTRG
; 
1002                                 if (FUZZ_EQUAL(time
, RWD_TIME_1
, RWD_TIME_FUZZ
)) { 
1007                                 } else if (FUZZ_EQUAL(time
, RWD_TIME_0
, RWD_TIME_FUZZ
)) { 
1012                                 } else if (active
) { 
1022                 if(time 
>= (RWD_TIME_1
+RWD_TIME_FUZZ
) && active
) { 
1028                 if(time 
>= (20*RWD_TIME_1
) && (timer
->TC_SR 
& AT91C_TC_CLKSTA
)) { 
1029                         timer
->TC_CCR 
= AT91C_TC_CLKDIS
; 
1035         if ( MF_DBGLEVEL 
>= 1) DbpString("Stopped"); 
1039 //----------------------------------------------------------------------------- 
1040 // Code up a string of octets at layer 2 (including CRC, we don't generate 
1041 // that here) so that they can be transmitted to the reader. Doesn't transmit 
1042 // them yet, just leaves them ready to send in ToSend[]. 
1043 //----------------------------------------------------------------------------- 
1044 // static void CodeLegicAsTag(const uint8_t *cmd, int len) 
1050         // // Transmit a burst of ones, as the initial thing that lets the 
1051         // // reader get phase sync. This (TR1) must be > 80/fs, per spec, 
1052         // // but tag that I've tried (a Paypass) exceeds that by a fair bit, 
1053         // // so I will too. 
1054         // for(i = 0; i < 20; i++) { 
1055                 // ToSendStuffBit(1); 
1056                 // ToSendStuffBit(1); 
1057                 // ToSendStuffBit(1); 
1058                 // ToSendStuffBit(1); 
1062         // for(i = 0; i < 10; i++) { 
1063                 // ToSendStuffBit(0); 
1064                 // ToSendStuffBit(0); 
1065                 // ToSendStuffBit(0); 
1066                 // ToSendStuffBit(0); 
1068         // for(i = 0; i < 2; i++) { 
1069                 // ToSendStuffBit(1); 
1070                 // ToSendStuffBit(1); 
1071                 // ToSendStuffBit(1); 
1072                 // ToSendStuffBit(1); 
1075         // for(i = 0; i < len; i++) { 
1077                 // uint8_t b = cmd[i]; 
1080                 // ToSendStuffBit(0); 
1081                 // ToSendStuffBit(0); 
1082                 // ToSendStuffBit(0); 
1083                 // ToSendStuffBit(0); 
1086                 // for(j = 0; j < 8; j++) { 
1088                                 // ToSendStuffBit(1); 
1089                                 // ToSendStuffBit(1); 
1090                                 // ToSendStuffBit(1); 
1091                                 // ToSendStuffBit(1); 
1093                                 // ToSendStuffBit(0); 
1094                                 // ToSendStuffBit(0); 
1095                                 // ToSendStuffBit(0); 
1096                                 // ToSendStuffBit(0); 
1102                 // ToSendStuffBit(1); 
1103                 // ToSendStuffBit(1); 
1104                 // ToSendStuffBit(1); 
1105                 // ToSendStuffBit(1); 
1109         // for(i = 0; i < 10; i++) { 
1110                 // ToSendStuffBit(0); 
1111                 // ToSendStuffBit(0); 
1112                 // ToSendStuffBit(0); 
1113                 // ToSendStuffBit(0); 
1115         // for(i = 0; i < 2; i++) { 
1116                 // ToSendStuffBit(1); 
1117                 // ToSendStuffBit(1); 
1118                 // ToSendStuffBit(1); 
1119                 // ToSendStuffBit(1); 
1122         // // Convert from last byte pos to length 
1126 //----------------------------------------------------------------------------- 
1127 // The software UART that receives commands from the reader, and its state 
1129 //----------------------------------------------------------------------------- 
1134                 STATE_GOT_FALLING_EDGE_OF_SOF, 
1135                 STATE_AWAITING_START_BIT, 
1136                 STATE_RECEIVING_DATA 
1146 /* Receive & handle a bit coming from the reader. 
1148  * This function is called 4 times per bit (every 2 subcarrier cycles). 
1149  * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us 
1152  * LED A -> ON once we have received the SOF and are expecting the rest. 
1153  * LED A -> OFF once we have received EOF or are in error state or unsynced 
1155  * Returns: true if we received a EOF 
1156  *          false if we are still waiting for some more 
1158 // static RAMFUNC int HandleLegicUartBit(uint8_t bit) 
1160         // switch(Uart.state) { 
1161                 // case STATE_UNSYNCD: 
1163                                 // // we went low, so this could be the beginning of an SOF 
1164                                 // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; 
1170                 // case STATE_GOT_FALLING_EDGE_OF_SOF: 
1172                         // if(Uart.posCnt == 2) {       // sample every 4 1/fs in the middle of a bit 
1174                                         // if(Uart.bitCnt > 9) { 
1175                                                 // // we've seen enough consecutive 
1176                                                 // // zeros that it's a valid SOF 
1178                                                 // Uart.byteCnt = 0; 
1179                                                 // Uart.state = STATE_AWAITING_START_BIT; 
1180                                                 // LED_A_ON(); // Indicate we got a valid SOF 
1182                                                 // // didn't stay down long enough 
1183                                                 // // before going high, error 
1184                                                 // Uart.state = STATE_UNSYNCD; 
1187                                         // // do nothing, keep waiting 
1191                         // if(Uart.posCnt >= 4) Uart.posCnt = 0; 
1192                         // if(Uart.bitCnt > 12) { 
1193                                 // // Give up if we see too many zeros without 
1196                                 // Uart.state = STATE_UNSYNCD; 
1200                 // case STATE_AWAITING_START_BIT: 
1203                                 // if(Uart.posCnt > 50/2) {     // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs 
1204                                         // // stayed high for too long between 
1205                                         // // characters, error 
1206                                         // Uart.state = STATE_UNSYNCD; 
1209                                 // // falling edge, this starts the data byte 
1212                                 // Uart.shiftReg = 0; 
1213                                 // Uart.state = STATE_RECEIVING_DATA; 
1217                 // case STATE_RECEIVING_DATA: 
1219                         // if(Uart.posCnt == 2) { 
1220                                 // // time to sample a bit 
1221                                 // Uart.shiftReg >>= 1; 
1223                                         // Uart.shiftReg |= 0x200; 
1227                         // if(Uart.posCnt >= 4) { 
1230                         // if(Uart.bitCnt == 10) { 
1231                                 // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) 
1233                                         // // this is a data byte, with correct 
1234                                         // // start and stop bits 
1235                                         // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; 
1238                                         // if(Uart.byteCnt >= Uart.byteCntMax) { 
1239                                                 // // Buffer overflowed, give up 
1241                                                 // Uart.state = STATE_UNSYNCD; 
1243                                                 // // so get the next byte now 
1245                                                 // Uart.state = STATE_AWAITING_START_BIT; 
1247                                 // } else if (Uart.shiftReg == 0x000) { 
1248                                         // // this is an EOF byte 
1249                                         // LED_A_OFF(); // Finished receiving 
1250                                         // Uart.state = STATE_UNSYNCD; 
1251                                         // if (Uart.byteCnt != 0) { 
1255                                         // // this is an error 
1257                                         // Uart.state = STATE_UNSYNCD; 
1264                         // Uart.state = STATE_UNSYNCD; 
1272 static void UartReset() { 
1273         Uart.byteCntMax = 3; 
1274         Uart.state = STATE_UNSYNCD; 
1278         memset(Uart.output, 0x00, 3); 
1281 // static void UartInit(uint8_t *data) { 
1282         // Uart.output = data; 
1286 //============================================================================= 
1287 // An LEGIC reader. We take layer two commands, code them 
1288 // appropriately, and then send them to the tag. We then listen for the 
1289 // tag's response, which we leave in the buffer to be demodulated on the 
1291 //============================================================================= 
1296                 DEMOD_PHASE_REF_TRAINING, 
1297                 DEMOD_AWAITING_FALLING_EDGE_OF_SOF, 
1298                 DEMOD_GOT_FALLING_EDGE_OF_SOF, 
1299                 DEMOD_AWAITING_START_BIT, 
1300                 DEMOD_RECEIVING_DATA 
1313  * Handles reception of a bit from the tag 
1315  * This function is called 2 times per bit (every 4 subcarrier cycles). 
1316  * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us 
1319  * LED C -> ON once we have received the SOF and are expecting the rest. 
1320  * LED C -> OFF once we have received EOF or are unsynced 
1322  * Returns: true if we received a EOF 
1323  *          false if we are still waiting for some more 
1328 static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq) 
1333         int halfci = (ai >> 1); 
1334         int halfcq = (aq >> 1); 
1336         switch(Demod.state) { 
1339                         CHECK_FOR_SUBCARRIER() 
1341                         if(v > SUBCARRIER_DETECT_THRESHOLD) {   // subcarrier detected 
1342                                 Demod.state = DEMOD_PHASE_REF_TRAINING; 
1349                 case DEMOD_PHASE_REF_TRAINING: 
1350                         if(Demod.posCount < 8) { 
1352                                 CHECK_FOR_SUBCARRIER() 
1354                                 if (v > SUBCARRIER_DETECT_THRESHOLD) { 
1355                                         // set the reference phase (will code a logic '1') by averaging over 32 1/fs. 
1356                                         // note: synchronization time > 80 1/fs 
1362                                         Demod.state = DEMOD_UNSYNCD; 
1365                                 Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; 
1369                 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: 
1371                         MAKE_SOFT_DECISION() 
1373                         //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq ); 
1374                         // logic '0' detected 
1377                                 Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; 
1379                                 // start of SOF sequence 
1382                                 // maximum length of TR1 = 200 1/fs 
1383                                 if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD; 
1388                 case DEMOD_GOT_FALLING_EDGE_OF_SOF: 
1391                         MAKE_SOFT_DECISION() 
1394                                 // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges 
1395                                 if(Demod.posCount < 10*2) {  
1396                                         Demod.state = DEMOD_UNSYNCD; 
1398                                         LED_C_ON(); // Got SOF 
1399                                         Demod.state = DEMOD_AWAITING_START_BIT; 
1404                                 // low phase of SOF too long (> 12 etu) 
1405                                 if(Demod.posCount > 13*2) {  
1406                                         Demod.state = DEMOD_UNSYNCD; 
1412                 case DEMOD_AWAITING_START_BIT: 
1415                         MAKE_SOFT_DECISION() 
1418                                 // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs 
1419                                 if(Demod.posCount > 3*2) {  
1420                                         Demod.state = DEMOD_UNSYNCD; 
1424                                 // start bit detected 
1426                                 Demod.posCount = 1;                             // this was the first half 
1429                                 Demod.state = DEMOD_RECEIVING_DATA; 
1433                 case DEMOD_RECEIVING_DATA: 
1435                         MAKE_SOFT_DECISION() 
1437                         if(Demod.posCount == 0) { 
1438                                 // first half of bit 
1442                                 // second half of bit 
1444                                 Demod.shiftReg >>= 1; 
1446                                 if(Demod.thisBit > 0)  
1447                                         Demod.shiftReg |= 0x200; 
1451                                 if(Demod.bitCount == 10) { 
1453                                         uint16_t s = Demod.shiftReg; 
1455                                         if((s & 0x200) && !(s & 0x001)) {  
1456                                                 // stop bit == '1', start bit == '0' 
1457                                                 uint8_t b = (s >> 1); 
1458                                                 Demod.output[Demod.len] = b; 
1460                                                 Demod.state = DEMOD_AWAITING_START_BIT; 
1462                                                 Demod.state = DEMOD_UNSYNCD; 
1466                                                         // This is EOF (start, stop and all data bits == '0' 
1476                         Demod.state = DEMOD_UNSYNCD; 
1484 // Clear out the state of the "UART" that receives from the tag. 
1485 static void DemodReset() { 
1487         Demod.state = DEMOD_UNSYNCD; 
1494         memset(Demod.output, 0x00, 3); 
1497 static void DemodInit(uint8_t *data) { 
1498         Demod.output = data; 
1504  *  Demodulate the samples we received from the tag, also log to tracebuffer 
1505  *  quiet: set to 'TRUE' to disable debug output 
1509  #define LEGIC_DMA_BUFFER_SIZE 256 
1511  static void GetSamplesForLegicDemod(int n, bool quiet) 
1514         bool gotFrame = FALSE; 
1515         int lastRxCounter = LEGIC_DMA_BUFFER_SIZE; 
1516         int     ci, cq, samples = 0; 
1520         // And put the FPGA in the appropriate mode 
1521         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ); 
1523         // The response (tag -> reader) that we're receiving. 
1524         // Set up the demodulator for tag -> reader responses. 
1525         DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); 
1527         // The DMA buffer, used to stream samples from the FPGA 
1528         int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE); 
1529         int8_t *upTo = dmaBuf; 
1531         // Setup and start DMA. 
1532         if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){ 
1533                 if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");  
1537         // Signal field is ON with the appropriate LED: 
1540                 int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR; 
1541                 if(behindBy > max) max = behindBy; 
1543                 while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) { 
1547                         if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) { 
1549                                 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; 
1550                                 AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE; 
1553                         if(lastRxCounter <= 0) 
1554                                 lastRxCounter = LEGIC_DMA_BUFFER_SIZE; 
1558                         gotFrame = HandleLegicSamplesDemod(ci , cq ); 
1563                 if(samples > n || gotFrame) 
1567         FpgaDisableSscDma(); 
1569         if (!quiet && Demod.len == 0) { 
1570                 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", 
1581         if (Demod.len > 0) { 
1582                 uint8_t parity[MAX_PARITY_SIZE] = {0x00}; 
1583                 LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE); 
1589 //----------------------------------------------------------------------------- 
1590 // Transmit the command (to the tag) that was placed in ToSend[]. 
1591 //----------------------------------------------------------------------------- 
1593 static void TransmitForLegic(void) 
1599         while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) 
1600                 AT91C_BASE_SSC->SSC_THR = 0xff; 
1602         // Signal field is ON with the appropriate Red LED 
1605         // Signal we are transmitting with the Green LED 
1607         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); 
1609         for(c = 0; c < 10;) { 
1610                 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { 
1611                         AT91C_BASE_SSC->SSC_THR = 0xff; 
1614                 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { 
1615                         volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; 
1623                 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { 
1624                         AT91C_BASE_SSC->SSC_THR = ToSend[c]; 
1625                         legic_prng_forward(1); // forward the lfsr  
1627                         if(c >= ToSendMax) { 
1631                 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { 
1632                         volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; 
1641 //----------------------------------------------------------------------------- 
1642 // Code a layer 2 command (string of octets, including CRC) into ToSend[], 
1643 // so that it is ready to transmit to the tag using TransmitForLegic(). 
1644 //----------------------------------------------------------------------------- 
1646 static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) 
1654         for(i = 0; i < 7; i++) 
1658         for(i = 0; i < cmdlen; i++) { 
1664                 for(j = 0; j < bits; j++) { 
1674         // Convert from last character reference to length 
1679   Convenience function to encode, transmit and trace Legic comms 
1682   static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) 
1684         CodeLegicBitsAsReader(cmd, cmdlen, bits); 
1687                 uint8_t parity[1] = {0x00}; 
1688                 LogTrace(cmd, cmdlen, 0, 0, parity, TRUE); 
1693 // Set up LEGIC communication 
1695 void ice_legic_setup() { 
1698         FpgaDownloadAndGo(FPGA_BITSTREAM_HF); 
1699         BigBuf_free(); BigBuf_Clear_ext(false); 
1705         // Set up the synchronous serial port 
1708         // connect Demodulated Signal to ADC: 
1709         SetAdcMuxFor(GPIO_MUXSEL_HIPKD); 
1711         // Signal field is on with the appropriate LED 
1713         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); 
1716         //StartCountSspClk(); 
1719         crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);