1 //----------------------------------------------------------------------------- 
   2 // This code is licensed to you under the terms of the GNU GPL, version 2 or, 
   3 // at your option, any later version. See the LICENSE.txt file for the text of 
   5 //----------------------------------------------------------------------------- 
   6 // Miscellaneous routines for low frequency tag operations. 
   7 // Tags supported here so far are Texas Instruments (TI), HID 
   8 // Also routines for raw mode reading/simulating of LF waveform 
   9 //----------------------------------------------------------------------------- 
  11 #include "proxmark3.h" 
  18 #include "lfsampling.h" 
  23  * Function to do a modulation and then get samples. 
  29 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
) 
  32     int divisor_used 
= 95; // 125 KHz 
  33     // see if 'h' was specified 
  35     if (command
[strlen((char *) command
) - 1] == 'h') 
  36         divisor_used 
= 88; // 134.8 KHz 
  38         sample_config sc 
= { 0,0,1, divisor_used
, 0}; 
  39         setSamplingConfig(&sc
); 
  41         /* Make sure the tag is reset */ 
  42         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
  43         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
  46         LFSetupFPGAForADC(sc
.divisor
, 1); 
  48         // And a little more time for the tag to fully power up 
  51     // now modulate the reader field 
  52     while(*command 
!= '\0' && *command 
!= ' ') { 
  53         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
  55         SpinDelayUs(delay_off
); 
  56                 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
); 
  58         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
  60         if(*(command
++) == '0') 
  61             SpinDelayUs(period_0
); 
  63             SpinDelayUs(period_1
); 
  65     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
  67     SpinDelayUs(delay_off
); 
  68         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
); 
  70     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
  73         DoAcquisition_config(false); 
  78 /* blank r/w tag data stream 
  79 ...0000000000000000 01111111 
  80 1010101010101010101010101010101010101010101010101010101010101010 
  83 101010101010101[0]000... 
  85 [5555fe852c5555555555555555fe0000] 
  89     // some hardcoded initial params 
  90     // when we read a TI tag we sample the zerocross line at 2Mhz 
  91     // TI tags modulate a 1 as 16 cycles of 123.2Khz 
  92     // TI tags modulate a 0 as 16 cycles of 134.2Khz 
  93  #define FSAMPLE 2000000 
  97     signed char *dest 
= (signed char *)BigBuf_get_addr(); 
  98     uint16_t n 
= BigBuf_max_traceLen(); 
  99     // 128 bit shift register [shift3:shift2:shift1:shift0] 
 100     uint32_t shift3 
= 0, shift2 
= 0, shift1 
= 0, shift0 
= 0; 
 102     int i
, cycles
=0, samples
=0; 
 103     // how many sample points fit in 16 cycles of each frequency 
 104     uint32_t sampleslo 
= (FSAMPLE
<<4)/FREQLO
, sampleshi 
= (FSAMPLE
<<4)/FREQHI
; 
 105     // when to tell if we're close enough to one freq or another 
 106     uint32_t threshold 
= (sampleslo 
- sampleshi 
+ 1)>>1; 
 108     // TI tags charge at 134.2Khz 
 109     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 110     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
 112     // Place FPGA in passthrough mode, in this mode the CROSS_LO line 
 113     // connects to SSP_DIN and the SSP_DOUT logic level controls 
 114     // whether we're modulating the antenna (high) 
 115     // or listening to the antenna (low) 
 116     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
); 
 118     // get TI tag data into the buffer 
 121     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 123     for (i
=0; i
<n
-1; i
++) { 
 124         // count cycles by looking for lo to hi zero crossings 
 125         if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) { 
 127             // after 16 cycles, measure the frequency 
 130                 samples
=i
-samples
; // number of samples in these 16 cycles 
 132                 // TI bits are coming to us lsb first so shift them 
 133                 // right through our 128 bit right shift register 
 134                 shift0 
= (shift0
>>1) | (shift1 
<< 31); 
 135                 shift1 
= (shift1
>>1) | (shift2 
<< 31); 
 136                 shift2 
= (shift2
>>1) | (shift3 
<< 31); 
 139                 // check if the cycles fall close to the number 
 140                 // expected for either the low or high frequency 
 141                 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) { 
 142                     // low frequency represents a 1 
 144                 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) { 
 145                     // high frequency represents a 0 
 147                     // probably detected a gay waveform or noise 
 148                     // use this as gaydar or discard shift register and start again 
 149                     shift3 
= shift2 
= shift1 
= shift0 
= 0; 
 153                 // for each bit we receive, test if we've detected a valid tag 
 155                 // if we see 17 zeroes followed by 6 ones, we might have a tag 
 156                 // remember the bits are backwards 
 157                 if ( ((shift0 
& 0x7fffff) == 0x7e0000) ) { 
 158                     // if start and end bytes match, we have a tag so break out of the loop 
 159                     if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) { 
 160                         cycles 
= 0xF0B; //use this as a flag (ugly but whatever) 
 168     // if flag is set we have a tag 
 170         DbpString("Info: No valid tag detected."); 
 172         // put 64 bit data into shift1 and shift0 
 173         shift0 
= (shift0
>>24) | (shift1 
<< 8); 
 174         shift1 
= (shift1
>>24) | (shift2 
<< 8); 
 176         // align 16 bit crc into lower half of shift2 
 177         shift2 
= ((shift2
>>24) | (shift3 
<< 8)) & 0x0ffff; 
 179         // if r/w tag, check ident match 
 180                 if (shift3 
& (1<<15) ) { 
 181             DbpString("Info: TI tag is rewriteable"); 
 182             // only 15 bits compare, last bit of ident is not valid 
 183                         if (((shift3 
>> 16) ^ shift0
) & 0x7fff ) { 
 184                 DbpString("Error: Ident mismatch!"); 
 186                 DbpString("Info: TI tag ident is valid"); 
 189             DbpString("Info: TI tag is readonly"); 
 192         // WARNING the order of the bytes in which we calc crc below needs checking 
 193         // i'm 99% sure the crc algorithm is correct, but it may need to eat the 
 194         // bytes in reverse or something 
 198         crc 
= update_crc16(crc
, (shift0
)&0xff); 
 199         crc 
= update_crc16(crc
, (shift0
>>8)&0xff); 
 200         crc 
= update_crc16(crc
, (shift0
>>16)&0xff); 
 201         crc 
= update_crc16(crc
, (shift0
>>24)&0xff); 
 202         crc 
= update_crc16(crc
, (shift1
)&0xff); 
 203         crc 
= update_crc16(crc
, (shift1
>>8)&0xff); 
 204         crc 
= update_crc16(crc
, (shift1
>>16)&0xff); 
 205         crc 
= update_crc16(crc
, (shift1
>>24)&0xff); 
 207         Dbprintf("Info: Tag data: %x%08x, crc=%x", 
 208                  (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2 
& 0xFFFF); 
 209         if (crc 
!= (shift2
&0xffff)) { 
 210             Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
); 
 212             DbpString("Info: CRC is good"); 
 217 void WriteTIbyte(uint8_t b
) 
 221     // modulate 8 bits out to the antenna 
 225             // stop modulating antenna 
 232             // stop modulating antenna 
 242 void AcquireTiType(void) 
 245     // tag transmission is <20ms, sampling at 2M gives us 40K samples max 
 246     // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t 
 247  #define TIBUFLEN 1250 
 250         uint32_t *BigBuf 
= (uint32_t *)BigBuf_get_addr(); 
 251     memset(BigBuf
,0,BigBuf_max_traceLen()/sizeof(uint32_t)); 
 253     // Set up the synchronous serial port 
 254     AT91C_BASE_PIOA
->PIO_PDR 
= GPIO_SSC_DIN
; 
 255     AT91C_BASE_PIOA
->PIO_ASR 
= GPIO_SSC_DIN
; 
 257     // steal this pin from the SSP and use it to control the modulation 
 258     AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 259     AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 261     AT91C_BASE_SSC
->SSC_CR 
= AT91C_SSC_SWRST
; 
 262     AT91C_BASE_SSC
->SSC_CR 
= AT91C_SSC_RXEN 
| AT91C_SSC_TXEN
; 
 264     // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long 
 265     // 48/2 = 24 MHz clock must be divided by 12 
 266     AT91C_BASE_SSC
->SSC_CMR 
= 12; 
 268     AT91C_BASE_SSC
->SSC_RCMR 
= SSC_CLOCK_MODE_SELECT(0); 
 269     AT91C_BASE_SSC
->SSC_RFMR 
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
; 
 270     AT91C_BASE_SSC
->SSC_TCMR 
= 0; 
 271     AT91C_BASE_SSC
->SSC_TFMR 
= 0; 
 278     // Charge TI tag for 50ms. 
 281     // stop modulating antenna and listen 
 288         if(AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
 289             BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
;        // store 32 bit values in buffer 
 290             i
++; if(i 
>= TIBUFLEN
) break; 
 295     // return stolen pin to SSP 
 296     AT91C_BASE_PIOA
->PIO_PDR 
= GPIO_SSC_DOUT
; 
 297     AT91C_BASE_PIOA
->PIO_ASR 
= GPIO_SSC_DIN 
| GPIO_SSC_DOUT
; 
 299     char *dest 
= (char *)BigBuf_get_addr(); 
 302     for (i
=TIBUFLEN
-1; i
>=0; i
--) { 
 303         for (j
=0; j
<32; j
++) { 
 304             if(BigBuf
[i
] & (1 << j
)) { 
 313 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc 
 314 // if crc provided, it will be written with the data verbatim (even if bogus) 
 315 // if not provided a valid crc will be computed from the data and written. 
 316 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
) 
 318     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 320         crc 
= update_crc16(crc
, (idlo
)&0xff); 
 321         crc 
= update_crc16(crc
, (idlo
>>8)&0xff); 
 322         crc 
= update_crc16(crc
, (idlo
>>16)&0xff); 
 323         crc 
= update_crc16(crc
, (idlo
>>24)&0xff); 
 324         crc 
= update_crc16(crc
, (idhi
)&0xff); 
 325         crc 
= update_crc16(crc
, (idhi
>>8)&0xff); 
 326         crc 
= update_crc16(crc
, (idhi
>>16)&0xff); 
 327         crc 
= update_crc16(crc
, (idhi
>>24)&0xff); 
 329     Dbprintf("Writing to tag: %x%08x, crc=%x", 
 330              (unsigned int) idhi
, (unsigned int) idlo
, crc
); 
 332     // TI tags charge at 134.2Khz 
 333     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
 334     // Place FPGA in passthrough mode, in this mode the CROSS_LO line 
 335     // connects to SSP_DIN and the SSP_DOUT logic level controls 
 336     // whether we're modulating the antenna (high) 
 337     // or listening to the antenna (low) 
 338     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
); 
 341     // steal this pin from the SSP and use it to control the modulation 
 342     AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 343     AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 345     // writing algorithm: 
 346     // a high bit consists of a field off for 1ms and field on for 1ms 
 347     // a low bit consists of a field off for 0.3ms and field on for 1.7ms 
 348     // initiate a charge time of 50ms (field on) then immediately start writing bits 
 349     // start by writing 0xBB (keyword) and 0xEB (password) 
 350     // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) 
 351     // finally end with 0x0300 (write frame) 
 352     // all data is sent lsb firts 
 353     // finish with 15ms programming time 
 357     SpinDelay(50);      // charge time 
 359     WriteTIbyte(0xbb); // keyword 
 360     WriteTIbyte(0xeb); // password 
 361     WriteTIbyte( (idlo    
)&0xff ); 
 362     WriteTIbyte( (idlo
>>8 )&0xff ); 
 363     WriteTIbyte( (idlo
>>16)&0xff ); 
 364     WriteTIbyte( (idlo
>>24)&0xff ); 
 365     WriteTIbyte( (idhi    
)&0xff ); 
 366     WriteTIbyte( (idhi
>>8 )&0xff ); 
 367     WriteTIbyte( (idhi
>>16)&0xff ); 
 368     WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo 
 369     WriteTIbyte( (crc     
)&0xff ); // crc lo 
 370     WriteTIbyte( (crc
>>8  )&0xff ); // crc hi 
 371     WriteTIbyte(0x00); // write frame lo 
 372     WriteTIbyte(0x03); // write frame hi 
 374     SpinDelay(50);      // programming time 
 378     // get TI tag data into the buffer 
 381     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 382     DbpString("Now use tiread to check"); 
 385 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
) 
 388     uint8_t *tab 
= BigBuf_get_addr(); 
 390     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 391     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
); 
 393     AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT 
| GPIO_SSC_CLK
; 
 395     AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 396     AT91C_BASE_PIOA
->PIO_ODR 
= GPIO_SSC_CLK
; 
 398  #define SHORT_COIL()   LOW(GPIO_SSC_DOUT) 
 399  #define OPEN_COIL()            HIGH(GPIO_SSC_DOUT) 
 403         //wait until SSC_CLK goes HIGH 
 404         while(!(AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_CLK
)) { 
 405                         if(BUTTON_PRESS() || usb_poll()) { 
 406                 DbpString("Stopped"); 
 421         //wait until SSC_CLK goes LOW 
 422         while(AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_CLK
) { 
 424                 DbpString("Stopped"); 
 442 #define DEBUG_FRAME_CONTENTS 1 
 443 void SimulateTagLowFrequencyBidir(int divisor
, int t0
) 
 447 // compose fc/8 fc/10 waveform (FSK2) 
 448 static void fc(int c
, int *n
) 
 450     uint8_t *dest 
= BigBuf_get_addr(); 
 453     // for when we want an fc8 pattern every 4 logical bits 
 465     //  an fc/8  encoded bit is a bit pattern of  11110000  x6 = 48 samples 
 467         for (idx
=0; idx
<6; idx
++) { 
 479     //  an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples 
 481         for (idx
=0; idx
<5; idx
++) { 
 495 // compose fc/X fc/Y waveform (FSKx) 
 496 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)  
 498     uint8_t *dest 
= BigBuf_get_addr(); 
 499     uint8_t halfFC 
= fc
/2; 
 500     uint8_t wavesPerClock 
= clock
/fc
; 
 501     uint8_t mod 
= clock 
% fc
;    //modifier 
 502     uint8_t modAdj 
= fc
/mod
;     //how often to apply modifier 
 503     bool modAdjOk 
= !(fc 
% mod
); //if (fc % mod==0) modAdjOk=TRUE; 
 504     // loop through clock - step field clock 
 505     for (uint8_t idx
=0; idx 
< wavesPerClock
; idx
++){ 
 506         // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) 
 507         memset(dest
+(*n
), 0, fc
-halfFC
);  //in case of odd number use extra here 
 508         memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
); 
 511     if (mod
>0) (*modCnt
)++; 
 512     if ((mod
>0) && modAdjOk
){  //fsk2  
 513         if ((*modCnt 
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave 
 514             memset(dest
+(*n
), 0, fc
-halfFC
); 
 515             memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
); 
 519     if (mod
>0 && !modAdjOk
){  //fsk1 
 520         memset(dest
+(*n
), 0, mod
-(mod
/2)); 
 521         memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2); 
 526 // prepare a waveform pattern in the buffer based on the ID given then 
 527 // simulate a HID tag until the button is pressed 
 528 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
) 
 532      HID tag bitstream format 
 533      The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits 
 534      A 1 bit is represented as 6 fc8 and 5 fc10 patterns 
 535      A 0 bit is represented as 5 fc10 and 6 fc8 patterns 
 536      A fc8 is inserted before every 4 bits 
 537      A special start of frame pattern is used consisting a0b0 where a and b are neither 0 
 538      nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) 
 542         DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags"); 
 546     // special start of frame marker containing invalid bit sequences 
 547     fc(8,  &n
); fc(8,  &n
);     // invalid 
 548     fc(8,  &n
); fc(10, &n
); // logical 0 
 549     fc(10, &n
); fc(10, &n
); // invalid 
 550     fc(8,  &n
); fc(10, &n
); // logical 0 
 553     // manchester encode bits 43 to 32 
 554     for (i
=11; i
>=0; i
--) { 
 555         if ((i%4
)==3) fc(0,&n
); 
 557             fc(10, &n
); fc(8,  &n
);             // low-high transition 
 559             fc(8,  &n
); fc(10, &n
);             // high-low transition 
 564     // manchester encode bits 31 to 0 
 565     for (i
=31; i
>=0; i
--) { 
 566         if ((i%4
)==3) fc(0,&n
); 
 568             fc(10, &n
); fc(8,  &n
);             // low-high transition 
 570             fc(8,  &n
); fc(10, &n
);             // high-low transition 
 576     SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 582 // prepare a waveform pattern in the buffer based on the ID given then 
 583 // simulate a FSK tag until the button is pressed 
 584 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock 
 585 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
) 
 589     uint8_t fcHigh 
= arg1 
>> 8; 
 590     uint8_t fcLow 
= arg1 
& 0xFF; 
 592     uint8_t clk 
= arg2 
& 0xFF; 
 593     uint8_t invert 
= (arg2 
>> 8) & 1; 
 595     for (i
=0; i
<size
; i
++){ 
 596         if (BitStream
[i
] == invert
){ 
 597             fcAll(fcLow
, &n
, clk
, &modCnt
); 
 599             fcAll(fcHigh
, &n
, clk
, &modCnt
); 
 602     Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh
, fcLow
, clk
, invert
, n
); 
 603     /*Dbprintf("DEBUG: First 32:"); 
 604     uint8_t *dest = BigBuf_get_addr(); 
 606     Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 608     Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 613     SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 619 // compose ask waveform for one bit(ASK) 
 620 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)  
 622     uint8_t *dest 
= BigBuf_get_addr(); 
 623     uint8_t halfClk 
= clock
/2; 
 624     // c = current bit 1 or 0 
 626         memset(dest
+(*n
), c
, halfClk
); 
 627         memset(dest
+(*n
) + halfClk
, c
^1, halfClk
); 
 629         memset(dest
+(*n
), c
, clock
); 
 634 // args clock, ask/man or askraw, invert, transmission separator 
 635 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
) 
 639     uint8_t clk 
= (arg1 
>> 8) & 0xFF; 
 640     uint8_t manchester 
= arg1 
& 1; 
 641     uint8_t separator 
= arg2 
& 1; 
 642     uint8_t invert 
= (arg2 
>> 8) & 1; 
 643     for (i
=0; i
<size
; i
++){ 
 644         askSimBit(BitStream
[i
]^invert
, &n
, clk
, manchester
); 
 646     if (manchester
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for biphase phase) 
 647         for (i
=0; i
<size
; i
++){ 
 648             askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, manchester
); 
 651     if (separator
==1) Dbprintf("sorry but separator option not yet available");  
 653     Dbprintf("Simulating with clk: %d, invert: %d, manchester: %d, separator: %d, n: %d",clk
, invert
, manchester
, separator
, n
); 
 655     //Dbprintf("First 32:"); 
 656     //uint8_t *dest = BigBuf_get_addr(); 
 658     //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 660     //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 665     SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 671 //carrier can be 2,4 or 8 
 672 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
) 
 674     uint8_t *dest 
= BigBuf_get_addr(); 
 675     uint8_t halfWave 
= waveLen
/2; 
 679         // write phase change 
 680         memset(dest
+(*n
), *curPhase
^1, halfWave
); 
 681         memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
); 
 686     //write each normal clock wave for the clock duration 
 687     for (; i 
< clk
; i
+=waveLen
){ 
 688         memset(dest
+(*n
), *curPhase
, halfWave
); 
 689         memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
); 
 694 // args clock, carrier, invert, 
 695 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
) 
 699     uint8_t clk 
= arg1 
>> 8; 
 700     uint8_t carrier 
= arg1 
& 0xFF; 
 701     uint8_t invert 
= arg2 
& 0xFF; 
 702     uint8_t curPhase 
= 0; 
 703     for (i
=0; i
<size
; i
++){ 
 704         if (BitStream
[i
] == curPhase
){ 
 705             pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
); 
 707             pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
); 
 710     Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
); 
 711     //Dbprintf("DEBUG: First 32:"); 
 712     //uint8_t *dest = BigBuf_get_addr(); 
 714     //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 716     //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 720     SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 726 // loop to get raw HID waveform then FSK demodulate the TAG ID from it 
 727 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 729     uint8_t *dest 
= BigBuf_get_addr(); 
 730     const size_t sizeOfBigBuff 
= BigBuf_max_traceLen(); 
 732     uint32_t hi2
=0, hi
=0, lo
=0; 
 734     // Configure to go in 125Khz listen mode 
 735     LFSetupFPGAForADC(95, true); 
 737     while(!BUTTON_PRESS()) { 
 740         if (ledcontrol
) LED_A_ON(); 
 742                 DoAcquisition_default(-1,true); 
 744         size 
= sizeOfBigBuff
;  //variable size will change after demod so re initialize it before use 
 745                 idx 
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
); 
 748             // final loop, go over previously decoded manchester data and decode into usable tag ID 
 749             // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 
 750             if (hi2 
!= 0){ //extra large HID tags 
 751                 Dbprintf("TAG ID: %x%08x%08x (%d)", 
 752                          (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF); 
 753             }else {  //standard HID tags <38 bits 
 754                 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd 
 757                 uint32_t cardnum 
= 0; 
 758                                 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used 
 760                     lo2
=(((hi 
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit 
 762                                         while(lo2 
> 1){ //find last bit set to 1 (format len bit) 
 770                         cardnum 
= (lo
>>1)&0xFFFF; 
 774                         cardnum 
= (lo
>>1)&0x7FFFF; 
 775                         fc 
= ((hi
&0xF)<<12)|(lo
>>20); 
 778                         cardnum 
= (lo
>>1)&0xFFFF; 
 779                         fc
= ((hi
&1)<<15)|(lo
>>17); 
 782                         cardnum 
= (lo
>>1)&0xFFFFF; 
 783                         fc 
= ((hi
&1)<<11)|(lo
>>21); 
 786                 else { //if bit 38 is not set then 37 bit format is used 
 791                         cardnum 
= (lo
>>1)&0x7FFFF; 
 792                         fc 
= ((hi
&0xF)<<12)|(lo
>>20); 
 795                 //Dbprintf("TAG ID: %x%08x (%d)", 
 796                 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); 
 797                 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", 
 798                          (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF, 
 799                          (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
); 
 802                 if (ledcontrol
) LED_A_OFF(); 
 812     DbpString("Stopped"); 
 813     if (ledcontrol
) LED_A_OFF(); 
 816 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
) 
 818     uint8_t *dest 
= BigBuf_get_addr(); 
 820         size_t size
=0, idx
=0; 
 821     int clk
=0, invert
=0, errCnt
=0, maxErr
=20; 
 823     // Configure to go in 125Khz listen mode 
 824     LFSetupFPGAForADC(95, true); 
 826     while(!BUTTON_PRESS()) { 
 829         if (ledcontrol
) LED_A_ON(); 
 831                 DoAcquisition_default(-1,true); 
 832                 size  
= BigBuf_max_traceLen(); 
 833         //Dbprintf("DEBUG: Buffer got"); 
 834                 //askdemod and manchester decode 
 835                 errCnt 
= askmandemod(dest
, &size
, &clk
, &invert
, maxErr
); 
 836         //Dbprintf("DEBUG: ASK Got"); 
 840                         lo 
= Em410xDecode(dest
, &size
, &idx
); 
 841             //Dbprintf("DEBUG: EM GOT"); 
 843                                 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", 
 846                                     (uint32_t)(lo
&0xFFFF), 
 847                                     (uint32_t)((lo
>>16LL) & 0xFF), 
 848                                     (uint32_t)(lo 
& 0xFFFFFF)); 
 851                 if (ledcontrol
) LED_A_OFF(); 
 853                 *low
=lo 
& 0xFFFFFFFF; 
 857             //Dbprintf("DEBUG: No Tag"); 
 866     DbpString("Stopped"); 
 867     if (ledcontrol
) LED_A_OFF(); 
 870 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 872     uint8_t *dest 
= BigBuf_get_addr(); 
 874     uint32_t code
=0, code2
=0; 
 876     uint8_t facilitycode
=0; 
 878     // Configure to go in 125Khz listen mode 
 879     LFSetupFPGAForADC(95, true); 
 881     while(!BUTTON_PRESS()) { 
 883         if (ledcontrol
) LED_A_ON(); 
 884                 DoAcquisition_default(-1,true); 
 885                 //fskdemod and get start index 
 887         idx 
= IOdemodFSK(dest
, BigBuf_max_traceLen()); 
 892             //0           10          20          30          40          50          60 
 894             //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 
 895             //----------------------------------------------------------------------------- 
 896             //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 
 898             //XSF(version)facility:codeone+codetwo 
 900             if(findone
){ //only print binary if we are doing one 
 901                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
],   dest
[idx
+1],   dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]); 
 902                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]); 
 903                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]); 
 904                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]); 
 905                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]); 
 906                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]); 
 907                 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]); 
 909             code 
= bytebits_to_byte(dest
+idx
,32); 
 910             code2 
= bytebits_to_byte(dest
+idx
+32,32); 
 911             version 
= bytebits_to_byte(dest
+idx
+27,8); //14,4 
 912             facilitycode 
= bytebits_to_byte(dest
+idx
+18,8) ; 
 913             number 
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9 
 915             Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
); 
 916             // if we're only looking for one tag 
 918                 if (ledcontrol
) LED_A_OFF(); 
 925             version
=facilitycode
=0; 
 931     DbpString("Stopped"); 
 932     if (ledcontrol
) LED_A_OFF(); 
 935 /*------------------------------ 
 936  * T5555/T5557/T5567 routines 
 937  *------------------------------ 
 940 /* T55x7 configuration register definitions */ 
 941 #define T55x7_POR_DELAY                 0x00000001 
 942 #define T55x7_ST_TERMINATOR             0x00000008 
 943 #define T55x7_PWD                       0x00000010 
 944 #define T55x7_MAXBLOCK_SHIFT            5 
 945 #define T55x7_AOR                       0x00000200 
 946 #define T55x7_PSKCF_RF_2                0 
 947 #define T55x7_PSKCF_RF_4                0x00000400 
 948 #define T55x7_PSKCF_RF_8                0x00000800 
 949 #define T55x7_MODULATION_DIRECT         0 
 950 #define T55x7_MODULATION_PSK1           0x00001000 
 951 #define T55x7_MODULATION_PSK2           0x00002000 
 952 #define T55x7_MODULATION_PSK3           0x00003000 
 953 #define T55x7_MODULATION_FSK1           0x00004000 
 954 #define T55x7_MODULATION_FSK2           0x00005000 
 955 #define T55x7_MODULATION_FSK1a          0x00006000 
 956 #define T55x7_MODULATION_FSK2a          0x00007000 
 957 #define T55x7_MODULATION_MANCHESTER     0x00008000 
 958 #define T55x7_MODULATION_BIPHASE        0x00010000 
 959 #define T55x7_BITRATE_RF_8              0 
 960 #define T55x7_BITRATE_RF_16             0x00040000 
 961 #define T55x7_BITRATE_RF_32             0x00080000 
 962 #define T55x7_BITRATE_RF_40             0x000C0000 
 963 #define T55x7_BITRATE_RF_50             0x00100000 
 964 #define T55x7_BITRATE_RF_64             0x00140000 
 965 #define T55x7_BITRATE_RF_100            0x00180000 
 966 #define T55x7_BITRATE_RF_128            0x001C0000 
 968 /* T5555 (Q5) configuration register definitions */ 
 969 #define T5555_ST_TERMINATOR             0x00000001 
 970 #define T5555_MAXBLOCK_SHIFT            0x00000001 
 971 #define T5555_MODULATION_MANCHESTER     0 
 972 #define T5555_MODULATION_PSK1           0x00000010 
 973 #define T5555_MODULATION_PSK2           0x00000020 
 974 #define T5555_MODULATION_PSK3           0x00000030 
 975 #define T5555_MODULATION_FSK1           0x00000040 
 976 #define T5555_MODULATION_FSK2           0x00000050 
 977 #define T5555_MODULATION_BIPHASE        0x00000060 
 978 #define T5555_MODULATION_DIRECT         0x00000070 
 979 #define T5555_INVERT_OUTPUT             0x00000080 
 980 #define T5555_PSK_RF_2                  0 
 981 #define T5555_PSK_RF_4                  0x00000100 
 982 #define T5555_PSK_RF_8                  0x00000200 
 983 #define T5555_USE_PWD                   0x00000400 
 984 #define T5555_USE_AOR                   0x00000800 
 985 #define T5555_BITRATE_SHIFT             12 
 986 #define T5555_FAST_WRITE                0x00004000 
 987 #define T5555_PAGE_SELECT               0x00008000 
 990  * Relevant times in microsecond 
 991  * To compensate antenna falling times shorten the write times 
 992  * and enlarge the gap ones. 
 994 #define START_GAP 250 
 995 #define WRITE_GAP 160 
 996 #define WRITE_0   144 // 192 
 997 #define WRITE_1   400 // 432 for T55x7; 448 for E5550 
 999 // Write one bit to card 
1000 void T55xxWriteBit(int bit
) 
1002     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
1003     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1004     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1006         SpinDelayUs(WRITE_0
); 
1008         SpinDelayUs(WRITE_1
); 
1009     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1010     SpinDelayUs(WRITE_GAP
); 
1013 // Write one card block in page 0, no lock 
1014 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
) 
1016     //unsigned int i;  //enio adjustment 12/10/14 
1019     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
1020     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1021     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1023     // Give it a bit of time for the resonant antenna to settle. 
1024     // And for the tag to fully power up 
1027     // Now start writting 
1028     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1029     SpinDelayUs(START_GAP
); 
1033     T55xxWriteBit(0); //Page 0 
1036         for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1037             T55xxWriteBit(Pwd 
& i
); 
1043     for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1044         T55xxWriteBit(Data 
& i
); 
1047     for (i 
= 0x04; i 
!= 0; i 
>>= 1) 
1048         T55xxWriteBit(Block 
& i
); 
1050     // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, 
1051     // so wait a little more) 
1052     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1053     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1055     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1058 // Read one card block in page 0 
1059 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
) 
1061     uint8_t *dest 
= BigBuf_get_addr(); 
1062     //int m=0, i=0; //enio adjustment 12/10/14 
1064     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
1065     m 
= BigBuf_max_traceLen(); 
1066     // Clear destination buffer before sending the command 
1067     memset(dest
, 128, m
); 
1068     // Connect the A/D to the peak-detected low-frequency path. 
1069     SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
1070     // Now set up the SSC to get the ADC samples that are now streaming at us. 
1074     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1075     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1077     // Give it a bit of time for the resonant antenna to settle. 
1078     // And for the tag to fully power up 
1081     // Now start writting 
1082     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1083     SpinDelayUs(START_GAP
); 
1087     T55xxWriteBit(0); //Page 0 
1090         for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1091             T55xxWriteBit(Pwd 
& i
); 
1096     for (i 
= 0x04; i 
!= 0; i 
>>= 1) 
1097         T55xxWriteBit(Block 
& i
); 
1099     // Turn field on to read the response 
1100     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1101     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1103     // Now do the acquisition 
1106         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1107             AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1109         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1110             dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1111             // we don't care about actual value, only if it's more or less than a 
1112             // threshold essentially we capture zero crossings for later analysis 
1113             //                  if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; 
1119     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1124 // Read card traceability data (page 1) 
1125 void T55xxReadTrace(void){ 
1126     uint8_t *dest 
= BigBuf_get_addr(); 
1129     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
1130     m 
= BigBuf_max_traceLen(); 
1131     // Clear destination buffer before sending the command 
1132     memset(dest
, 128, m
); 
1133     // Connect the A/D to the peak-detected low-frequency path. 
1134     SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
1135     // Now set up the SSC to get the ADC samples that are now streaming at us. 
1139     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1140     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1142     // Give it a bit of time for the resonant antenna to settle. 
1143     // And for the tag to fully power up 
1146     // Now start writting 
1147     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1148     SpinDelayUs(START_GAP
); 
1152     T55xxWriteBit(1); //Page 1 
1154     // Turn field on to read the response 
1155     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1156     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1158     // Now do the acquisition 
1161         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1162             AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1164         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1165             dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1171     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1176 /*-------------- Cloning routines -----------*/ 
1177 // Copy HID id to card and setup block 0 config 
1178 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
) 
1180     int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format 
1184         // Ensure no more than 84 bits supplied 
1186             DbpString("Tags can only have 84 bits."); 
1189         // Build the 6 data blocks for supplied 84bit ID 
1191         data1 
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) 
1192         for (int i
=0;i
<4;i
++) { 
1193             if (hi2 
& (1<<(19-i
))) 
1194                 data1 
|= (1<<(((3-i
)*2)+1)); // 1 -> 10 
1196                 data1 
|= (1<<((3-i
)*2)); // 0 -> 01 
1200         for (int i
=0;i
<16;i
++) { 
1201             if (hi2 
& (1<<(15-i
))) 
1202                 data2 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1204                 data2 
|= (1<<((15-i
)*2)); // 0 -> 01 
1208         for (int i
=0;i
<16;i
++) { 
1209             if (hi 
& (1<<(31-i
))) 
1210                 data3 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1212                 data3 
|= (1<<((15-i
)*2)); // 0 -> 01 
1216         for (int i
=0;i
<16;i
++) { 
1217             if (hi 
& (1<<(15-i
))) 
1218                 data4 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1220                 data4 
|= (1<<((15-i
)*2)); // 0 -> 01 
1224         for (int i
=0;i
<16;i
++) { 
1225             if (lo 
& (1<<(31-i
))) 
1226                 data5 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1228                 data5 
|= (1<<((15-i
)*2)); // 0 -> 01 
1232         for (int i
=0;i
<16;i
++) { 
1233             if (lo 
& (1<<(15-i
))) 
1234                 data6 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1236                 data6 
|= (1<<((15-i
)*2)); // 0 -> 01 
1240         // Ensure no more than 44 bits supplied 
1242             DbpString("Tags can only have 44 bits."); 
1246         // Build the 3 data blocks for supplied 44bit ID 
1249         data1 
= 0x1D000000; // load preamble 
1251         for (int i
=0;i
<12;i
++) { 
1252             if (hi 
& (1<<(11-i
))) 
1253                 data1 
|= (1<<(((11-i
)*2)+1)); // 1 -> 10 
1255                 data1 
|= (1<<((11-i
)*2)); // 0 -> 01 
1259         for (int i
=0;i
<16;i
++) { 
1260             if (lo 
& (1<<(31-i
))) 
1261                 data2 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1263                 data2 
|= (1<<((15-i
)*2)); // 0 -> 01 
1267         for (int i
=0;i
<16;i
++) { 
1268             if (lo 
& (1<<(15-i
))) 
1269                 data3 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1271                 data3 
|= (1<<((15-i
)*2)); // 0 -> 01 
1276     // Program the data blocks for supplied ID 
1277     // and the block 0 for HID format 
1278     T55xxWriteBlock(data1
,1,0,0); 
1279     T55xxWriteBlock(data2
,2,0,0); 
1280     T55xxWriteBlock(data3
,3,0,0); 
1282     if (longFMT
) { // if long format there are 6 blocks 
1283         T55xxWriteBlock(data4
,4,0,0); 
1284         T55xxWriteBlock(data5
,5,0,0); 
1285         T55xxWriteBlock(data6
,6,0,0); 
1288     // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) 
1289     T55xxWriteBlock(T55x7_BITRATE_RF_50    
| 
1290                     T55x7_MODULATION_FSK2a 
| 
1291                     last_block 
<< T55x7_MAXBLOCK_SHIFT
, 
1299 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
) 
1301     int data1
=0, data2
=0; //up to six blocks for long format 
1303     data1 
= hi
;  // load preamble 
1307     // Program the data blocks for supplied ID 
1308     // and the block 0 for HID format 
1309     T55xxWriteBlock(data1
,1,0,0); 
1310     T55xxWriteBlock(data2
,2,0,0); 
1313     T55xxWriteBlock(0x00147040,0,0,0); 
1319 // Define 9bit header for EM410x tags 
1320 #define EM410X_HEADER           0x1FF 
1321 #define EM410X_ID_LENGTH        40 
1323 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
) 
1326     uint64_t id 
= EM410X_HEADER
; 
1327     uint64_t rev_id 
= 0;        // reversed ID 
1328     int c_parity
[4];    // column parity 
1329     int r_parity 
= 0;   // row parity 
1332     // Reverse ID bits given as parameter (for simpler operations) 
1333     for (i 
= 0; i 
< EM410X_ID_LENGTH
; ++i
) { 
1335             rev_id 
= (rev_id 
<< 1) | (id_lo 
& 1); 
1338             rev_id 
= (rev_id 
<< 1) | (id_hi 
& 1); 
1343     for (i 
= 0; i 
< EM410X_ID_LENGTH
; ++i
) { 
1344         id_bit 
= rev_id 
& 1; 
1347             // Don't write row parity bit at start of parsing 
1349                 id 
= (id 
<< 1) | r_parity
; 
1350             // Start counting parity for new row 
1357         // First elements in column? 
1359             // Fill out first elements 
1360             c_parity
[i
] = id_bit
; 
1362             // Count column parity 
1363             c_parity
[i 
% 4] ^= id_bit
; 
1366         id 
= (id 
<< 1) | id_bit
; 
1370     // Insert parity bit of last row 
1371     id 
= (id 
<< 1) | r_parity
; 
1373     // Fill out column parity at the end of tag 
1374     for (i 
= 0; i 
< 4; ++i
) 
1375         id 
= (id 
<< 1) | c_parity
[i
]; 
1380     Dbprintf("Started writing %s tag ...", card 
? "T55x7":"T5555"); 
1384     T55xxWriteBlock((uint32_t)(id 
>> 32), 1, 0, 0); 
1385     T55xxWriteBlock((uint32_t)id
, 2, 0, 0); 
1387     // Config for EM410x (RF/64, Manchester, Maxblock=2) 
1389         // Clock rate is stored in bits 8-15 of the card value 
1390         clock 
= (card 
& 0xFF00) >> 8; 
1391         Dbprintf("Clock rate: %d", clock
); 
1395             clock 
= T55x7_BITRATE_RF_32
; 
1398             clock 
= T55x7_BITRATE_RF_16
; 
1401             // A value of 0 is assumed to be 64 for backwards-compatibility 
1404             clock 
= T55x7_BITRATE_RF_64
; 
1407             Dbprintf("Invalid clock rate: %d", clock
); 
1411         // Writing configuration for T55x7 tag 
1412         T55xxWriteBlock(clock       
| 
1413                         T55x7_MODULATION_MANCHESTER 
| 
1414                         2 << T55x7_MAXBLOCK_SHIFT
, 
1418         // Writing configuration for T5555(Q5) tag 
1419         T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT 
| 
1420                         T5555_MODULATION_MANCHESTER   
| 
1421                         2 << T5555_MAXBLOCK_SHIFT
, 
1425     Dbprintf("Tag %s written with 0x%08x%08x\n", card 
? "T55x7":"T5555", 
1426              (uint32_t)(id 
>> 32), (uint32_t)id
); 
1429 // Clone Indala 64-bit tag by UID to T55x7 
1430 void CopyIndala64toT55x7(int hi
, int lo
) 
1433     //Program the 2 data blocks for supplied 64bit UID 
1434     // and the block 0 for Indala64 format 
1435     T55xxWriteBlock(hi
,1,0,0); 
1436     T55xxWriteBlock(lo
,2,0,0); 
1437     //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) 
1438     T55xxWriteBlock(T55x7_BITRATE_RF_32    
| 
1439                     T55x7_MODULATION_PSK1 
| 
1440                     2 << T55x7_MAXBLOCK_SHIFT
, 
1442     //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) 
1443     //  T5567WriteBlock(0x603E1042,0); 
1449 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
) 
1452     //Program the 7 data blocks for supplied 224bit UID 
1453     // and the block 0 for Indala224 format 
1454     T55xxWriteBlock(uid1
,1,0,0); 
1455     T55xxWriteBlock(uid2
,2,0,0); 
1456     T55xxWriteBlock(uid3
,3,0,0); 
1457     T55xxWriteBlock(uid4
,4,0,0); 
1458     T55xxWriteBlock(uid5
,5,0,0); 
1459     T55xxWriteBlock(uid6
,6,0,0); 
1460     T55xxWriteBlock(uid7
,7,0,0); 
1461     //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) 
1462     T55xxWriteBlock(T55x7_BITRATE_RF_32    
| 
1463                     T55x7_MODULATION_PSK1 
| 
1464                     7 << T55x7_MAXBLOCK_SHIFT
, 
1466     //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) 
1467     //  T5567WriteBlock(0x603E10E2,0); 
1474 #define abs(x) ( ((x)<0) ? -(x) : (x) ) 
1475 #define max(x,y) ( x<y ? y:x) 
1477 int DemodPCF7931(uint8_t **outBlocks
) { 
1478     uint8_t BitStream
[256]; 
1479     uint8_t Blocks
[8][16]; 
1480     uint8_t *GraphBuffer 
= BigBuf_get_addr(); 
1481     int GraphTraceLen 
= BigBuf_max_traceLen(); 
1482     int i
, j
, lastval
, bitidx
, half_switch
; 
1484     int tolerance 
= clock 
/ 8; 
1485     int pmc
, block_done
; 
1486     int lc
, warnings 
= 0; 
1488     int lmin
=128, lmax
=128; 
1491         LFSetupFPGAForADC(95, true); 
1492         DoAcquisition_default(0, 0); 
1500     /* Find first local max/min */ 
1501     if(GraphBuffer
[1] > GraphBuffer
[0]) { 
1502         while(i 
< GraphTraceLen
) { 
1503             if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
) 
1510         while(i 
< GraphTraceLen
) { 
1511             if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
) 
1523     for (bitidx 
= 0; i 
< GraphTraceLen
; i
++) 
1525         if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir 
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir 
== 0 && GraphBuffer
[i
] < lmin
)) 
1530             // Switch depending on lc length: 
1531             // Tolerance is 1/8 of clock rate (arbitrary) 
1532             if (abs(lc
-clock
/4) < tolerance
) { 
1534                 if((i 
- pmc
) == lc
) { /* 16T0 was previous one */ 
1536                     i 
+= (128+127+16+32+33+16)-1; 
1544             } else if (abs(lc
-clock
/2) < tolerance
) { 
1546                 if((i 
- pmc
) == lc
) { /* 16T0 was previous one */ 
1548                     i 
+= (128+127+16+32+33)-1; 
1553                 else if(half_switch 
== 1) { 
1554                     BitStream
[bitidx
++] = 0; 
1559             } else if (abs(lc
-clock
) < tolerance
) { 
1561                 BitStream
[bitidx
++] = 1; 
1567                     Dbprintf("Error: too many detection errors, aborting."); 
1572             if(block_done 
== 1) { 
1574                     for(j
=0; j
<16; j
++) { 
1575                         Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+ 
1576                                 64*BitStream
[j
*8+6]+ 
1577                                 32*BitStream
[j
*8+5]+ 
1578                                 16*BitStream
[j
*8+4]+ 
1590             if(i 
< GraphTraceLen
) 
1592                 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0; 
1599         if(num_blocks 
== 4) break; 
1601     memcpy(outBlocks
, Blocks
, 16*num_blocks
); 
1605 int IsBlock0PCF7931(uint8_t *Block
) { 
1606     // Assume RFU means 0 :) 
1607     if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled 
1609     if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ? 
1614 int IsBlock1PCF7931(uint8_t *Block
) { 
1615     // Assume RFU means 0 :) 
1616     if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0) 
1617         if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9) 
1625 void ReadPCF7931() { 
1626     uint8_t Blocks
[8][17]; 
1627     uint8_t tmpBlocks
[4][16]; 
1628     int i
, j
, ind
, ind2
, n
; 
1635     memset(Blocks
, 0, 8*17*sizeof(uint8_t)); 
1638         memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t)); 
1639         n 
= DemodPCF7931((uint8_t**)tmpBlocks
); 
1642         if(error
==10 && num_blocks 
== 0) { 
1643             Dbprintf("Error, no tag or bad tag"); 
1646         else if (tries
==20 || error
==10) { 
1647             Dbprintf("Error reading the tag"); 
1648             Dbprintf("Here is the partial content"); 
1653             Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", 
1654                      tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7], 
1655                     tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]); 
1657             for(i
=0; i
<n
; i
++) { 
1658                 if(IsBlock0PCF7931(tmpBlocks
[i
])) { 
1660                     if(i 
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) { 
1664                         memcpy(Blocks
[0], tmpBlocks
[i
], 16); 
1665                         Blocks
[0][ALLOC
] = 1; 
1666                         memcpy(Blocks
[1], tmpBlocks
[i
+1], 16); 
1667                         Blocks
[1][ALLOC
] = 1; 
1668                         max_blocks 
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1; 
1670                         Dbprintf("(dbg) Max blocks: %d", max_blocks
); 
1672                         // Handle following blocks 
1673                         for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) { 
1676                             memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16); 
1677                             Blocks
[ind2
][ALLOC
] = 1; 
1685             for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks 
1686                 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00 
1687                     for(j
=0; j
<max_blocks
; j
++) { 
1688                         if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) { 
1689                             // Found an identical block 
1690                             for(ind
=i
-1,ind2
=j
-1; ind 
>= 0; ind
--,ind2
--) { 
1693                                 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found 
1694                                     // Dbprintf("Tmp %d -> Block %d", ind, ind2); 
1695                                     memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16); 
1696                                     Blocks
[ind2
][ALLOC
] = 1; 
1698                                     if(num_blocks 
== max_blocks
) goto end
; 
1701                             for(ind
=i
+1,ind2
=j
+1; ind 
< n
; ind
++,ind2
++) { 
1702                                 if(ind2 
> max_blocks
) 
1704                                 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found 
1705                                     // Dbprintf("Tmp %d -> Block %d", ind, ind2); 
1706                                     memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16); 
1707                                     Blocks
[ind2
][ALLOC
] = 1; 
1709                                     if(num_blocks 
== max_blocks
) goto end
; 
1718         if (BUTTON_PRESS()) return; 
1719     } while (num_blocks 
!= max_blocks
); 
1721     Dbprintf("-----------------------------------------"); 
1722     Dbprintf("Memory content:"); 
1723     Dbprintf("-----------------------------------------"); 
1724     for(i
=0; i
<max_blocks
; i
++) { 
1725         if(Blocks
[i
][ALLOC
]==1) 
1726             Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", 
1727                      Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7], 
1728                     Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]); 
1730             Dbprintf("<missing block %d>", i
); 
1732     Dbprintf("-----------------------------------------"); 
1738 //----------------------------------- 
1739 // EM4469 / EM4305 routines 
1740 //----------------------------------- 
1741 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored 
1742 #define FWD_CMD_WRITE 0xA 
1743 #define FWD_CMD_READ 0x9 
1744 #define FWD_CMD_DISABLE 0x5 
1747 uint8_t forwardLink_data
[64]; //array of forwarded bits 
1748 uint8_t * forward_ptr
; //ptr for forward message preparation 
1749 uint8_t fwd_bit_sz
; //forwardlink bit counter 
1750 uint8_t * fwd_write_ptr
; //forwardlink bit pointer 
1752 //==================================================================== 
1753 // prepares command bits 
1755 //==================================================================== 
1756 //-------------------------------------------------------------------- 
1757 uint8_t Prepare_Cmd( uint8_t cmd 
) { 
1758     //-------------------------------------------------------------------- 
1760     *forward_ptr
++ = 0; //start bit 
1761     *forward_ptr
++ = 0; //second pause for 4050 code 
1763     *forward_ptr
++ = cmd
; 
1765     *forward_ptr
++ = cmd
; 
1767     *forward_ptr
++ = cmd
; 
1769     *forward_ptr
++ = cmd
; 
1771     return 6; //return number of emited bits 
1774 //==================================================================== 
1775 // prepares address bits 
1777 //==================================================================== 
1779 //-------------------------------------------------------------------- 
1780 uint8_t Prepare_Addr( uint8_t addr 
) { 
1781     //-------------------------------------------------------------------- 
1783     register uint8_t line_parity
; 
1788         *forward_ptr
++ = addr
; 
1789         line_parity 
^= addr
; 
1793     *forward_ptr
++ = (line_parity 
& 1); 
1795     return 7; //return number of emited bits 
1798 //==================================================================== 
1799 // prepares data bits intreleaved with parity bits 
1801 //==================================================================== 
1803 //-------------------------------------------------------------------- 
1804 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) { 
1805     //-------------------------------------------------------------------- 
1807     register uint8_t line_parity
; 
1808     register uint8_t column_parity
; 
1809     register uint8_t i
, j
; 
1810     register uint16_t data
; 
1815     for(i
=0; i
<4; i
++) { 
1817         for(j
=0; j
<8; j
++) { 
1818             line_parity 
^= data
; 
1819             column_parity 
^= (data 
& 1) << j
; 
1820             *forward_ptr
++ = data
; 
1823         *forward_ptr
++ = line_parity
; 
1828     for(j
=0; j
<8; j
++) { 
1829         *forward_ptr
++ = column_parity
; 
1830         column_parity 
>>= 1; 
1834     return 45; //return number of emited bits 
1837 //==================================================================== 
1838 // Forward Link send function 
1839 // Requires: forwarLink_data filled with valid bits (1 bit per byte) 
1840 // fwd_bit_count set with number of bits to be sent 
1841 //==================================================================== 
1842 void SendForward(uint8_t fwd_bit_count
) { 
1844     fwd_write_ptr 
= forwardLink_data
; 
1845     fwd_bit_sz 
= fwd_bit_count
; 
1850     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
1851     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1852     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1854     // Give it a bit of time for the resonant antenna to settle. 
1855     // And for the tag to fully power up 
1858     // force 1st mod pulse (start gap must be longer for 4305) 
1859     fwd_bit_sz
--; //prepare next bit modulation 
1861     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1862     SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 
1863     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1864     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
);//field on 
1865     SpinDelayUs(16*8); //16 cycles on (8us each) 
1867     // now start writting 
1868     while(fwd_bit_sz
-- > 0) { //prepare next bit modulation 
1869         if(((*fwd_write_ptr
++) & 1) == 1) 
1870             SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) 
1872             //These timings work for 4469/4269/4305 (with the 55*8 above) 
1873             FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1874             SpinDelayUs(23*8); //16-4 cycles off (8us each) 
1875             FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1876             FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
);//field on 
1877             SpinDelayUs(9*8); //16 cycles on (8us each) 
1882 void EM4xLogin(uint32_t Password
) { 
1884     uint8_t fwd_bit_count
; 
1886     forward_ptr 
= forwardLink_data
; 
1887     fwd_bit_count 
= Prepare_Cmd( FWD_CMD_LOGIN 
); 
1888     fwd_bit_count 
+= Prepare_Data( Password
&0xFFFF, Password
>>16 ); 
1890     SendForward(fwd_bit_count
); 
1892     //Wait for command to complete 
1897 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) { 
1899     uint8_t fwd_bit_count
; 
1900     uint8_t *dest 
= BigBuf_get_addr(); 
1903     //If password mode do login 
1904     if (PwdMode 
== 1) EM4xLogin(Pwd
); 
1906     forward_ptr 
= forwardLink_data
; 
1907     fwd_bit_count 
= Prepare_Cmd( FWD_CMD_READ 
); 
1908     fwd_bit_count 
+= Prepare_Addr( Address 
); 
1910     m 
= BigBuf_max_traceLen(); 
1911     // Clear destination buffer before sending the command 
1912     memset(dest
, 128, m
); 
1913     // Connect the A/D to the peak-detected low-frequency path. 
1914     SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
1915     // Now set up the SSC to get the ADC samples that are now streaming at us. 
1918     SendForward(fwd_bit_count
); 
1920     // Now do the acquisition 
1923         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1924             AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1926         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1927             dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1932     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1936 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) { 
1938     uint8_t fwd_bit_count
; 
1940     //If password mode do login 
1941     if (PwdMode 
== 1) EM4xLogin(Pwd
); 
1943     forward_ptr 
= forwardLink_data
; 
1944     fwd_bit_count 
= Prepare_Cmd( FWD_CMD_WRITE 
); 
1945     fwd_bit_count 
+= Prepare_Addr( Address 
); 
1946     fwd_bit_count 
+= Prepare_Data( Data
&0xFFFF, Data
>>16 ); 
1948     SendForward(fwd_bit_count
); 
1950     //Wait for write to complete 
1952     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off