]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443a.c
22ada94f8ec9b876356d4398a3cb84413e6e3919
[proxmark3-svn] / armsrc / iso14443a.c
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
12
13 #include "proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "string.h"
17 #include "cmd.h"
18 #include "iso14443crc.h"
19 #include "iso14443a.h"
20 #include "crapto1.h"
21 #include "mifareutil.h"
22 #include "BigBuf.h"
23 static uint32_t iso14a_timeout;
24 int rsamples = 0;
25 uint8_t trigger = 0;
26 // the block number for the ISO14443-4 PCB
27 static uint8_t iso14_pcb_blocknum = 0;
28
29 //
30 // ISO14443 timing:
31 //
32 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
33 #define REQUEST_GUARD_TIME (7000/16 + 1)
34 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
35 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
36 // bool LastCommandWasRequest = FALSE;
37
38 //
39 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
40 //
41 // When the PM acts as reader and is receiving tag data, it takes
42 // 3 ticks delay in the AD converter
43 // 16 ticks until the modulation detector completes and sets curbit
44 // 8 ticks until bit_to_arm is assigned from curbit
45 // 8*16 ticks for the transfer from FPGA to ARM
46 // 4*16 ticks until we measure the time
47 // - 8*16 ticks because we measure the time of the previous transfer
48 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
49
50 // When the PM acts as a reader and is sending, it takes
51 // 4*16 ticks until we can write data to the sending hold register
52 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
53 // 8 ticks until the first transfer starts
54 // 8 ticks later the FPGA samples the data
55 // 1 tick to assign mod_sig_coil
56 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
57
58 // When the PM acts as tag and is receiving it takes
59 // 2 ticks delay in the RF part (for the first falling edge),
60 // 3 ticks for the A/D conversion,
61 // 8 ticks on average until the start of the SSC transfer,
62 // 8 ticks until the SSC samples the first data
63 // 7*16 ticks to complete the transfer from FPGA to ARM
64 // 8 ticks until the next ssp_clk rising edge
65 // 4*16 ticks until we measure the time
66 // - 8*16 ticks because we measure the time of the previous transfer
67 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
68
69 // The FPGA will report its internal sending delay in
70 uint16_t FpgaSendQueueDelay;
71 // the 5 first bits are the number of bits buffered in mod_sig_buf
72 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
73 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
74
75 // When the PM acts as tag and is sending, it takes
76 // 4*16 ticks until we can write data to the sending hold register
77 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
78 // 8 ticks until the first transfer starts
79 // 8 ticks later the FPGA samples the data
80 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
81 // + 1 tick to assign mod_sig_coil
82 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
83
84 // When the PM acts as sniffer and is receiving tag data, it takes
85 // 3 ticks A/D conversion
86 // 14 ticks to complete the modulation detection
87 // 8 ticks (on average) until the result is stored in to_arm
88 // + the delays in transferring data - which is the same for
89 // sniffing reader and tag data and therefore not relevant
90 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
91
92 // When the PM acts as sniffer and is receiving reader data, it takes
93 // 2 ticks delay in analogue RF receiver (for the falling edge of the
94 // start bit, which marks the start of the communication)
95 // 3 ticks A/D conversion
96 // 8 ticks on average until the data is stored in to_arm.
97 // + the delays in transferring data - which is the same for
98 // sniffing reader and tag data and therefore not relevant
99 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
100
101 //variables used for timing purposes:
102 //these are in ssp_clk cycles:
103 static uint32_t NextTransferTime;
104 static uint32_t LastTimeProxToAirStart;
105 static uint32_t LastProxToAirDuration;
106
107
108
109 // CARD TO READER - manchester
110 // Sequence D: 11110000 modulation with subcarrier during first half
111 // Sequence E: 00001111 modulation with subcarrier during second half
112 // Sequence F: 00000000 no modulation with subcarrier
113 // READER TO CARD - miller
114 // Sequence X: 00001100 drop after half a period
115 // Sequence Y: 00000000 no drop
116 // Sequence Z: 11000000 drop at start
117 #define SEC_D 0xf0
118 #define SEC_E 0x0f
119 #define SEC_F 0x00
120 #define SEC_X 0x0c
121 #define SEC_Y 0x00
122 #define SEC_Z 0xc0
123
124 const uint8_t OddByteParity[256] = {
125 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
126 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
127 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
128 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
141 };
142
143
144 void iso14a_set_trigger(bool enable) {
145 trigger = enable;
146 }
147
148
149 void iso14a_set_timeout(uint32_t timeout) {
150 iso14a_timeout = timeout;
151 if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
152 }
153
154
155 void iso14a_set_ATS_timeout(uint8_t *ats) {
156
157 uint8_t tb1;
158 uint8_t fwi;
159 uint32_t fwt;
160
161 if (ats[0] > 1) { // there is a format byte T0
162 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
163 if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
164 tb1 = ats[3];
165 } else {
166 tb1 = ats[2];
167 }
168 fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
169 fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
170
171 iso14a_set_timeout(fwt/(8*16));
172 }
173 }
174 }
175
176
177 //-----------------------------------------------------------------------------
178 // Generate the parity value for a byte sequence
179 //
180 //-----------------------------------------------------------------------------
181 byte_t oddparity (const byte_t bt)
182 {
183 return OddByteParity[bt];
184 }
185
186 void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
187 {
188 uint16_t paritybit_cnt = 0;
189 uint16_t paritybyte_cnt = 0;
190 uint8_t parityBits = 0;
191
192 for (uint16_t i = 0; i < iLen; i++) {
193 // Generate the parity bits
194 parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
195 if (paritybit_cnt == 7) {
196 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
197 parityBits = 0; // and advance to next Parity Byte
198 paritybyte_cnt++;
199 paritybit_cnt = 0;
200 } else {
201 paritybit_cnt++;
202 }
203 }
204
205 // save remaining parity bits
206 par[paritybyte_cnt] = parityBits;
207
208 }
209
210 void AppendCrc14443a(uint8_t* data, int len)
211 {
212 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
213 }
214
215 void AppendCrc14443b(uint8_t* data, int len)
216 {
217 ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
218 }
219
220
221 //=============================================================================
222 // ISO 14443 Type A - Miller decoder
223 //=============================================================================
224 // Basics:
225 // This decoder is used when the PM3 acts as a tag.
226 // The reader will generate "pauses" by temporarily switching of the field.
227 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
228 // The FPGA does a comparison with a threshold and would deliver e.g.:
229 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
230 // The Miller decoder needs to identify the following sequences:
231 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
232 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
233 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
234 // Note 1: the bitstream may start at any time. We therefore need to sync.
235 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
236 //-----------------------------------------------------------------------------
237 static tUart Uart;
238
239 // Lookup-Table to decide if 4 raw bits are a modulation.
240 // We accept the following:
241 // 0001 - a 3 tick wide pause
242 // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
243 // 0111 - a 2 tick wide pause shifted left
244 // 1001 - a 2 tick wide pause shifted right
245 const bool Mod_Miller_LUT[] = {
246 FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE,
247 FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
248 };
249 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
250 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
251
252 void UartReset()
253 {
254 Uart.state = STATE_UNSYNCD;
255 Uart.bitCount = 0;
256 Uart.len = 0; // number of decoded data bytes
257 Uart.parityLen = 0; // number of decoded parity bytes
258 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
259 Uart.parityBits = 0; // holds 8 parity bits
260 Uart.startTime = 0;
261 Uart.endTime = 0;
262
263 Uart.byteCntMax = 0;
264 Uart.posCnt = 0;
265 Uart.syncBit = 9999;
266 }
267
268 void UartInit(uint8_t *data, uint8_t *parity)
269 {
270 Uart.output = data;
271 Uart.parity = parity;
272 Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
273 UartReset();
274 }
275
276 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
277 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
278 {
279
280 Uart.fourBits = (Uart.fourBits << 8) | bit;
281
282 if (Uart.state == STATE_UNSYNCD) { // not yet synced
283
284 Uart.syncBit = 9999; // not set
285
286 // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
287 // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
288 // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
289
290 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
291 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
292 // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
293 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
294 //
295 #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
296 #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
297
298 if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
299 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
300 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
301 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
302 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
303 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
304 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
305 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
306
307 if (Uart.syncBit != 9999) { // found a sync bit
308 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
309 Uart.startTime -= Uart.syncBit;
310 Uart.endTime = Uart.startTime;
311 Uart.state = STATE_START_OF_COMMUNICATION;
312 }
313
314 } else {
315
316 if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
317 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
318 UartReset();
319 } else { // Modulation in first half = Sequence Z = logic "0"
320 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
321 UartReset();
322 } else {
323 Uart.bitCount++;
324 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
325 Uart.state = STATE_MILLER_Z;
326 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
327 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
328 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
329 Uart.parityBits <<= 1; // make room for the parity bit
330 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
331 Uart.bitCount = 0;
332 Uart.shiftReg = 0;
333 if((Uart.len&0x0007) == 0) { // every 8 data bytes
334 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
335 Uart.parityBits = 0;
336 }
337 }
338 }
339 }
340 } else {
341 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
342 Uart.bitCount++;
343 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
344 Uart.state = STATE_MILLER_X;
345 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
346 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
347 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
348 Uart.parityBits <<= 1; // make room for the new parity bit
349 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
350 Uart.bitCount = 0;
351 Uart.shiftReg = 0;
352 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
353 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
354 Uart.parityBits = 0;
355 }
356 }
357 } else { // no modulation in both halves - Sequence Y
358 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
359 Uart.state = STATE_UNSYNCD;
360 Uart.bitCount--; // last "0" was part of EOC sequence
361 Uart.shiftReg <<= 1; // drop it
362 if(Uart.bitCount > 0) { // if we decoded some bits
363 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
364 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
365 Uart.parityBits <<= 1; // add a (void) parity bit
366 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
367 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
368 return TRUE;
369 } else if (Uart.len & 0x0007) { // there are some parity bits to store
370 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
371 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
372 }
373 if (Uart.len) {
374 return TRUE; // we are finished with decoding the raw data sequence
375 } else {
376 UartReset(); // Nothing received - start over
377 }
378 }
379 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
380 UartReset();
381 } else { // a logic "0"
382 Uart.bitCount++;
383 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
384 Uart.state = STATE_MILLER_Y;
385 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
386 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
387 Uart.parityBits <<= 1; // make room for the parity bit
388 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
389 Uart.bitCount = 0;
390 Uart.shiftReg = 0;
391 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
392 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
393 Uart.parityBits = 0;
394 }
395 }
396 }
397 }
398 }
399
400 }
401
402 return FALSE; // not finished yet, need more data
403 }
404
405
406
407 //=============================================================================
408 // ISO 14443 Type A - Manchester decoder
409 //=============================================================================
410 // Basics:
411 // This decoder is used when the PM3 acts as a reader.
412 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
413 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
414 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
415 // The Manchester decoder needs to identify the following sequences:
416 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
417 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
418 // 8 ticks unmodulated: Sequence F = end of communication
419 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
420 // Note 1: the bitstream may start at any time. We therefore need to sync.
421 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
422 static tDemod Demod;
423
424 // Lookup-Table to decide if 4 raw bits are a modulation.
425 // We accept three or four "1" in any position
426 const bool Mod_Manchester_LUT[] = {
427 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
428 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
429 };
430
431 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
432 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
433
434
435 void DemodReset()
436 {
437 Demod.state = DEMOD_UNSYNCD;
438 Demod.len = 0; // number of decoded data bytes
439 Demod.parityLen = 0;
440 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
441 Demod.parityBits = 0; //
442 Demod.collisionPos = 0; // Position of collision bit
443 Demod.twoBits = 0xffff; // buffer for 2 Bits
444 Demod.highCnt = 0;
445 Demod.startTime = 0;
446 Demod.endTime = 0;
447
448 //
449 Demod.bitCount = 0;
450 Demod.syncBit = 0xFFFF;
451 Demod.samples = 0;
452 }
453
454 void DemodInit(uint8_t *data, uint8_t *parity)
455 {
456 Demod.output = data;
457 Demod.parity = parity;
458 DemodReset();
459 }
460
461 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
462 static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
463 {
464
465 Demod.twoBits = (Demod.twoBits << 8) | bit;
466
467 if (Demod.state == DEMOD_UNSYNCD) {
468
469 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
470 if (Demod.twoBits == 0x0000) {
471 Demod.highCnt++;
472 } else {
473 Demod.highCnt = 0;
474 }
475 } else {
476 Demod.syncBit = 0xFFFF; // not set
477 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
478 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
479 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
480 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
481 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
482 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
483 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
484 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
485 if (Demod.syncBit != 0xFFFF) {
486 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
487 Demod.startTime -= Demod.syncBit;
488 Demod.bitCount = offset; // number of decoded data bits
489 Demod.state = DEMOD_MANCHESTER_DATA;
490 }
491 }
492
493 } else {
494
495 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
496 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
497 if (!Demod.collisionPos) {
498 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
499 }
500 } // modulation in first half only - Sequence D = 1
501 Demod.bitCount++;
502 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
503 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
504 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
505 Demod.parityBits <<= 1; // make room for the parity bit
506 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
507 Demod.bitCount = 0;
508 Demod.shiftReg = 0;
509 if((Demod.len&0x0007) == 0) { // every 8 data bytes
510 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
511 Demod.parityBits = 0;
512 }
513 }
514 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
515 } else { // no modulation in first half
516 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
517 Demod.bitCount++;
518 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
519 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
520 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
521 Demod.parityBits <<= 1; // make room for the new parity bit
522 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
523 Demod.bitCount = 0;
524 Demod.shiftReg = 0;
525 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
526 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
527 Demod.parityBits = 0;
528 }
529 }
530 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
531 } else { // no modulation in both halves - End of communication
532 if(Demod.bitCount > 0) { // there are some remaining data bits
533 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
534 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
535 Demod.parityBits <<= 1; // add a (void) parity bit
536 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
537 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
538 return TRUE;
539 } else if (Demod.len & 0x0007) { // there are some parity bits to store
540 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
541 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
542 }
543 if (Demod.len) {
544 return TRUE; // we are finished with decoding the raw data sequence
545 } else { // nothing received. Start over
546 DemodReset();
547 }
548 }
549 }
550 }
551 return FALSE; // not finished yet, need more data
552 }
553
554 //=============================================================================
555 // Finally, a `sniffer' for ISO 14443 Type A
556 // Both sides of communication!
557 //=============================================================================
558
559 //-----------------------------------------------------------------------------
560 // Record the sequence of commands sent by the reader to the tag, with
561 // triggering so that we start recording at the point that the tag is moved
562 // near the reader.
563 //-----------------------------------------------------------------------------
564 void RAMFUNC SniffIso14443a(uint8_t param) {
565 // param:
566 // bit 0 - trigger from first card answer
567 // bit 1 - trigger from first reader 7-bit request
568 LEDsoff();
569
570 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
571
572 // Allocate memory from BigBuf for some buffers
573 // free all previous allocations first
574 BigBuf_free();
575
576 // init trace buffer
577 clear_trace();
578 set_tracing(TRUE);
579
580 // The command (reader -> tag) that we're receiving.
581 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
582 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
583
584 // The response (tag -> reader) that we're receiving.
585 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
586 uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
587
588 // The DMA buffer, used to stream samples from the FPGA
589 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
590
591 uint8_t *data = dmaBuf;
592 uint8_t previous_data = 0;
593 int maxDataLen = 0;
594 int dataLen = 0;
595 bool TagIsActive = FALSE;
596 bool ReaderIsActive = FALSE;
597
598 // Set up the demodulator for tag -> reader responses.
599 DemodInit(receivedResponse, receivedResponsePar);
600
601 // Set up the demodulator for the reader -> tag commands
602 UartInit(receivedCmd, receivedCmdPar);
603
604 // Setup and start DMA.
605 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
606
607 // We won't start recording the frames that we acquire until we trigger;
608 // a good trigger condition to get started is probably when we see a
609 // response from the tag.
610 // triggered == FALSE -- to wait first for card
611 bool triggered = !(param & 0x03);
612
613 // And now we loop, receiving samples.
614 for(uint32_t rsamples = 0; TRUE; ) {
615
616 if(BUTTON_PRESS()) {
617 DbpString("cancelled by button");
618 break;
619 }
620
621 LED_A_ON();
622 WDT_HIT();
623
624 int register readBufDataP = data - dmaBuf;
625 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
626 if (readBufDataP <= dmaBufDataP){
627 dataLen = dmaBufDataP - readBufDataP;
628 } else {
629 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
630 }
631 // test for length of buffer
632 if(dataLen > maxDataLen) {
633 maxDataLen = dataLen;
634 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
635 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
636 break;
637 }
638 }
639 if(dataLen < 1) continue;
640
641 // primary buffer was stopped( <-- we lost data!
642 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
643 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
644 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
645 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
646 }
647 // secondary buffer sets as primary, secondary buffer was stopped
648 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
649 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
650 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
651 }
652
653 LED_A_OFF();
654
655 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
656
657 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
658 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
659 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
660 LED_C_ON();
661
662 // check - if there is a short 7bit request from reader
663 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
664
665 if(triggered) {
666 if (!LogTrace(receivedCmd,
667 Uart.len,
668 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
669 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
670 Uart.parity,
671 TRUE)) break;
672 }
673 /* And ready to receive another command. */
674 UartReset();
675 /* And also reset the demod code, which might have been */
676 /* false-triggered by the commands from the reader. */
677 DemodReset();
678 LED_B_OFF();
679 }
680 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
681 }
682
683 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
684 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
685 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
686 LED_B_ON();
687
688 if (!LogTrace(receivedResponse,
689 Demod.len,
690 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
691 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
692 Demod.parity,
693 FALSE)) break;
694
695 if ((!triggered) && (param & 0x01)) triggered = TRUE;
696
697 // And ready to receive another response.
698 DemodReset();
699 // And reset the Miller decoder including itS (now outdated) input buffer
700 UartInit(receivedCmd, receivedCmdPar);
701
702 LED_C_OFF();
703 }
704 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
705 }
706 }
707
708 previous_data = *data;
709 rsamples++;
710 data++;
711 if(data == dmaBuf + DMA_BUFFER_SIZE) {
712 data = dmaBuf;
713 }
714 } // main cycle
715
716 FpgaDisableSscDma();
717 LEDsoff();
718
719 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
720 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
721
722 set_tracing(FALSE);
723 }
724
725 //-----------------------------------------------------------------------------
726 // Prepare tag messages
727 //-----------------------------------------------------------------------------
728 static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
729 {
730 ToSendReset();
731
732 // Correction bit, might be removed when not needed
733 ToSendStuffBit(0);
734 ToSendStuffBit(0);
735 ToSendStuffBit(0);
736 ToSendStuffBit(0);
737 ToSendStuffBit(1); // 1
738 ToSendStuffBit(0);
739 ToSendStuffBit(0);
740 ToSendStuffBit(0);
741
742 // Send startbit
743 ToSend[++ToSendMax] = SEC_D;
744 LastProxToAirDuration = 8 * ToSendMax - 4;
745
746 for(uint16_t i = 0; i < len; i++) {
747 uint8_t b = cmd[i];
748
749 // Data bits
750 for(uint16_t j = 0; j < 8; j++) {
751 if(b & 1) {
752 ToSend[++ToSendMax] = SEC_D;
753 } else {
754 ToSend[++ToSendMax] = SEC_E;
755 }
756 b >>= 1;
757 }
758
759 // Get the parity bit
760 if (parity[i>>3] & (0x80>>(i&0x0007))) {
761 ToSend[++ToSendMax] = SEC_D;
762 LastProxToAirDuration = 8 * ToSendMax - 4;
763 } else {
764 ToSend[++ToSendMax] = SEC_E;
765 LastProxToAirDuration = 8 * ToSendMax;
766 }
767 }
768
769 // Send stopbit
770 ToSend[++ToSendMax] = SEC_F;
771
772 // Convert from last byte pos to length
773 ToSendMax++;
774 }
775
776 static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
777 {
778 uint8_t par[MAX_PARITY_SIZE];
779
780 GetParity(cmd, len, par);
781 CodeIso14443aAsTagPar(cmd, len, par);
782 }
783
784
785 static void Code4bitAnswerAsTag(uint8_t cmd)
786 {
787 int i;
788
789 ToSendReset();
790
791 // Correction bit, might be removed when not needed
792 ToSendStuffBit(0);
793 ToSendStuffBit(0);
794 ToSendStuffBit(0);
795 ToSendStuffBit(0);
796 ToSendStuffBit(1); // 1
797 ToSendStuffBit(0);
798 ToSendStuffBit(0);
799 ToSendStuffBit(0);
800
801 // Send startbit
802 ToSend[++ToSendMax] = SEC_D;
803
804 uint8_t b = cmd;
805 for(i = 0; i < 4; i++) {
806 if(b & 1) {
807 ToSend[++ToSendMax] = SEC_D;
808 LastProxToAirDuration = 8 * ToSendMax - 4;
809 } else {
810 ToSend[++ToSendMax] = SEC_E;
811 LastProxToAirDuration = 8 * ToSendMax;
812 }
813 b >>= 1;
814 }
815
816 // Send stopbit
817 ToSend[++ToSendMax] = SEC_F;
818
819 // Convert from last byte pos to length
820 ToSendMax++;
821 }
822
823 //-----------------------------------------------------------------------------
824 // Wait for commands from reader
825 // Stop when button is pressed
826 // Or return TRUE when command is captured
827 //-----------------------------------------------------------------------------
828 static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
829 {
830 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
831 // only, since we are receiving, not transmitting).
832 // Signal field is off with the appropriate LED
833 LED_D_OFF();
834 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
835
836 // Now run a `software UART' on the stream of incoming samples.
837 UartInit(received, parity);
838
839 // clear RXRDY:
840 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
841
842 for(;;) {
843 WDT_HIT();
844
845 if(BUTTON_PRESS()) return FALSE;
846
847 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
848 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
849 if(MillerDecoding(b, 0)) {
850 *len = Uart.len;
851 return TRUE;
852 }
853 }
854 }
855 }
856
857 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
858 int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
859 int EmSend4bit(uint8_t resp);
860 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
861 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
862 int EmSendCmd(uint8_t *resp, uint16_t respLen);
863 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
864 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
865 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
866
867 static uint8_t* free_buffer_pointer;
868
869 typedef struct {
870 uint8_t* response;
871 size_t response_n;
872 uint8_t* modulation;
873 size_t modulation_n;
874 uint32_t ProxToAirDuration;
875 } tag_response_info_t;
876
877 bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
878 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
879 // This will need the following byte array for a modulation sequence
880 // 144 data bits (18 * 8)
881 // 18 parity bits
882 // 2 Start and stop
883 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
884 // 1 just for the case
885 // ----------- +
886 // 166 bytes, since every bit that needs to be send costs us a byte
887 //
888
889
890 // Prepare the tag modulation bits from the message
891 CodeIso14443aAsTag(response_info->response,response_info->response_n);
892
893 // Make sure we do not exceed the free buffer space
894 if (ToSendMax > max_buffer_size) {
895 Dbprintf("Out of memory, when modulating bits for tag answer:");
896 Dbhexdump(response_info->response_n,response_info->response,false);
897 return false;
898 }
899
900 // Copy the byte array, used for this modulation to the buffer position
901 memcpy(response_info->modulation,ToSend,ToSendMax);
902
903 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
904 response_info->modulation_n = ToSendMax;
905 response_info->ProxToAirDuration = LastProxToAirDuration;
906
907 return true;
908 }
909
910
911 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
912 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
913 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
914 // -> need 273 bytes buffer
915 // 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
916 // 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits
917 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453
918
919 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
920 // Retrieve and store the current buffer index
921 response_info->modulation = free_buffer_pointer;
922
923 // Determine the maximum size we can use from our buffer
924 size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
925
926 // Forward the prepare tag modulation function to the inner function
927 if (prepare_tag_modulation(response_info, max_buffer_size)) {
928 // Update the free buffer offset
929 free_buffer_pointer += ToSendMax;
930 return true;
931 } else {
932 return false;
933 }
934 }
935
936 //-----------------------------------------------------------------------------
937 // Main loop of simulated tag: receive commands from reader, decide what
938 // response to send, and send it.
939 //-----------------------------------------------------------------------------
940 void SimulateIso14443aTag(int tagType, int flags, byte_t* data)
941 {
942
943 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
944 // This can be used in a reader-only attack.
945 // (it can also be retrieved via 'hf 14a list', but hey...
946 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
947 uint8_t ar_nr_collected = 0;
948
949 uint8_t sak;
950
951 // PACK response to PWD AUTH for EV1/NTAG
952 uint8_t response8[4] = {0,0,0,0};
953
954 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
955 uint8_t response1[2] = {0,0};
956
957 switch (tagType) {
958 case 1: { // MIFARE Classic
959 // Says: I am Mifare 1k - original line
960 response1[0] = 0x04;
961 response1[1] = 0x00;
962 sak = 0x08;
963 } break;
964 case 2: { // MIFARE Ultralight
965 // Says: I am a stupid memory tag, no crypto
966 response1[0] = 0x44;
967 response1[1] = 0x00;
968 sak = 0x00;
969 } break;
970 case 3: { // MIFARE DESFire
971 // Says: I am a DESFire tag, ph33r me
972 response1[0] = 0x04;
973 response1[1] = 0x03;
974 sak = 0x20;
975 } break;
976 case 4: { // ISO/IEC 14443-4
977 // Says: I am a javacard (JCOP)
978 response1[0] = 0x04;
979 response1[1] = 0x00;
980 sak = 0x28;
981 } break;
982 case 5: { // MIFARE TNP3XXX
983 // Says: I am a toy
984 response1[0] = 0x01;
985 response1[1] = 0x0f;
986 sak = 0x01;
987 } break;
988 case 6: { // MIFARE Mini
989 // Says: I am a Mifare Mini, 320b
990 response1[0] = 0x44;
991 response1[1] = 0x00;
992 sak = 0x09;
993 } break;
994 case 7: { // NTAG?
995 // Says: I am a NTAG,
996 response1[0] = 0x44;
997 response1[1] = 0x00;
998 sak = 0x00;
999 // PACK
1000 response8[0] = 0x80;
1001 response8[1] = 0x80;
1002 ComputeCrc14443(CRC_14443_A, response8, 2, &response8[2], &response8[3]);
1003 } break;
1004 default: {
1005 Dbprintf("Error: unkown tagtype (%d)",tagType);
1006 return;
1007 } break;
1008 }
1009
1010 // The second response contains the (mandatory) first 24 bits of the UID
1011 uint8_t response2[5] = {0x00};
1012
1013 // Check if the uid uses the (optional) part
1014 uint8_t response2a[5] = {0x00};
1015
1016 if (flags & FLAG_7B_UID_IN_DATA) {
1017 response2[0] = 0x88;
1018 response2[1] = data[0];
1019 response2[2] = data[1];
1020 response2[3] = data[2];
1021
1022 response2a[0] = data[3];
1023 response2a[1] = data[4];
1024 response2a[2] = data[5];
1025 response2a[3] = data[6]; //??
1026 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
1027
1028 // Configure the ATQA and SAK accordingly
1029 response1[0] |= 0x40;
1030 sak |= 0x04;
1031 } else {
1032 memcpy(response2, data, 4);
1033 //num_to_bytes(uid_1st,4,response2);
1034 // Configure the ATQA and SAK accordingly
1035 response1[0] &= 0xBF;
1036 sak &= 0xFB;
1037 }
1038
1039 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1040 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
1041
1042 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1043 uint8_t response3[3] = {0x00};
1044 response3[0] = sak;
1045 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
1046
1047 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1048 uint8_t response3a[3] = {0x00};
1049 response3a[0] = sak & 0xFB;
1050 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
1051
1052 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
1053 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1054 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1055 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1056 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1057 // TC(1) = 0x02: CID supported, NAD not supported
1058 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
1059
1060 // Prepare GET_VERSION (different for EV-1 / NTAG)
1061 //uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
1062 uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
1063
1064 // Prepare CHK_TEARING
1065 uint8_t response9[] = {0xBD,0x90,0x3f};
1066
1067 #define TAG_RESPONSE_COUNT 10
1068 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
1069 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
1070 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1071 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1072 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1073 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1074 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1075 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
1076 { .response = response7_NTAG, .response_n = sizeof(response7_NTAG) }, // EV1/NTAG GET_VERSION response
1077 { .response = response8, .response_n = sizeof(response8) }, // EV1/NTAG PACK response
1078 { .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
1079 };
1080
1081 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1082 // Such a response is less time critical, so we can prepare them on the fly
1083 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1084 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1085 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1086 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1087 tag_response_info_t dynamic_response_info = {
1088 .response = dynamic_response_buffer,
1089 .response_n = 0,
1090 .modulation = dynamic_modulation_buffer,
1091 .modulation_n = 0
1092 };
1093
1094 // We need to listen to the high-frequency, peak-detected path.
1095 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1096
1097 BigBuf_free_keep_EM();
1098
1099 // allocate buffers:
1100 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1101 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
1102 free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
1103
1104 // clear trace
1105 clear_trace();
1106 set_tracing(TRUE);
1107
1108 // Prepare the responses of the anticollision phase
1109 // there will be not enough time to do this at the moment the reader sends it REQA
1110 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1111 prepare_allocated_tag_modulation(&responses[i]);
1112 }
1113
1114 int len = 0;
1115
1116 // To control where we are in the protocol
1117 int order = 0;
1118 int lastorder;
1119
1120 // Just to allow some checks
1121 int happened = 0;
1122 int happened2 = 0;
1123 int cmdsRecvd = 0;
1124
1125 cmdsRecvd = 0;
1126 tag_response_info_t* p_response;
1127
1128 LED_A_ON();
1129 for(;;) {
1130 // Clean receive command buffer
1131
1132 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
1133 DbpString("Button press");
1134 break;
1135 }
1136
1137 p_response = NULL;
1138
1139 // Okay, look at the command now.
1140 lastorder = order;
1141 if(receivedCmd[0] == 0x26) { // Received a REQUEST
1142 p_response = &responses[0]; order = 1;
1143 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
1144 p_response = &responses[0]; order = 6;
1145 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
1146 p_response = &responses[1]; order = 2;
1147 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
1148 p_response = &responses[2]; order = 20;
1149 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
1150 p_response = &responses[3]; order = 3;
1151 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
1152 p_response = &responses[4]; order = 30;
1153 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
1154 uint8_t block = receivedCmd[1];
1155 if ( tagType == 7 ) {
1156 uint16_t start = 4 * block;
1157
1158 /*if ( block < 4 ) {
1159 //NTAG 215
1160 uint8_t blockdata[50] = {
1161 data[0],data[1],data[2], 0x88 ^ data[0] ^ data[1] ^ data[2],
1162 data[3],data[4],data[5],data[6],
1163 data[3] ^ data[4] ^ data[5] ^ data[6],0x48,0x0f,0xe0,
1164 0xe1,0x10,0x12,0x00,
1165 0x03,0x00,0xfe,0x00,
1166 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1167 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1168 0x00,0x00,0x00,0x00,
1169 0x00,0x00};
1170 AppendCrc14443a(blockdata+start, 16);
1171 EmSendCmdEx( blockdata+start, MAX_MIFARE_FRAME_SIZE, false);
1172 } else {*/
1173 uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
1174 emlGetMemBt( emdata, start, 16);
1175 AppendCrc14443a(emdata, 16);
1176 EmSendCmdEx(emdata, sizeof(emdata), false);
1177 //}
1178 p_response = NULL;
1179
1180 } else {
1181 EmSendCmdEx(data+(4*block),16,false);
1182 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1183 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1184 p_response = NULL;
1185 }
1186 } else if(receivedCmd[0] == 0x3A) { // Received a FAST READ (ranged read) -- just returns all zeros.
1187
1188 uint8_t emdata[MAX_FRAME_SIZE];
1189 int start = receivedCmd[1] * 4;
1190 int len = (receivedCmd[2] - receivedCmd[1] + 1) * 4;
1191 emlGetMemBt( emdata, start, len);
1192 AppendCrc14443a(emdata, len);
1193 EmSendCmdEx(emdata, len+2, false);
1194 p_response = NULL;
1195
1196 } else if(receivedCmd[0] == 0x3C && tagType == 7) { // Received a READ SIGNATURE --
1197 // ECC data, taken from a NTAG215 amiibo token. might work. LEN: 32, + 2 crc
1198 uint8_t data[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f,
1199 0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e,
1200 0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05,
1201 0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07,
1202 0x00,0x00};
1203 AppendCrc14443a(data, sizeof(data)-2);
1204 EmSendCmdEx(data,sizeof(data),false);
1205 p_response = NULL;
1206 } else if(receivedCmd[0] == 0x39 && tagType == 7) { // Received a READ COUNTER --
1207 uint8_t data[] = {0x00,0x00,0x00,0x14,0xa5};
1208 EmSendCmdEx(data,sizeof(data),false);
1209 p_response = NULL;
1210 } else if(receivedCmd[0] == 0xA5 && tagType == 7) { // Received a INC COUNTER --
1211 // number of counter
1212 //uint8_t counter = receivedCmd[1];
1213 //uint32_t val = bytes_to_num(receivedCmd+2,4);
1214
1215 // send ACK
1216 uint8_t ack[] = {0x0a};
1217 EmSendCmdEx(ack,sizeof(ack),false);
1218 p_response = NULL;
1219
1220 } else if(receivedCmd[0] == 0x3E && tagType == 7) { // Received a CHECK_TEARING_EVENT --
1221 p_response = &responses[9];
1222 } else if(receivedCmd[0] == 0x50) { // Received a HALT
1223
1224 if (tracing) {
1225 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1226 }
1227 p_response = NULL;
1228 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
1229
1230 if ( tagType == 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
1231 p_response = &responses[7];
1232 } else {
1233 p_response = &responses[5]; order = 7;
1234 }
1235 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
1236 if (tagType == 1 || tagType == 2) { // RATS not supported
1237 EmSend4bit(CARD_NACK_NA);
1238 p_response = NULL;
1239 } else {
1240 p_response = &responses[6]; order = 70;
1241 }
1242 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
1243 if (tracing) {
1244 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1245 }
1246 uint32_t nonce = bytes_to_num(response5,4);
1247 uint32_t nr = bytes_to_num(receivedCmd,4);
1248 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1249 //Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
1250
1251 if(flags & FLAG_NR_AR_ATTACK )
1252 {
1253 if(ar_nr_collected < 2){
1254 // Avoid duplicates... probably not necessary, nr should vary.
1255 //if(ar_nr_responses[3] != nr){
1256 ar_nr_responses[ar_nr_collected*5] = 0;
1257 ar_nr_responses[ar_nr_collected*5+1] = 0;
1258 ar_nr_responses[ar_nr_collected*5+2] = nonce;
1259 ar_nr_responses[ar_nr_collected*5+3] = nr;
1260 ar_nr_responses[ar_nr_collected*5+4] = ar;
1261 ar_nr_collected++;
1262 //}
1263 }
1264
1265 if(ar_nr_collected > 1 ) {
1266
1267 if (MF_DBGLEVEL >= 2) {
1268 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
1269 Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
1270 ar_nr_responses[0], // UID1
1271 ar_nr_responses[1], // UID2
1272 ar_nr_responses[2], // NT
1273 ar_nr_responses[3], // AR1
1274 ar_nr_responses[4], // NR1
1275 ar_nr_responses[8], // AR2
1276 ar_nr_responses[9] // NR2
1277 );
1278 Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
1279 ar_nr_responses[0], // UID1
1280 ar_nr_responses[1], // UID2
1281 ar_nr_responses[2], // NT1
1282 ar_nr_responses[3], // AR1
1283 ar_nr_responses[4], // NR1
1284 ar_nr_responses[7], // NT2
1285 ar_nr_responses[8], // AR2
1286 ar_nr_responses[9] // NR2
1287 );
1288 }
1289 uint8_t len = ar_nr_collected*5*4;
1290 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len);
1291 ar_nr_collected = 0;
1292 memset(ar_nr_responses, 0x00, len);
1293 }
1294 }
1295 } else if (receivedCmd[0] == 0x1a ) // ULC authentication
1296 {
1297
1298 }
1299 else if (receivedCmd[0] == 0x1b) // NTAG / EV-1 authentication
1300 {
1301 if ( tagType == 7 ) {
1302 p_response = &responses[8]; // PACK response
1303 uint32_t pwd = bytes_to_num(receivedCmd+1,4);
1304
1305 if ( MF_DBGLEVEL >= 3) Dbprintf("Auth attempt: %08x", pwd);
1306 }
1307 }
1308 else {
1309 // Check for ISO 14443A-4 compliant commands, look at left nibble
1310 switch (receivedCmd[0]) {
1311 case 0x02:
1312 case 0x03: { // IBlock (command no CID)
1313 dynamic_response_info.response[0] = receivedCmd[0];
1314 dynamic_response_info.response[1] = 0x90;
1315 dynamic_response_info.response[2] = 0x00;
1316 dynamic_response_info.response_n = 3;
1317 } break;
1318 case 0x0B:
1319 case 0x0A: { // IBlock (command CID)
1320 dynamic_response_info.response[0] = receivedCmd[0];
1321 dynamic_response_info.response[1] = 0x00;
1322 dynamic_response_info.response[2] = 0x90;
1323 dynamic_response_info.response[3] = 0x00;
1324 dynamic_response_info.response_n = 4;
1325 } break;
1326
1327 case 0x1A:
1328 case 0x1B: { // Chaining command
1329 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1330 dynamic_response_info.response_n = 2;
1331 } break;
1332
1333 case 0xaa:
1334 case 0xbb: {
1335 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1336 dynamic_response_info.response_n = 2;
1337 } break;
1338
1339 case 0xBA: { // ping / pong
1340 dynamic_response_info.response[0] = 0xAB;
1341 dynamic_response_info.response[1] = 0x00;
1342 dynamic_response_info.response_n = 2;
1343 } break;
1344
1345 case 0xCA:
1346 case 0xC2: { // Readers sends deselect command
1347 dynamic_response_info.response[0] = 0xCA;
1348 dynamic_response_info.response[1] = 0x00;
1349 dynamic_response_info.response_n = 2;
1350 } break;
1351
1352 default: {
1353 // Never seen this command before
1354 if (tracing) {
1355 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1356 }
1357 Dbprintf("Received unknown command (len=%d):",len);
1358 Dbhexdump(len,receivedCmd,false);
1359 // Do not respond
1360 dynamic_response_info.response_n = 0;
1361 } break;
1362 }
1363
1364 if (dynamic_response_info.response_n > 0) {
1365 // Copy the CID from the reader query
1366 dynamic_response_info.response[1] = receivedCmd[1];
1367
1368 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1369 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1370 dynamic_response_info.response_n += 2;
1371
1372 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1373 Dbprintf("Error preparing tag response");
1374 if (tracing) {
1375 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1376 }
1377 break;
1378 }
1379 p_response = &dynamic_response_info;
1380 }
1381 }
1382
1383 // Count number of wakeups received after a halt
1384 if(order == 6 && lastorder == 5) { happened++; }
1385
1386 // Count number of other messages after a halt
1387 if(order != 6 && lastorder == 5) { happened2++; }
1388
1389 if(cmdsRecvd > 999) {
1390 DbpString("1000 commands later...");
1391 break;
1392 }
1393 cmdsRecvd++;
1394
1395 if (p_response != NULL) {
1396 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1397 // do the tracing for the previous reader request and this tag answer:
1398 uint8_t par[MAX_PARITY_SIZE];
1399 GetParity(p_response->response, p_response->response_n, par);
1400
1401 EmLogTrace(Uart.output,
1402 Uart.len,
1403 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1404 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1405 Uart.parity,
1406 p_response->response,
1407 p_response->response_n,
1408 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1409 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1410 par);
1411 }
1412
1413 if (!tracing) {
1414 Dbprintf("Trace Full. Simulation stopped.");
1415 break;
1416 }
1417 }
1418
1419 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1420 set_tracing(FALSE);
1421 BigBuf_free_keep_EM();
1422 LED_A_OFF();
1423
1424 if (MF_DBGLEVEL >= 4){
1425 Dbprintf("-[ Wake ups after halt [%d]", happened);
1426 Dbprintf("-[ Messages after halt [%d]", happened2);
1427 Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
1428 }
1429 }
1430
1431
1432 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1433 // of bits specified in the delay parameter.
1434 void PrepareDelayedTransfer(uint16_t delay)
1435 {
1436 uint8_t bitmask = 0;
1437 uint8_t bits_to_shift = 0;
1438 uint8_t bits_shifted = 0;
1439
1440 delay &= 0x07;
1441 if (delay) {
1442 for (uint16_t i = 0; i < delay; i++) {
1443 bitmask |= (0x01 << i);
1444 }
1445 ToSend[ToSendMax++] = 0x00;
1446 for (uint16_t i = 0; i < ToSendMax; i++) {
1447 bits_to_shift = ToSend[i] & bitmask;
1448 ToSend[i] = ToSend[i] >> delay;
1449 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1450 bits_shifted = bits_to_shift;
1451 }
1452 }
1453 }
1454
1455
1456 //-------------------------------------------------------------------------------------
1457 // Transmit the command (to the tag) that was placed in ToSend[].
1458 // Parameter timing:
1459 // if NULL: transfer at next possible time, taking into account
1460 // request guard time and frame delay time
1461 // if == 0: transfer immediately and return time of transfer
1462 // if != 0: delay transfer until time specified
1463 //-------------------------------------------------------------------------------------
1464 static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
1465 {
1466
1467 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1468
1469 uint32_t ThisTransferTime = 0;
1470
1471 if (timing) {
1472 if(*timing == 0) { // Measure time
1473 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
1474 } else {
1475 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1476 }
1477 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1478 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1479 LastTimeProxToAirStart = *timing;
1480 } else {
1481 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1482 while(GetCountSspClk() < ThisTransferTime);
1483 LastTimeProxToAirStart = ThisTransferTime;
1484 }
1485
1486 // clear TXRDY
1487 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1488
1489 uint16_t c = 0;
1490 for(;;) {
1491 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1492 AT91C_BASE_SSC->SSC_THR = cmd[c];
1493 c++;
1494 if(c >= len) {
1495 break;
1496 }
1497 }
1498 }
1499
1500 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
1501 }
1502
1503
1504 //-----------------------------------------------------------------------------
1505 // Prepare reader command (in bits, support short frames) to send to FPGA
1506 //-----------------------------------------------------------------------------
1507 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
1508 {
1509 int i, j;
1510 int last;
1511 uint8_t b;
1512
1513 ToSendReset();
1514
1515 // Start of Communication (Seq. Z)
1516 ToSend[++ToSendMax] = SEC_Z;
1517 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1518 last = 0;
1519
1520 size_t bytecount = nbytes(bits);
1521 // Generate send structure for the data bits
1522 for (i = 0; i < bytecount; i++) {
1523 // Get the current byte to send
1524 b = cmd[i];
1525 size_t bitsleft = MIN((bits-(i*8)),8);
1526
1527 for (j = 0; j < bitsleft; j++) {
1528 if (b & 1) {
1529 // Sequence X
1530 ToSend[++ToSendMax] = SEC_X;
1531 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1532 last = 1;
1533 } else {
1534 if (last == 0) {
1535 // Sequence Z
1536 ToSend[++ToSendMax] = SEC_Z;
1537 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1538 } else {
1539 // Sequence Y
1540 ToSend[++ToSendMax] = SEC_Y;
1541 last = 0;
1542 }
1543 }
1544 b >>= 1;
1545 }
1546
1547 // Only transmit parity bit if we transmitted a complete byte
1548 if (j == 8 && parity != NULL) {
1549 // Get the parity bit
1550 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
1551 // Sequence X
1552 ToSend[++ToSendMax] = SEC_X;
1553 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1554 last = 1;
1555 } else {
1556 if (last == 0) {
1557 // Sequence Z
1558 ToSend[++ToSendMax] = SEC_Z;
1559 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1560 } else {
1561 // Sequence Y
1562 ToSend[++ToSendMax] = SEC_Y;
1563 last = 0;
1564 }
1565 }
1566 }
1567 }
1568
1569 // End of Communication: Logic 0 followed by Sequence Y
1570 if (last == 0) {
1571 // Sequence Z
1572 ToSend[++ToSendMax] = SEC_Z;
1573 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1574 } else {
1575 // Sequence Y
1576 ToSend[++ToSendMax] = SEC_Y;
1577 last = 0;
1578 }
1579 ToSend[++ToSendMax] = SEC_Y;
1580
1581 // Convert to length of command:
1582 ToSendMax++;
1583 }
1584
1585 //-----------------------------------------------------------------------------
1586 // Prepare reader command to send to FPGA
1587 //-----------------------------------------------------------------------------
1588 void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
1589 {
1590 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
1591 }
1592
1593
1594 //-----------------------------------------------------------------------------
1595 // Wait for commands from reader
1596 // Stop when button is pressed (return 1) or field was gone (return 2)
1597 // Or return 0 when command is captured
1598 //-----------------------------------------------------------------------------
1599 static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
1600 {
1601 *len = 0;
1602
1603 uint32_t timer = 0, vtime = 0;
1604 int analogCnt = 0;
1605 int analogAVG = 0;
1606
1607 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1608 // only, since we are receiving, not transmitting).
1609 // Signal field is off with the appropriate LED
1610 LED_D_OFF();
1611 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1612
1613 // Set ADC to read field strength
1614 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1615 AT91C_BASE_ADC->ADC_MR =
1616 ADC_MODE_PRESCALE(63) |
1617 ADC_MODE_STARTUP_TIME(1) |
1618 ADC_MODE_SAMPLE_HOLD_TIME(15);
1619 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1620 // start ADC
1621 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1622
1623 // Now run a 'software UART' on the stream of incoming samples.
1624 UartInit(received, parity);
1625
1626 // Clear RXRDY:
1627 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1628
1629 for(;;) {
1630 WDT_HIT();
1631
1632 if (BUTTON_PRESS()) return 1;
1633
1634 // test if the field exists
1635 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1636 analogCnt++;
1637 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1638 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1639 if (analogCnt >= 32) {
1640 if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1641 vtime = GetTickCount();
1642 if (!timer) timer = vtime;
1643 // 50ms no field --> card to idle state
1644 if (vtime - timer > 50) return 2;
1645 } else
1646 if (timer) timer = 0;
1647 analogCnt = 0;
1648 analogAVG = 0;
1649 }
1650 }
1651
1652 // receive and test the miller decoding
1653 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1654 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1655 if(MillerDecoding(b, 0)) {
1656 *len = Uart.len;
1657 return 0;
1658 }
1659 }
1660
1661 }
1662 }
1663
1664
1665 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
1666 {
1667 uint8_t b;
1668 uint16_t i = 0;
1669 uint32_t ThisTransferTime;
1670
1671 // Modulate Manchester
1672 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1673
1674 // include correction bit if necessary
1675 if (Uart.parityBits & 0x01) {
1676 correctionNeeded = TRUE;
1677 }
1678 if(correctionNeeded) {
1679 // 1236, so correction bit needed
1680 i = 0;
1681 } else {
1682 i = 1;
1683 }
1684
1685 // clear receiving shift register and holding register
1686 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1687 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1688 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1689 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1690
1691 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1692 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1693 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1694 if (AT91C_BASE_SSC->SSC_RHR) break;
1695 }
1696
1697 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1698
1699 // Clear TXRDY:
1700 AT91C_BASE_SSC->SSC_THR = SEC_F;
1701
1702 // send cycle
1703 for(; i < respLen; ) {
1704 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1705 AT91C_BASE_SSC->SSC_THR = resp[i++];
1706 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1707 }
1708
1709 if(BUTTON_PRESS()) break;
1710 }
1711
1712 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1713 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
1714 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
1715 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1716 AT91C_BASE_SSC->SSC_THR = SEC_F;
1717 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1718 i++;
1719 }
1720 }
1721
1722 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1723
1724 return 0;
1725 }
1726
1727 int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1728 Code4bitAnswerAsTag(resp);
1729 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1730 // do the tracing for the previous reader request and this tag answer:
1731 uint8_t par[1];
1732 GetParity(&resp, 1, par);
1733 EmLogTrace(Uart.output,
1734 Uart.len,
1735 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1736 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1737 Uart.parity,
1738 &resp,
1739 1,
1740 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1741 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1742 par);
1743 return res;
1744 }
1745
1746 int EmSend4bit(uint8_t resp){
1747 return EmSend4bitEx(resp, false);
1748 }
1749
1750 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
1751 CodeIso14443aAsTagPar(resp, respLen, par);
1752 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1753 // do the tracing for the previous reader request and this tag answer:
1754 EmLogTrace(Uart.output,
1755 Uart.len,
1756 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1757 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1758 Uart.parity,
1759 resp,
1760 respLen,
1761 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1762 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1763 par);
1764 return res;
1765 }
1766
1767 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1768 uint8_t par[MAX_PARITY_SIZE];
1769 GetParity(resp, respLen, par);
1770 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
1771 }
1772
1773 int EmSendCmd(uint8_t *resp, uint16_t respLen){
1774 uint8_t par[MAX_PARITY_SIZE];
1775 GetParity(resp, respLen, par);
1776 return EmSendCmdExPar(resp, respLen, false, par);
1777 }
1778
1779 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
1780 return EmSendCmdExPar(resp, respLen, false, par);
1781 }
1782
1783 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1784 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
1785 {
1786 if (tracing) {
1787 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1788 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1789 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1790 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1791 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1792 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1793 reader_EndTime = tag_StartTime - exact_fdt;
1794 reader_StartTime = reader_EndTime - reader_modlen;
1795 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
1796 return FALSE;
1797 } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
1798 } else {
1799 return TRUE;
1800 }
1801 }
1802
1803 //-----------------------------------------------------------------------------
1804 // Wait a certain time for tag response
1805 // If a response is captured return TRUE
1806 // If it takes too long return FALSE
1807 //-----------------------------------------------------------------------------
1808 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
1809 {
1810 uint32_t c = 0x00;
1811
1812 // Set FPGA mode to "reader listen mode", no modulation (listen
1813 // only, since we are receiving, not transmitting).
1814 // Signal field is on with the appropriate LED
1815 LED_D_ON();
1816 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1817
1818 // Now get the answer from the card
1819 DemodInit(receivedResponse, receivedResponsePar);
1820
1821 // clear RXRDY:
1822 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1823
1824 for(;;) {
1825 WDT_HIT();
1826
1827 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1828 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1829 if(ManchesterDecoding(b, offset, 0)) {
1830 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
1831 return TRUE;
1832 } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
1833 return FALSE;
1834 }
1835 }
1836 }
1837 }
1838
1839 void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
1840 {
1841 CodeIso14443aBitsAsReaderPar(frame, bits, par);
1842
1843 // Send command to tag
1844 TransmitFor14443a(ToSend, ToSendMax, timing);
1845 if(trigger)
1846 LED_A_ON();
1847
1848 // Log reader command in trace buffer
1849 if (tracing) {
1850 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
1851 }
1852 }
1853
1854 void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
1855 {
1856 ReaderTransmitBitsPar(frame, len*8, par, timing);
1857 }
1858
1859 void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
1860 {
1861 // Generate parity and redirect
1862 uint8_t par[MAX_PARITY_SIZE];
1863 GetParity(frame, len/8, par);
1864 ReaderTransmitBitsPar(frame, len, par, timing);
1865 }
1866
1867 void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
1868 {
1869 // Generate parity and redirect
1870 uint8_t par[MAX_PARITY_SIZE];
1871 GetParity(frame, len, par);
1872 ReaderTransmitBitsPar(frame, len*8, par, timing);
1873 }
1874
1875 int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
1876 {
1877 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
1878 if (tracing) {
1879 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1880 }
1881 return Demod.len;
1882 }
1883
1884 int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
1885 {
1886 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
1887 if (tracing) {
1888 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1889 }
1890 return Demod.len;
1891 }
1892
1893 /* performs iso14443a anticollision procedure
1894 * fills the uid pointer unless NULL
1895 * fills resp_data unless NULL */
1896 int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
1897 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1898 uint8_t sel_all[] = { 0x93,0x20 };
1899 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1900 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1901 uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
1902 uint8_t resp_par[MAX_PARITY_SIZE];
1903 byte_t uid_resp[4];
1904 size_t uid_resp_len;
1905
1906 uint8_t sak = 0x04; // cascade uid
1907 int cascade_level = 0;
1908 int len;
1909
1910 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1911 ReaderTransmitBitsPar(wupa,7,0, NULL);
1912
1913 // Receive the ATQA
1914 if(!ReaderReceive(resp, resp_par)) return 0;
1915
1916 if(p_hi14a_card) {
1917 memcpy(p_hi14a_card->atqa, resp, 2);
1918 p_hi14a_card->uidlen = 0;
1919 memset(p_hi14a_card->uid,0,10);
1920 }
1921
1922 // clear uid
1923 if (uid_ptr) {
1924 memset(uid_ptr,0,10);
1925 }
1926
1927 // check for proprietary anticollision:
1928 if ((resp[0] & 0x1F) == 0) {
1929 return 3;
1930 }
1931
1932 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1933 // which case we need to make a cascade 2 request and select - this is a long UID
1934 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1935 for(; sak & 0x04; cascade_level++) {
1936 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1937 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1938
1939 // SELECT_ALL
1940 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1941 if (!ReaderReceive(resp, resp_par)) return 0;
1942
1943 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1944 memset(uid_resp, 0, 4);
1945 uint16_t uid_resp_bits = 0;
1946 uint16_t collision_answer_offset = 0;
1947 // anti-collision-loop:
1948 while (Demod.collisionPos) {
1949 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1950 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1951 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1952 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
1953 }
1954 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1955 uid_resp_bits++;
1956 // construct anticollosion command:
1957 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1958 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1959 sel_uid[2+i] = uid_resp[i];
1960 }
1961 collision_answer_offset = uid_resp_bits%8;
1962 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1963 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
1964 }
1965 // finally, add the last bits and BCC of the UID
1966 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1967 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1968 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
1969 }
1970
1971 } else { // no collision, use the response to SELECT_ALL as current uid
1972 memcpy(uid_resp, resp, 4);
1973 }
1974 uid_resp_len = 4;
1975
1976 // calculate crypto UID. Always use last 4 Bytes.
1977 if(cuid_ptr) {
1978 *cuid_ptr = bytes_to_num(uid_resp, 4);
1979 }
1980
1981 // Construct SELECT UID command
1982 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1983 memcpy(sel_uid+2, uid_resp, 4); // the UID
1984 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1985 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1986 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1987
1988 // Receive the SAK
1989 if (!ReaderReceive(resp, resp_par)) return 0;
1990 sak = resp[0];
1991
1992 // Test if more parts of the uid are coming
1993 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1994 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1995 // http://www.nxp.com/documents/application_note/AN10927.pdf
1996 uid_resp[0] = uid_resp[1];
1997 uid_resp[1] = uid_resp[2];
1998 uid_resp[2] = uid_resp[3];
1999
2000 uid_resp_len = 3;
2001 }
2002
2003 if(uid_ptr) {
2004 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
2005 }
2006
2007 if(p_hi14a_card) {
2008 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
2009 p_hi14a_card->uidlen += uid_resp_len;
2010 }
2011 }
2012
2013 if(p_hi14a_card) {
2014 p_hi14a_card->sak = sak;
2015 p_hi14a_card->ats_len = 0;
2016 }
2017
2018 // non iso14443a compliant tag
2019 if( (sak & 0x20) == 0) return 2;
2020
2021 // Request for answer to select
2022 AppendCrc14443a(rats, 2);
2023 ReaderTransmit(rats, sizeof(rats), NULL);
2024
2025 if (!(len = ReaderReceive(resp, resp_par))) return 0;
2026
2027
2028 if(p_hi14a_card) {
2029 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
2030 p_hi14a_card->ats_len = len;
2031 }
2032
2033 // reset the PCB block number
2034 iso14_pcb_blocknum = 0;
2035
2036 // set default timeout based on ATS
2037 iso14a_set_ATS_timeout(resp);
2038
2039 return 1;
2040 }
2041
2042 void iso14443a_setup(uint8_t fpga_minor_mode) {
2043 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
2044 // Set up the synchronous serial port
2045 FpgaSetupSsc();
2046 // connect Demodulated Signal to ADC:
2047 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
2048
2049 // Signal field is on with the appropriate LED
2050 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
2051 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
2052 LED_D_ON();
2053 } else {
2054 LED_D_OFF();
2055 }
2056 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
2057
2058 // Start the timer
2059 StartCountSspClk();
2060
2061 DemodReset();
2062 UartReset();
2063 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
2064 iso14a_set_timeout(10*106); // 10ms default
2065 }
2066
2067 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
2068 uint8_t parity[MAX_PARITY_SIZE];
2069 uint8_t real_cmd[cmd_len+4];
2070 real_cmd[0] = 0x0a; //I-Block
2071 // put block number into the PCB
2072 real_cmd[0] |= iso14_pcb_blocknum;
2073 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
2074 memcpy(real_cmd+2, cmd, cmd_len);
2075 AppendCrc14443a(real_cmd,cmd_len+2);
2076
2077 ReaderTransmit(real_cmd, cmd_len+4, NULL);
2078 size_t len = ReaderReceive(data, parity);
2079 uint8_t *data_bytes = (uint8_t *) data;
2080 if (!len)
2081 return 0; //DATA LINK ERROR
2082 // if we received an I- or R(ACK)-Block with a block number equal to the
2083 // current block number, toggle the current block number
2084 else if (len >= 4 // PCB+CID+CRC = 4 bytes
2085 && ((data_bytes[0] & 0xC0) == 0 // I-Block
2086 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
2087 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
2088 {
2089 iso14_pcb_blocknum ^= 1;
2090 }
2091
2092 return len;
2093 }
2094
2095 //-----------------------------------------------------------------------------
2096 // Read an ISO 14443a tag. Send out commands and store answers.
2097 //
2098 //-----------------------------------------------------------------------------
2099 void ReaderIso14443a(UsbCommand *c)
2100 {
2101 iso14a_command_t param = c->arg[0];
2102 uint8_t *cmd = c->d.asBytes;
2103 size_t len = c->arg[1] & 0xffff;
2104 size_t lenbits = c->arg[1] >> 16;
2105 uint32_t timeout = c->arg[2];
2106 uint32_t arg0 = 0;
2107 byte_t buf[USB_CMD_DATA_SIZE];
2108 uint8_t par[MAX_PARITY_SIZE];
2109
2110 if(param & ISO14A_CONNECT) {
2111 clear_trace();
2112 }
2113
2114 set_tracing(TRUE);
2115
2116 if(param & ISO14A_REQUEST_TRIGGER) {
2117 iso14a_set_trigger(TRUE);
2118 }
2119
2120 if(param & ISO14A_CONNECT) {
2121 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
2122 if(!(param & ISO14A_NO_SELECT)) {
2123 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
2124 arg0 = iso14443a_select_card(NULL,card,NULL);
2125 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
2126 }
2127 }
2128
2129 if(param & ISO14A_SET_TIMEOUT) {
2130 iso14a_set_timeout(timeout);
2131 }
2132
2133 if(param & ISO14A_APDU) {
2134 arg0 = iso14_apdu(cmd, len, buf);
2135 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
2136 }
2137
2138 if(param & ISO14A_RAW) {
2139 if(param & ISO14A_APPEND_CRC) {
2140 if(param & ISO14A_TOPAZMODE) {
2141 AppendCrc14443b(cmd,len);
2142 } else {
2143 AppendCrc14443a(cmd,len);
2144 }
2145 len += 2;
2146 if (lenbits) lenbits += 16;
2147 }
2148 if(lenbits>0) { // want to send a specific number of bits (e.g. short commands)
2149 if(param & ISO14A_TOPAZMODE) {
2150 int bits_to_send = lenbits;
2151 uint16_t i = 0;
2152 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
2153 bits_to_send -= 7;
2154 while (bits_to_send > 0) {
2155 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
2156 bits_to_send -= 8;
2157 }
2158 } else {
2159 GetParity(cmd, lenbits/8, par);
2160 ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
2161 }
2162 } else { // want to send complete bytes only
2163 if(param & ISO14A_TOPAZMODE) {
2164 uint16_t i = 0;
2165 ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
2166 while (i < len) {
2167 ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
2168 }
2169 } else {
2170 ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
2171 }
2172 }
2173 arg0 = ReaderReceive(buf, par);
2174 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
2175 }
2176
2177 if(param & ISO14A_REQUEST_TRIGGER) {
2178 iso14a_set_trigger(FALSE);
2179 }
2180
2181 if(param & ISO14A_NO_DISCONNECT) {
2182 return;
2183 }
2184
2185 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2186 set_tracing(FALSE);
2187 LEDsoff();
2188 }
2189
2190
2191 // Determine the distance between two nonces.
2192 // Assume that the difference is small, but we don't know which is first.
2193 // Therefore try in alternating directions.
2194 int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
2195
2196 uint16_t i;
2197 uint32_t nttmp1, nttmp2;
2198
2199 if (nt1 == nt2) return 0;
2200
2201 nttmp1 = nt1;
2202 nttmp2 = nt2;
2203
2204 for (i = 1; i < 0xFFFF; i++) {
2205 nttmp1 = prng_successor(nttmp1, 1);
2206 if (nttmp1 == nt2) return i;
2207 nttmp2 = prng_successor(nttmp2, 1);
2208 if (nttmp2 == nt1) return -i;
2209 }
2210
2211 return(-99999); // either nt1 or nt2 are invalid nonces
2212 }
2213
2214
2215 //-----------------------------------------------------------------------------
2216 // Recover several bits of the cypher stream. This implements (first stages of)
2217 // the algorithm described in "The Dark Side of Security by Obscurity and
2218 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2219 // (article by Nicolas T. Courtois, 2009)
2220 //-----------------------------------------------------------------------------
2221 void ReaderMifare(bool first_try)
2222 {
2223 // Mifare AUTH
2224 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
2225 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2226 static uint8_t mf_nr_ar3;
2227
2228 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
2229 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
2230
2231 if (first_try) {
2232 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2233 }
2234
2235 // free eventually allocated BigBuf memory. We want all for tracing.
2236 BigBuf_free();
2237
2238 clear_trace();
2239 set_tracing(TRUE);
2240
2241 byte_t nt_diff = 0;
2242 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2243 static byte_t par_low = 0;
2244 bool led_on = TRUE;
2245 uint8_t uid[10] ={0};
2246 uint32_t cuid;
2247
2248 uint32_t nt = 0;
2249 uint32_t previous_nt = 0;
2250 static uint32_t nt_attacked = 0;
2251 byte_t par_list[8] = {0x00};
2252 byte_t ks_list[8] = {0x00};
2253
2254 #define PRNG_SEQUENCE_LENGTH (1 << 16);
2255 static uint32_t sync_time = 0;
2256 static int32_t sync_cycles = 0;
2257 int catch_up_cycles = 0;
2258 int last_catch_up = 0;
2259 uint16_t elapsed_prng_sequences;
2260 uint16_t consecutive_resyncs = 0;
2261 int isOK = 0;
2262
2263 if (first_try) {
2264 mf_nr_ar3 = 0;
2265 sync_time = GetCountSspClk() & 0xfffffff8;
2266 sync_cycles = PRNG_SEQUENCE_LENGTH; //65536; //0x10000 // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2267 nt_attacked = 0;
2268 par[0] = 0;
2269 }
2270 else {
2271 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2272 mf_nr_ar3++;
2273 mf_nr_ar[3] = mf_nr_ar3;
2274 par[0] = par_low;
2275 }
2276
2277 LED_A_ON();
2278 LED_B_OFF();
2279 LED_C_OFF();
2280
2281
2282 #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
2283 #define MAX_SYNC_TRIES 32
2284 #define NUM_DEBUG_INFOS 8 // per strategy
2285 #define MAX_STRATEGY 3
2286 uint16_t unexpected_random = 0;
2287 uint16_t sync_tries = 0;
2288 int16_t debug_info_nr = -1;
2289 uint16_t strategy = 0;
2290 int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS];
2291 uint32_t select_time;
2292 uint32_t halt_time;
2293
2294 for(uint16_t i = 0; TRUE; i++) {
2295
2296 LED_C_ON();
2297 WDT_HIT();
2298
2299 // Test if the action was cancelled
2300 if(BUTTON_PRESS()) {
2301 isOK = -1;
2302 break;
2303 }
2304
2305 if (strategy == 2) {
2306 // test with additional hlt command
2307 halt_time = 0;
2308 int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
2309 if (len && MF_DBGLEVEL >= 3) {
2310 Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len);
2311 }
2312 }
2313
2314 if (strategy == 3) {
2315 // test with FPGA power off/on
2316 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2317 SpinDelay(200);
2318 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2319 SpinDelay(100);
2320 }
2321
2322 if(!iso14443a_select_card(uid, NULL, &cuid)) {
2323 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
2324 continue;
2325 }
2326 select_time = GetCountSspClk();
2327
2328 elapsed_prng_sequences = 1;
2329 if (debug_info_nr == -1) {
2330 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
2331 catch_up_cycles = 0;
2332
2333 // if we missed the sync time already, advance to the next nonce repeat
2334 while(GetCountSspClk() > sync_time) {
2335 elapsed_prng_sequences++;
2336 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
2337 }
2338
2339 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2340 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2341 } else {
2342 // collect some information on tag nonces for debugging:
2343 #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
2344 if (strategy == 0) {
2345 // nonce distances at fixed time after card select:
2346 sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
2347 } else if (strategy == 1) {
2348 // nonce distances at fixed time between authentications:
2349 sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES;
2350 } else if (strategy == 2) {
2351 // nonce distances at fixed time after halt:
2352 sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES;
2353 } else {
2354 // nonce_distances at fixed time after power on
2355 sync_time = DEBUG_FIXED_SYNC_CYCLES;
2356 }
2357 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2358 }
2359
2360 // Receive the (4 Byte) "random" nonce
2361 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
2362 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2363 continue;
2364 }
2365
2366 previous_nt = nt;
2367 nt = bytes_to_num(receivedAnswer, 4);
2368
2369 // Transmit reader nonce with fake par
2370 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
2371
2372 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2373 int nt_distance = dist_nt(previous_nt, nt);
2374 if (nt_distance == 0) {
2375 nt_attacked = nt;
2376 } else {
2377 if (nt_distance == -99999) { // invalid nonce received
2378 unexpected_random++;
2379 if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
2380 isOK = -3; // Card has an unpredictable PRNG. Give up
2381 break;
2382 } else {
2383 continue; // continue trying...
2384 }
2385 }
2386 if (++sync_tries > MAX_SYNC_TRIES) {
2387 if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
2388 isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
2389 break;
2390 } else { // continue for a while, just to collect some debug info
2391 debug_info[strategy][debug_info_nr] = nt_distance;
2392 debug_info_nr++;
2393 if (debug_info_nr == NUM_DEBUG_INFOS) {
2394 strategy++;
2395 debug_info_nr = 0;
2396 }
2397 continue;
2398 }
2399 }
2400 sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences);
2401 if (sync_cycles <= 0) {
2402 sync_cycles += PRNG_SEQUENCE_LENGTH;
2403 }
2404 if (MF_DBGLEVEL >= 3) {
2405 Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
2406 }
2407 continue;
2408 }
2409 }
2410
2411 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2412 catch_up_cycles = -dist_nt(nt_attacked, nt);
2413 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2414 catch_up_cycles = 0;
2415 continue;
2416 }
2417 catch_up_cycles /= elapsed_prng_sequences;
2418 if (catch_up_cycles == last_catch_up) {
2419 consecutive_resyncs++;
2420 }
2421 else {
2422 last_catch_up = catch_up_cycles;
2423 consecutive_resyncs = 0;
2424 }
2425 if (consecutive_resyncs < 3) {
2426 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
2427 }
2428 else {
2429 sync_cycles = sync_cycles + catch_up_cycles;
2430 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
2431 last_catch_up = 0;
2432 catch_up_cycles = 0;
2433 consecutive_resyncs = 0;
2434 }
2435 continue;
2436 }
2437
2438 consecutive_resyncs = 0;
2439
2440 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2441 if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
2442 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2443
2444 if (nt_diff == 0) {
2445 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2446 }
2447
2448 led_on = !led_on;
2449 if(led_on) LED_B_ON(); else LED_B_OFF();
2450
2451 par_list[nt_diff] = SwapBits(par[0], 8);
2452 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2453
2454 // Test if the information is complete
2455 if (nt_diff == 0x07) {
2456 isOK = 1;
2457 break;
2458 }
2459
2460 nt_diff = (nt_diff + 1) & 0x07;
2461 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
2462 par[0] = par_low;
2463 } else {
2464 if (nt_diff == 0 && first_try)
2465 {
2466 par[0]++;
2467 if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
2468 isOK = -2;
2469 break;
2470 }
2471 } else {
2472 par[0] = ((par[0] & 0x1F) + 1) | par_low;
2473 }
2474 }
2475 }
2476
2477
2478 mf_nr_ar[3] &= 0x1F;
2479
2480 if (isOK == -4) {
2481 if (MF_DBGLEVEL >= 3) {
2482 for (uint16_t i = 0; i <= MAX_STRATEGY; i++) {
2483 for(uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) {
2484 Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]);
2485 }
2486 }
2487 }
2488 }
2489
2490 byte_t buf[28];
2491 memcpy(buf + 0, uid, 4);
2492 num_to_bytes(nt, 4, buf + 4);
2493 memcpy(buf + 8, par_list, 8);
2494 memcpy(buf + 16, ks_list, 8);
2495 memcpy(buf + 24, mf_nr_ar, 4);
2496
2497 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2498
2499 // Thats it...
2500 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2501 LEDsoff();
2502
2503 set_tracing(FALSE);
2504 }
2505
2506 /**
2507 *MIFARE 1K simulate.
2508 *
2509 *@param flags :
2510 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2511 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2512 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2513 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2514 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2515 */
2516 void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
2517 {
2518 int cardSTATE = MFEMUL_NOFIELD;
2519 int _7BUID = 0;
2520 int vHf = 0; // in mV
2521 int res;
2522 uint32_t selTimer = 0;
2523 uint32_t authTimer = 0;
2524 uint16_t len = 0;
2525 uint8_t cardWRBL = 0;
2526 uint8_t cardAUTHSC = 0;
2527 uint8_t cardAUTHKEY = 0xff; // no authentication
2528 // uint32_t cardRr = 0;
2529 uint32_t cuid = 0;
2530 //uint32_t rn_enc = 0;
2531 uint32_t ans = 0;
2532 uint32_t cardINTREG = 0;
2533 uint8_t cardINTBLOCK = 0;
2534 struct Crypto1State mpcs = {0, 0};
2535 struct Crypto1State *pcs;
2536 pcs = &mpcs;
2537 uint32_t numReads = 0;//Counts numer of times reader read a block
2538 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2539 uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
2540 uint8_t response[MAX_MIFARE_FRAME_SIZE];
2541 uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
2542
2543 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2544 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2545 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2546 //uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
2547 uint8_t rSAK[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
2548 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
2549
2550 uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01};
2551 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
2552
2553 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2554 // This can be used in a reader-only attack.
2555 // (it can also be retrieved via 'hf 14a list', but hey...
2556 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
2557 uint8_t ar_nr_collected = 0;
2558
2559 // Authenticate response - nonce
2560 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
2561
2562 //-- Determine the UID
2563 // Can be set from emulator memory, incoming data
2564 // and can be 7 or 4 bytes long
2565 if (flags & FLAG_4B_UID_IN_DATA)
2566 {
2567 // 4B uid comes from data-portion of packet
2568 memcpy(rUIDBCC1,datain,4);
2569 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2570
2571 } else if (flags & FLAG_7B_UID_IN_DATA) {
2572 // 7B uid comes from data-portion of packet
2573 memcpy(&rUIDBCC1[1],datain,3);
2574 memcpy(rUIDBCC2, datain+3, 4);
2575 _7BUID = true;
2576 } else {
2577 // get UID from emul memory
2578 emlGetMemBt(receivedCmd, 7, 1);
2579 _7BUID = !(receivedCmd[0] == 0x00);
2580 if (!_7BUID) { // ---------- 4BUID
2581 emlGetMemBt(rUIDBCC1, 0, 4);
2582 } else { // ---------- 7BUID
2583 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2584 emlGetMemBt(rUIDBCC2, 3, 4);
2585 }
2586 }
2587
2588 // save uid.
2589 ar_nr_responses[0*5] = bytes_to_num(rUIDBCC1+1, 3);
2590 if ( _7BUID )
2591 ar_nr_responses[0*5+1] = bytes_to_num(rUIDBCC2, 4);
2592
2593 /*
2594 * Regardless of what method was used to set the UID, set fifth byte and modify
2595 * the ATQA for 4 or 7-byte UID
2596 */
2597 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2598 if (_7BUID) {
2599 rATQA[0] = 0x44;
2600 rUIDBCC1[0] = 0x88;
2601 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2602 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2603 }
2604
2605 if (MF_DBGLEVEL >= 1) {
2606 if (!_7BUID) {
2607 Dbprintf("4B UID: %02x%02x%02x%02x",
2608 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
2609 } else {
2610 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2611 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
2612 rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
2613 }
2614 }
2615
2616 // We need to listen to the high-frequency, peak-detected path.
2617 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2618
2619 // free eventually allocated BigBuf memory but keep Emulator Memory
2620 BigBuf_free_keep_EM();
2621
2622 // clear trace
2623 clear_trace();
2624 set_tracing(TRUE);
2625
2626
2627 bool finished = FALSE;
2628 while (!BUTTON_PRESS() && !finished) {
2629 WDT_HIT();
2630
2631 // find reader field
2632 if (cardSTATE == MFEMUL_NOFIELD) {
2633 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
2634 if (vHf > MF_MINFIELDV) {
2635 cardSTATE_TO_IDLE();
2636 LED_A_ON();
2637 }
2638 }
2639 if(cardSTATE == MFEMUL_NOFIELD) continue;
2640
2641 //Now, get data
2642 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
2643 if (res == 2) { //Field is off!
2644 cardSTATE = MFEMUL_NOFIELD;
2645 LEDsoff();
2646 continue;
2647 } else if (res == 1) {
2648 break; //return value 1 means button press
2649 }
2650
2651 // REQ or WUP request in ANY state and WUP in HALTED state
2652 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2653 selTimer = GetTickCount();
2654 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2655 cardSTATE = MFEMUL_SELECT1;
2656
2657 // init crypto block
2658 LED_B_OFF();
2659 LED_C_OFF();
2660 crypto1_destroy(pcs);
2661 cardAUTHKEY = 0xff;
2662 continue;
2663 }
2664
2665 switch (cardSTATE) {
2666 case MFEMUL_NOFIELD:
2667 case MFEMUL_HALTED:
2668 case MFEMUL_IDLE:{
2669 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2670 break;
2671 }
2672 case MFEMUL_SELECT1:{
2673 // select all
2674 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
2675 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
2676 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
2677 break;
2678 }
2679
2680 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2681 {
2682 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2683 }
2684 // select card
2685 if (len == 9 &&
2686 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
2687 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
2688 cuid = bytes_to_num(rUIDBCC1, 4);
2689 if (!_7BUID) {
2690 cardSTATE = MFEMUL_WORK;
2691 LED_B_ON();
2692 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2693 break;
2694 } else {
2695 cardSTATE = MFEMUL_SELECT2;
2696 }
2697 }
2698 break;
2699 }
2700 case MFEMUL_AUTH1:{
2701 if( len != 8)
2702 {
2703 cardSTATE_TO_IDLE();
2704 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2705 break;
2706 }
2707
2708 uint32_t ar = bytes_to_num(receivedCmd, 4);
2709 uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
2710
2711 //Collect AR/NR
2712 //if(ar_nr_collected < 2 && cardAUTHSC == 2){
2713 if(ar_nr_collected < 2){
2714 if(ar_nr_responses[2] != ar)
2715 {// Avoid duplicates... probably not necessary, ar should vary.
2716 //ar_nr_responses[ar_nr_collected*5] = 0;
2717 //ar_nr_responses[ar_nr_collected*5+1] = 0;
2718 ar_nr_responses[ar_nr_collected*5+2] = nonce;
2719 ar_nr_responses[ar_nr_collected*5+3] = nr;
2720 ar_nr_responses[ar_nr_collected*5+4] = ar;
2721 ar_nr_collected++;
2722 }
2723 // Interactive mode flag, means we need to send ACK
2724 if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2)
2725 {
2726 finished = true;
2727 }
2728 }
2729
2730 // --- crypto
2731 //crypto1_word(pcs, ar , 1);
2732 //cardRr = nr ^ crypto1_word(pcs, 0, 0);
2733
2734 //test if auth OK
2735 //if (cardRr != prng_successor(nonce, 64)){
2736
2737 //if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2738 // cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2739 // cardRr, prng_successor(nonce, 64));
2740 // Shouldn't we respond anything here?
2741 // Right now, we don't nack or anything, which causes the
2742 // reader to do a WUPA after a while. /Martin
2743 // -- which is the correct response. /piwi
2744 //cardSTATE_TO_IDLE();
2745 //LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2746 //break;
2747 //}
2748
2749 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2750
2751 num_to_bytes(ans, 4, rAUTH_AT);
2752 // --- crypto
2753 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2754 LED_C_ON();
2755 cardSTATE = MFEMUL_WORK;
2756 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2757 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2758 GetTickCount() - authTimer);
2759 break;
2760 }
2761 case MFEMUL_SELECT2:{
2762 if (!len) {
2763 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2764 break;
2765 }
2766 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
2767 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
2768 break;
2769 }
2770
2771 // select 2 card
2772 if (len == 9 &&
2773 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2774 EmSendCmd(rSAK, sizeof(rSAK));
2775 cuid = bytes_to_num(rUIDBCC2, 4);
2776 cardSTATE = MFEMUL_WORK;
2777 LED_B_ON();
2778 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
2779 break;
2780 }
2781
2782 // i guess there is a command). go into the work state.
2783 if (len != 4) {
2784 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2785 break;
2786 }
2787 cardSTATE = MFEMUL_WORK;
2788 //goto lbWORK;
2789 //intentional fall-through to the next case-stmt
2790 }
2791
2792 case MFEMUL_WORK:{
2793 if (len == 0) {
2794 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2795 break;
2796 }
2797
2798 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2799
2800 if(encrypted_data) {
2801 // decrypt seqence
2802 mf_crypto1_decrypt(pcs, receivedCmd, len);
2803 }
2804
2805 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2806 authTimer = GetTickCount();
2807 cardAUTHSC = receivedCmd[1] / 4; // received block num
2808 cardAUTHKEY = receivedCmd[0] - 0x60;
2809 crypto1_destroy(pcs);//Added by martin
2810 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
2811
2812 if (!encrypted_data) { // first authentication
2813 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2814
2815 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2816 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
2817 } else { // nested authentication
2818 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2819 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
2820 num_to_bytes(ans, 4, rAUTH_AT);
2821 }
2822
2823 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2824 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2825 cardSTATE = MFEMUL_AUTH1;
2826 break;
2827 }
2828
2829 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2830 // BUT... ACK --> NACK
2831 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2832 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2833 break;
2834 }
2835
2836 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2837 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2838 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2839 break;
2840 }
2841
2842 if(len != 4) {
2843 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2844 break;
2845 }
2846
2847 if(receivedCmd[0] == 0x30 // read block
2848 || receivedCmd[0] == 0xA0 // write block
2849 || receivedCmd[0] == 0xC0 // inc
2850 || receivedCmd[0] == 0xC1 // dec
2851 || receivedCmd[0] == 0xC2 // restore
2852 || receivedCmd[0] == 0xB0) { // transfer
2853 if (receivedCmd[1] >= 16 * 4) {
2854 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2855 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2856 break;
2857 }
2858
2859 if (receivedCmd[1] / 4 != cardAUTHSC) {
2860 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2861 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
2862 break;
2863 }
2864 }
2865 // read block
2866 if (receivedCmd[0] == 0x30) {
2867 if (MF_DBGLEVEL >= 4) {
2868 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2869 }
2870 emlGetMem(response, receivedCmd[1], 1);
2871 AppendCrc14443a(response, 16);
2872 mf_crypto1_encrypt(pcs, response, 18, response_par);
2873 EmSendCmdPar(response, 18, response_par);
2874 numReads++;
2875 if(exitAfterNReads > 0 && numReads >= exitAfterNReads) {
2876 Dbprintf("%d reads done, exiting", numReads);
2877 finished = true;
2878 }
2879 break;
2880 }
2881 // write block
2882 if (receivedCmd[0] == 0xA0) {
2883 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
2884 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2885 cardSTATE = MFEMUL_WRITEBL2;
2886 cardWRBL = receivedCmd[1];
2887 break;
2888 }
2889 // increment, decrement, restore
2890 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
2891 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2892 if (emlCheckValBl(receivedCmd[1])) {
2893 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2894 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2895 break;
2896 }
2897 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2898 if (receivedCmd[0] == 0xC1)
2899 cardSTATE = MFEMUL_INTREG_INC;
2900 if (receivedCmd[0] == 0xC0)
2901 cardSTATE = MFEMUL_INTREG_DEC;
2902 if (receivedCmd[0] == 0xC2)
2903 cardSTATE = MFEMUL_INTREG_REST;
2904 cardWRBL = receivedCmd[1];
2905 break;
2906 }
2907 // transfer
2908 if (receivedCmd[0] == 0xB0) {
2909 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2910 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2911 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2912 else
2913 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2914 break;
2915 }
2916 // halt
2917 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
2918 LED_B_OFF();
2919 LED_C_OFF();
2920 cardSTATE = MFEMUL_HALTED;
2921 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
2922 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2923 break;
2924 }
2925 // RATS
2926 if (receivedCmd[0] == 0xe0) {//RATS
2927 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2928 break;
2929 }
2930 // command not allowed
2931 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2932 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2933 break;
2934 }
2935 case MFEMUL_WRITEBL2:{
2936 if (len == 18){
2937 mf_crypto1_decrypt(pcs, receivedCmd, len);
2938 emlSetMem(receivedCmd, cardWRBL, 1);
2939 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2940 cardSTATE = MFEMUL_WORK;
2941 } else {
2942 cardSTATE_TO_IDLE();
2943 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2944 }
2945 break;
2946 }
2947
2948 case MFEMUL_INTREG_INC:{
2949 mf_crypto1_decrypt(pcs, receivedCmd, len);
2950 memcpy(&ans, receivedCmd, 4);
2951 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2952 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2953 cardSTATE_TO_IDLE();
2954 break;
2955 }
2956 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2957 cardINTREG = cardINTREG + ans;
2958 cardSTATE = MFEMUL_WORK;
2959 break;
2960 }
2961 case MFEMUL_INTREG_DEC:{
2962 mf_crypto1_decrypt(pcs, receivedCmd, len);
2963 memcpy(&ans, receivedCmd, 4);
2964 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2965 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2966 cardSTATE_TO_IDLE();
2967 break;
2968 }
2969 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2970 cardINTREG = cardINTREG - ans;
2971 cardSTATE = MFEMUL_WORK;
2972 break;
2973 }
2974 case MFEMUL_INTREG_REST:{
2975 mf_crypto1_decrypt(pcs, receivedCmd, len);
2976 memcpy(&ans, receivedCmd, 4);
2977 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2978 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2979 cardSTATE_TO_IDLE();
2980 break;
2981 }
2982 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2983 cardSTATE = MFEMUL_WORK;
2984 break;
2985 }
2986 }
2987 }
2988
2989 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2990 LEDsoff();
2991
2992 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2993 {
2994 //May just aswell send the collected ar_nr in the response aswell
2995 uint8_t len = ar_nr_collected*5*4;
2996 cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
2997 }
2998
2999 if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 )
3000 {
3001 if(ar_nr_collected > 1 ) {
3002 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
3003 Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x",
3004 ar_nr_responses[0], // UID1
3005 ar_nr_responses[1], // UID2
3006 ar_nr_responses[2], // NT
3007 ar_nr_responses[3], // AR1
3008 ar_nr_responses[4], // NR1
3009 ar_nr_responses[8], // AR2
3010 ar_nr_responses[9] // NR2
3011 );
3012 Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
3013 ar_nr_responses[0], // UID1
3014 ar_nr_responses[1], // UID2
3015 ar_nr_responses[2], // NT1
3016 ar_nr_responses[3], // AR1
3017 ar_nr_responses[4], // NR1
3018 ar_nr_responses[7], // NT2
3019 ar_nr_responses[8], // AR2
3020 ar_nr_responses[9] // NR2
3021 );
3022 } else {
3023 Dbprintf("Failed to obtain two AR/NR pairs!");
3024 if(ar_nr_collected > 0 ) {
3025 Dbprintf("Only got these: UID=%07x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
3026 ar_nr_responses[0], // UID1
3027 ar_nr_responses[1], // UID2
3028 ar_nr_responses[2], // NT
3029 ar_nr_responses[3], // AR1
3030 ar_nr_responses[4] // NR1
3031 );
3032 }
3033 }
3034 }
3035 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
3036
3037 set_tracing(FALSE);
3038 }
3039
3040
3041 //-----------------------------------------------------------------------------
3042 // MIFARE sniffer.
3043 //
3044 //-----------------------------------------------------------------------------
3045 void RAMFUNC SniffMifare(uint8_t param) {
3046 // param:
3047 // bit 0 - trigger from first card answer
3048 // bit 1 - trigger from first reader 7-bit request
3049
3050 // C(red) A(yellow) B(green)
3051 LEDsoff();
3052 // init trace buffer
3053 clear_trace();
3054 set_tracing(TRUE);
3055
3056 // The command (reader -> tag) that we're receiving.
3057 // The length of a received command will in most cases be no more than 18 bytes.
3058 // So 32 should be enough!
3059 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
3060 uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
3061 // The response (tag -> reader) that we're receiving.
3062 uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
3063 uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
3064
3065 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
3066
3067 // free eventually allocated BigBuf memory
3068 BigBuf_free();
3069 // allocate the DMA buffer, used to stream samples from the FPGA
3070 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
3071 uint8_t *data = dmaBuf;
3072 uint8_t previous_data = 0;
3073 int maxDataLen = 0;
3074 int dataLen = 0;
3075 bool ReaderIsActive = FALSE;
3076 bool TagIsActive = FALSE;
3077
3078 // Set up the demodulator for tag -> reader responses.
3079 DemodInit(receivedResponse, receivedResponsePar);
3080
3081 // Set up the demodulator for the reader -> tag commands
3082 UartInit(receivedCmd, receivedCmdPar);
3083
3084 // Setup for the DMA.
3085 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
3086
3087 LED_D_OFF();
3088
3089 // init sniffer
3090 MfSniffInit();
3091
3092 // And now we loop, receiving samples.
3093 for(uint32_t sniffCounter = 0; TRUE; ) {
3094
3095 if(BUTTON_PRESS()) {
3096 DbpString("cancelled by button");
3097 break;
3098 }
3099
3100 LED_A_ON();
3101 WDT_HIT();
3102
3103 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
3104 // check if a transaction is completed (timeout after 2000ms).
3105 // if yes, stop the DMA transfer and send what we have so far to the client
3106 if (MfSniffSend(2000)) {
3107 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
3108 sniffCounter = 0;
3109 data = dmaBuf;
3110 maxDataLen = 0;
3111 ReaderIsActive = FALSE;
3112 TagIsActive = FALSE;
3113 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
3114 }
3115 }
3116
3117 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
3118 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
3119 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
3120 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
3121 } else {
3122 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
3123 }
3124 // test for length of buffer
3125 if(dataLen > maxDataLen) { // we are more behind than ever...
3126 maxDataLen = dataLen;
3127 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
3128 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
3129 break;
3130 }
3131 }
3132 if(dataLen < 1) continue;
3133
3134 // primary buffer was stopped ( <-- we lost data!
3135 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
3136 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
3137 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
3138 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
3139 }
3140 // secondary buffer sets as primary, secondary buffer was stopped
3141 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
3142 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
3143 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
3144 }
3145
3146 LED_A_OFF();
3147
3148 if (sniffCounter & 0x01) {
3149
3150 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
3151 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
3152 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
3153 LED_C_INV();
3154 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
3155
3156 /* And ready to receive another command. */
3157 UartReset();
3158
3159 /* And also reset the demod code */
3160 DemodReset();
3161 }
3162 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
3163 }
3164
3165 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
3166 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
3167 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
3168 LED_C_INV();
3169
3170 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
3171
3172 // And ready to receive another response.
3173 DemodReset();
3174
3175 // And reset the Miller decoder including its (now outdated) input buffer
3176 UartInit(receivedCmd, receivedCmdPar);
3177 // why not UartReset?
3178 }
3179 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
3180 }
3181 }
3182
3183 previous_data = *data;
3184 sniffCounter++;
3185 data++;
3186 if(data == dmaBuf + DMA_BUFFER_SIZE) {
3187 data = dmaBuf;
3188 }
3189
3190 } // main cycle
3191
3192 FpgaDisableSscDma();
3193 MfSniffEnd();
3194 LEDsoff();
3195 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
3196 set_tracing(FALSE);
3197 }
Impressum, Datenschutz